
Dynamic Logic with Trace Semantics?

Bernhard Beckert and Daniel Bruns??

Karlsruhe Institute of Technology (KIT), Germany

Abstract. Dynamic logic is an established instrument for program veri-
fication and for reasoning about the semantics of programs and program-
ming languages. In this paper, we define an extension of dynamic logic,
called Dynamic Trace Logic (DTL), which combines the expressiveness
of program logics such as dynamic logic with that of temporal logic. And
we present a sound and relatively complete sequent calculus for proving
validity of DTL formulae.
Due to its expressiveness, DTL can serve as a basis for proving functional
and information-flow properties in concurrent programs, among other
applications.

1 Introduction

Overview. Dynamic logics (DL) [8] are multi-modal first-order logics where each
legal sequential program fragment π (i.e., a sequence of statements) gives rise
to a modal operator [π]. The formula [π]ϕ expresses “in any state in which π
terminates, ϕ holds.” An interesting special case are deterministic programing
languages, for which there is at most one terminal state. Program logics like DL
are more expressive than Hoare logics in that programs are part of formulae,
which can be self-composed. This allows, for instance, to express information-
flow properties such as non-interference [12]. In other regards, however, standard
dynamic logic lacks expressiveness: The semantics of a program is a relation
between states; formulae can only describe the input/output behaviour of pro-
grams. It is inadequate for reasoning about non-terminating programs and for
verifying temporal properties.

To combine the advantages of dynamic logic and temporal logic, our Dynamic
Trace Logic uses trace-based program semantics and the well-known temporal
operators � (always), ♦ (eventually), • (weak next), ◦ (strong next), U (until),
W (weak until), andR (release) similar to those of Linear Temporal Logic (LTL).
In DTL, the formula JπKϕ expresses that ϕ holds for the (possibly infinite) trace
of the program π when started in the current state. For example, the formula

JπK�∀u.∀v.(X .
= u ∧ ◦(X .

= v)→ u ≤ v)
? This is the authors’ version of the paper for uses defined by § 3 of the Springer-Verlag
copyright terms. The final publication is available at http://link.springer.com.

?? This work has been supported by Deutsche Forschungsgemeinschaft (DFG) under
project “Program-level Specification and Deductive Verification of Security Proper-
ties (DeduSec)” within SPP 1496 “Reliably Secure Software Systems (RS3)”.

is a two-state invariant. It says that the value of the program variable X must
increase or remain the same throughout the trace of π. Proving such two-state
invariants is the basis of the rely-guarantee approach for verifying concurrent
programs.

Target Programing Language. In the following, we use a simple while language
as target programing language without method calls or any feature of object-
orientation. However, our language distinguishes between local variables with
state-internal assignments and global variables with assignments inducing state
transitions. The rationale behind this is that, in a concurrent setting, only global
variables can be observed by the environment.

Of course, to be useful in practice, DTL needs to be extended to real-world
programing languages. The KeY verification system (co-developed by the au-
thors) is built on a calculus for JavaDL, a dynamic logic for sequential Java
[3,5]. This has been used as a basis to extend DTL to Java and implement the
DTL calculus (a prototypical implementation exists). Additional rules needed to
handle full (sequential) Java can be derived from the KeY rules for the [·] modal-
ity by analogy. Since a language like Java incorporates a lot of features, in par-
ticular object-orientation, and various syntactic sugars, the rule set is rather
voluminous in comparison to simple while languages. These special cases can,
however, be reduced to a smaller set of base cases. For instance, the assignment
x=y++ containing a post-increment operator is transformed into two consecutive
assignments x=y and y=y+1 during symbolic execution.

Related Work. In earlier work [6], we have extended Dynamic Logic with a
modality also written J·K, where JπKϕ stands for “ϕ holds throughout the execu-
tion of π.” This can be seen as a special case of DTL because the same property
can be expressed in DTL as JπK�ϕ. That is, in our earlier work, the temporal
formula was restricted to the form �ϕ with ϕ not containing further temporal
operators. Platzer [10] introduced Temporal Dynamic Logic (dTL), where pro-
grams are hybrid programs; in particular, they are indeterministic, and therefore,
traces are branching. It features formulae of the shapes JπK�ϕ (“for all traces,
ϕ always holds”) and 〈〈π〉〉♦ϕ (“there is a trace such that eventually ϕ holds”)
where ϕ is a state formula. There is no further combination of temporal opera-
tors. Similar to our setting in this paper, traces can be of finite or infinite length.
Platzer presents a sequent calculus for dTL, which, however, is incomplete, much
due to the continuous state space of hybrid programs.

Reasoning about temporal properties is traditionally the domain of model
checking. Nevertheless, there is some work on deductive techniques (tableaux,
sequent calculi, resolution etc.) applied to temporal logics. Good sources on the
topic of theorem proving for propositional linear-time logics are an article by
Wolper [15] and the textbook chapters by Goré [7] and Reynolds and Dixon [11].
The work by Wolper introduces a tableau method for propositional LTL. A
calculus for first-order LTL has been presented by Abadi and Manna [1]. It is
known that, although LTL is decidable, there does not always exist a finite proof
tree. The proof graph may contain cycles in the presence of eventualities (i.e.,

2

formulae with a positive occurrence of U). There are different techniques to deal
with this. In the calculus presented in this paper, we use program invariants.

Language-based program verification is usually done w.r.t. state or two-state
formula (pre and post). Program verification w.r.t. temporal specifications has
been considered by Schellhorn et al. [13], where programs themselves are formu-
lae of Interval Temporal Logic (ITL) [9]. In an earlier work, they have presented
a sequent calculus for ITL [14], which allows to prove the correctness of programs
w.r.t. ITL specifications.

Structure of this Paper. Syntax and semantics of our logic DTL are defined in
Sects. 2 resp. 3 (including syntax and semantics of the while language that we
use as the target programing language in this paper). In Sect. 4, we present our
sequent calculus for DTL. Notions of soundness and completeness are defined in
Sect. 5, and we sketch soundness and completeness proofs. Complete proofs can
be found in an extended version of this paper [4].

2 Syntax of DTL

Signatures and Expressions. We assume disjoint sets LVar of local program
variables and GVar of global program variables to be given. In addition, there
is a set V of logical variables. Logical variables are rigid, i.e., they cannot be
changed by programs and – in contrast to program variables – are assigned the
same value in all states of a program trace. Quantifiers can only range over logical
variables and not over program variables. In this paper, the sets of function and
predicate symbols are fixed. They only contain the usual integer and boolean
operators with their standard semantics.

Definition 1 (Expressions). Expressions of type integer are constructed as
usual over integer literals, local and global variables, logical variables, and the
operators +, −, ∗. Expressions of type boolean are constructed using the relations
.
=, >, < on integer expressions, the boolean literals true and false, and the logical
operators ∧, ∨, ¬.

Programs. Programs are written in a simple while language, with the (mathe-
matical) integers as the only data type. Expressions can be of types integer and
boolean; they do not have side-effects. The program language does not contain
features such as functions and arrays; and there are no object-oriented features.
As discussed above, all such features can be added, but we keep the programing
language simple for the presentation in this paper.

The only special feature is the distinction between local variables (written
in lowercase letters) and global variables (written in uppercase). As will be ex-
plained in Sect. 3, we consider assignments to global variables to be the only
program statements that lead to a new observable state. As a technical restric-
tion, to ensure that there cannot be a program that gets stuck in an infinite loop

3

without ever progressing to a new observable state, we demand that in every
loop execution, an assignment to a global variable is executed.1

Definition 2 (Statements, programs). Programs and statements are induc-
tively defined, where statements are of the form:

– x = a; where x ∈ LVar and a is an expression of type integer (assignment to
local variable),

– X = a; where X ∈ GVar and a is an expression of type integer (assignment to
global variable),

– if (a) {π1} else {π2} where a is an expression of type boolean not containing
logical variables and π1 and π2 are programs (conditional), or

– while (a) {π} where a is an expression of type boolean not containing logical
variables and π is a program that contains at least one assignment to a global
variable on every execution path (loop).

Programs are finite sequences of statements. The empty program is denoted by ε.

State Updates. An important property of the calculus for DTL presented in
Sect. 4 (as well as the calculus for JavaDL used in the KeY System) is that
programs are symbolically executed starting from an initial state – in contrast
to wp-calculi where one starts with a postcondition and works in a backwards
manner. In order to capture the state transitions in between, we use a prefix
on formulae, called state update. Updates can be thought of as “delayed substi-
tutions,” i.e., a substitution takes place once the program has been completely
eliminated.

Definition 3 (State updates). Let x be a (local or global) program variable,
and let a be an expression. Then, {x := a} is an update.

For instance, {x := 4} and {x := x+1} are updates. Applying these updates
(after each other, from right to left) to the formula x .

= 5 yields 4 + 1
.
= 5.

DTL Formulae. Formulae have the general appearance UJπKϕ where U is a
sequence of updates, π is a program, and ϕ is a formula (that may or may
not contain temporal operators and further sub-formulae of the same form).
Intuitively, UJπKϕ expresses that ϕ holds when evaluated over all traces τ such
that the initial state of τ is (partially) described by U and the further states of τ
are constructed by running the program π.

Definition 4 (Formulae). State formulae and trace formulae are inductively
defined as follows:

0. All boolean expressions (Def. 1) are state formulae.
1. All state formulae are also trace formulae.
1 This property is undecidable in general, but a sufficient syntactical criterion could be
that every possible execution path contains an assignment (which may be ineffective,
e.g., X = X;).

4

2. If ϕ and ψ are (state or trace) formulae, then the following are trace formu-
lae: �ϕ (always), •ϕ (weak next), ϕU ψ (until).

3. If U is an update and ϕ a state formula, then Uϕ is a state formula.
4. If π is a program and ϕ a trace formula, then JπKϕ is a state formulae.
5. The sets of state and trace formulae are closed under the logical operators
¬,∧,∀.

In addition, we use the following abbreviations:

♦ϕ := ¬�¬ϕ, ◦ϕ := ¬•¬ϕ,
ϕW ψ := ϕU ψ ∨�ϕ, ϕR ψ := ¬(¬ϕU ¬ψ),
ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ := ¬ϕ ∨ ψ,
∃x.ϕ := ¬∀x.¬ϕ.

A formula is called non-temporal if it neither contains a temporal operator nor
a program modality JπK.

3 Semantics of DTL

Expressions and formulae are evaluated over traces of states (which give meaning
to program variables) and variable assignments (which give meaning to logical
variables). The domain of DTL is always Z, irregardless of the state (constant
domain).

Definition 5 (States, variable assignments). A state s is a function assign-
ing integer values to all local and global variables, i.e., s : LVar ∪GVar → Z.

A variable assignment β is a function assigning integer values to all logical
variables, i.e., β : V → Z.

We use the notation s{x 7→ d} to denote the state that is identical to s except
that the variable x is assigned the value d ∈ Z. Likewise, we write β{x 7→ d}
and τ{x 7→ d} (where τ is a trace, see below) with the obvious semantics.

Definition 6 (Traces). A trace τ is a non-empty, finite or infinite sequence of
(not necessarily different) states.

We use the following notations related to traces: (i) |τ | ∈ N∪{∞} is the length of
a trace τ . (ii) τ1 · τ2 is the concatenation of traces. (iii) τ [i, j) for i, j ∈ N∪ {∞}
is the subtrace beginning in the i-th state (inclusive) and ending before the
j-th state. (Indices out of bounds are treated as τ [0, j) or τ [i, |τ |), respectively.)
(iv) τ [i] for i < |τ | is the state at position i in τ .

Definition 7 (Semantics of expressions). Given a state s and a variable as-
signment β, the value as,β of an expression a in a state s is the integer or boolean
value resulting from interpreting program variables x by xs, logical variables u
by uβ, and using the standard interpretation for all functions and relations.

Program expressions that do not contain logical variables are independent
of β, and we write as instead of as,β. If a is a boolean expression, we write s, β |=a
resp. s |= a to denote that as,β resp. as is true.

5

As mentioned in Sect. 2, we consider assignments to global variables to be
the only statements that lead to a new observable state. By specifying which
variables are local and which are global, the user can thus determine which
states are “interesting” and are to be included in a trace.

For the feasibility of proving DTL formulae, it is important that not too many
irrelevant intermediate states are included in a trace because, if a formula such
as JπK�ϕ is to be proven valid, intermediate states require sub-proofs showing
that ϕ holds in each of them.

Definition 8 (Trace of a program). Given an initial state s, the trace of a
program π, denoted trc(s, π), is defined by (the greatest fixpoint of):

trc(s, ε) = 〈s〉
trc(s, x = a; ω) = trc(s{x 7→ as}, ω)
trc(s, X = a; ω) = 〈s〉 · trc(s{X 7→ as}, ω)

trc(s, if (a) {π1} else {π2} ω) =
{
trc(s, π1 ω) if s � a
trc(s, π2 ω) if s 2 a

trc(s, while (a) {π} ω) =
{
trc(s, π while (a) {π} ω) if s � a
trc(s, ω) if s 2 a

where ε is the empty program and ω is a program.

We have now everything needed to define the semantics of DTL formulae in
a straightforward way. The valuation of a formula is given w.r.t. a trace τ and a
variable assignment β. This is expressed by the validity relation, denoted by �.

Definition 9 (Semantics of formulae). Let τ be a trace and β a variable
assignment. The validity relation is the smallest relation satisfying the following.

τ, β � a iff aτ [0],β = true
(in case a is an expression, see Def. 7)

τ, β � ¬ϕ iff τ, β 2 ϕ
τ, β � ϕ ∧ ψ iff τ, β � ϕ and τ, β � ψ
τ, β � ∀u.ϕ iff for every d ∈ Z: τ, β{u 7→ d} � ϕ
τ, β � �ϕ iff τ [i,∞), β � ϕ for every i ∈ [0, |τ |)
τ, β � ϕU ψ iff τ [j, i), β � ϕ and τ [i,∞), β � ψ

for some i ∈ [0, |τ |) and all j ∈ [0, i)
τ, β � •ϕ iff τ [1,∞), β � ϕ or |τ | = 1
τ, β � {x := a}ϕ iff τ{x 7→ aτ [0]}, β � ϕ
τ, β � JπKϕ iff trc(τ [0], π), β � ϕ

A formula ϕ is valid if τ, β � ϕ for all τ and all β.

4 A Sequent Calculus for DTL

In this section, we present a sequent calculus for DTL, which we call CDTL. It
is sound and relatively complete, i.e., complete up to the handling of arithmetic
(see Sect. 5). The calculus consists of the following rule classes:

6

Classical logic rules These rules simplify formulae whose top-level operator
is a quantifier or a propositional operator.

Simplification and normalization rules Rules for simplifying formulae of
the form UJπKϕ, where the top-level operator in ϕ is not temporal.

Rules for temporal operators Rules that apply to formulae UJπKϕ with a
top-level temporal operator in ϕ, and that do not change the program π.

Program rules Rules that apply to formulae of the form UJπKϕ, and that ana-
lyze and/or simplify the program π. Not surprisingly, this class has the most
complex rules, including invariant rules for loops.

Rules for data structures Since our focus in this paper is not on how to
handle arithmetics, we use oracle rules for arithmetics.

Other rules This category includes the closure and the cut rule.

Most rules of the calculus are analytic and therefore can be applied auto-
matically. The rules that require user interaction are: (a) the rules for handling
while loops (where a loop invariant has to be provided), (b) the cut rule (where
the right case distinction has to be used), and (c) the quantifier rules (where the
right instantiation has to be found).

Traces are uniquely determined by symbolic program executions of the deter-
ministic programing language. The general idea behind our calculus is to explore
a trace until it terminates or reaches a fixpoint (induced by a non-terminating
loop). Thus, proofs usually consist of alternating applications of temporal logic
rules (which decompose trace formulae, e.g., �ϕ to •�ϕ∧ϕ) and program rules
(which let us step forward in the trace). Those steps are explicitly given through
assignments in the program.

In the rule schemata, Γ,∆ denote arbitrary, possibly empty multi-sets of
formulae, ϕ,ψ denote arbitrary formulae, U stands for a (possibly empty) se-
quence of updates, π, ω for programs, γ is a state formula, x and X are local and
global program variables, n and u are logical variables, a is an expression of type
integer, and b is an expression of type boolean.

As usual, the schematic sequents above the horizontal line in a schema are
its premisses and the single schematic sequent below the horizontal line is its
conclusion. Note, that in practice the rules are applied from bottom to top. Proof
construction starts with the original proof obligation at the bottom. Therefore,
if a constraint is attached to a rule that requires a variable to be “new,” it has
to be new w.r.t. the conclusion.

Definition 10 (Soundness, derivability).

1. A sequent Γ ` ∆ is valid (in state s and under variable assignment β) if
and only if the formula

∧
γ∈Γ γ →

∨
δ∈∆ δ is valid (w.r.t. s, β).

2. A rule Γ1 ` ∆1 · · · Γn ` ∆n

Γ0 ` ∆0
is sound if, for all valid instances of

premisses Γi ` ∆i, also the instance of Γ0 ` ∆0 is valid.
3. A sequent is derivable (with CDTL) if it is an instance of the conclusion of

a rule schema and all corresponding instances of the premisses of that rule
schema are derivable sequents. In particular, all sequents are derivable that

7

Table 1. Rules for quantifiers, propositional operators, and state updates. In rule R5,
the substitution needs to be admissible; rule R6 introduces a fresh variable u′. Rules R7
and R8 make use of weak substitution (Def. 12).

Γ ` ϕ,∆
Γ,¬ϕ ` ∆ R1

Γ, ϕ ` ∆
Γ ` ¬ϕ,∆ R2

Γ, ϕ, ψ ` ∆
Γ,ϕ ∧ ψ ` ∆ R3

Γ ` ϕ,∆ Γ ` ψ,∆
Γ ` ϕ ∧ ψ,∆ R4

Γ, ϕ[u/a], ∀u.ϕ ` ∆
Γ,∀u.ϕ ` ∆ R5

Γ ` ϕ[u/u′],∆
Γ ` ∀u.ϕ,∆ R6

Γ,Uϕ[x]a] ` ∆
Γ,U{x := a}ϕ ` ∆ R7

Γ ` Uϕ[x]a],∆
Γ ` U{x := a}ϕ,∆ R8

are instances of the conclusion of a rule that has no premisses (rules R22,
R31, and R33).

4.1 Classical Logic and Update Rules

The rules for quantifiers, propositional operators, and updates are shown in Ta-
ble 1. Note that the expressions that are used to instantiate universal quantifiers
in rule R5 must be chosen in such a way that the substitution is admissible:

Definition 11 (Admissible substitution). A substitution u/a of a logical
variable u ∈ V with an expression a is admissible w.r.t. a formula ϕ if there
is no variable v in a such that u is free in ϕ and, after replacing a for some
free occurrence of u in ϕ, the occurrence of v in a is (i) bound by a quantifier
in ϕ[u/a] (in case v is a logical variable) or is (ii) in the scope of a program
modality JπK that contains an assignment to v (in case v is a program variable).

For example, using X to instantiate the universal quantifier in the DTL for-
mula ∀u.(u .

= 0→ JX = 1;K�u .
= 0) is not admissible. Indeed the result would

be incorrect as the original formula is valid while X .
= 0→ JX = 1;K�X .

= 0 is
not even satisfiable. In order to deal with updates, we introduce the notion of
weak substitutions, which avoid such clashes by definition.

Definition 12 (Weak substitution). For a state formula ϕ and an update
{x := a} define the formula ϕ[x]a] according to the following schema: (i) if ϕ is
an expression, then ϕ[x]a] = ϕ[x/a], (ii) if ϕ begins with an update or a program
modality, then ϕ[x]a] = {x := a}ϕ, (iii) if ϕ is a propositional junction, then the
weak substitution is propagated, e.g., (ϕ1∧ϕ2)[x]a] = ϕ1[x]a]∧ϕ2[x]a], (iv) if ϕ
begins with a quantifier, then the weak substitution is propagated (possibly under
renaming the bound variable so that it does not occur in a).

4.2 Simplification and Normalization Rules

As said above, our calculus contains simplification rules that apply to formulae
of the form UJπKϕ, where the top-level operator in ϕ is not temporal. They are

8

Table 2. Simplification and normalization rules. In rule R16, γ is a state formula.
Rule R17 introduces a fresh variable u′; in rule R18, the substitution needs to be
admissible.

Γ ` UJπKϕ, UJπKψ,∆
Γ ` UJπK(ϕ ∨ ψ),∆ R9

Γ ` UJπKϕ,∆ Γ ` UJπKψ,∆
Γ ` UJπK(ϕ ∧ ψ),∆ R10

Γ ` UJπK¬ϕ,∆
Γ ` ¬UJπKϕ,∆

R11
Γ ` UJπK�¬ψ, UJπK(¬ψU (¬ϕ ∧ ¬ψ)),∆

Γ ` UJπK¬(ϕU ψ),∆
R12

Γ ` UJπK¬ϕ,∆
Γ, UJπKϕ ` ∆ R13

Γ ` UJπKϕ,∆
Γ ` UJπK¬¬ϕ,∆ R14

Γ ` UJπK◦¬ϕ,∆
Γ ` UJπK¬•ϕ,∆ R15

Γ ` Uγ,∆
Γ ` UJπKγ,∆ R16

Γ ` UJπKϕ[u/u′],∆

Γ ` UJπK∀u.ϕ,∆
R17

Γ ` UJπKϕ[u/a], UJπK∃u.ϕ,∆
Γ ` UJπK∃u.ϕ,∆ R18

shown in Table 2. In particular, they include normalization rules which deal with
negated trace formulae through replacement by the respective dual formula.

Rule R12 for negated until avoids introducing the dual R into the sequent.
Therefore, no rules for R are required in the calculus. Soundness of R12 fol-
lows from the well-known equivalence ϕR ψ ↔ ψW (ϕ ∧ ψ) in LTL and the
definitions of R and W, which applies to finite traces as well (cf., e.g., [2]).

Since (for conciseness of the calculus) we only include program and temporal
logic rules for the right-hand side of a sequent, we need rule R13 that allows to
move a formula with a modality from the left of a sequence to the right.

In case ϕ is a state formula, rule R16 can be used to remove the program
modality (as a state formula is evaluated in the initial state of a trace). Further
simplification rules are applied to split formulae such as JπK(�ϕ ∧ ψ).

4.3 Rules for Temporal Operators

Table 3 shows the rules that handle temporal operators without changing the
program. Rules R19 to R21 “unwind” temporal formulae by splitting them into a
“future” part and a “present” part. Rules R22 and R23 handle the case of an empty
program (i.e., empty remaining trace) for weak and strong next, respectively.
Rule R22 also closes a proof branch.

Table 3. Rules for handling temporal operators

Γ ` U(JπK◦(ϕU ψ) ∧ JπKϕ), UJπKψ,∆
Γ ` UJπKϕU ψ,∆

R19
Γ ` U(JπK•�ϕ ∧ JπKϕ),∆

Γ ` UJπK�ϕ,∆
R20

Γ ` UJπK◦♦ϕ, UJπKϕ,∆
Γ ` UJπK♦ϕ,∆

R21
Γ ` UJK•ϕ,∆ R22

Γ ` ∆
Γ ` UJK◦ϕ,∆ R23

9

4.4 Program Rules

The program rules are shown in Table 4. Assignments to local and global vari-
ables are handled by the rules R24 and R26, respectively. The former can be
applied on any formula ϕ, while the latter one, which handles assignments to
global variables, steps to the next state and consumes a (weak or strong) next
operator.

Table 4. Program rules. The schematic symbol •◦ stands for • or ◦.

Γ ` U{x := a}JωKϕ,∆
Γ ` UJx = a; ωKϕ,∆

R24
Γ, Ub ` UJπ1 ωKϕ,∆ Γ, U¬b ` UJπ2 ωKϕ,∆

Γ ` UJif (b) {π1} else {π2} ωKϕ,∆
R25

Γ ` U{X := a}JωKϕ,∆
Γ ` UJX = a; ωK•◦ϕ,∆

R26
Γ ` UJif (b){π while (b) {π}} else {} ωKϕ,∆

Γ ` UJwhile (b) {π} ωKϕ,∆
R27

An if statement is handled by splitting the formula in two parts, each con-
taining the alternative program and the remaining program code as shown in
rule R25. Similarly, loops can be handled by unwinding, as shown in rule R27.
In the case in which the loop condition holds, the loop body is symbolically
executed and then again the whole loop. In the second case where the loop con-
dition does not hold, the loop is simply skipped. However, the number of loop
iterations may not be known in advance, or the loop may not even terminate.
In those cases, we need invariants.

Invariant rules are an established technique for handling loops in calculi for
program logics. The basic idea is to have a state formula γ (the invariant) which
holds in all states before and – if it terminates – after an execution of the loop
body. If we can show that preservation, it only remains to show that ϕ holds on
the remaining trace. The rules are shown in Table 5.

For a trace formula of the shape �ϕ, the four premisses of R28 intuitively
state that (i) γ holds in the beginning; (ii) it is preserved by each loop iteration
(i.e., it actually is an invariant), here a possible post-π state is characterized

Table 5. Invariant rules

Γ ` Uγ,∆ γ, b ` JπK�(•false → γ) γ ` b, JωK�ϕ
γ, b ` Jπ | while (b) {π} ωKϕ
Γ ` UJwhile (b) {π} ωK�ϕ,∆

R28

Γ ` ∃u.(u ≥ 0 ∧ UVuγ),∆ n ≥ 0 ` Vn+1(γ → (b ∧ JπK♦(•false ∧ Vnγ)))
` V0(γ → Jwhile (b) {π} ωK♦ϕ)
Γ ` UJwhile (b) {π} ωK♦ϕ,∆

R29

R30
Γ ` ∃u.(u ≥ 0 ∧ UVuγ),∆

` V0(γ → Jwhile (b) {π} ωKϕ1 U ϕ2)

n ≥ 0 ` Vn+1(γ → (b ∧ JπK♦(•false ∧ Vnγ)))
n > 0 ` Vn(γ → Jπ | while (b) {π} ωKϕ1)

Γ ` UJwhile (b) {π} ωKϕ1 U ϕ2,∆

10

by the temporal formula •false; (iii) if the loop terminates, indicated by the
negated loop condition b, then�ϕ holds on the remaining trace; and (iv) for every
loop iteration, ϕ holds throughout, i.e., for the remaining trace from every state
during loop iterations. As an invariant abstracts from concrete loop iterations,
the context Γ,∆ must be discarded in the all but the first premiss.

Note that – in contrast to invariant rules in state-based dynamic logic – it is
not sound in premiss (iv), to decompose the program trace and to only regard the
subtrace induced by π in isolation, i.e., just proving JπK�ϕ is not sound. As an
example, consider the formula Jwhile (X>0) {X = X-1;}K�••false, which is not
valid, but the formula JX = X-1;K�••false, containing the loop body, obviously
is. This means for a sound rule, that we have to consider the remaining trace as
well. However, we are only interested in those traces which begin in the subtrace
induced by the loop body π.

For this reason, we introduced another, two-place program modality: Jπ | ωKϕ
means that for any state in the subtrace induced by π, trace formula ϕ holds for
the remaining trace including ω. More formally, we define Jπ | ωKϕ as a short-
hand for Jx = 0;π x = 1;ωK(ϕW x

.
= 1) where local program variable x does not

occur in π, ω, or ϕ. Even though the resulting formula is syntactically longer
here, it is easier to prove in the sense that there are fewer states in which ϕ has
to hold.

In the case of R29 (“diamond”) and R30 (“until”), the invariant is accom-
panied by a sequence of updates Vu with an integer expression u, which de-
scribes the progress made through each loop iteration. The general shape of Vu
is {x1 := f1(u)} · · · {xk := fk(u)} where x1, . . . , xk are variables appearing in γ
and f1, . . . , fk are functions. The intuition behind it is that V0γ describes either
a state in which the loop terminates immediately or a fixpoint of the loop. Such
a state must be reached in a finite number of iterations, which is guaranteed
since n is decreasing in every iteration. For this reason, premiss (ii) requires
executions of the loop body to terminate. In Rule R30, there is a fourth premiss
stating that ϕ1 holds throughout the loop body for every iteration where n > 0.

4.5 Rules for Data Structures

Our calculus is basically independent of the domain of computation resp. data
structures that are used. We therefore abstract from the problem of handling
the data structure(s) and just assume that an oracle is available that can decide
the validity of non-temporal formulae in the domain of computation (note that
the oracle only decides pure first-order formulae). In the case of arithmetic, the
oracle is represented by rule R31 in Table 6.

Of course, the non-temporal formulae that are valid in arithmetic are not
even enumerable. Therefore, in practice, the oracle can only be approximated,
and rule R31 must be replaced by a rule (or set of rules) for computing resp. enu-
merating a subset of all valid non-temporal formulae (in particular, these rules
must include equality handling). This is not harmful to “practical completeness.”
Rule sets for arithmetic are available, which – as experience shows – allow to de-
rive all valid non-temporal formulae that occur during the verification of actual

11

Table 6. Oracle rules and induction rule for handling arithmetic (n is fresh)

if
∧
Γ →

∨
∆ is a valid non-temporal formula: Γ ` ∆ R31

Γ ` ϕ(0),∆ Γ, ϕ(u) ` ϕ(u+ 1),∆

Γ ` ∀u.ϕ(u),∆ R32

Table 7. The closure and the cut rule

Γ, ϕ ` ϕ,∆ R33
Γ, ϕ ` ∆ Γ ` ϕ,∆

Γ ` ∆ R34

programs. Using powerful SMT solvers, this can be done fully automatically in
many cases. Typically, an approximation of the computation domain oracle con-
tains a rule for structural induction. In the case of arithmetic, that is rule R32.
This rule, however, not only applies to non-temporal formulae but also to DTL
formulae containing programs.

The remaining rules, which are shown in Table 7, are the cut rule R34 (with
an arbitrary cut formula ϕ) and the closure rule R33 which closes a proof branch.

5 Soundness and Completeness

Soundness of the calculus CDTL (Corollary 1) is based on the following theorem,
which states that all rules preserve validity of the derived sequents.

Theorem 1. For all rule schemata of the calculus CDTL, R1 to R34, the following
holds: If all premisses of a rule schema instance are valid sequents, then its
conclusion is a valid sequent.

Corollary 1. If a sequent Γ ` ∆ is derivable with the calculus CDTL, then it is
valid, i.e.,

∧
Γ →

∨
∆ is a valid formula.

Proving Theorem 1 is not difficult. The proof is, however, quite large as soundness
has to be shown separately for each rule; the proof is given in [4, App. A].

The calculus CDTL is relatively complete; that is, it is complete up to the
handling of the domain of computation (the data structures). It is complete
if an oracle rule for the domain is available – in our case the oracle rule for
arithmetic, R31. If the domain is extended with other data types, CDTL remains
relatively complete; and it is still complete if rules for handling the extended
domain of computation are added.

Theorem 2. If a sequent is valid, then it is derivable with CDTL.

Corollary 2. If ϕ is a valid DTL formula, then the sequent ` ϕ is derivable.

Due to space restrictions, the proof of Theorem 2, which is quite complex,
cannot be given here. The basic idea of the proof is the same as that used by
Harel [8] to prove relative completeness of his sequent calculus for first-order DL.
An extensive proof sketch can be found in [4, App. B]. The following lemma is
central to the completeness proof.

12

R31` {X := 5}JK◦♦X ≥ 4, 5 ≥ 4, JX=5;KX ≥ 4
R8` {X := 5}JK◦♦X ≥ 4, {X := 5}X ≥ 4, JX=5;KX ≥ 4
R16` {X := 5}JK◦♦X ≥ 4, {X := 5}JKX ≥ 4, JX=5;KX ≥ 4
R21` {X := 5}JK♦X ≥ 4, JX=5;KX ≥ 4

R26` JX=5;K◦♦X ≥ 4, JX=5;KX ≥ 4
R9` JX=5;K(◦♦X ≥ 4 ∨X ≥ 4)

R21` JX=5;K♦X ≥ 4

Fig. 1. Example proof tree (rules focus on the solid black formulae)

Lemma 1. For every DTL formula ϕDTL there is an (arithmetical) non-tempo-
ral first-order formula ϕFOL that is logically equivalent to ϕDTL, i.e., for all
traces τ and variable assignments β:

τ, β � ϕDTL iff τ, β � ϕFOL .

The above lemma states that DTL is not more expressive than first-order
arithmetic. This holds as arithmetic – our domain of computation – is expressive
enough to encode the behaviour of programs. In particular, using Gödelization,
arithmetic allows to encode program states (i.e., the values of all the variables
occurring in a program) and finite (sub-)traces into a single number. Further it
is then possible to construct, for every DTL formula ψ, state s, program π, and
n ∈ N, a FOL formula ϕψ,s,π,n encoding that trc(s, π)[n,∞) � ψ.

Note that Lemma 1 states a property of the logic DTL that is independent
of any calculus. It implies that a DTL formula could be decided by constructing
an equivalent non-temporal formula and then invoking the computation domain
oracle – if such an oracle were actually available. But even with a good approxi-
mation of an arithmetic oracle, that is not practical (the non-temporal first-order
formula would be too complex to prove automatically or interactively). And, in-
deed, the calculus CDTL does not work that way.

The (relative) completeness of CDTL requires an expressive computation do-
main and is lost if a simpler domain and less expressive data structures are used.
The reason is that in a simpler domain it may not be possible to express the
required invariants for all possible while loops.

6 Conclusions and Further Directions

In this paper, we have defined the logic DTL, which stems from a novel combina-
tion of dynamic logic and first-order temporal logic. In contrast to [6,10], there
is no restriction on the shape of trace formulae. Through this, we have got an
expressive logic allowing to describe complex temporal properties of programs.
An example proof can be found in Figure 1. Of course, this is a fairly simple
program and trace property, but it already requires some proof steps. More elab-
orate examples (e.g., including proof splits) cannot be given in this paper due
to limited space.

13

One major aim of this work is to express information flow properties in a
concurrent setting. In current work in progress, we have sketched an idea how to
reason about possible information flows throughout program execution. We still
regard only sequential executions of sub-programs (i.e., threads), but execution
traces instead of initial and final states. The rationale behind this is that an
attacker may be in control of another thread running on the same memory
and thus may read variables at any time. For absence of information flow, we
show that traces beginning in states which only differ in the values of secret
variables are bisimilar in public observations. In earlier work, the information
flow policy of non-interference for sequential programs is expressed through self-
composition of dynamic logic formulae [12]. This basic idea can be combined
with declassification, i.e., the controlled release of information, under temporal
constraints, which means to specify when information may be released.

State-based dynamic logics, both for deterministic and indeterministic lan-
guages, have the well-known property of compositionality. For example, the for-
mulae [π ω]ϕ and [π][ω]ϕ are logically equivalent. This is important since pro-
gram complexity imports much to the overall complexity of a DL formula. This
does not apply to our situation as traces may not be decomposed in general. For
purposes like loop invariants (see Table 5), however, program decompositions
are indispensable. This has lead us to the auxiliary notation Jπ | ωKϕ, which
talks about all traces beginning in π but extending into ω. Another possibility
to make proofs more feasible would be to introduce additional rules for special,
commonly used patterns of trace formulae – such as �♦γ where γ is a state
formula – for which we know that decompositions are sound.

The sequent calculus CDTL here has been prototypically implemented in the
current development version of the interactive KeY prover. Instead of the simple
toy language introduced in this paper, the implemented calculus works on actual
Java programs. The efforts so far suggest that most program rules can be adapted
straight away from the present rules for the [·] modality.

Acknowledgement. The authors would like to thank Mattias Ulbrich, An-
dreas Wagner, and the anonymous reviewers for their helpful and supporting
comments.

References

1. Abadi, M., Manna, Z.: Nonclausal deduction in first-order temporal logic. Journal
of the ACM 37(2), 279–317 (Apr 1990)

2. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput 20(3), 651–674 (2010)

3. Beckert, B.: A dynamic logic for Java Card. In: Proceedings, 2nd ECOOP Work-
shop on Formal Techniques for Java Programs, Cannes, France. pp. 111–119 (2000)

4. Beckert, B., Bruns, D.: Dynamic trace logic: Definition and proofs. Tech. Rep.
2012-10, Karlsruhe Institute of Technology, Department of Computer Science
(2012), revised version available at http://formal.iti.kit.edu/~bruns/papers/
trace-tr.pdf.

14

5. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach, Lecture Notes in Computer Science, vol. 4334. Springer-Verlag,
Berlin (2007)

6. Beckert, B., Schlager, S.: A sequent calculus for first-order dynamic logic with trace
modalities. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) Proceedings, International
Joint Conference on Automated Reasoning, Siena, Italy. pp. 626–641. LNCS 2083,
Springer (2001)

7. Goré, R.: Tableau methods for modal and temporal logics. In: D’Agostino, M.,
Gabbay, D., Hähnle, R., Posegga, J. (eds.) Handbook of Tableau Methods, pp.
297–396. Kluwer Academic Publishers, Dordrecht (1999)

8. Harel, D.: Dynamic logic. In: Gabbay, D., Guenther, F. (eds.) Handbook of Philo-
sophical Logic, Volume II: Extensions of Classical Logic, pp. 497–604. D. Reidel
Publishing Co., Dordrecht (1984)

9. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. IEEE
Computer 18(2) (Feb 1985)

10. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In:
Artëmov, S.N., Nerode, A. (eds.) Logical Foundations of Computer Science, 5th
International Symposium, LFCS’07, New York, USA, June 4-7, 2007, Proceedings.
LNCS, vol. 4514, pp. 457–471. Springer (2007)

11. Reynolds, M., Dixon, C.: Theorem-proving for discrete temporal logic. In: Fisher,
M., Gabbay, D., Vila, L. (eds.) Handbook of temporal reasoning in artificial intel-
ligence. Elsevier Science (2005)

12. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java pro-
grams without approximations. In: Formal Verification of Object-Oriented Soft-
ware, pp. 232–249. LNCS 7421, Springer (2012)

13. Schellhorn, G., Tofan, B., Ernst, G., Reif, W.: Interleaved programs and rely-
guarantee reasoning with ITL. In: Combi, C., Leucker, M., Wolter, F. (eds.)
Eighteenth International Symposium on Temporal Representation and Reasoning,
TIME 2011. pp. 99–106. IEEE (2011)

14. Thums, A., Schellhorn, G., Ortmeier, F., Reif, W.: Interactive verification of state-
charts. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder,
E., Westkämper, E. (eds.) Integration of Software Specification Techniques for
Applications in Engineering. Lecture Notes in Computer Science, vol. 3147, pp.
355–373. Springer (2004)

15. Wolper, P.: The tableau method for temporal logic: An overview. Logique et Anal-
yse 28(110–111), 119–136 (Jun–Sep 1985)

15

