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Abstract
A great part of the applications that involve sliding surfaces are strongly

dependent on the running-in of the tribo-systems. Lately, more and more

industrial research is focused on the improvement of running-in, in order

to achieve reduced wear rates and minimal energy loss due to friction.

In this process, the friction coefficient and environmental parameters are

monitored throughout the tribological load. Post load experiments include

chemical analysis of the surface, topography examination and wear mea-

surement. The radionuclide on-line wear measurement was a major break-

through in modern tribology, as it allows researchers to correlate the wear

rates with the friction coefficient during such an experiment. Nevertheless,

one of the most critical parameters for the understanding of running-in, the

topography of the sliding surfaces, can only be determined at the end of ev-

ery test. The reason why the topographical evolution during the running-in

of lubricated sliding surfaces remains unclear lies in the difficulty of in-situ

measurements in such experimental layouts. In this work, a state-of-the-art

tribometer was constructed to investigate the dynamic behavior of sliding

metallic surfaces under lubrication. The basis of the system is a position-

ing system with sub-micron precision and a custom-made force sensor that

can measure x,y and z forces simultaneously. The topography is measured

with a 3D holography microscope at a maximum frequency of 15 fps as

well as an atomic force microscope (AFM). The samples and the objective

lens of the microscope are immersed in poly alpha olefin (PAO). A radionu-

clide technique apparatus measures wear on-line. The entire instrument is

controlled with custom built software which is also used for the process-

ing of the results. Tests performed with steel and iron samples demonstrate

stable function of the equipment. Taking advantage of the features of this

instrument, two blocks of experiments were performed. The first block was

performed with flat steel pins against flat Cu samples in a linear recipro-

cating motion, as well as in a uni-directional manner. The results suggest

that mechanical mixing and material transfer lead to an unstable lamellar
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formation near the surface. Still, delamination cannot be excluded as a pos-

sible mechanism in the examined system. The second block was performed

with ruby spheres against flat Cu samples, again in a linear reciprocating

motion. According to the results, an approximation technique is proposed

to precisely separate plowing from shear terms of the friction force. This is

possible by measuring the widening rate of plowing tracks. The theory of

Bowden, Moore and Tabor was used to explain the results.
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Kurzfassung
Ein großer Teil der Anwendungen, die Gleitflächen beinhalten, hängen

stark vom Einlaufverhalten des Tribosystems ab. Inzwischen konzentriert

sich die industrielle Forschung immer mehr auf die Verbesserung des Ein-

laufverhaltens, um die Verschleißraten und den Energieverlust durch Rei-

bung zu minimieren. Bei diesen Untersuchungen werden die Reibkoef-

fizienten und die Umgebungsbedingungen während der gesamten tribolo-

gischen Belastungsphase aufgezeichnet. Die anschließenden Untersuchun-

gen beinhalten die chemische Analyse der Oberfläche, die Topographie-

analyse und die Verschleißmessung. Die Radionuklid-on-line-Verschleiß-

messung war dabei ein großer Durchbruch der modernen Tribologie, da sie

es den Forschern ermöglicht, die Verschleißraten mit den Reibkoeffizien-

ten während des Experiments zu korrelieren. Nichtsdestotrotz kann die

resultierende Topographie der Gleitflächen, welche einen der kritischsten

Parameter für das Verständnis des Einlaufprozesses darstellt, stets erst am

Ende eines jeden Versuchs bestimmt werden. Der Grund, weshalb die

Topographieentwicklung während des Einlaufprozesses von geschmierten

Gleitflächen unklar bleibt, liegt in der Schwierigkeit der in-situ-Messung

dieser experimentellen Ausführung. Im Rahmen der vorliegenden Arbeit

wurde ein hochmodernes Tribometer konstruiert, um das dynamische Ver-

halten von geschmierten, metallischen Gleitflächen zu untersuchen. Die

Grundlage des Aufbaus ist ein submikrometer-präzises Positioniersystem

und ein selbst gefertigter Kraftsensor, der gleichzeitig in alle drei Raum-

richtungen die Kräfte messen kann. Die Topographie wird sowohl mit

einem 3D-Holographie-Mikroskop mit einer maximalen Bildrate von 15

Aufnahmen pro Sekunde wie auch mit einem Rasterkraftmikroskop (AFM)

gemessen. Die Proben und das Objektiv des Mikroskops sind in Poly-

alphaolefin (PAO) getaucht. Ein Radionuklidtechnik-Gerät misst den Ver-

schleiß online.

Der gesamte Versuchsaufbau wird mit einer selbstgeschriebenen Software

gesteuert, die auch für die Datenverarbeitung genutzt wird. Versuche mit
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Stahl- und Eisenproben zeigten die stabile Funktion des Aufbaus. Die

Vorzüge des Tribometers wurden genutzt, um zwei Versuchsblöcke durch-

zuführen. Der erste Block wurde mit flachen Stahlstiften durchgeführt, die

linear-reversierend wie auch in einsinniger Bewegungsrichtung auf flachen

Kupferproben gleiten. Die Ergebnisse deuten darauf hin, dass eine mecha-

nische Durchmischung und ein Materialübertrag zu einer instabilen Lamel-

lenbildung nahe der Oberfläche führen. Jedoch kann Delamination als

möglicher Verschleißmechanismus im untersuchten System nicht ausge-

schlossen werden. Der zweite Versuchsblock wurde mit linear- reversieren-

den Rubinkugeln auf flachen Kupferproben durchgeführt. Basierend auf

den Ergebnissen wird eine Näherungsmethode vorgeschlagen, um die Pflüg-

und Scherbeiträge der Reibkraft präzise zu trennen. Dies wird erst durch

die Messung der Verbreiterungsrate der Pflügspur möglich. Die Theo-

rie von Bowden, Moore und Tabor wurde zur Erklärung der Ergebnisse

herangezogen.
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1. Introduction

Tribology is a scientific and engineering field that combines elements of

solid mechanics, fluid mechanics, materials science and chemistry. It is

known that our ancestors already understood the importance of friction in

1800 BC in ancient Egypt, when constructing vehicles for the Pharaoh [1].

Leonardo da Vinci was probably one of the first scientists to systematically

study friction. He reported that the areas of contact do not have an effect

on friction and that if the load is doubled, the friction will also be doubled.

He even made sketches of antifriction bearings. In 1966 Jost wrote a re-

port that stressed the impact of friction and wear on economy [2]. It was in

this landmark report that the term “tribology” was introduced, a word that

comes from the Greek word ”τρίβω”, which means to rub. The field of tri-

bology has attracted a lot of attention since this time, especially in countries

with increased industrial activity [3].

In recent years, phenomena related to friction and wear have received

strong interest in academia and industry. A main reason is the emerging

potential of achieving higher efficiency in various processes by reducing

friction and improving the reliability of parts via wear reduction. The en-

vironment, surface and subsurface structure of bodies after being subjected

to tribological loads have been studied extensively. Most results of post

mortem examinations indicate, that during the application of load, complex

phenomena occur.

Among the current trends in tribology, in-situ measurements begin to

shine, thanks to various breakthroughs in modern instrumentation. Several

modern in-situ methods aiming at elucidating the dynamics of these very

phenomena are referenced in the following chapters. An important obser-
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1. Introduction

vation when evaluating such methods is that monitoring a system during

a tribological experiment usually poses several limitations with respect to

the conditions of the experiment. Examples of such limitations can be per-

forming sliding tests with transparent bodies, in dry environments, under

vacuum or inert gas etc. (see Chapter 2). The majority of advanced indus-

trial tribo-systems involve lubricated metallic systems.

The main aim of this work is to develop a method that allows for in-situ

investigation of lubricated metallic sliding surfaces, focusing on topogra-

phy changes which can be correlated with wear, subsurface restructuring

and fluctuations of the friction coefficient. The argumentation in the dis-

cussion of the results is based on the roots of tribology’s theory, so this first

chapter provides a brief explanation of the very fundamentals of tribology.

Furthermore, a novel experimental technique is introduced in this work.

Therefore, an overview of the most important tribological testing methods

is given, in order to understand the role and position of the technique in

comparison to the existing experimental paths.

1.1. The Nature of Friction

Some of the basic concepts in tribology begin with Amonton’s contribution.

Part of his work was the empirical discovery of two important laws of dry

friction:

1. The friction force is independent of the apparent contact area.

2. The friction force is directly proportional to the applied normal force.

FF = μFN , (1.1)

μ being the friction coefficient.

In addition to the above, Coulomb introduced the third law of dry fric-

tion, according to which the kinetic friction is independent of the sliding

velocity.

2



1.1. The Nature of Friction

Coulomb and Amonton claimed that the real contact area does not de-

pend on the apparent contact area or the sliding speed. It is however pro-

portional to the normal force.

The mechanisms of metallic friction were further studied by Bowden,

Moore and Tabor, with a particular emphasis on the role of shearing and

plowing in dry, wearless sliding [4]. According to their consideration,

metallic junctions larger than molecular dimensions are formed and sheared

during sliding. Furthermore, provided that one of the two surfaces in con-

tact is harder, the asperities of the harder surface will plow out a certain

volume of the counterface.

1.1.1. Plastic junction model (adhesion model)

According to Bowden, Moore and Tabor, the force FS required to shear

the metallic junctions formed at the points of intimate contact between two

metals is given by the following equation,

FS = Ars, (1.2)

where Ar is the real contact area and s is the force per unit area which, acting

in a direction tangential to the interface, is required to shear the junctions.

The force per unit area s was later replaced by σ , the shear strength, which

in the adhesive theory was related to tensile experiments, while the symbol

that is currently used is usually τ .

The above model is also known as the Bowden and Tabor adhesion

model, as it resembles models used in adhesion. This name often leads

to the misconception, that friction in their model originates from adhesive

forces. All changes of the asperities in this model are assumed to be plas-

tic. The energy loss because of friction is therefore the energy of plastic

deformation near the surface.

In common applications, the real contact area of multiple asperity sys-

tems is hard to define. In addition, the exact distribution of the normal

3



1. Introduction

force, as well as variations in the chemistry of the surfaces and the medium

between them cannot be perfectly defined. It is clear, that FS, as measured

in experiments where no wear occurs, is a collective contribution of sin-

gle asperities coming in contact with the counter-face. When working in

ideal conditions of vacuum and a single contact, all parameters mentioned

above are easier to determine; however, atomistic approaches, such as the

Prandtl-Tomlinson model [5] and MD simulations [6] may be more precise

in more complex conditions. Nevertheless, even nowadays, the Bowden-

Tabor plastic junction model in sliding friction is commonly used by tribol-

ogists, regardless of the scale at which they work.

1.1.2. Plowing friction

Bowden and Tabor are mostly known for their well established adhesive

model, although, according to their findings, the contribution of shear is

only one of the two components affecting the friction force. The adhesive

model only applies to systems without wear. When two soft metallic sur-

faces slide against each other, plowing is highly likely to occur, even if it is

limited to a small scale. In this case an additional term has to be added, in

order to consider the resistance encountered when material placed in front

of the slider is being plastically deformed. The force FP required to displace

the softer metal from the front of the slider is equal to the cross-section of

the grooved track A′ multiplied by the mean pressure p′ required to displace

the metal in the surface [4].

FP = A′p′. (1.3)

In this process, an entire volume near the surface is affected. It is there-

fore expected, that the bulk properties of the softer material greatly influ-

ence FP. Still the pressure p′ is not identical with the yield pressure p of

indentation, although it is expected to be in the same order of magnitude

and is possibly a general function thereof.
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1.1. The Nature of Friction

It was also proven, that the presence of lubricant cannot influence the

plowing term. Despite accepting that a lubricant is not affecting FF , it can

help eliminate friction increases at a later stage of a sliding experiment,

when the displaced material accumulates in front of the slider.

1.1.3. From friction forces to friction coefficient

To sum up, the friction force consists of two terms: the shear term that is

based on the adhesion model and the plowing term,

FF = FS +FP. (1.4)

The shear term depends on the real contact area and the nature of the

junctions formed at the points of intimate contact, whereas the plowing

term is defined by the mechanical bulk properties of the softer body and the

amount of material displaced.

The laws of friction give a relation between the friction force and the

normal force by multiplying it with the friction coefficient. When a single

asperity of the harder body is perfectly spherical and is being indented in a

perfectly flat counter-face, it will sink until the normal load is supported by

the softer body. The contact area in this case is

Ar =
FN

p
. (1.5)

If plowing is negligible for a tribo-system, then the friction force can be

given by substituting the real contact area in equation 1.2 with the result of

equation 1.5.

FF = FN
s
p
. (1.6)

If the asperities are in fully plastic conditions, then p is close to the hard-

ness of the softer material H. After dividing both terms by the normal load,

5



1. Introduction

the left hand side of the equation is the friction coefficient, so according to

equation 1.1,

μ =
s
p
≈ s

H
. (1.7)

In an ideal system, the plastic deformation should only take place on the

softer surface, so s is the shear strength of the softer metal. Furthermore,

the surface and the bulk mechanical properties of the two bodies are the

same. Based on these assumptions, the Bowden, Moore and Tabor theory

connects the friction coefficient to bulk properties of the softer body (the

shear strength of the softer metal and the yield pressure of the softer metal

or its hardness).

This theory had two shortcomings. The first one was that it did not con-

sider the influence of contaminant films. The second one was, that even

in clean environments, the friction coefficients calculated were very low, so

the concept of junction growth was introduced. According to this approach,

the real contact area determined by the normal load is increased due to the

tangential forces. It is noteworthy, that a fully plastic behavior is rather

unrealistic in most tribo-systems.

1.2. Contact Area

One of the most important parameters when studying friction between two

surfaces in relative motion, as seen above, is the contact area. Most sur-

faces we encounter in our everyday life have a non-negligible roughness.

Polished objects that appear perfectly smooth to the naked eye can reveal

amazing complexity when examined with a microscope. Once two such

surfaces are pressed together, their structure will only allow a small frac-

tion of what seems to be touching to form the real contact area. The real

contact area remains a field of continuous research. Computer simulations

have provided scientists with a powerful toolbox to calculate contact areas

for a wide variety of systems. This section, however, only contains the very

fundamental theoretical approaches to contact mechanics.
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1.2. Contact Area

The work of Heinrich Hertz formed an important basis for most contact

theories [7]. His studies were based on the following assumptions:

1. The strains involved are within the elastic limit.

2. The contact region is much smaller than the radii of curvature and

dimensions of the bodies. The bodies are elastic half spaces and the

contact area plane has pressures applied normal to it.

3. The surfaces are continuous and non-conforming.

4. The surfaces are frictionless. (This condition is relaxed when dealing

with friction.)

A finite contact, called a footprint, is formed in a touching contact between

two non-conformal elastic body surfaces of different radii of curvature and

Young’s moduli. Considering the mechanical properties and the geometry

of the components of this footprint, the real contact area can be calculated

as follows,

Ar = π
(

R∗

K

) 2
3

F
2
3

N , (1.8)

with R∗ = R1R2
R1+R2

, R1 and R2 being the radii of the two spheres,

1

K
=

3

4

(
1−ν2

1

E1
+

1−ν2
2

E2

)
,

with E1 and E2 being the Young’s moduli of the two spheres, ν1 and ν2 the

Poisson’s ratios of the two spheres, and FN the normal load.

Additional parameters have to be considered when a contact deviates

from the above assumptions. Such deviations do not only concern the ge-

ometry of the contacts, but also their nature. Adhesion is an important

factor that was further studied by Johnson, Kendall, and Roberts (JKR) [8].

Derjaguin-Muller-Toporov’s (DMT) [9, 10] model also considered attrac-

tive interactions outside the area of contact by introducing Lenard Jones

potentials.
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1. Introduction

Adhesive forces can vary in nature, but the way they affect a tribo-system

is always the same. Namely, they add up to an increased normal load. These

forces can be categorized as follows:

• Van der Waals forces

• Electrostatic forces

• Capillary forces

• Chemical bonds or acid-base interactions

The work of adhesive forces according to Maugis and Dugdale [11] is

Δγ = σ0h0, (1.9)

where σ0 is the maximum force predicted by the Lennard Jones potential

and h0 is the maximum separation obtained by matching the areas under

Dugdale and Lennard Jones curves of a contact.

In most applications, perfectly flat or perfectly spherical bodies do not

exist. Nevertheless, a surface can be described with a gaussian height dis-

tribution and it can be assumed that the peaks are spherical, as described by

Greenwood and Williamson [12]. At moderate pressure, the contact area

is proportional to the normal load [13]. Plastic deformation may occur at

smaller asperities. The probability of this occurring depends on the surface

topography and material properties. To quantify this probability, Green-

wood and Williamson introduced a dimensionless parameter ψ called plas-

ticity index, which determines if plastic deformation should take place.

ψ =

(
E ′

H

)
×
(

σ∗

r

)0.5

, (1.10)

where E ′ is the composite Young’s modulus, H is the hardness of the de-

forming surface, σ∗ is the standard deviation of the surface peak height
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1.3. Wear

distribution and r is the asperity radius. The composite Young’s modulus

can be calculated from the following equation:

1

E ′ =
1−ν2

1

E1
+

1−ν2
2

E2
.

For ψ < 0.6 the contact is elastic and for ψ > 1 the contact is plastic.

A more modern approach to contacts between two bodies was developed

by B.N.J. Persson [14]. His initial work mainly focused on contacts be-

tween rubber and hard, rough surfaces, but was further applied to any elas-

tic body in contact with rough, hard surfaces. The random roughness of

the harder body was considered on different length scales, describing it as a

self-affine fractal distribution, down to a low/distance cut-off, which cannot

be smaller than the atomic dimension. In this approach, the rubber does not

only undergo elastic deformation at the asperities, locally, but it conforms

to larger scale cavities formed by the roughness of the counter-body. Never-

theless, it cannot reach full coverage of the smaller scale surface features of

the harder body. Furthermore, the elastic deformation caused by the local

pressure at an asperity affects the contact of neighboring asperities.

The theory of B.N.J. Persson predicts a linear increase of the area of

contact with the load for small loads. If the length of a macroscopic contact

area is L and the length of an asperity in contact is λ , then the contact area

depends on the magnification as follows,

A(λ )∼ (λ/L)1−J ,

with J being an exponent related to the fractal dimension.

1.3. Wear

In nature, wear can be found in various forms. Wear, as studied by tribolo-

gists, is the progressive loss of surface material due to the relative tangen-

tial motion of two bodies in contact. The three classical mechanisms of

9



1. Introduction

mechanical wear of metals are: adhesive wear, abrasive wear and fatigue

wear.

1.3.1. Adhesive wear

The models that can be used for adhesive wear are based on the work of

Archard, originally on abrasive wear, which is also presented in the fol-

lowing section [15]. The main advantage of this model is its simplicity;

however, it is usually considered oversimplified when used to describe sys-

tems encountered in most applications. Archard considered hemispherical

asperities, that have deformed plastically after coming into contact with the

counter-face. These asperities experience shear forces as predicted in the

adhesive friction model. As the two bodies continue to slide tangentially,

shear may occur at the interface if it is weak, or under the surface, if the

interface is too strong. In the first case, which is common when an oxide

layer covers the surfaces, no wear is expected. In the second case, a frag-

ment of the surface will be plucked away and may be released immediately,

or carried further and released after subsequent encounters with asperities

of the counter-face. This fragment becomes wear debris.

The area of contact for one of the n hemispherical asperities of radius r is

πr2 and in ideal elastic-plastic conditions with full plastic deformation, the

supported load is πr2H and the worn volume at one asperity when sliding a

distance of 2r is 2πr3/3. The total volume loss V for all n asperities when

sliding a distance L is

V = n
2

3
πr3 L

2r
. (1.11)

Assuming that the contact pressure for plastic deformation at a junction

is almost equal to the hardness of the softer material, according to equa-

tion 1.5:

nπr2 =
FN

H
, (1.12)
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so equation 1.11 becomes

V =
FNL
3H

. (1.13)

In nature, adhesive wear can take place in different modes [16], produc-

ing particles of sizes that are not always in accordance with the junction

areas. In addition, as mentioned above, not all junctions will produce wear

debris, as shear can be supported directly at the interface. Finally, various

parameters are not considered in this approach. Such factors are wear oc-

curring on the harder body, the subsurface structure and its imperfections,

chemical contaminants on the surface, and geometrical variations of the

asperities. Due to these inconsistencies an empirical wear coefficient KAd

(KAd � 1) was introduced to accommodate these parameters. This coef-

ficient depends on the tribological system, comprising the two bodies in

contact and the medium in between. Equation 1.13 now becomes

V = KAd
FN

H
L. (1.14)

This means, that wear depends on the sliding distance L. If KAd remains

constant, then the system undergoes steady state wear, whereas if KAd con-

stantly changes, then running-in wear occurs. In the case of steady state

wear, the wear volume is proportional to the sliding time, if the sliding

speed is also constant.

1.3.2. Abrasive wear

This mechanism describes severe wear due to deeper penetration, mainly

by cutting. Deformation of the softer body is caused by the harder counter-

face, the third body, or particles trapped between the two. The two first

cases are called two-body abrasion, whereas the third one is called three-

body abrasion. The geometry used to describe abrasive wear is usually

conical, but following the approach described in adhesive wear and incor-
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porating geometrical factors in the empirical wear coefficient for abrasive

wear KAb, the abrasive wear equation is similarly

V = KAb
FN

H
L. (1.15)

In the above description of abrasive wear, only plastic deformation is

considered. In many cases, abrasive wear can be supported by crack prop-

agation, especially in brittle materials. In this case, the wear rate of the

brittle material also depends on fracture toughness Kc and Young’s Modu-

lus E [17].

1.3.3. Fatigue wear

Fatigue wear is loss of surface material due to the application of cyclic load.

The most common type of fatigue wear is in rolling under elastic contact.

In this case, the load is not high enough to introduce yield in the contact re-

gion, yet in cyclic conditions high-cycle fatigue leads to material failure. In

this mechanism, it is very important to consider a large number of parame-

ters affecting the wear behavior of the bodies around the contact area. The

subsurface of most materials is highly heterogeneous and contains micro-

defects. When load is applied, the presence of grain boundaries, inclusions,

voids in polycrystalline materials or even slip planes of single crystals can

cause the local stress to increase near the contact, exceeding the yield stress.

Work hardening may also occur under the surface until pits start appearing

on the surface. The nucleation and propagation of cracks under the surface

are strongly dependent on the microstructure of the subsurface; however,

they are expected to be found mostly near the points of maximum shear

stress. This mechanism is often categorized as macroscopic fatigue wear.

It can also occur in sliding conditions, giving rise to significantly smaller

pits.

Another mechanism that has to be considered when sliding is that of fa-

tigue wear under plastic contact. In this mechanism, a shallow conformable
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1.3. Wear

groove is formed during plowing. Multiple passes of the slider on these

grooves cause particles to detach due to plastic burnishing. Plastic flow

leads to protrusion of a thin film which gives rise to wear. The number of

cycles to failure is usually calculated with modified versions of the Coffin-

Manson relationship. For the wear calculation, the coefficient of fatigue

wear is given by the following equation,

KF =
3 ·31/2rpμ
CD

s Δγ1−D
s

, (1.16)

where Cs is the monotonic effective shear strain, Δγs is the effective shear

strain increment per wave pass, D is a constant, and rp is the ratio of plastic

to total work of sliding [18].

These mechanisms will be further discussed in detail in chapter 3.

1.3.4. Corrosive wear

Finally, wear can also be of chemical nature. Chemical and electrochem-

ical interactions with the media that come into contact with the surfaces

can form an adhered layer. The properties of this layer may significantly

differ from those of the bulk material. Friction on the surface can detach

these layers, but they may also provide wear resistance, especially in metal-

lic contacts. Once the oxide layer on metals is removed, it may not have

enough time to fully form before the next cycle of a slider, so wear rises.

Corrosive media can also penetrate cracks and pores, affecting the subsur-

face structure.

1.3.5. Fretting wear

In fretting, the oscillating relative motion between the two bodies is limited

to an extremely small amplitude. In the case of fretting, wear debris can be

trapped between the two surfaces, so the properties and the chemical com-
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position of the materials between the two surfaces can affect the behavior

of the tribo-system.

In most applications, these wear models do not apply due to the dynamic

behavior in wear. This means, that the coefficient of wear as a function of

time K(t) is usually not constant.

1.4. Third Body and Running-In

In most applications, engineers need to deal with complicated systems with

a strongly dynamic character. As mentioned in the section of fatigue wear,

repeated loading of a surface may give rise to structures that differ from

what would be expected after a single pass. The formation of wear particles,

change of topography, material transfer, mechanical mixing, adsorption of

molecules from the environment, chemical reactions and other parameters

can significantly change the tribological behavior of a system in time. To

date, no theory can combine all these parameters to describe the behavior

and evolution of a tribo-system.

These changes are not always to be seen as negative effects. Indeed,

the corrosive wear of metals is a destructive evolution of a surface and

perhaps one of the first examples that come to mind. Still changes near the

interface often lead to significantly improved tribological performance. In

engineering the term “running-in” is used to describe the conditioning of

sliding or rolling surfaces once contact is established. The duration of this

process is different depending on the system and the conditions of load.

Thanks to advances in tribological testing methods, the evolution of the

friction coefficient and the wear rate can be monitored during a sliding ex-

periment. An example of the behavior of a sliding pair of metallic surfaces

during running-in and when steady state is reached is shown in Figure 1.1.

The friction coefficient and wear rate in the very beginning of a multi-pass

sliding experiment is in some cases relatively low because of oxide layers

that provide wear resistance. Once such a layer is removed, an increase
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Bild 1.1.: Evolution of friction coefficient and wear during running-in and in the

steady state.

of the friction coefficient and wear particle generation is observed. The

running-in process has begun. Possible entrapment of particles between

the surfaces may further increase the wear rate and friction force. Both

the surface topography, as well as the near surface region undergo changes

which lead to a system that features lower friction resistance and steady,

low wear rate. It is usually accepted, that surfaces become smoother by the

time the steady state has been reached. This is a general description of the

processes that take place in a large number of tribo-system, however it is

not observed identically in all cases.

It is often said, that during running-in, the “third body” is formed. Ac-

tually a wide variety of terms have been used for the formations observed,

but the term “third body” will be used in this work.

So what is a third body?

In the 1970s, Godet made an effort to link lubrication theory and dry

contact studies in one approach and cover aspects that interest both mate-

rial scientists and mechanical engineers [19]. The two bodies that are in

relative tangential motion are named the first bodies and anything separat-

ing the two, including the parts of the bodies near the interface that exhibit
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different properties from the bulk of the materials and the lubricant film

constitute the third body. The third body transmits the load, accommodates

the speed difference between the first bodies, and separates them, reducing

their degradation.

What is usually referred to as third body in the case of lubricated sliding

metal surfaces are the sub-surface structures that consist of the metal, its

oxides, as well as a mixture of lubricant, its additives, and chemical prod-

ucts that form during sliding. The grains of the metal in this region are

significantly smaller than in the bulk.

The running-in process and the formation of the third body are often too

complicated to analyze. Numerous phenomena at different scales make

the evolution of the near surface structure impossible to predict. This has

introduced a great deal of empiricism in the study of tribo-systems.

1.4.1. Energetic approach

An interesting approach toward the better understanding of tribo-couples is

an energetic approach. The energy dissipation expressed by the resistance

against the relative tangential motion of two bodies that can be measured

as the friction force. The work of this force is converted to several sorts of

energy:

• Energy needed for deformation to occur. This can lead to plastic

deformation, thereby moving dislocations, initiating and propagating

cracks and changing the grain structure. The deformation can also be

elastic and release the energy in other forms while relaxing. Wear is

one of the most evident results of this energy channel.

• Thermal energy released in the system. At the tips of the asperities,

the temperature may increase dramatically during contact, reaching

the so-called flash temperatures.
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• Chemical energy, which may often follow the release of thermal en-

ergy. This accounts for the chemical variations that are found in the

third body. Friction can even initiate exothermic reactions, which in

turn may start chain reactions near the surface.

• Electric energy, causing surfaces to become charged. In many cases

this may also lead to chemical reactions.

• Emission of photons, which is often the result of discharge after in-

creasing the electric energy.

• Emission of phonons that are usually absorbed in the solid bodies.

Examining the energy dissipation during friction is a very useful tool in

order to trace the mechanisms that are activated during running-in and lead

to the resulting third body [20, 21, 22]. An important asset when evaluating

a tribo-system in an energetic approach is the use of the friction power PF ,

PF =
d
dt

∫
FF ds = μFNυ , (1.17)

with FF being the friction force, μ the friction coefficient, FN the normal

force, and υ the sliding speed. If the energy released in a tribo-system is

dissipated in a real volume Vr which is only a fraction of the system’s total

volume (first, third bodies, and the rest of the lubricant and wear particles),

then the power density of friction ρF is the power per volume PF/Vr. For

simplicity, the energy dissipation channels mentioned above can be catego-

rized in heat generation Pq,wear particle generation Pw, and others gathered

together as Ptb, so the power balance should be

PF = Pq +Pw +Ptb. (1.18)

Despite the advantages of this approach, an energetic study alone fails

to fully elucidate the dynamic behavior of a tribo-system. To achieve this,
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one has to break such a system down to pieces and study every process

separately, understanding that it is only a part of a complex system.

1.4.2. Complexity theory

Complex systems abide by the laws of complexity, a field that emerged

from the chaos theory in physics. They are usually very hard to understand

and characterize completely. Some of the main characteristics of a complex

system are:

• Non-linearity

• Emergence

• Interaction between properties

• Open systems

• Self-organization

• Attractors

Tribo-systems feature most of the above. The structures found in third bod-

ies are clear marks of complex processes. Investigations of the topography

and the subsurface structure show chemical variations, as well as forma-

tions like lamellar structures and vortical mixtures that indicate action of

attractors. Furthermore, it is common knowledge that good running-in will

form a third body with desired properties. This is proof of the ability of

the system to organize itself toward the reduction of friction and wear. The

final state is characteristic of the conditioning and cannot be altered into a

different state unless severe wear removes the existing third body entirely.

Apart from energy transfer according to the aforementioned mechanisms,

material transfer is also to be considered. It can occur between first bodies,

within a first body, into the lubricant as particles or molecules, and from the

lubricant, including particles, molecules, and chemical byproducts.
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Bild 1.2.: Running-in corridor formed for low wear rates at the steady state depend-

ing on the power density of friction.

The complexity of third bodies and the dramatic changes that running-in

can infer stress the importance of simplification. A solution is to study par-

tial phenomena occurring during this process and trying to correlate their

interaction with other parts of the system and the environment.

Running-in is not always as efficient. In lubricated sliding surfaces, it

occurs in the boundary lubrication and mixed lubrication regimes, where

plastic deformation is possible. Depending on the power density of friction,

the final wear rate at the steady state is minimized for values that are not

too high but also not too low. Too low ρF values lead to severe plastic

deformation and high ρF does not allow the system to reach the optimal

steady state. As shown in Figure 1.2 [23], a running-in corridor between

extreme values lead to optimal final wear rates (ẇ), the time derivative of

wear, which can refer to volume, mass or depth wear.

The properties of the third body and phenomena that relate to its forma-

tion are further discussed in Chapter 3.
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1.5. Lubrication

The use of media to separate the two surfaces in relative tangential motion

in order to reduce friction and wear is very common and often crucial for a

large number of applications. These media can be fluids or solids. Despite

the importance of solid lubrication in modern engineering, the main focus

of this work is placed on liquid lubrication. The greatest part of this sec-

tion is devoted to the principles of liquid lubrication and it’s regimes. The

properties and role of solid lubrication are gathered in brief in the following

section.

1.5.1. Properties of liquid lubricants

Liquid lubrication is usually performed using mineral and synthetic oils.

Petroleum refining processes provide a wide variety of lubricant sorts [24].

These products are often further modified with additives in order to achieve

the desired characteristics for every application. Generally, the properties

of a lubricant can be separated in the properties of the base oil and those of

the additives. In this work, only base poly alpha olefin (PAO 8 - the number

eight refers to the cSt kinematic viscosity of the oil at 100 °C) was used as

lubricant, so additivation will not be examined in further detail at this point.

Polyolefins are rather simple synthetic lubricants, which are produced by

alkenes (CnH2n). An example is shown in Figure 1.3. Poly alpha olefin in

particular, is made by polymerizing an alpha olefin, an alkene in which the

carbon-carbon double bond is located at the α-carbon atom. The plethora

of alkyl branched groups of the polymerized molecules lead to various con-

formations, which prevents their crystallization even at low temperatures,

as they cannot align next to each other easily. This way they remain in an

oily and viscous state. An interesting property of these oils is that they are

transparent and colorless.

A lubricant, be it an engine oil or grease for large scale excavators, plays

an important role in the physics and chemistry of tribo-systems. Molecules
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Bild 1.3.: 1-hexene, an example of an alpha olefin.

adsorbing on surfaces may seriously affect the nature of a contact, perhaps

even change the chemistry of the solid body in the vicinity. The viscosity

of a lubricant is one of the fundamental features that need to be examined

when applying a lubricant. It is also important to consider the temperature

dependence of viscosity. In addition, lubricants need to cover the surfaces

of the sliding bodies, so the surface energy can also play a key role in lubri-

cation. Finally, depending on the application, an engineer should consider

some additional factors, such as density, fire resistance, pour point and a

variety of chemical properties. As mentioned above, many of these char-

acteristics in a lubricant are tweaked with additives to achieve the desired

features.

1.5.2. Regimes of liquid lubrication

One of the main aims of the research conducted in this work is to study

the dynamics of sliding systems in lubrication. A main difference between

dry and lubricated friction is the formation of a film that keeps the two sur-

faces apart, reducing the real area of contact, or even completely separating

the two surfaces from each other. A system may therefore respond very

differently mainly depending on the thickness of such a film.

The friction coefficient in this case consists of two components. One that

corresponds to friction generated at the real contact area and another from

the flow of the film between the surfaces. The shear stress τFl exerted by

the fluid according to the Newtonian behavior is calculated as follows,

τFl = η
dυ
dh

, (1.19)
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where η is the viscosity of the fluid and dυ/dh is the velocity gradient

perpendicular to the direction of shear. This is a simplified case, where

turbulent flow between rough surfaces is not considered. Furthermore, oils

often exhibit non-Newtonian properties, which makes the study of their

behavior complicated.

Depending on the contribution of each term, four regimes can be defined:

• Boundary lubrication (BL): Collisions between asperities of the

two surfaces produce friction, heat and wear. The friction coeffi-

cient depends mainly on the mechanical properties and nature of the

junctions.

• Mixed lubrication (ML): Some asperities deform plastically and

some only elastically when they come in contact with asperities of

the counter-face.

• Elastohydrodynamic lubrication (EHD): Many asperities still de-

form elastically when they come in contact with asperities of the

counter-face. The properties of the fluid affect the friction coefficient

along with the mechanical properties of the contacts.

• Hydrodynamic lubrication (HD): The surfaces are practically apart,

so the friction coefficient depends mainly on the film separating

them.

A common representation of these regimes is that of a Stribeck curve [25],

a diagram that shows the friction coefficient in steady state depending on a

parameter calculated by the viscosity multiplied by the relative speed over

the normal load (pN). Such a curve is shown in Figure 1.4.
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Bild 1.4.: Stribeck curve showing the four lubrication regimes.

1.6. Modern Experimental Methods for the Examination of
Tribo-systems

Tribology is a particularly diverse science and a very interdisciplinary field

of research. This diversity is also reflected in the wide variety of instru-

ments that are used for tribological investigations. This section contains a

brief overview of methods that are important for the analysis of both the

surface and the sub-surface of sliding systems, as this is the main subject of

the present work.

1.6.1. Tribometers

Tribometers may vary in form, but among the measured values, normal and

friction forces are always monitored during the experiments. It is hard to

categorize these instruments.

They can be classified according to the size of the contact:

• Nanotribometers: The most common tool for investigations at the

nanoscale are friction force microscopes. Atomic force microscopes

in different configurations can be used depending on the variables
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that need to be examined. MEMS can also be used for direct tribo-

logical measurements, usually aiming at simulating real application

conditions.

• Microtrobometers: Sliding reciprocating micro-tribometers usually

use a sphere against a flat surface. Nevertheless, they could also

be optimized for measurements of small contact areas between less

simple geometries such as sphere against spheres, or even the tip of

a toothbrush fiber against a tooth [26].

• Macrotribometers: There are many instruments that fall into this

category. Pin-on-disk tribometers are probably the most common.

Roll on plate, prism tribometers and a wide variety of machine sim-

ulators can also be found. Measuring gauges can be integrated in

machine parts allowing for direct measurment in an application.

• Large scale machines and simulators: This category includes ma-

chines with incorporated sensors as in the above cases, but measure-

ments take place at significantly larger scales.

The environment of the experiment may also differ among devices. Mea-

surements are conducted at:

• Ambient conditions: These are the most common and usually the

easiest to operate tribometers. In some cases, some conditions have

to be controlled, such as the temperature.

• Controlled humidity: Controlling the humidity of the chamber

where the experiment takes place may significantly change the be-

havior of the tribo-system, as water from the atmosphere may act

as a lubricant, or create a meniscus changing the apparent normal

load. Both adsorbed and absorbed humidity, for example in a porous

material, can affect the friction coefficient.
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• Controlled gas environment: Introducing gases may affect the

chemistry of the surface, possibly leading to reactions that affect

the third body. Inert gases can prevent the formation of oxides on

metallic surfaces.

• Vacuum: As mentioned above, gases and humidity may alter the be-

havior of a tribo-system. In many cases, the contacts of pure surfaces

need to be examined, so vacuum or perhaps even ultra high vacuum

is necessary. Recently tribology made it to outer space, as tribome-

ters were even installed on satellites to determine the properties of

tribo-systems in vacuum, zero gravity and direct exposure to the sun.

• Lubrication: The importance of lubrication has been stressed exten-

sively above. Different tribometers with flowing, stagnant lubricant,

or even a thin lubricant film can be used to better understand the

regimes of lubrication and their effect on different tribo-systems.

Finally tribometers can be categorized according to measurements running-

parallel to the main recording of the forces. Such examples can be temper-

ature measurements, contact area with optical methods through transparent

counter-faces, electric current at contacts, chemical changes in the lubri-

cant, etc. An important breakthrough is the simultaneous measurement of

wear via radionuclide technique (RNT) [27] in liquid lubrication.

1.6.2. Other wear measurement techniques

When wear occurs, wear particles are released and carried away with the

flow of the lubricant. If the surface that undergoes wear is marked with

radioactive nuclides, then the concentration of radioactive material in the

lubricant increases. If the volume of the fluid and the area of sliding contact

are known, then the wear rate can be calculated on-line, usually in μg/h

which can be translated into nm/h. More than one active species can be
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measured at the same time, allowing for simultaneous on-line measurement

of wear on both surfaces.

An RNT unit consists of a NaI detector in a protective Pb chamber and a

pump that conveys the lubricant with the wear particles from the sliding

contact to the detector and establishes lubricant circulation between the

two. An additional detector can be used to measure a reference sample.

At least one of the two surfaces needs to be labeled before performing

such an experiment. This is one of the most crucial steps in the implemen-

tation of an RNT experiment. Small parts can be activated by placing them

directly in the neutron flux of a nuclear reactor, leading to a homogeneous

distribution of radioactive nuclides throughout the part volume. Cyclotron

accelerators can direct protons, deuterons, or α-particles onto a predefined

surface with a mask. Depending on the penetration depth, the collision

of these particles with the atoms of the sample yield a thin activated area,

the thickness of which can reach several hundreds of nm. This results in

a significantly lower activation which is limited in a desired area, thereby

making the sample easier to handle in terms of security measures. For high

wear rates, the gradient of radionuclides in depth beneath the surface has

to be considered for the calculation of wear rates. The precision it offers is

unique for the simultaneous monitoring of applied forces and wear.

1.6.3. Topography measurement

Different techniques can be used to gather data on the topography of a sur-

face:

Atomic force microscopy: A small probe with an atomic scale tip is sup-

ported on a cantilever that scans the surface of a sample, while a reflected

laser beam at the rear of the tip reveals the vertical displacement. Atomic

force microscopes can be used in both contact and non-contact mode to

acquire 3-D images of a surface. A variety of configurations are available

to target specific surface forces (atomic, Van der Waals etc.), which can be
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Tabelle 1.1.: Comparison of topography measurement methods commonly used in

tribology (representative values gathered from instruction manuals, in-

strument software and instrument suppliers’ web pages).
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(FOV is the field of view)

attractive or repulsive. The resolution of these instruments can even reach

atomic levels under certain conditions.

Tactile profilometry: Similarly, a significantly larger probe, in the range

of μm to mm, or a stylus, comes to contact with a surface and a line is

scanned. The vertical displacement of the probe can be measured in various

ways.

Laser scanning profilometry: A laser beam is directed on the surface

and it scans lines with the assistance of a planar positioning stage.

Confocal microscopy: A laser beam is focused on a sample and the

reflected light is directed via a beam splitter and mirrors to a pinhole, that

only allows in focus light to reach the detector. Thanks to a motorized
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motion of the sample, or the mirrors, in focus information is gathered for

every plane of the sample leading to the construction of a 3-D image.

Interferometry: Again, a motorized motion allows for a full height scan

of the sample, only here, the constructive and destructive interference of

the initial cohesive light beam and the reflected beam is used instead of a

pinhole. To avoid mistakes in reconstruction from height leaps greater than

the wavelength of the light source, a distribution of wavelengths composing

white light can be used.

Holographic microscopy: The coherent monochromatic light is again

split, part of it is reflected at the sample. A beam splitter rejoins the re-

flected beam with the initial beam and directs them to the detector. A mo-

torized motion is not necessary, as the reconstruction of the 3-D image is

performed with a numerical reconstruction algorithm.

1.6.4. Electron microscopy and focused ion beam

In electron microscopy, the light is replaced by a monochromatic electron

beam emitted by a tungsten filament or a field emission gun. These are

focused with electromagnetic lenses onto or through a sample. By moving

the beam around, an area of the sample can be scanned.

In scanning electron microscopy (SEM), electrons interact with the elec-

trons of the atoms near the surface of a sample. The electrons of the primary

beam may then be backscattered (elastic scattering), completely lose their

energy in the sample, or lose part of their energy and find their way out.

Back scattered detectors give material contrast information on the surface,

as the intensity of the beam depends on the atomic number of the atoms.

The electrons that have lost part of their energy are accelerated toward a

positivley biased grid and then to the secondary electron detector. The

second contrast mechanism gives the impression of a topography image,

without, however, measuring height information.
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Tabelle 1.2.: Comparison of surface chemical analysis methods commonly used in

tribology (representative values gathered from instruction manuals, in-

strument software and instrument suppliers’ web pages).

EDX AES XPS FT-IR
Detected

Species

Elements

Z>4

Elements

Li - U

Elements Z>2,

Chemical

structure and

bonding

Chemical

Structure and

bonding

Penetration

Depth

2 μm 1 nm 1 - 10 nm 5 - 10 μm

Mapping

Lateral

Resolution

2 μm 10 nm 5-8 μm -

In transmission electron microscopy (TEM), the thickness of the sample

has to be smaller than the penetration depth of the electrons. Samples can

be prepared by mechanical milling, chemical etching, or ion etching. De-

pending on the position of the sample and the detector with respect to the

focal and imaging planes, different contrast mechanisms are used, giving

information on the thickness of the sample, diffraction patterns, or imaging

of the crystallographic sample.

A focused ion beam (FIB) can be used to mill a surface. Usually Ga ions

are directed onto a surface in the same way as electrons. As ions are signifi-

cantly larger than electrons, their interaction with the surface is destructive.

In this process, surface atoms are removed, so a pit, or section can be cre-

ated. During collision, ions, neutral atoms and electrons are released. Ions

and electrons can be used to generate contrast in a depth profile. Alterna-

tively, the side-wall of a pit formed during etching can be examined with

electrons by tilting the sample. In channeling mode, electrons can provide

contrast between grains, depending on their orientation.
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1.6.5. Surface chemical analysis

The topography and grain structure of a tribo-system are very important

pieces of the puzzle, but the image is still not complete. The chemical com-

position can be just as important in understanding the third body. As the

volume that is usually affected is near the surface, the following methods

are among the most important chemical analysis tools for tribologists:

• Energy dispersive X-ray spectroscopy (EDX): This method is usu-

ally utilized in conjunction with SEM. When a focused electron beam

interacts with a specimen, some of the electrons orbiting the atoms

are excited or removed from the inner shells. Other electrons will

change state to occupy the inner shells, emitting X-ray light at wave-

lengths that are characteristic of the element.

• Auger electron spectroscopy (AES): This is a variant of the above

method, in which the energy released during the transition of an elec-

tron to a hole in the inner shells is absorbed by an electron of the outer

shells. Its kinetic energy is again characteristic for the mechanisms

that occur in different elements. These two methods have the advan-

tage of using the electrons of the SEM as probes, so the affected spot

on the surface is very small. Therefore these methods lend them-

selves to high resolution surface element mapping.

• X-ray photoelectron spectroscopy (XPS): In this case, the initial

excitation of electrons is induced by directing an X-ray beam onto

the specimen. The excited electrons of the atoms are completely re-

moved and their kinetic energy can be used to determine the element

of their origin. Although the affected spot is larger than in the meth-

ods mentioned above, this method has the advantage that all elements

with more than two electrons (He) can be detected. Furthermore, the

sensitivity of this method can be utilized do identify peak shifts due
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to chemical bonds. Finally this method is often combined with ion

beam etching to examine the subsurface composition.

• Fourier transform infrared spectroscopy (FT-IR): The methods

mentioned above are very efficient in isolating near surface chemical

information; however, they can only be used when high or ultra high

vacuum is available. If this is not an option, samples can alternatively

be examined with traditional spectroscopy. Infrared spectroscopy is

a very common tool for chemical analysis and some of its variants,

such as the attenuated total reflectance (ATR) FT-IR can also be very

efficient in isolating surface information, provided that the surface is

relatively homogeneous.

• Other useful analytical methods: Further methods often used in

tribology may include destructive methods or variants of some of the

methods mentioned above. An example is Glow Discharge Optical

Emission Spectroscopy (GDOES), which involves sputtering of a flat

surface to quantify the composition of metals, metallic alloys, or in-

termetallic phases on a surface or a coating. Raman spectroscopy

relies on inelastic scattering and is often employed to specify chemi-

cal bonds and symmetry of molecules, as well as the crystallographic

orientation of a grain. In some cases it can be used to detect stresses.

Finally, a method that can be used to detect metals is inductively cou-

pled plasma atomic emission spectroscopy (ICP-AES).

In-situ approaches combine more of the above techniques simultaneously.

References of such applications are given in chapter 2.
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2. Design and Construction of the
Tribometer

2.1. Introduction

For the better understanding of fundamental processes in tribology it is im-

portant to characterize the interface, which is formed by the two sliding

bodies and a possible lubricant. Because this is experimentally very chal-

lenging, tribologists often have to rely on simulations. Remarkable ad-

vances in this field have been made in the last decades [28, 29]. From sim-

ple contact cases to lubricated surfaces, simulations cover a wide range of

conditions. Despite these advances, scientists are still in need of scientific

experimental results in order to continue delving deeper into the phenom-

ena observed.

A pin-on-disk tribometer and a topographical microscope can be consid-

ered common assets of a tribological experiment. Nevertheless, in the vast

majority of such experimental procedures, the samples are subjected to sev-

eral cycles of frictional loads prior to being examined with a microscope.

Therefore, they provide no information about the dynamic processes that

occur during these cycles. Normal and lateral forces can be recorded dur-

ing the experiment, but topography and wear are only observed afterwards.

An interesting approach toward studying sliding surfaces in-situ is ob-

serving one of the two surfaces through the body it is sliding against. This

requires that at least one of the two bodies is transparent [30, 31]. The

main advantage of this method is that the images acquired, are images of

the actual contact area. On the other hand, transparent materials are rarely
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encountered in demanding tribological systems, so this method poses great

limitations on the variety of samples that can be used.

Recently, an effort was made to monitor the wear scar topography after

each load cycle. The instrument utilized for these experiments comprises a

linear positioner, a white-light interferometer (WLI), and a pin [32]. This

instrument can even conduct experiments in different gas atmospheres in a

closed chamber; however, it is limited to a linear reciprocating mode and

cannot monitor surface changes under lubrication.

While the measurement of in-situ topography in a tribological experi-

ment is still being developed, wear particles can be measured using com-

mercial systems. The highest resolution is currently achieved with (RNT)

instruments (see Chapter 1).

2.2. Experimental

2.2.1. Principle of function and instrumentation

In this work, a new concept for the on-line monitoring of the topography

and wear measurement of lubricated systems is introduced. This is achieved

by means of a novel tribometer that consists of state-of-the-art instruments

for planar positioning, surface topography, wear measurement and force

sensing.

A high precision planar positioning system provides translational free-

dom on the xy plane. A PPS 200-4 system of Tetra GmbH, Germany, was

employed for this purpose. The device has a range of 200 mm×200 mm

and reaches a maximum speed of 500 mm/s with ±1 μm precision. The

position is monitored at a 20 nm resolution.

A tank which holds a flat plate sample is placed on top of the positioner

which drives it along the desired path. The tank is connected to an RNT

(Zyklotron RTM 2000 of Zyklotron AG, Germany) apparatus performing

on-line wear measurements. Three measuring devices are attached in three
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fixed positions over the sample: a force sensor, a holographic microscope

and an atomic force microscope (AFM).

Digital holographic microscopy is an interferometric technique which

can be used to focus numerically on different object planes without any

necessary movement of optical parts. This makes its use in immersion

mode easier, especially when there only is a thin film of liquid on the sam-

ple. Furthermore, the acquisition of an image is significantly faster and the

system lends itself for automated processes. The holographic microscope

used in this case is a DHM® R1000 series (Lyncée Tec SA, Switzerland)

in a customized case that fits the present instrumental layout. The objec-

tive lenses employed are a 50× oil immersion and a 10× dry. This device

can acquire images at a maximum frequency of 15 frames/s. The software

of this instrument was adjusted for the optical properties of the lubricant,

in this case transparent poly alpha olefin (Fuchs Petrolub AG, Germany).

The AFM utilized here is an ULTRA Objective (Surface Imaging Systems

/ now Bruker AXS Microanalysis GmbH, Germany) with a scanning range

of 80×80 μm2 and an additional kit for immersion measurements. In or-

der to measure forces, a customized setup was built, which includes three

SKL1417-IR (Tetra GmbH, Germany) fiber optic sensors (FOS).

As the sample moves, the sensors are focused at different positions on

the sample surface. The relative position of all instruments is designed in

such a way that all devices have access to a specific part of the path. The

schematics of this concept are shown in Figure 2.1. A pin is attached at the

bottom of the force sensor. With a closed path without angular geometries,

the pin can perform smooth cycles without losing contact with the plate-

sample. Part of the wear track left behind can be examined with the other

two sensors by pausing the motion very shortly. This allows for acquisition

of surface topography images after each cycle at the exact same position

every time.
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Force

sensor
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Bild 2.1.: According to the concept of the present instrument, the sample has trans-

lational freedom on the xy plane, limited by the size of the stage. The

force sensor with the pin (square), the optical / holographic microscope

(triangle) and the AFM (circle) are attached at fixed positions over the

sample. For a race-track shaped motion: the dashed, dotted and thin con-

tinuous lines on the right show the paths on the sample accessible to the

AFM, optical microscope and force sensor respectively. The thick con-

tinuous line is accessible to all sensors.

2.2.2. Mechanical setup

The base of the tribometer is a granite plate that stabilizes the structure and

minimizes height variations. The positioning system is placed directly on

the plate and holds the oil-tank. The plate sample is located inside the oil-

tank with a polished surface facing up. Two bridges, one made of granite

and another one of aluminum profiles, hold the rest of the sensors above

the sample. The granite bridge is necessary in order to reduce vibrations

that affect the AFM and force sensor measurements. On the other hand,

the holographic microscope is less sensitive to vibrations, so a plain alu-

minum construction is sufficient. The layout of the AFM, force sensor and

holographic microscope over the sample matches the one described in the

instrumental concept (Figure 2.1).
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Pump Sensor

Reservoir /

sample

Chokes

Meas.
Chamber

Bild 2.2.: Oil circulation diagram. The pump is followed by a radioactivity sensor.

Both are located in the RNT instrument. Outside this apparatus, the flow

is split to access the oil container / reservoir and forms a bypass circuit.

Two chokes control the flow in each direction. The sample is located in

the reservoir area.

2.2.3. Oil circuit

The oil circuit connects the tribometer with the on-line wear measurement

system. A diagram of the oil circulation is shown in Figure 2.2. The oil-

pump and the radioactivity sensor are located in the RNT apparatus. A

bypass circuit is controlled by two chokes, limiting the oil flow at the inlet

and outlet of the oil container/reservoir. Depending on the volume of the

liquid in the reservoir, the total oil volume varies between 1 and 2 L.
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Reservoir

Sample

Inlet

Outlet

Bild 2.3.: The sample is located above the oil reservoir. The lubricant flows onto

the sample and is collected from the lowest point of the reservoir.

The sample is placed in an oil container; however, it remains above the

oil level, as shown in Figure 2.3. The lubricant flows onto the sample and

carries the particles off the surface. Continuous flow replenishes the reser-

voir. The bottom of the container is inclined in order to reduce the volume

of oil in the reservoir. This improves the resolution of the wear measure-

ment and reduces the inertia of the positioning system. The total mass of

the container and the sample without oil is between 7 and 10 kg. The po-

sitioning system sets a limit of 150 N normal force. Finally, a tube at the

lowest point of the container leads the oil back to circulation.

2.2.4. Force sensor

The force sensor block consists of an up-scaled version of the so-called “tri-

bolever” [33] design, three FOS and a steel scaffold holding them together.

Because of its small size, the original tribolever comprises a pyramid on top

to support the displacement measurement mirrors. In the design presented

in this work, the pyramid is replaced by a cube. Three adjacent faces of

this cube are occupied by mirrors: two sideways (x, y) and one on top (z).

The FOS are facing against the mirrors and measure displacements of the

cube in the x, y and z direction. Finally, a pin is screwed at the bottom of

the cube. Sketches of the force sensor block can be found in Figure 2.4.
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Pin

Mirror

Fiber optic sensor

Tribolever

Bild 2.4.: A customized scaffold holds the force sensor. The pin is screwed at the

bottom face of the central cube, while three mirrors are attached on the

top and two adjacent side faces. Fiber optic sensors are fixed against them

and measure the x, y and z displacement.

Two important factors that had to be considered for the up-scaling were

the applied forces and the resulting displacements. The aim was to optimize

the sensor for conventional tribological systems, in which case the frictional

force is only a fraction of the normal force. Therefore, the ratio of the spring

constant in the z direction (kz) over either one of the lateral directions (kx,

ky) should be of the same order of magnitude as the friction coefficient. The

applied normal force should result in a pressure that allows for running-in.

The desired contact area for the present instrument is of the order of tens
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24,75 mm

0,5 mm

15 mm

2 mm

Bild 2.5.: The force sensor is an up-scaled version of the “tribolever”. The dimen-

sion and aspect ratio of the legs have been optimized for macroscopic

tribological experiments..

of mm2. Finally, the displacements should be suitable for the detectors (the

FOS employed for this apparatus have a range of about 800 m).

As mentioned above, the up-scaled version of the so-called “tribolever”

was designed for the measurement of the normal and both lateral forces.

The main reason for selecting this geometry is that it provides equal sen-

sitivity for both lateral directions while remaining relatively insensitive to

torsional forces. The selected material was steel, with a Young’s modulus

of 210 MPa.

Although the proportions of the construction should remain close to the

original design, some modifications were necessary. Most importantly, the

applied forces and the resulting displacements were in a different order of

magnitude, the size and mass of the block supporting the mirrors differed

from the original tribolever and the material used was not Si. To determine

the optimal geometry for the up-scaled version of the sensor, the part was

simulated with a Finite Element Model (Simulia® Abaqus).
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Bild 2.6.: Meshed part as imported from CAD design for simulation with Abaqus.

In this simulation, steel with a Young’s modulus of 210 GPa and Pois-

son’s ratio of 0.3 were set. The original design of the up-scaled tribolever

is shown in Figure 2.5. In order to simplify meshing, the pin was replaced

by a cube identical to the one that supports the mirrors. The mesh was

based on 0.5 mm cubes. Figure 2.6 shows the part as imported in the simu-

lation with its mesh structure. The square frame that supports the legs was

defined as a constant fixed structure. All forces were applied in the center

of the square at the base of the lower cube. The position of five reference

points was monitored. These points were placed in the center of every free

face of the top cube. They include the positions where the mirrors are fixed,

in order to measure displacements.

To examine the sensor’s response to forces in different directions, four

sets of simulations were performed:

1. Set 1: Fx �= 0, Fy = Fz = 0.

2. Set 2: Fx = Fy, Fz = 0.

3. Set 3: Fx = 0,05Fz, Fy = 0.

4. Set 4: Fx = Fy,
∣∣∣�Fx + �Fy

∣∣∣= 0,05Fz.
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Tabelle 2.1.: Simulation Parameters

Set/Test Fx [Ν] Fy [Ν] Fz [Ν]

1a 0.5 0 0

1b 1 0 0

1c 2 0 0

2a 0.345 0.345 0

2b 0.707 0.707 0

2c 1.414 1.414 0

3a 0.5 0 10.012

3b 1 0 20.025

3c 2 0 40.050

4a 0.567 0.567 16

4b 0.707 0.707 20

4c 1.414 4.414 40

The tests cover uni-axial load in the sliding direction (x), load in 45° to the

cube’s face (xy) and finally these two cases combined with a normal force

(z). In sets 3 and 4 the friction forces were set to 0.05 times the normal

force. This corresponds to a representative friction coefficient of lubricated

metallic surfaces after running-in. Table 2.1 shows all force configurations

for every test.

Figure 2.7 shows a graphical representation of the sensor’s response to

the application of forces as described in set 4. The deformation has been

overscaled to demonstrate how the legs bend.

The response of the sensor to the application of forces was linear, as ex-

pected for the settings of the simulation. The x displacement was calculated

as the difference between the final and the initial position of the center of

the face of the cube perpendicular to the x-axis on top of the sensor. This

is the point, where the FOS (Fiber Optical Sensor) is focused to measure

distances. A linear fit was applied to the resulting data points of set 1 to

determine the spring constant of the sensor. Equation 2.1 results from this

fit. The calculated spring constant is 782.60×103 N/m. The results for sets
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Bild 2.7.: Deformed part as as simulated with Abaqus with the force configuration

described in set 4.

2, 3 and 4 are 787.77×103 N/m, 782.22×103 N/m and 781.53×103 N/m

respectively.

Fx = 2.35×10−6N +782.60×103N/mx (2.1)

Where Fx is the applied force on the x-axis and x the displacement on the

x-axis.

The displacement on the y-axis was also calculated for sets 1 and 3. In

these two cases no force was directly applied on the y-axis, so this mea-

surement only demonstrates how the application of a force along the x-axis

causes a displacement along the y-axis. Similar linear fits were applied for

these values, but in this case the displacement and the applied force were

perpendicular to each other. The resulting constants on the y-axis were -

109 N/m and 666785×103 N/m for sets 1 and 3 respectively. The absolute

values are very high; therefore, they are negligible when measuring the

displacements caused by forces directly applied on the y-axis.

Finally, the rotations around the x, y and z axes were calculated. A max-

imum angle of 0.025 ° resulted on the y-axis, when 2.828 N, 2.828 N and

80 N were applied in the x, y and z axes respectively. Such small angles are
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. . . . . . . .

Bild 2.8.: Dependence of kx on d as simulated with Abaqus. The result of the fit is

given by the following equation: kx = 92742.0−505576d+680345.9d2.

not expected to cause considerable deviations in the measurements with the

FOS.

The tests described above were repeated for different leg geometries. The

width (d) varied from 0.5 to 2.5 mm. The Hooke’s constants (k) for the x, y

and z axes were calculated for each case. The dependence of kx and kz on d

is shown in Figures 2.8 and 2.9. Polynomial fits were performed to express

the relation between these values.

In order to achieve high geometrical precision, the force sensor was ma-

chined by means of spark erosion cutting. A 10 mm wide border of the ini-

tial plate was preserved around the legs to support and stabilize the structure

as shown in Figure 2.4.

After constructing the first sensor (d=1mm), a calibration was performed

by hanging measured weights along the x, y and z axes at the position where

the pin is attached. The displacement measured with the FOS for each load

applied was used to calculate kx and kz. Figure 2.10 shows a comparison
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. . . . . . . .

Bild 2.9.: Dependence of kz on d as simulated with Abaqus. The result of the fit is

given by the following equation: kz = 9278.0−238872.0d +89159.5d2.

between the results of the calculation with the measured values. There is a

remarkable difference between the slopes of the linear fit of the calibration

and that of the simulated data. This result implies a significantly lower E

Modulus for the machined part as compared to the simulated component.

The reason for this deviation was not investigated in detail; however, the

discrepancy cannot be merely attributed to material properties. An image

of the sensor’s surface and manufacturing precision is shown in Figure 2.8.

Considering the above, the simulated data could not be used for a pre-

cise decision with respect to the geometry intended for the applied normal

and lateral forces. Nevertheless, the trends shown by the polynomial fit of

Figures 2.8 and 2.9 were used as guidelines for the construction of further

sensors to cover a wider force range.

To facilitate the aforementioned wider range of force measurements, two

separate sensors were constructed. These have different width and thick-

ness of the four legs (A and B as shown in Figure 2.5) which result in dif-
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Bild 2.10.: Comparison between the values of kz from the calibration and the simu-

lation. The circles represent the results of the simulation and the squares

those of the calibration performed with measured weights.

Bild 2.11.: Force sensor’s machining details. This image shows the 90 ° angle at

one of the legs.

46



2.2. Experimental

Tabelle 2.2.: Dimensions (A: thickness and B: width as shown in Figure 2.5) and

spring constants (Fn: normal force and Ff: frictional force) for the two

force sensors S1 and S2.

Sensor kf [N/mm] kn [N/mm] A [mm] B [mm]

S1 9.45 20.90 0.5 1.0

S2 288.25 244.40 1.0 2.0

ferent spring constants. The dimensions and constants of the two sensors

are summarized in Table 2.2.

2.2.5. Samples geometry

Two samples are required for a tribological experiment with this equipment.

A tablet shaped sample that is fixed at the tip of the pin and a plate sample

that is placed on the positioning stage.

The pin consists of a screw adjusted to the bottom of the force sensor

and a spherical sample holder (Figure 2.12). The sample holder allows for

rotation with a maximum angle of 9 °. In contact, this enables the tablet

shaped sample to be aligned parallel to the tablet surface. the diameter of

the sample is 2 mm and the height 1.5 mm. The edge around the circular

contact area is tapered.

Two different types of flat plate samples can be used. A large 200×200 mm2

plate that can be fixed directly in the oil tank with screws, or flat samples

of other geometries, smaller in size, that are attached to an underlying

200×200 mm2 plate with an adhesive substrate on it. In both cases, the

samples move along with the oil tank and only have translational freedom,

controlled by the positioning system.

2.2.6. Software and control of the instrument

In order to perform on-line measurements it is necessary to synchronize all

devices. Figure 2.13 shows the schematic of the software control. Posi-

tioning and force monitoring are performed via a LabView (National In-
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Rotating sphere

Tablet-shaped sample

Bild 2.12.: The screw-pin with a rotating sphere. The tablet shaped samples are

inserted in the sphere, which allows a max. of 9 ° rotation.

Bild 2.13.: Software and control diagram.
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Bild 2.14.: Representation of 3D data from a Cu sample surface (left) with a grey

scale for the z-axis (top right) as well as measured forces and friction

coefficient for the current cycle (lower right).

struments Corporation) program. The connection to the positioning stage

is established via TCP. A NI PXI-6120 S Series card (National Instruments

Corporation) records the three analog signals (x, y and z) of the force sen-

sor. Separate computers control the optical and holographic microscope as

well as the RNT. A TCP connection establishes the communication to the

computer which is directly attached to the holographic microscope. This

enables the remote control of the microscope and consequently the automa-

tion of the acquisition.

The geometry of the sliding path of the planar drive is programmed in

a G-code similar manner. The current position is read every 80 ms. The

z-position is adjusted according to the current value in order to maintain

the normal force constant. Once the objective lens of the holographic mi-
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croscope has reached a predefined position, the stage pauses and the acqui-

sition of a 3D image is triggered.

3D images gathered during the experiment are organized in frames,

which provide an animated view of the surface and graphical represen-

tation of forces and friction coefficients. The values shown at these graphs

are calculated via interpolation for the position examined with the micro-

scope. The two closest measured samples to this position are used for the

interpolation. An example is shown in Figure 2.14.

Software structure

The software comprises two main loops. The first one is assigned to gather

the analog output of the FOS. The output of the FOS module is a voltage

value which is not linearly proportional to the distance between the sensor

and the mirror. Therefore, the raw signal is translated to distance according

to voltage/distance curves provided for each FOS unit by the manufacturer.

The sensors used in this instrument have two measurement regions, near

and far, depending on the distance of the FOS from the mirror. Both can

be determined by the calibration curve. Although the near region is more

precise, drifting and external factors render this region too complicated to

use in this setup. A local file contains the calibration data for each force

sensor (kx and kz) and measurement region, which are used to convert the

distance to forces, provided that the sensor’s deformation is linear and elas-

tic. Friction coefficient values can be calculated from the measured forces

(μ=FF/FN).

A library of commands was built for the positioning system according to

the API (application programming interface) provided by the manufacturer.

These commands consist of basic functions such as defining a new position

for manual movement or reading the current position and instrument status.

Part of this library involved converting all variables from little to big endian
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in order to establish communication between LabView and the positioning

system.

All commands were organized in subroutines. The main program can

call them to perform various functions, such as loading curves, starting a

curve, deactivating air-pressure, etc. A function worth mentioning is the

normal force regulation, which uses the currently measured normal force

and retracts or approaches the pin with variable speed according to its de-

viation from the preset value. The software reads the current status of the

positioning system at the end of every cycle of a main loop. While transmit-

ting the input commands given by the user or an automated operation, all

other modules, including status reports, are paused. The same holds when

sending or receiving command related data.

An additional library was built to include all xml commands used for the

remote control of the holographic microscope. The most important func-

tions used for this project are acquiring a double wavelength holographic

image and saving the tif image as detected by the CCD sensor. Additional

commands open a tif image and export the height information into an ASCII

file containing the height calculated for every pixel.

The user-interface consists of a main panel with all indicators of the cur-

rent position (x, y and height of force sensor) and the forces currently mea-

sured. A 2D plot shows the current position of the pin, as well as the path

that has been programmed and what part of it has already been followed.

A second tab displays the currently exported image from the microscope.

In the same panel, there are buttons for main functions, such as starting or

aborting an experiment, pausing, displaying the position and regulating the

normal force.

The second half of the user interface comprises tabs with gathered con-

trols:

• Startup: contains a set of buttons that initiate the hardware and start

the microscope remote control module.
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2. Design and Construction of the Tribometer

Bild 2.15.: Snapshot of the user-interface while a linear reciprocating motion exper-

iment is in progress.

• Login: activates the internal software of the positioning system.

• Regulator: activates air pressure and begins the position calibration.

• Manual position: includes arrow buttons, speed settings and manual

input of target position.

• Z fine regulation: contains the input values for the force regulation.

• Curve setup: reads the path of the file containing the curve coordi-

nates and speeds, as well as a set of commands to start/stop a curve.
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• Force sensor: contains buttons to tare the forces and a display with

the current distance values between FOS sensors and mirrors.

• Save: has options such as the path and file names for the exported

data (forces and images) are defined.

• Terminal: displays all messages received from the positioning system

(including error messages).

A snapshot of the user interface is shown in Figure 2.15

2.3. Calibration and Testing

2.3.1. AFM

As the positioning system readjusts its position dynamically during oper-

ation, fluctuations of a constant position may occur. These may affect the

stability of the AFM measurements. To ensure the stable function of the

atomic force microscope, several tests were performed with dry and water

immersed samples. An example of a Cu surface is shown in Figure 2.16.

The surface was examined with the positioning system turned off, as well

as with the positioning system turned on and the AFM working in both dry

and immersion mode. Given that no additional shielding or damping was

applied to improve the scanning process, the resulting images have accept-

able levels of noise and the surface structure is well recognizable.

2.3.2. Position calibration

In order to examine a single position on a flat sample with all three sen-

sors (force sensor, holographic microscope and AFM), their relevant po-

sition has to be determined. This task was performed in two steps. First,

a sphere was attached to the force sensor, in the same position where the

tablet shaped sample is normaly located. With this setup, a cross was en-

graved on the plate sample at a given position of the stage (x0,y0). The
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Bild 2.16.: AFM measurements of a polished copper surface in dry mode with the

positioning system off (A), in dry mode with the positioning system on

(B), and in water immersion with the positioning system on (C).

center of this cross was then located with the holographic microscope by

moving the stage to a new position (x1,y1). A patterned silicon sample with

numbered blocks was then placed on the same position on the plate sample

and an image was acquired with the holographic microscope. The stage

was moved again until the same position of the patterned sample was relo-

cated with the AFM (x2,y2). Images of the patterned sample are shown in

Figure 2.17, which demonstrates the precision with which the instruments

can be synchronized.
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2.3. Calibration and Testing

10 μm

Bild 2.17.: Reference patterned sample with numbered blocks located with the

holographic microscope (top) and the same sample relocated with the

AFM (bottom) by moving the stage.
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2. Design and Construction of the Tribometer

When designing a path for a tribological experiment it is necessary to

program a path that is accessible to the force sensor and the holographic

microscope. The simplest case is a line that connects the relative positions

of these elements. The slope and offset of this line is calculated as shown

below,

A =
y1 − y0

x1 − x0
, (2.2)

B = y0 −Ax0. (2.3)

In such an experiment, if the pin is in contact with the tablet at position

(xa,ya), which is to be examined, then the acquisition with the holographic

microscope will be made at (xb,yb):

yb = ya + y1 − y0, (2.4)

xb = xa + x1 − x0 (2.5)

and for any other position (x,y) a random y position is coupled to

x =
y− (ya −Axa)

A
. (2.6)

The path is further adjusted to include the position of the stage for an

AFM measurement.

2.3.3. Example of an experiment

An extended test was performed to try the instrument in experimental con-

ditions. For this purpose, two samples of pure iron (>99.9 % purchased by

Goodfellow GmbH, Germany) were prepared: a tablet and a plate shaped

sample. The edges of the tablet were tapered to avoid indentation of the

sample’s side in the counter-face and the contact surface was polished. The

contact area was round in shape with a diameter of approximately 1.9 mm.
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2.3. Calibration and Testing

The sample was labeled using neutrons in a nuclear reactor. The specific

activity of the sample was 17.21 kBq (Fe-59).

A linear path connecting the force sensor and the holographic micro-

scope was programmed. The stage moved in a reciprocating motion at

15 mm/s. The normal force was set to 10 N (nominal pressure of 2.7 MPa)

and the length of the line was 120.03 mm. A total of 5450 cycles were

recorded, which corresponds to a total sliding length of 654.17 m. The ex-

periment was performed using poly alpha olefin as lubricant.

During the first 100 cycles, the precision in the positioning and force

regulation were monitored. Since the programmed path was a straight line,

the deviation of the stage position from the theoretical line was calculated

by their perpendicular distance. The results are shown in Figure 2.18. The

average deviation calculated was 18 nm. This result proves that the path is

followed precisely enough to ensure that the pin remains on the same track

throughout the test. This deviation does not affect the acquisition of the

3D images, as it is lower than the resolution that the holographic micro-

scope provides. On the other hand, the dynamic stabilization of the normal

force showed greater deviations. As the plate sample was not polished,

the roughness of the surface had an impact on the normal force regulation,

which gave rise to a standard deviation of 31 % of the set force.

Figure 2.19 gives an overview of the entire experiment. In the beginning,

both the friction coefficient and the wear rate increase. In this phase of the

experiment, no significant change is observed in the images acquired by the

holographic microscope. After 600 cycles, the left part of the image starts

changing. This happens gradually, and expands to further asperities coming

into contact in the rest of the window observed with the microscope. In this

phase, the friction coefficient and the wear rate start to stabilize. Deeper

scratches in directions other than the sliding direction slowly fade away.

After 1200 min these scratches are no longer recognizable and the wear

scar has expanded on the entire surface. A total value of 786.5 nm wear

was calculated as total wear at the end of the experiment.
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2. Design and Construction of the Tribometer

Bild 2.18.: Dynamic perpendicular positioning deviation of the stage during the first

100 cycles of a reciprocal motion with a linear path of 120 mm. The ex-

periment had a set normal force of 10 N with a sliding speed of 15 mm/s

of an iron pin against an iron plate with PAO lubrication.
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Bild 2.19.: Evolution of the topography, friction coefficient (open squares) and mea-

sured wear with RNT (open circles) during frictional load (normal force)

of 10 N and sliding speed of 15 mm/s of an iron pin against an iron plate

with PAO lubrication.
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2.4. Summary

It is interesting to note, that the wear rate and topography changes seem

to be correlated, while the friction force evolves independently.

2.4. Summary

The presented tribometer combines modern techniques that enable the mon-

itoring of the surface of one of the two tribological counter-faces, while

measuring normal, frictional forces and wear. Its major breakthrough is the

fact that its function is not limited to dry or transparent systems. On-line

topography in lubricated tribosystems can help understand the phenomena

that occur in several applications in greater depth.

Thorough tests have been performed to determine the precision and sta-

bility of function. These show, that one single position of the wear scar can

be relocated and examined after each cycle of an experiment. This allows

for dynamic observations of the changes that occur. The resolution offered

by the holographic microscope is sufficient to provide information on the

plastic deformation that occurs at specific asperity junctions. Further detail

can be obtained by scanning the same position with the AFM. At the same

time, the behavior of the friction coefficient and wear rate can be displayed

throughout the experiment. As these usually exhibit a non-linear behavior

against time, interesting changes can be coupled with observations on the

surface of the sample.

In this chapter, the results of only one simplified experiment with a lin-

ear path and iron samples were presented. Nevertheless, this tribometer

can be utilized for experiments that demand greater geometric complexity.

In addition, as there are few requirements for the materials of the selected

samples, several material combinations can be tested. One important lim-

itation is connected to the on-line wear measurement: the samples must

contain isotopes that can be activated.

59





3. In-situ observation of wear particle
formation on lubricated sliding surfaces

3.1. Introduction

Since the first studies of wear phenomena, a wide variety of terms have

been used to describe and categorize wear processes. These often depend

on the background of the research and the particular effects being studied.

Even when delving deeper into subcategories of wear, there has been con-

troversy as to what words better describe the experimental observations. A

chapter in the theory of wear that received a lot of attention in the 1970s

was that of delamination in sliding, fretting, rolling, and grinding. There

has been considerable debate over the validity of the delamination concept.

The focus of the present work is on the dynamics of wear phenomena on

lubricated Cu sliding surfaces, especially those that are often interpreted

as delamination without sufficient experimental proof. In order to better

describe wear mechanisms, single events were tracked by in-situ optical

topography measurements.

The delamination theory of wear was first introduced by N.P. Suh in

the early seventies [34, 35]. His approach aimed at suggesting answers to

questions that arose from reports of flake-like sheets as well as lamellar

structures and sub-surface cracks. The theory is based on the piling-up

of dislocations under the surface, leading to voids that coalesce and form

cracks parallel to the surface. The size of these cracks depends on the sub-

surface structure of the material. Once they reach weak positions, they

shear to the surface causing long and thin wear sheets to “delaminate”. An
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3. In-situ observation of wear particle formation on lubricated sliding surfaces

example of such weak positions is a pre-existing crack, very often found

under the oxide layers of Cu.

A systematic research and reviewing of relevant work was conducted by

D.A. Rigney et al. [36, 37, 38, 39]. In their work, several wear mecha-

nisms are compared and the parameters that affect sliding wear are ana-

lyzed. However, it should be emphasized, that many of these mechanisms,

including delamination, are mostly studied in dry systems.

One of the strongest tools to identify the wear mechanisms at play have

been cross-sections at the worn surface. Unfortunately this method cannot

clarify the question of surface vs. sub-surface origins for debris-producing

fracture. As argued in a relevant review by Rigney [36], a cross-section

is a destructive method, that provides no dynamic measurements, and can

only extract information from two-dimensional slices. Most importantly,

other processes occurring on the surface, such as transfer, mixing, folding,

and environmental effects could be responsible for features which mimic

sub-surface cracks. The author stresses the importance of a non-destructive

technique with adequate resolution and response time in order to solve the

aforementioned problems.

Although simulations can be very helpful in suggesting answers to ques-

tions regarding wear under cyclic loading, they need to be confirmed by

experimental results. Recently, important breakthroughs have paved the

way to revolutionary experimental investigations of sliding surfaces.

A notable number of in-situ tribometers have been reported as suitable

means to monitor the contact area [31], buried interface, transfer films [40]

and the evolution of wear tracks. These exhibit various advantages and dis-

advantages. There is no universal solution that can simultaneously analyze

all aspects of sliding surfaces. Certain limitations need to be taken into

consideration, such as the use of a transparent counter-face, testing in air or

vacuum [41] etc. The instrumentation used in this work allows for simulta-

neous measurement of surface topography of a lubricated sliding surface in

immersion and is described in detail in chapter 2.
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3.2. Experimental Procedure

3.2. Experimental Procedure

All friction/wear experiments were conducted in laboratory conditions:

temperature, T =25 °C, humidity, approx. 45 %. In-situ topography images

were acquired after every loading cycle with a holographic microscope

(DHM® R1000 series, Lyncée Tec SA). As the objective lens remained

in immersion during acquisition, a transparent PAO-8 oil with a viscosity

of 45.8 mm2 s-1 at 40 °C, provided by Fuchs Petrolub AG, was selected

as lubricant. The oil circulation was performed by a pump integrated in

the radio nuclide technique apparatus (Zyklotron RTM 2000 of Zyklotron

AG, Germany). During the experiment, the lubricant’s temperature was

stabilized at approx. 33 °C. The plate samples were made of Cu (pure

99.98 wt%) and polished with a 1 μm diamond particle suspension with-

out further treatment. The average grain size measured on the surface was

1452 μm2±71 μm2. The pins were made of Fe (pure 99.98 wt%) and bear-

ing steel (1.3505 / 0.9-1.05 % C and 1.35-1.65 % Cr). The contact area was

circular in shape with a diameter ranging from 1.6 mm to 2 mm depending

on the edge taper. All samples were polished before testing in the same

way as the Cu plates. The pin samples had a slight curvature due to the

polishing procedure. The measured root mean square roughness (rms) was

measured for both sample types. For the Fe samples the rms roughness was

approx. 50 nm and for the steel samples approx. 200 nm. The roughness

was recalculated after subtracting a spherical term in order to eliminate the

curvature factor, leading to values of approx. 10 nm for Fe and approx.

26 nm for the steel samples.

Experiments of two different types of sliding paths were conducted: in a

linear reciprocating motion and along a parallelogram with rounded edges,

which resulted in a uni-directional load. Both are illustrated in Figure. 3.1.

The nominal pressure for the experiments conducted for the present work

ranged from 1.5 to 2.5 MPa and the sliding speed from 10-20 mm/s, de-
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Bild 3.1.: Wear track geometry for linear reciprocal (A) and curved

parallelogram/uni-directional (B). The white squares in the gray

area indicate the position of the 80×80 μm2 window viewed by the

optical microscope.

pending on the experiment. The exact conditions are presented in the re-

sults section.

All holographic 3D images were recorded at the same spot of each wear

track, allowing for dynamical observations of the topography evolution of

the wear track. Normal (FN) and frictional (FF ) forces were calculated via

interpolation for the exact position that was examined with the microscope.

In the case of a reciprocating motion, the pin comes into contact with this

position twice during every cycle, once in each sliding direction. For the

calculation of the friction coefficient (μ), FF was averaged from the values

of each direction.

Selected samples were examined after the tribological experiment with

additional methods. Chemical analysis of the samples was performed with

an XPS system (PHI 5000 VersaProbe™, Physical Electronics Inc.). Af-

ter obtaining spectra from the surface of the samples, an ion gun was em-

ployed for depth profiles. A Zeiss XB 1540 FIB was used to investigate

the structure of the samples underneath the worn areas. In order to ob-

serve the depth profile, cross-sections along and perpendicular to the wear

tracks were milled with a Ga ion gun. No mask was required for the pur-
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poses of this analysis, as no thin slices for transmission electron microscopy

(TEM) investigations were produced. The images were acquired with the

secondary electron detector.

3.3. Results

3.3.1. Evolution of the friction coefficient

Generation of flake-like particles was observed in most, but not all experi-

ments. Even without altering the experimental conditions between tests, μ
often remained at values below 0.04 and no significant topography changes

occurred. In the experiments that were further studied in this work, the ini-

tial μ was low until an abrupt increase, which triggered profound changes

in the topography and an increase in surface roughness accompanied by

wear. After several cycles, μ decreased again and stabilized at a slightly

higher value than the one recorded during the first cycles. The aforemen-

tioned abrupt increase of μ was necessary to study the processes that lead

to the generation of wear particles, so FN was initially increased, regulated

stepwise and was then reduced to the preset value for the experiment. A

representative evolution of μ as cycles progress is shown in Figure 3.2. At

4192 cycles the experiment was paused before readjusting the microscope

settings and dropping the normal force from 6 to 4 N. The slider remained

in contact for about 4 min. Within 50 cycles after resuming the experiment,

the friction force became unstable and increased at about 4220 cycles. The

data gathered around the values of 4192 and 4220 cycles are insufficient

to locate the exact moment that the friction values showed spikes, indicat-

ing the beginning of drastic changes on the surface. It is noteworthy, that

for this experiment, the acquisition of force values was performed every

300 ms and the field of view was limited to about 80×80 μm2. The surface

of the sample remained rough after running in. The average roughness (Ra)

of the polished Cu surface was 183 nm, after 5000 cycles 614 nm and after

8000 cycles 520 nm.
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Bild 3.2.: Control of normal force (dashed line) and evolution of friction coefficient

(continuous line) of a running in experiment with a preload phase. An

average smoothing filter was applied to both lines, in order to remove

the high frequency part of the forces. Steel pin sliding against Cu with a

speed of 20 mm/s.

Particle generation in the early wear stages, shortly after the increase of

FF, are the simplest to monitor, because the surfaces are still relatively flat

and worn areas are easier to distinguish from intact areas within the wear

track. This feature is related to the method of holographic microscopy. A

high concentration of steep slopes increases the possibility of 3D recon-

struction errors. Therefore, the results that follow are mostly gathered in

these stages.

3.3.2. Occurrence of local wear

Local wear was investigated with topography images acquired with a holo-

graphic microscope in-situ and SEM images after the experiment. To en-

sure that the same kind of structures were studied with both instruments,

images of wear-induced pit sites were obtained at comparable magnifica-

tions with both methods. It can be seen in Figure 3.3, that the size and shape

of the pits in either case are very similar. In both images, the length of the

detachment sites was of the order of 10-20 μm and the width was about half

the length. Grooves ran along the sliding direction and wavy patterns were

formed, again in the sliding direction.
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Bild 3.3.: Delamination on the Cu surface recorded ex-situ with a SEM (a) and in-
situ with the holographic microscope (b). In the case of the in-situ image,

the objective lense was immersed in PAO-8 during acquisition. The pi-

cures show the electron and light intensity images respectively. Steel pins

slid in a linear reciprocal motion against both samples with a nominal

pressure of 1.5 MPa and a speed of 20 mm/s.

Each method was further used to delve into different aspects of wear

generation. SEM images of FIB cross-sections shed light on the processes

that occurred during sliding underneath the surface, while the holographic

microscope recorded successive topography images of the surface, allowing

an observation of how wear evolves.

3.3.3. SEM images and cross-sections

A polished surface was first examined, in order to obtain a reference. The

result is shown in Figure 3.4a. The ion milling reached a 7 μm depth. The

grains were too large to fit fully into the field-of-view, with the exception

of a smaller grain structure near the surface, which did not exceed 1 μm

in depth. No nano-crystalline (nc) or ultra-fine-crystalline (ufc) structures

were observed directly underneath the surface. Entirely different results

can be seen in Figure 3.4b. This is the result of 9743 cycles of sliding. The

grains are significantly smaller and appear to be elongated along the sliding

direction. Their structure becomes finer and finer when approaching the
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Bild 3.4.: Comparison of the depth profile of a polished Cu surface (a) to that of a

wear track after a linear reciprocal tribological load for 9743 cycles with

a nominal pressure of 1.5 MPa and a speed of 20 mm/s (b). The cross-

section was milled along the sliding direction. The sample stage was

tilted by 54 ° during acquisition.

surface, reaching diameters below 100 nm. A lamellar thin layer of about

300 nm forms the surface of the sample. Here, only nc and ufc structures

can be found. In the example of Figure 3.4b the lamellae appear to be

practically separated from the underlying grains. The dark areas within the

fine structure are voids.

The above result corresponds to an experiment in which the motion of the

slider was reciprocating. A slight difference was noticed when the surface
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Bild 3.5.: Sub-surface grain structure. The graph on the left (a) shows the size dis-

tribution in depth and the image on the right (b) is a FIB cross-section of

a Cu sample that was only loaded in one sliding direction for 5500 cycles

with a nominal pressure of 2 MPa and a speed of 20 mm/s. The cross-

section was milled along the sliding direction.The sample stage was tilted

by 54 ° during acquisition; therefore the depth values were corrected.

was loaded in one direction only: the grains have a morphological orienta-

tion toward the sliding direction. This is demonstrated in Figure 3.5b. In

Figure 3.5a, the size of the grains are plotted against depth. A large number

of nc and ufc grains are located near the surface. The length of the grains

increases gradually from sub-micron to about 9 μm at a depth of 14 μm.

Another feature observed in FIB cross-sections were vortex-like struc-

tures. The clearest example from these measurements is shown in Fig-

ure 3.6. Such formations were not found extensively in the sample; how-

ever, it is worth mentioning that the subsurface structure that was formed

by vortices resembles the lamellar structures studied in this work.

As stated above, in many experiments, the anticipated abrupt increase

of μ did not occur. One of the samples involved in these experiments was

examined as well. The result is shown in Figure 3.7. The grain structure

resembles the sub-surface of the pristine, polished Cu sample.
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Bild 3.6.: FIB cross-section of a vortex-like structure in a Cu sample that was only

loaded in one sliding direction for 5500 cycles with a nominal pressure

of 2 MPa and a speed of 20 mm/s. The cross-section was milled perpen-

dicular to the sliding direction.The sample stage was tilted by 54 ° during

acquisition, therefore the depth values were corrected.

1 μm1 μm
Sliding DirectionSliding Direction

Bild 3.7.: Depth profile of a Cu surface after a linear reciprocal sliding for 3775

cycles with a nominal pressure of 2.5 MPa and a speed of 20 mm/s. The

experiment was stopped at an early stage, before noticing an increase in

friction. The cross-section was milled along the sliding direction. The

sample stage was tilted by 54 ° during acquisition.
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Bild 3.8.: Topography image of the Cu surface during the experiment. A greyscale

bar on the lower left indicates the height. A steel pin slid in a linear

reciprocal motion against the Cu sample for 5072 cycles with a nominal

pressure of 1.5 MPa and a speed of 20 mm/s.

3.3.4. Propagation of damage zone on the surface

While the diameter of the pins was in the mm range, the area that was ob-

served with the mircoscope was 90 μm×90 μm, in order to monitor the mi-

crostructural changes on the surface. Although both samples were polished,

the spreading of worn zones within the apparent contact area occurred grad-

ually. In the beginning only small strips appeared along the sliding direc-

tion. As the experiment continued some of these strips grew wider and

deeper. Even after several cycles, some areas remained intact. The posi-

tions where particles were detached rose higher shortly before wear took

place. This is shown in Figure 3.8. The brighter area is an elevated struc-

ture where wear particles detached within 100 cycles after acquiring this

image. The horizontal strips seen in a large part of the picture are parallel

to the sliding direction. There is a small area that runs through the image in

the lower part, where minor scratches appear in directions other than that

of sliding. These scratches originate from the polishing procedure, so this

area has not undergone any plastic deformation yet.
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The evolution of the elevated area was monitored as it spread along the

sliding direction. Figure 3.9 shows the progress of a zone where particle

detachment occurs. In the beginning, this formation is limited to the right

side of the image. Brighter objects indicate particles on the surface. The

elevated structure appears to spread to the left in an oval shape. It keeps

elongating until the end is outside the field-of-view. Dark stains within this

area correspond to pits. It appears that flakes can still remain on the surface

covering the greatest part of the pits. This is perhaps easier to recognize

in the intensity images of the holographic microscope, as demonstrated in

Figure 3.10a. Figure 3.10b shows the height information derived from a

profile along the sliding direction at the location of the particle, whereas

Figure 3.10c is a FIB cross section demonstrating a similar flake-like parti-

cle forming within the lamellar structure. Although Figure 3.10c does not

correspond to the same flake, it shows a similar structure.

To get a better picture of this progress, the spreading was measured from

the moment the elevation appeared on the right of the image. This is dis-

played in Figure 3.11. The elevated area does not appear to propagate lin-

early, although the rate is almost constant from 5060 to 5078 and from

5078 to 5092 cycles. In this experiment, no particular topography change

indicates a transition at 5078 that could affect the spreading rate.

Similar results were recorded for experiments of pure Fe sliding against

Cu. In one of these tests, the displacement and spreading of a single asperity

leading to the formation of a pit was observed. Profiles of the surface were

drawn from the topography images along the sliding direction. Figure 3.12

shows the profile at the same position after 606, 615 and 626 cycles. At

606 cycles, a large asperity that stands out from the rest of the surface can

be seen in the profile. In cycles 615 and 626, the volume of this asperity

appears to have moved to either side of the initial position, but mostly to the

right. A pit has been formed in the initial position. As the surrounding area

constantly changes, it is impossible to measure the exact volume smeared
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Bild 3.9.: Progress of an elevated area exhibiting particle generation events recorded

with the holographic microscope during the sliding experiment. The

greyscale bar on the top right of the image represents the height in the

3D images. The black curved lines indicate this area as it spreads along

the sliding direction. Particles and flakes appear on the surface through-

out this process. A steel pin slid in a linear reciprocal motion against the

Cu sample with a nominal pressure of 1.5 MPa and a speed of 20 mm/s.
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Bild 3.10.: Intensity image of the holographic microscope (a) and derived height

profile (b) showing a flake-like particle hanging over a pit. A steel pin

slid in a linear reciprocal motion against the Cu sample with a nominal

pressure of 1.5 MPa and a speed of 20 mm/s. FIB cross section of a

flake-like particle (c). For comparison purposes, the image of Figure c

was mirrored.
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Bild 3.11.: Spread distance and rate of the elevated area exhibiting multiple delam-

ination events. A steel pin slid in a linear reciprocal motion against the

Cu sample with a nominal pressure of 1.5 MPa and a speed of 20 mm/s.

Bild 3.12.: Profiles along the sliding direction showing the progress of a single as-

perity moving along the sliding direction, leaving a pit behind. A Fe pin

slid in a linear reciprocal motion against the Cu sample with a nominal

pressure of 2 MPa and a speed of 10 mm/s.

around the initial position of the asperity and the exact volume lost in the

pit.

3.3.5. XPS investigation

To investigate possible transfer to the counterface, steel pins and Cu sam-

ples that had slid against each other were examined by XPS. After testing

several pins with the tribometer, stains on the pins’ surfaces were visible
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3. In-situ observation of wear particle formation on lubricated sliding surfaces

to the naked eye. A steel sample with larger stained areas was selected to

determine the chemical composition of the surface. Peaks of C, O, Fe were

dominant in the spectra acquired on the surface. The surface appeared to

be covered by iron oxide and carbon or organic material. Apart from these

peaks, Cu also appeared to be present, so the sample was sputtered in order

to obtain a depth profile. The sputter rate was calibrated for this instrument

using SiO2, yielding 2nm/min of SiO2. The peaks monitored are shown

in the legend of Figure 3.13, which shows the depth profile. Oxygen and

organic material dominated the surface. Underneath, Cu appears to rise in

concentration particularly fast. The highest concentration is detected af-

ter 30 min of sputtering. This corresponds to more than 60 nm of depth.

As discussed in the following section, this observation is related to mate-

rial transfer. At the same depth, the concentration of organic material has

decreased dramatically. Oxygen has also dropped, but remains at high lev-

els compared to its surface concentration. The Cr peak was hardly visible

throughout the test. Cu remains at a concentration over 10 at.% even at

depths greater than 300 nm.

Considering the interesting lamellar structure revealed by the FIB cross

sections, depth profiles were also performed on the Cu surface. Figure 3.14

presents a depth profile acquired at an intact area of the sample and another

one acquired from the worn surface. It is noteworthy, that the sputter rate

here was set to 6 nm/min. O and C were detected both in areas of the sur-

face that did not come into contact with the slider, as well as in the wear

track. A significantly higher concentration of these elements was measured

on the worn surface. On the pristine surface the atomic concentrations of O

and C were 19 and 27 at.% and on the worn surface 34 and 61 at.% respec-

tively. In the depth profile of the intact surface, after a couple of minutes

of sputtering, the Cu peak dominated the spectrum. This means, that below

a depth of 20-30 nm the sample consists of pure Cu. This is not the case

under the wear scar, where the peaks of O were still distinguishable even

after 40 min of sputtering.
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Bild 3.13.: Surface (a) and XPS depth profile of a steel sample (b) that slid against

a Cu sample in a reciprocal motion for 3775 cycles with a nominal pres-

sure of 2.1 MPa and a speed of 20 mm/s.

3.4. Discussion

Polishing the Cu sample only affected a thin layer near the surface. Grains

deeper, toward the bulk of the material, were significantly larger. The dia-

mond particles used in the polishing suspension are not mixed in the mate-

rial. This is evident in the XPS depth profiles, as 1 μm particles would have

given C peaks at depths far below the thin 20-30 nm layer detected.

During the first cycles of all experiments, low μ values were recorded.

The low initial roughness of the Cu surface cannot account for this obser-

vation, as the roughness of the surface after running-in did not drop to the

levels of the polished surface. The oxide layer on the surface of the pol-

ished sample appears to provide wear resistance in the beginning of the

experiment.
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Bild 3.14.: XPS depth profile of a polished Cu surface (a) and a Cu sample that was

loaded in one sliding direction for 5500 cycles with a nominal pressure

of 2 MPa and a speed of 20 mm/s (b).

With the data currently available, the abrupt increase of μ can only be

attributed to random asperity contacts leading to the breach of the thin oxide

layer and local wear. Further experiments with increased time resolution

and a wider field of view are necessary to shed further light on the initiation

of severe wear and increase in FF . Due to storage limitations of the current

experimental setup, the force values cannot be recorded at such high rates

when performing an experiment with thousands of cycles. Fragmentation

of the result data, or setting criteria for the adjustment of the acquisition

rate according to the instability of FF can be applied in future work.

A running-in phase lasts about 1000 cycles, until the friction coefficient

stabilizes below 0.03. Besides the consideration of oxide layers, a transi-

tion of wear regime from local damage to delamination of a mechanically
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mixed layer has been reported for increased normal forces on nanocrys-

talline surface layers of pure Cu [42].

Dents, such as those presented in Figure 3.3, are often reported as de-

lamination wear [43, 44]. Rigney et al. have differentiated flake-like wear

debris produced by delamination from non-flake debris by lamellar extru-

sions [37].

The grain structure underneath the wear track changed profoundly dur-

ing the cyclic load. Apart from the finer grain structure, there was a 300 nm

lamellar structure directly underneath the surface. The hardness and ductil-

ity of this zone is expected to differ from the polished surface [45, 46, 47]. It

appears that the formation of flakes and the wear particle generation occurs

in this layer. The shape of these structures implies a combination of me-

chanical mixing and crack propagation. The grooves on the surface are an

indication of plowing. During this process, material deposited aside could

also cause a lamellar subsurface structure to emerge.

Very similar results were recorded after the pin slid in one direction only.

The main difference was the fact that the grains are morphologically ori-

ented in the sliding direction. Cross-sections perpendicular to the sliding

direction revealed vortex formations. This structure is demonstrated in Fig-

ure 3.6. Vortexes are reported to appear under surface grooves [48, 49]. The

formation of vortexes may be related to pores and cracks inside the shear

band in these experiments, where the lamellae begin to form. Loosening

in this band increases the eddy motion until particles experiencing pure

rotation appear [50]. Vortexes have also been described as the result of vor-

tical “shear+rotation” [51]. From our measurements, we cannot exclude the

presence of vortexes in bidirectional sliding.

Figure 3.7 suggests that before the onset of severe plastic deformation

and wear on the surface, the sub-surface does not undergo notable changes.

The grain structure here was not very different from that of the polished

sample, despite the high nominal pressure applied (2.5 MPa).
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3. In-situ observation of wear particle formation on lubricated sliding surfaces

The main focus of this work is the in-situ study of the wear progress on

the surface. The generation of wear particles was not observed in the entire

field-of-view. The formation of pits mostly occurred on an elevated struc-

ture which spreads along the sliding direction. This raised area resembles

surfaces with solid lubricating films when blistering occurs [52].

This elevation can be explained by mechanical mixing and material

transfer. As the harder body deforms the counter-face, it spreads the de-

formed volume along the sliding direction, covering part of the surface

nearby. Weak adhesion causes separation between the layers. As they pile

up randomly on top of each other, deform, and crinkle due to the cyclic

load, they give the impression of a continuous lamellar structure. The flat-

ter surface underneath does not conform to the shape of the flakes above,

so the separation at this depth is easier to recognize. The oval shape of

the spreading area is very similar to the formation of lamellar extrusions as

reported in the literature [37]. In this case, the formation of wear particles

is not controlled by delamination originating from sub-surface cracks.

Another explanation is that cracks in the nc/ufc layer lead to a local sep-

aration, possibly letting lubricant enter the sub-surface. The depth at which

sub-surface void nucleation should occur has been studied in literature [53].

In either case, this result is in accordance with the lamellar structure ob-

served in the cross-sections.

The initiation of the elevated structures was not observed. The wear zone

appeared from the side of the field-of-view. The height bump appearing at

5065 cycles in Figure 3.9 was either formed directly at this site, or was

carried from a neighboring site which cannot be seen during the test. Par-

ticles floating to the neighboring area and being captured between the two

sliding bodies after every cycle is a possible explanation for the spreading

of the area where wear takes place. This, however, is a parameter that can-

not be studied in detail in the experiments performed in this work. If this

assumption is correct, the mobility of particles on the surface should affect

the spreading.
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Bild 3.15.: Schematic representation of delamination theory.

In the results section (3.3.4), one could argue that the example of the

single asperity moving along the sliding direction, leaving a pit behind,

is in good agreement with the delamination theory. The profiles in Fig-

ure 3.12 are a result of multiple cycles and appear to agree with the theory

of delamination as shown in Figure 3.15 [34, 35]. Nevertheless, this close

resemblance does not prove that delamination occurred. The attachment of

a particle or transfer of mass onto this site could have formed the asperity

observed. If the sub-surface under this asperity was already lamellar, this

large volume on a mechanically weak substrate could easily become the

reason for instability and hence detachment of the surface layer.

The aforementioned volume loss along with the presence of a thick

(60 nm) Cu layer on the pins suggest material transfer from the softer to

the harder counter-face. No Fe was detected on the Cu samples, so no

transfer is expected to occur in this direction. Besides the observed transfer

of Cu to the Fe pin, it is possible that a fraction of the transferred material

on the pin returns to the Cu surface.

3.5. Conclusions

In-situ monitoring of the wear behavior of a Cu sliding surface under lu-

brication was performed to understand how surface deformation, material

transfer and wear affect the topography. Upon breach of a thin oxide layer,

plastic deformation and particles initiate wear on the surface, leading to a

temporary increase of μ until the sample has been run-in. In this process,
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3. In-situ observation of wear particle formation on lubricated sliding surfaces

particle generation occurs in areas of the surface that spread. The mobility

of floating wear particles could also play an important role in the propaga-

tion of this zone.

Back-up investigations with FIB cross-sections link this work to recent

studies of Cu surface/sub-surface microstructure in the steady state. The

grain structure becomes finer near the surface, while a nc/ufc structure hosts

cracks. Plowing, lamellar extrusions and vortical mechanical mixing may

also give rise to crack-like features. The combination of all these effects

lead to the final sub-surface structure during sliding. Considering these

observations and the in situ results, the generation of flake-like particles is

not necessarily a consequence of delamination due to sub-surface cracks.

Surfaces loaded with similar conditions have a dependence on the di-

rection of sliding. If the pin slides in one, non-reciprocating direction, the

grains appear to be drawn in this direction toward the surface. The reduc-

tion of the grain size depends more on wear and plastic deformation in

surface material than on the mechanical load itself.

XPS profiles on the counterfaces show material transfer from the softer

to the harder body but not vice-versa. Still, deposited soft material on the

harder surface could return to the softer body.
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4. Linking the Friction Coefficient with
Topography during Plowing

4.1. Introduction

According to the theory of Bowden, Moore and Tabor [4], the coefficient

of friction consists of two terms: the plowing term and the shear term

(Equation 4.1). In their experiments, the aforementioned authors investi-

gated plowing for single pass tests of hard hemispherical spades rubbing

on metallic surfaces. It was shown that the flow pressure for plowing p′

was not identical with the flow pressure for indentation p. This either in-

dicates different mechanisms that govern the behavior of the contact, or

non-identical material properties between the surface and the bulk. In many

experiments, the first pass includes material changes near the surfaces, that

only occur in this phase. For this reason, the data gathered during the first

cycle of an experiment are often neglected. Considering the above, the ini-

tial experimental approach of Bowden and Tabor fails to describe plowing

flow pressure for advanced cycles. A better examination of plowing after

the initial cycle calls for in-situ measurements.

FF = A′p′+Ars (4.1)

A′p′ is the plowing term and Ap is the shear term.

An approach suggested to measure plowing in-situ is to use an indenter

to scratch a surface and at the same time monitor the indentation of the

probe [54]. The problem that arises in such measurements, is that the elastic

recovery cannot be considered [55].
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4. Linking the Friction Coefficient with Topography during Plowing

At the nanoscale, atomic force microscopy can be used for in-situ stud-

ies of plowing [56]. Such experiments are however limited to tribological

loads applied at the nanoscale. Therefore, they cannot be used to examine

complex lubricated multiple-asperity systems.

During running-in, a variety of complicated processes take place, making

it impossible to estimate which part of the measured friction belongs to each

of the terms that appear in Equation 4.1. This means, that the processes that

are described in Chapter 1 lead to a time dependence of the parameters in

Equation 4.1. Again, in-situ methods are necessary to observe physical and

chemical changes of the third body as cycles progress.

Clarifying the contribution of each source is very useful when planning

improvements for the conditioning of a tribosystem. The evolution of shear-

ing and plowing can indicate what parameters or preconditioning measures

may assist toward better running-in. Tweaking according to the monitored

changes may lead to novel procedures that have not yet been explored. To

date, plowing cannot be monitored during running-in and therefore its be-

havior remains unexplored.

It is however known, that the plowing term strongly depends on the bulk

properties of the material and the sub-surface layers, whereas the shear term

has a greater dependence on the nature of the intimate junctions between

the two metallic surfaces, without, however, being completely independent

from the near surface volume. More recently developed models derived

from experiments of a diamond spherical tip on nitrided steel suggest that,

in this system, the plowing term is independent of the surface condition and

the shear term exclusively depends on the surface condition [55].

Plowing in lubricated metallic surfaces is mainly caused by harder as-

perities of the counter-face and particles entrapped between the two sur-

faces. The diversity of the geometries observed in these media has trig-

gered research on the topography of wear scars. Based on their research,

Komvopoulos et al. built a theoretical model which links geometrical pa-

rameters of asperities, particles and plowed zones to the friction coeffi-
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cient [57]. It was shown, that the sharpness of asperities and particles play

a dominant role in plowing and lead to abrasive wear [58].

Unfortunately, to date, there are no methods that allow for an efficient

separation of the plowing and shear term of Equation 4.1 when nano- or

microplowing occurs in lubricated multi-asperity systems. When attempt-

ing to examine such systems, tribologists face the following difficulties:

• Most instruments only measure the friction forces, while wear or sur-

face deformation is only determined with topographical methods af-

ter the application of mechanical load.

• On-line wear measurement with RNT has been proven very pow-

erful, but only the amount of detached material can be determined.

Plowing involves moving material aside without necessarily leading

to wear particle generation.

• Existing in-situ optical methods with transparent media monitor the

entire wear track, reducing the resolution of the measurement when

trying to determine small changes in the area where plowing occurs.

Furthermore, these experiments are limited to transparent counter-

faces, so the adhesive interaction of various metal couples cannot be

investigated.

• Complicated contact geometries make the calculation of plowed vol-

ume difficult.

A considerable effort to model plowing and shear friction coefficients dur-

ing high-temperature ball on disk tests was presented by Wang et al. [59].

In this work, based on existing scratch models and a detailed calculation of

the contact interface, a model was proposed to determine plowing and shear

friction. Experiments were carried out to confirm the presented model. In

these tests, the width of a wear track, formed by a steel ball (6 mm di-

ameter) on an aluminum disk was measured every 10 cycles. Although

the contribution of plowing to the friction force was estimated below 1 %,
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the measured changes of the wear track width were in the order of hun-

dreds of μm. Such plastic deformations cannot be compared to micro- and

nanoscopic plowing, which affects the running-in process.

The new approach presented in this chapter takes advantage of a novel

tribometer used for high resolution monitoring of plowing while sliding.

Furthermore, the possibilities of a simplified approximation for the calcu-

lation of plowing and shear terms is put to the test.

4.2. Experimental Setup and Procedure

4.2.1. Tribometer and method

The instrumentation used in this work is capable of monitoring changes on

the surface during a sliding test between non transparent metals. Details on

the experimental layout can be found in Chapter 2. In a normal experiment

with a flat metallic pin sliding against a flat plate, the plowing areas within

the wear track spread at random positions. The microscope has a field of

view (FOV) of about 80 μm×80 μm2, which on the one hand provides the

necessary lateral resolution for the measurement, but, on the other hand, it

does not allow for monitoring of all plowing tracks simultaneously.

The aim of the experiments below is to simplify the tribosystem and cal-

culate p′ after monitoring the plowing that occurs during each cycle. In

these measurements, it is crucial that other influences affecting the fric-

tion coefficient are minimized. The gradual formation of a third body dur-

ing running-in would entail constant changes in the shear behavior of the

junctions. To isolate and study the plowing term, it is imperative, that the

friction force is dominated by plowing.

Considering the above, experiments were performed with a ruby sphere

sliding in a reciprocating motion against a Cu plate in lubrication. The

criteria that lead to the selection of these samples are the following:
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1. The selected spheres have a very well-defined geometry that allows

for easy calculation of the plowing cross section.

2. There is only one plowing track, so it is not necessary to move the

microscope along the width of the contact area to measure smaller

plowed areas within.

3. No plastic deformation is expected to occur on the ruby surface, as it

is significantly harder than Cu.

4. Ruby is an inert material, so no chemical reactions should occur on

the surface. This prevents changes in the nature of the intimate con-

tact between the two bodies.

5. The lubricant prevents the accumulation of debris in front of the

slider, which could affect the friction values.

6. Using a sphere leads to higher nominal pressure, ergo higher wear

rates, probably too high to establish conditions within the running-in

corridor (Figure 1.2). This minimizes the effect that the formation of

a third body has on the friction coefficient values.

An additional axis with a screw-drive adjust was fixed to the optical micro-

scope. This allows it to move horizontally and perpendicular to the sliding

direction. With this addition, the microscope can be brought to the edge of

the wear track. As cycles progress, the track becomes wider, shifting the

edge to a new position. Once the edge has reached the end of the FOV,

the position of the microscope is readjusted. At certain time intervals the

microscope is moved to both edges to measure the total width. This is

achieved with a scaled indication of the axis, with a precision of 2 μm.

Further experiments were conducted with flat steel pins. The purpose of

using a multi-asperity system is to investigate if plowing in smaller sections

of the apparent contact area also correlates with FF .
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4.2.2. Materials and experiment conditions

All friction/wear experiments were conducted in laboratory conditions:

temperature, T = 25 °C, humidity, approx. 45 %. In-situ topography im-

ages were acquired after every loading cycle with a holographic microscope

(DHM® R1000 series, Lyncée Tec SA). As the objective lens remained

in immersion during acquisition, a transparent PAO-8 oil with a viscosity

of 45.8 mm2 s-1 at 40 °C, provided by Fuchs Petrolub AG, was selected

as lubricant. The oil circulation was performed by a pump integrated in

the radio nuclide technique apparatus (Zyklotron RTM 2000 of Zyklotron

AG, Germany). During the experiment, the lubricant’s temperature was

stabilized at approx. 33 °C. The plate samples were made of Cu (purity:

99.98 wt%) and polished with a 1 μm diamond particle suspension with-

out further treatment. The average grain size measured on the surface was

1452 μm2±71 μm2. The flat pins were made of bearing steel (100Cr6/0.9-

1.05 % C and 1.35-1.65 % Cr). The contact area was circular in shape with

a diameter ranging from 1.6-2 mm depending on the edge taper. These

samples were polished before testing in the same way as the Cu plates.

The pin samples had a slight curvature due to the polishing procedure. The

measured root mean square roughness (rms) was measured for both sample

types. The rms roughness was approx. 200 nm. The roughness was recal-

culated after subtracting a spherical term in order to eliminate the curvature

factor, leading to rms values of approx. 26 nm. The ruby spheres used had

a diameter of 1 mm. The roughness (rms) of the samples was about 225 nm

and 13 nm after filtering out the curvature.

The sliding experiments were performed in a linear reciprocating mo-

tion at various normal loads and speeds, in the range of 2-12 N and 10-

25 mm s-1. The normal loads and friction forces shown in the results are

recorded at the same area where the sample is examined with the optical

microscope. To determine normal and lateral forces at this position, the

values are interpolated from the closest measured points in the two sliding
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Tabelle 4.1.: Activation parameters for the Cu samples and the reference specimen.

Size of reference specimen 0.781 mg

Specific activity aspec =10.5 kBq/mg Zn-65

Total activity for Cu sample A =1.8 MBq Zn-65

Energy windows 50 keV-1400 keV and 430 keV-

1400 keV (Eγ)
Linear range SM �50 μm

directions during one cycle. The initial normal load was adjusted to 2 N

for the first 10 cycles of every experiment to avoid deeper damage of the

sample due to the high nominal pressure developed before the initial plastic

deformation.

4.2.3. Additional experiments

One of the Cu samples was activated at a cyclotron facility (Zyklotron AG,

Germany). A protective mask limited the incident protons to a 3 mm thick

strip on the specimen, perpendicular to the sliding direction. The area

where the track is examined with the optical microscope lyes within the

activated region. After irradiation, 65Zn isotopes are expected to replace a

small percentage of the 63Cu atoms.

The activation parameters and properties of the sample are gathered in

Table 4.1.

The activation and measurement procedure is further described in Fig-

ure 4.4.

A Zeiss XB 1540 focused ion beam (FIB) was used to investigate the

structure of the samples underneath the worn areas. In order to observe

the depth profile, cross- sections along and perpendicular to the wear tracks

were milled with a Ga ion gun. No mask was required for the purposes of

this analysis, as no thin slices for transmission electron microscopy (TEM)

investigations were produced. The images were acquired with a secondary

electron detector.
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Bild 4.1.: Ridge of a wear track after 50 cycles (a,b and c) and the same ridge after

800 cycles (d, e and f).

4.3. Results

4.3.1. Monitoring wear track edge

For the majority of the results shown in this section, the ruby sphere is

used as slider. Plowing causes the formation of a ridge on the side of the

wear track. After the first cycle, the microscope has to be brought to the

side of the track in order to monitor the position of the ridge. The ridge

evolves after multiple passes of the slider. An example after 50 cycles is

presented in Figure 4.1 (a,b and c). The height of the ridge reaches 3-5 μm

at this stage. Linear structures appear directly next to the wear track. The

direction of groups of such lines gathered close to each other appears to

be the same and it may change after several cycles of loading. After the

fiftieth cycle it is still clear where the end of the wear track is located. After
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several cycles, the sides of the wear track become vague because of the

geometry of the deformed Cu. A thick layer of plowed material covers the

intact surface right next to the ridge. This is shown in Figure 4.1 (d, e and

f), for the same experiment, after 800 cycles.

Single images can be used to determine the position and the topography

of the ridge, but they contain no information concerning its evolution. A

series of images after every cycle, better yet a video, could give a more

complete idea of the changes that occur.

4.3.2. Profile extraction and mapping

To quantify the shift of the wear track side, profile lines, perpendicular to

the sliding direction are extracted at the same coordinates within the FOV

for successive images. These lines are placed next to each other to form

a profile map. The mapping process is shown in Figure 4.2. The original

image on the top left consists of two main areas. The lower, brighter area is

the part of the surface that has not yet come to contact with the sphere. The

gradient that appears in the upper area corresponds to the worn area that

conforms to the shape of the slider. The edge is the thin area that separates

the intact from the plowed surface.

As mentioned above, the wear track grows out of the FOV, so at certain

time intervals it is necessary to move the microscope. This causes a dis-

continuity in the profile map. To overcome this problem, the segments of

acquired maps are stitched to produce a continuous image with respect to

the position of the plowing ridge. The stitching process is shown in Fig-

ure 4.3.

A further issue that makes it difficult to distinguish the location of the

ridge in the profile maps is a slight vertical shift of the topography images

that may occur during reconstruction, especially when the microscope has

been readjusted. This problem is evident between 300 and 400 cycles of

Figures 4.2 and 4.3. To avoid errors related to this fluctuation, the intact
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Bild 4.2.: Gathering profiles from the same coordinates of every cycle (a) and plac-

ing them next to each other forming a profile map (b). Indicating positions

where the microscope moved to acquire the total width of the wear track

(c).
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Bild 4.3.: Stitching together the segments between microscope positions and ex-

tracting the widening data.

area is used to bring all profiles to the same height level. In this process,

the last 50 pixels of every profile are averaged. According to the resulting

value, the entire profile is adjusted, so that the polished area is brought to a

height level of 0 μm.

Once the stitching and height corrections are complete, a graphical rep-

resentation of the ridge position can be constructed. The position of the

ridge in these images does not indicate the width of the wear track, but

the change of the position shows how fast the wear track widens. Further

information on how the widening profile extraction is performed is shown

in section 4.4.2. As shown in the example of Figure 4.3, rapid widening

occurs for early cycles, the widening then stabilizes into a rather straight

line and in many cases ceases entirely.

4.3.3. Experiments with radioactive nuclides

Wear measurements are performed with the RNT apparatus to compare the

plowed volume to material that entirely detaches from the Cu surface. The

instrument’s software automatically calculates radioactive mass in the lu-

bricant, according to the measured intensity and total volume of fluid. The

93



4. Linking the Friction Coefficient with Topography during Plowing

Ac�vated area

Wear Track

Plowing cross sec�on

Ac�vated area

Wear track

Measured volume

Ac�vated area

Measured volume

Plowing cross sec�on

Wear track

p
+

p
+

p
+

Sample

Cyclotron

a b

c d

Bild 4.4.: RNT procedure. The sample is activated with a proton beam produced

by a cyclotron apparatus (a). Exposed area under mask (b). Theoretically

measured volumes if the entire deformed volume produces wear particles

entering the oil circulation (c and d).

material loss of Cu is calculated from the specific activity of the sample.

Converting the mass to volume and dividing it by the width of the activated

strip, as shown in Figure 4.4, gives the cross section area of wear. This

area is compared to the cross section area of plowing, as calculated from

the indication of the scaled screw-drive adjust of the optical microscope (rr

values). An example of the first RNT experiments conducted is shown in

Figure 4.5. The greatest part of the widening in the beginning is attributed

to wear and later only a small fraction of A′ is detected with the RNT ap-
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Bild 4.5.: Comparison of plowing cross section and wear. The square points show

the cross section area that was calculated from the amount of wear parti-

cles that enter the oil circulation, as measured by RNT. The circular points

are the plowing cross section area values. The measured μ is also plotted,

to investigate possible correlation. The experiment was performed at a

normal force of 4 N and a speed of 20 mm/s.

paratus, as the plastically deformed volume only shifts to the sides of the

track without leading to wear particle generation.

The RNT results do not exhibit good repeatability. Later experiments

show the opposite effect. Namely, no radioactive material is detected for

early cycles, whereas some wear appears after about 500 cycles. The rea-

sons for this discrepancy are being investigated.

In any case, no correlation between friction coefficient and wear vol-

ume, or wear cross section area are observed in any of the experiments

performed.

4.3.4. Sub-surface investigation

The surfaces are further examined with an SEM. Some of the wear tracks

exhibit a wavy pattern on the surface. The period of this pattern is approx-

imately 500 nm. Figure 4.6 shows a comparison of a wear track that has
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Bild 4.6.: Comparison of wear tracks with (a) and without (b) height fluctuations

along the sliding direction. The images were acquired with SEM.

height fluctuations along the sliding direction and another one that does

not.

FIB cross sections of the sample that does not exhibit waviness reveals no

nano or ultrafine crystalline structure directly under the surface. The grains

are evidently finer than in the bulk of the material down to sizes below

1 μm. The sub-surface of samples with the aforementioned waviness are

less homogeneous. In the lower areas between two successive peaks, the

structure under the surface is very similar to that observed before. When

examining cross sections under the peaks, a fine crystalline and lamellar

formation is seen. Examples of these structures are seen in Figure 4.7. The

thickness of the lamellar structure in this case is approximately 1 μm. It

can be assumed, that material is accumulated in a loose form in front of the

sphere. Once it reaches a critical amount, the sphere skips it and slides on.

FIB investigations have not been repeated for enough samples to perform

statistical analysis on the formation and properties of these structures.
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Bild 4.7.: Comparison of subsufrace structures beneath the peaks (a) and valleys (b)

of the wavy pattern. The sections were performed with FIB and the im-

ages were acquired with SEM.

4.3.5. Experiments with flat pins

When conducting experiments with flat pins, the FOV is randomly placed

within the apparent contact area. Although the pins are flattened and pol-

ished, a slight curvature is still present. Therefore, a wider plowed area

appeared near the center of the contact between the pin and the flat sam-

ple. Smaller plowing tracks appear after several cycles around the central

plowing track. A representative experiment of contact with a more pro-

found plowing track in the middle is selected to record the response of the

friction coefficient to plowing. The FOV is placed at the ridge of one of

the main plowed area. The correlation between μ and ṙ is shown in Fig-

ure 4.8. When comparing the two curves, there are cycle ranges with an

obvious mismatch, but at many other ranges, there is a very strong corre-

lation between the two. Even finer details in the behavior of the two lines

are common in both μ and ṙ. Such an example are the peaks at 1250 and

2500, which seem to match. The range between 500 and 1100, as well as

between 2000 and 2400, on the other hand, show no evident correlation.
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˙

˙

Bild 4.8.: Comparison of the behavior of μ and ṙ for a plowing track within the

contact area of a flat pin. The values of μ have been smoothed with an

averaging algorithm to remove noise. The experiment was performed at

a nominal pressure of 1.33 MPa and a speed of 20 mm/s.

4.4. Discussion

4.4.1. Wear track edge

When performing experiments with ruby spheres, the ridge on the side of

the wear track can be monitored easily for a limited range of cycles. After

multiple passes, debris is deposited around the contact area. Although the

oil carries away a great part of these particles, some still adhere around

the wear track, making it hard to distinguish between worn and intact area.

This is also visible in the SEM images, in Figure 4.6, although the samples

were cleaned with hexane and aceton before the SEM acquisition.

4.4.2. Correlating widening and friction

The profile extraction procedure has been described in section 4.3.2. Once

all profile segments are stitched together and the zero level of the images

is set, axes are drawn around the image to quantify the data. The position

of the ridge is marked by placing data points over the map to extract a

graphical representation of the ridge shift as the cycles progress. These
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data points are placed by hand. The first measurement of the position is

performed after the first cycle of the slider. Therefore, the radius r is defined

as the position of the ridge with respect to its position after the first cycle.

The real radius value in this case would be rr = r+Ri, where Ri is the initial

width of the track after the first cycle. For simplicity, the symbol r will be

used as widening on one side of the wear track. Given that the slider has a

perfectly spherical shape, it is assumed that the same widening should be

occurring on the opposite side of the track. Therefore, the total widening

should be given by multiplying this value by 2.

The evolution of r can be monitored as shown in Figure 4.3. When com-

paring r with the μ values against time/cycles, there appears to be some

correlation, as both seem to change dramatically in the beginning and start

stabilizing after several cycles. Such an example is shown in Figure 4.9.

Plowing will continue to occur, causing further widening, so when the μ
values become rather constant, there is no further connection between μ
and r. The two graphs do not seem to correlate directly. There is a better

correlation when using the widening rate ṙ instead of the widening itself.

This value is calculated by differenciating the r plots against the number

of cycles. In this case, there is a much closer correlation between ṙ and μ .

Still, below 100 cycles there appears to be a misfit. Between 100 and 200

cycles, the behavior ṙ is practically identical to that of μ .

A further example is shown in Figure 4.11. Here, it appears that changes

in the μ values are recognized earlier than in the ṙ curve. This is seen at

about 210 cycles and after 500 cycles. Furthermore, features of the μ curve

between 330 and 430 cycles are not reflected in the behavior of ṙ at all.

Again, there appears to be no connection between the two curves below

100 cycles. For the rest of the cycle range, the two curves seem to have a

very similar behavior.

Graphs like the ones shown in Figures 4.10 and 4.11 were used to form

a mathematical expression that correlates the friction coefficient with the

widening rate. In order to bring the two curves at the same level until the
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Bild 4.9.: Comparison of the behavior of μ and r. In the bottom image, the values of

μ have been smoothed with an averaging algorithm to remove noise (30

point AAv average smoothing with Originlab Origin). The experiment

was performed at a normal force of 8 N and a speed of 20 mm/s.
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˙

˙

˙

˙

Bild 4.10.: Comparison of the behavior of μ and ṙ. In the bottom image, the values

of μ have been smoothed with an averaging algorithm to remove noise

(30 point AAv average smoothing with Originlab Origin). The experi-

ment was performed at a normal force of 8 N and a speed of 20 mm/s.

common behavior of the two can be noticed, the range of the axes is furtger

adjusted. Figure 4.12 gives a general example, where (μmin,μmax) is the

range of the friction coefficient and (ṙmin, ṙmax) is that of the widening rate.

If the two curves have practically identical paths for these ranges, then the

mathematical expression that connects ṙ with μ is

μ = a+bṙ , (4.2)

where

a = μmin − ṙmin
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˙

˙

Bild 4.11.: Comparison of the behavior of μ and ṙ for a wider range of cycles. The

values of μ have been smoothed with an averaging algorithm to remove

noise (30 point AAv average smoothing with Originlab Origin). In this

case, the experiment was performed at a normal force of 4 N and a speed

of 15 mm/s.
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Bild 4.12.: Example of range values extraction for the calculation of the correlation

parameters between μ and ṙ.
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and

b =
μmax −μmin

ṙmax − ṙmin
.

The constant b also contains the factor 2 which corresponds to the widening

recorded on the other side of the wear track, assuming that deformation is

equal on both sides.

To determine the dependence of these parameters on the sliding speed

and normal load, the experiment was repeated for all combinations of FN of

4, 6 and 8 N and υ of 10, 15 and 20 mm/s. No particular trend is observed,

there are only random deviations from the average values.

4.4.3. Plowing cross section area

To confirm that the above approximation is consistent with the theory of

Bowden, Moore and Tabor, the behavior of μ is also directly compared to

that of A′. To calculate A′, rr is necessary. The total width can in principle

be calculated as shown above (rr = r+Ri) if Ri is known. In this approach

it is assumed, that the widening on either side of the wear track is always

equal. To ensure that no differences between the two sides of the wear track

could affect the results, the screw-drive adjust indication is used to measure

the total width of the track after certain time intervals.

In a multiple pass experiment, the geometry has to be redefined. Fig-

ure 4.13 shows a comparison between the geometry of the first pass and

that of an advanced cycle state. Both the real contact area Ar and the plow-

ing cross section A′ are significantly larger for the first pass. The calculation

of A′ has been studied thoroughly for various geometries of sliders [60, 57].

Calculations of multiple pass cross sections have already been performed

in the literature [59]. For the purposes of this work, simplified geometric

calculations that do not consider elastic recovery are applied.

To determine the geometry of A′ in the case of multiple passes, sphere

and counter-face are reduced to a two dimensional representation. If the

vertical position of the sphere is shifted downward, toward the counter-face,
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Bild 4.13.: Comparison of the geometry of the real contact area and the plowing

cross section for single and multiple pass experiments.
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Bild 4.14.: Calculation of the plowing cross section A′ as a difference between circle

segments K1 and K2 for an indentation of dh.
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by dh, and the distance of the center of the circle from the counter-face is

initially h1 and after a cycle h2, then dh = |h2 −h1|. This can also be de-

scribed as an “indentation” of the sphere. Figure 4.14 shows the geometry

of gradual indentation dh of a sphere with radius rs in a flat surface. The

area that needs to be calculated is A′ and it can easily be found by the dif-

ference between the circle section areas K1 and K2: A′ = |K2 −K1|. The

equations used for the calculation of circle sections and arcs are given be-

low:

L = rs arccos

(
c

2rs

)
, (4.3)

K =
1

2

⎡
⎣r2

s arccos

(
R

2rs

)
−R

√
r2

s −
(

R
2

)2
⎤
⎦ . (4.4)

These equations are based on geometrical calculations according to Fig-

ure 4.14.

If n cycles have been performed between two successive width measure-

ments, the calculation of the average plowing cross section area is given by

the following equation:

A′ =
|K2 −K1|

n
. (4.5)

Figure 4.15 shows a comparison of the evolution of μ and A′ for the

same experiment presented in Figure 4.10. The precision of this measure-

ment is significantly lower than monitoring the evolution of the ridge after

every cycle as shown above. This makes the correlation between the two

curves very difficult. It is seen, that the values are scattered around the μ
curve, especially in the first half of the graph. Nevertheless, the range of

the values seems to remain at consequent levels for μ and A′. Although

the cross section areas remain at particularly high levels in the beginning of

the experiment, they do not come off-scale as in the case of ṙ, as shown in

Figure 4.10.
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Bild 4.15.: Comparison of the behavior of μ and A′. The values of μ have been

smoothed with an averaging algorithm to remove noise (30 point AAv

average smoothing with Originlab Origin). The experiment was per-

formed at a normal force of 8 N and a speed of 20 mm/s.

4.4.4. Approximating the plowing term

Despite these difficulties, it appears that the connection between μ and ṙ is

evident in Figures 4.10 and 4.11. Equation 4.2 initially seems to contradict

the theory of Bowden Moore and Tabor (see equations 1.1, 1.2 and 1.3).

This is however not the case. The geometry of the cross section area of

plowed volumes is a very thin strip along the arc of the spherical slider. If

the indentation dh is significantly smaller than the total width of the wear

track, then A′ can be simplified to a long parallelogram with two triangles

on either side, as shown in Figure 4.16. These triangles only occupy a very

small part of the total area. Furthermore, the widening during every cycle

is significantly smaller than the total width of the track. According to these

assumptions, the factor that connects ṙ with A′ is dh.

The relation between r and dh is

r = tan(θ)dh .
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Bild 4.16.: Example of range values extraction for the calculation of the correlation

parameters between μ and ṙ.

If the difference between the arc angles dφ of two successive cycles is very

small, then, for a limited cycle range, the connection between ṙ and dh is

practically linear.

In most tribo-systems, running-in leads to the formation of a third body

as described in Chapter 1. With the exception of the peaks observed in

wear tracks with a wavy structure, no such third body was observed for

experiments conducted with ruby spheres. Plowing and wear levels are so

severe, that proper running-in is not occurring. This means that in the curve

shown in Figure 1.2, the conditions for these experiments are on the left

side of the running-in corridor. According to Coulomb’s law of friction, the

apparent contact area does not affect the real contact area. The normal load

for all experiments is held constant after the first ten cycles. Considering

all the above, no significant changes affect the shear term of the friction

coefficient. Therefore, μ is controlled by plowing in these experiments,

and Ars is considered constant.
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This means that the two terms of Equation 4.1 can also be found in Equa-

tion 4.2, approximated as follows:

Ars
FN

= a , (4.6)

A′p′

FN
= bṙ . (4.7)

4.4.5. Approximation critera

This approximation only holds if the following conditions are fulfilled:

1. The running-in corridor conditions are not fulfilled.

2. The indentation occurring between two cycles is significantly smaller

than the total wear track width, dh � rr.

3. The approximation is applied for a short range of cycles.

4. No significant changes occur in the geometry of the slider.

5. The slider’s surface is not affected chemically while sliding.

According to the above criteria, it is possible to explain why the approx-

imation fails for cycle ranges below 100. During the early cycles, dh is

comparable to rr. Furthermore, FN is so high, that the surface damage is

not only caused via plowing. Lines appear on the side of the plowing track,

that seem to be following the persistent slip bands (PSB) of the grains. This

means that deformation is caused in a much larger area around the contact

area. This energy loss is also expressed as an increase of resistance against

sliding, hence higher μ .

It is possible, that at very high cycle numbers, the normal load is dis-

tributed on a much larger area, possibly bringing the system into the running-

in corridor. In addition, if this approximation is applied to a very large

number of cycles, it is possible that the values of a and b are not consistent
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throughout this range. The reason for this is that as the contact area in the

shape of an arc, as shown in Figure 4.14, grows significantly, but the radius

of the sphere remains the same. This geometrical change may affect b. In

addition, the geometrical change may also affect the angles at which the

normal load is distributed, as the sides of the area near the ridges are no

longer near a horizontal orientation, so a may be affected as well.

Severe surface damage in the beginning of the experiments leading to the

detachment of larger volumes of Cu would explain the behavior of wear

shown in Figure 4.5. Due to lacking repeatability of these results, no con-

clusions can be drawn. It is possible, that the particles generated during

early cycles are sometimes too large to enter the lubricant circulation. If

large particles are deposited and immobilized near the wear track, or if

their flow is hindered at the filter of the RNT apparatus, then they cannot be

detected. Further experiments need to be conducted to address this issue.

For the results used in the above analysis, it is assumed that the shear

term of Equation 4.1 is practically constant, as no running-in occurs. The

cross sections performed with FIB showed that some samples exhibited a

waviness. The peaks of these structures had a lamellar subsurface, which is

a strong indication of local running-in. Further investigations are necessary

to determine if these formations affect the results used for the correlation

between the curves of μ and those of ṙ or A′.

4.4.6. Estimation of plowing term and flow pressure

Equation 4.7 can be used to calculate the plowing term. This can either be

calculated by measuring r when monitoring the wear track ridge (method

A), or by measuring the total width with the indicated axis of the micro-

scope (method B).

When comparing the methods presented above:

• Method A has a significantly higher time resolution than B.

• Method A has a better spatial resolution than B.

109



4. Linking the Friction Coefficient with Topography during Plowing

• Method B determines the exact total width, rr, regardless of unsimilar

widening on either side of the wear track.

• Method A requires an initial measurement of rr.

In a conventional experiment, the microscope remains at a constant posi-

tion. As mentioned above, this is not possible throughout the experiment,

as the wear track grows out of the FOV and the microscope’s position has

to be adjusted regularly. Every such adjustment is a good opportunity to

perform a total width measurement as a reference.

An ideal experiment is the combination of methods A and B. The initial

width after the first cycle is measured with method B. The main calculations

are performed with the ṙ values from method A. Method B is used to ensure,

that the values acquired are reliable, meaning that widening is equal on both

sides.

A combination of these methods can also be used to calculate the plowing

cross section more precisely. As shown above, the total widening is 2r.

With an offset of ri =60 μm, the total width values rr measured with method

B are practically the same as the shifted 2r values measured from method

A. This is shown in Figure 4.17. As the resolution of method A is higher,

the A′ values are now calculated with the ri +2r curve. The result is again

compared to the smoothed curve of μ in Figure 4.18. Working in the same

way as in Figure 4.12, the factor b′ should now come from the following

equations:

μ = a+b′A′ , (4.8)

where

b′ =
μmax −μmin

A′
max −A′

min
=

0.155−0.12

170 ·10−12 m2
� 205 ·106 m−2

and
A′p′

FN
= b′A′ , (4.9)
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Bild 4.17.: Comparison of the behavior of rr and 2r. With an offset of 60 μm .

The experiment was performed at a normal force of 8 N and a speed of

20 mm/s.

Bild 4.18.: Comparison of the behavior of μ and A′, calculated by a combination of

methods A and B. The curve of μ has been smoothed. The experiment

was performed at a normal force of 8 N and a speed of 20 mm/s.

so

b′ =
p′

FN
⇒ p′ = b′FN = 205 ·106 m−2 · 8N = 1.6GPa .

This results in a flow pressure of p′ =1.6 GPa for the Cu sample used in

these experiments.
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4.4.7. Multiple-asperity systems

The data acquired in this study needs to be related to a realistic tribosys-

tem. In such cases, the approximation used in Equation 4.2 can be used for

multi-asperity systems. In contact mechanics, multi-asperity systems can

be dealt with as surfaces composed of hemispherically tipped asperities of

uniform radius. This concept was introduced in the model of Greenwood

and Williamson. Accepting this simplification, the plowing term depends

on the collective contribution of smaller asperities in contact. Figure 4.8

proves, that the behavior of a single plowing track can directly affect the

friction coefficient according to the above principles.

The instrument used for this study can monitor the topography within

the apparent contact area in-situ. If the surface that is being analyzed is

located within a spreading plowing track, then the widening rate ṙ can give

a good indication of the plowing contribution in this area. The widening

rate of smaller plowing tracks also gives an idea of the distribution of load

throughout the contact area.

Future work could involve building a system that can monitor the widen-

ing of all smaller tracks while maintaining the high resolution of the meth-

ods presented in this study. For relatively homogeneous wear tracks, one

or more representative positions can be used to estimate the amount of

plowing that takes place on the entire contact area. Monitoring signifi-

cantly smaller plowing tracks can be particularly challenging with conven-

tional optical methods; however, succeeding in developing such a technique

would enable tribologists to determine A′ for multiple-asperity systems. As

p′ for sliding against a soft body can be fully determined and it mainly

depends on the near surface volume of this material, the changes of the

shearing term that occur during running-in can be isolated. The last miss-

ing piece of the puzzle to fully determine the evolution of τ are real contact

area estimations Ar. Admirable work on Ar, conducted in various research

groups around the words, is currently in progress. It has to be noted, that
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deviations from the calculated p′ may arise due to geometric and chemi-

cal variations on the surface. The criteria for the approximation presented

in section 4.4.5 need to be reconsidered, when generalizing the simplified

model presented above to multiple-asperity systems. Finally, the results

gathered in this work can also be compared to more complex plowing mod-

els found in the literature.

4.5. Conclusions

In this chapter, reciprocating linear sliding of a hard, spherical, and inert

body against Cu was used as a technique to experimentally separate the

plowing and shear terms of the Bowden Moor and Tabor equation. Two

main methods were explained:

1. Correlation of the plowing track widening rate ṙ with the friction co-

efficient. The widening r is extracted from profile maps of successive

optical image acquisitions at the ridge of the plowing track. An ap-

proximation for a limited cycle range can be used for a fast separation

of the two terms.

2. Correlation of the plowing cross section are A′ with the friction co-

efficient. The area A′ is calculated after measuring the total width of

the wear track with an indicated axis attached to the microscope.

The first method exhibits a spatial resolution equal to the resolution of the

optical image output of the microscope and a time resolution of 1 cycle.

The second method has a lower spatial and time resolution, but it provides

full plowing track width rr information.

A combination of the two methods can be used for a precise calculation

of plowing flow pressure p′.
In a multi-asperity system, the approximation used in the first method can

provide a fast indication of plowing contribution of smaller regions of the

apparent contact area. Future work on real contact area and simultaneous
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measurement of all plowing tracks growing within the apparent contact area

can lead to in-situ monitoring of τ during complex running-in processes.

These observations and experimental methods help simplify the complex

behavior of tribological systems and show great potential for future devel-

opment in the field of in-situ experimentation in tribology.
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In order to shed some light onto the dynamics of lubricated sliding metallic

surfaces, a novel tribometer was constructed. The instrument combines a

high precision positioning stage and an advanced force sensor with an im-

mersion holographic microscope. The concept behind the novel tribometer

combines state-of-the-art methods for the analysis of the surface topogra-

phy on the micro- and nano-scale with the online measurement of wear. At

the same time, it allows for frictional and lateral force detection. Informa-

tion on the topography of one of the two surfaces is gathered in-situ with a

3D holography microscope at a maximum frequency of 15 fps and higher

resolution images can be provided at defined time intervals by an atomic

force microscope (AFM). The wear measurement is conducted on-line by

means of radio nuclide technique (RNT). The quantitative measurement of

the lateral and frictional forces is conducted with a custom-built 3D force

sensor. The surfaces can be lubricated with an optically transparent oil or

water. Tests performed with iron and steel samples demonstrate the stabil-

ity and versatility of the tribometer.

The first experiments were performed with steel pins against copper

plates in poly alpha olefin, sliding in a reciprocal motion, as well as in

a uni-directional manner. A general trend that we noticed at all experi-

ments was that initially the friction coefficient remained at extremely low

levels (about 0.05), then increased as wear particles formed and caused se-

vere plastic deformation on the copper surface and finally decreased again

to values slightly higher than the initial ones. Contrast to previous reports

and theories concerning running-in, we did not notice a flattening of the

surface during running-in.
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5. Summary

The wear particle generation was monitored on-line, with a particular

emphasis on flake-like particles formed while sliding. The relevant motion

of the slider leads to an elevated area, which spreads during sliding. In ad-

dition to the acquired 3D images of the surface, focused ion beam (FIB)

cross sections and X-Ray photoelectron spectroscopy investigations were

used to better understand the near surface structure. The subsurface struc-

ture suggests a mechanical mixing and material transfer mechanism, which

leads to an unstable lamellar formation near the surface. Still, delamination

cannot be excluded as a possible mechanism in the examined system.

Interestingly, the aforementioned increase of μ was accompanied by the

widening of wear stripes parallel to the sliding direction throughout the

wear track. Given that these stripes grew in different regions of the contact

area, it was hard to correlate their evolution with the friction coefficient.

In order to better understand this effect, the experiment was further sim-

plified by replacing the steel pin with a ruby sphere (1 mm diameter). This

sample guarantees that plastic deformation only occurs on the Cu sample,

there is only 1 center of the contact area and that the widening of the wear

track occurs equally fast on both sides. The microscope was placed at the

side of the growing wear track in order to observe the widening of the track

after every cycle.

The evolution of the friction coefficient was plotted along with the widen-

ing rate. It appears, that when removing a substrate-constant value from μ ,

it is proportional to this rate in specific cycle ranges. The rate of this widen-

ing is connected to plastic deformation, which accounts for the increase of

the friction coefficient. It was shown, that this trend can be used as an ap-

proximation to separate the plowing from the shear term as defined in the

theory of Bowden, Moore and Tabor.

As the contact area in the ruby sphere experiments is initially signifi-

cantly smaller than that of the steel experiments, it is clear, that the two ex-

periments are performed in different tribological regimes. In the beginning,

the surfaces of steel and copper are dissimilar. Therefore, until completion
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of the running-in phase, the nominal pressure of areas within the apparent

contact area are increased. This leads to plastic deformation, which widens

these areas until they cover the entire wear track. With the current features

of the instrument used, only one of these plowing tracks can be monitored.

Nevertheless, a similar connection between widening and μ was observed.

This work forms an innovative approach to in-situ tribology of lubricated

sliding surfaces. The first results contribute to a better understanding of

complex tribosystems. The tribometer displays great potential for improve-

ment. This makes the method developed very promising for further inves-

tigations with a wide variety of sliding surfaces. These investigations may

elucidate the processes occurring during the complex process of running-in.
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A. Structure of LabView Software
Implementation for the Tribometer
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A. Structure of LabView Software Implementation for the Tribometer

Force Sensor 

Read FOS Calibration 

Loop Read Values 

Repeat for x,y and z 

Select Near/Far 

Read from sensor 

Average 100 values 

Store local variables 

Main Control 

Tabs with functions 

Login 
Regulator 
Manual motion 
Z-fine adjust 
Load path 
Force Sensor 
Terminal 

Controlling functions  signals 
If no signal is being sent then 
Read status from PPS 

Read Status from PPS (positioning system) 
Position x, y and z (pin)  convert to mm 
and save local variables 

(see additional controls) 

Constant force level control: 
 
Check current force values 
Send signal to shutdown 
positionier with return to 0 x,y,z 
position if limit exceeded 
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Monitoring 

Graphical representation 

Additional Controls 

Current position Microscope image 
Import and display last 
acquired image 

Draw and save grid in 
memory 
Convert current position from 
status to pixel position 
Place dot for current xy 
position 
Update image with new 
positions  continuous line. 

Display elements: 
Communication port 
Current position x, y and z (pin) 
Current force x,y and z 
Pin height z on axis 

Switch: 
Enable/Disable force regulation 

Define current activity: 
True/false variables trigger functions 
 
If all triggers are false, the current status is updated within every 
cycle 

Microscope Communication 
Transfer protocol: 

Use com channel 
for microscope 

Prepare and format 
command string 

Finalize command Transfer data to 
microscope PC 

Receive response / 
data packages 
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A. Structure of LabView Software Implementation for the Tribometer

Login 

Tabs 

PPS (positioning system): 
Initialize communication 
Log on to PPS subsystem via TCP 
Transfer Reference values for Z-axis 

Microscope: 
Initialize communication  receive confirmation response + key 
Promt for password 
Run internal script with encoding key  transmit password 
 
Com established with confirmation code 

Initialize positioning system 
Select function 
(Startup, Shutdown, Shutdown without returning to 0 position, 
confirm centralization of positionier, complete startup with 
activation of power supply, startup without reference motion) 
 
Transmit message to positioner 
 
Receive, decrypt and display response 
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Manual positioning 

Tabs 

Move to set value: 
Set position: if pps status=available  transmit new coordinates 
for x and y or z with predefined speed 
Incremental motion: read current position, define new position 
by adding distance multiplied with speed factor  transmit new 
position with predefined speed (from speed factor) 
 
Pin approach disabled if preset contact normal force has been 
reached 

Z fine positioning 
Read z force value 
Read current z position 
Calculate difference from defined normal force for experiment 
(this also defines the direction of motion) 
Read set speed and distance factor for motion of z axis 
Calculate new z position and speed 
Transmit data to positioner 

Set path 
Load path: 
Open excel file conaining path data 
Convert to array 
Compile command with path array 
Upload data to positioner 

Path related commands: 
Execute path 
Execute path loop 
Stop at next defined position 
Immediate stop 
Resume 
Resume in loop 

 Send command to positioner and read response 
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A. Structure of LabView Software Implementation for the Tribometer

Force sensor 

Tabs 

Currently measured voltage: 
Graphical representation of voltage for x,y,z sensors (within a 
preset time limit) 
Tare force: 
Save current distance as local variable 
Current force: 
Calculate and display force acording to deviation from tare-value 
Measured force: 
Graphical representation of force for x,y,z sensors (within a 
preset time limit) 

Data storage 
Select path to save data 
Select data to store (position x,y,z, forces x,y,z and current path 
cycle if loop is active) 
Sample rate defines the frequency of data storing 
Data entries are directly saved to a file with line feed 
Definition of directory for microcope images (this is incorporated 
in the string of the commands) 

Terminal 
Contains a constantly updated string field that presents 
important messages received when calling up the status of the 
positioning system. 
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Performing experiment 

START: 
Change status to performing experiment 
Enter loop after checking if status of experiment is active 
 
1. Write name for first microscope image 
Using the path defined in storage and the current cycle of the 
experiment, the name of the file is inserted in the command text 
2. Send commands to Microscope 
Acquire an image in double wavelength mode 
Pause 1500 ms 
Save file to defined location 
Pause 4000 ms 
3. Path 
Execute single pass of defined path 
4. Update cycle number 
Add a cycle to local variable for current cycle 
 
STOP: 
Change status to experiment not active 
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