
Light-Weight Remote Communication for
High-Performance Cloud Networks

Jens Kehne, Marius Hillenbrand, Jan Stoess, Frank Bellosa

System Architecture Group, Karlsruhe Institute of Technology, Germany
{kehne, hillenbrand, stoess, bellosa}@kit.edu

Abstract—In this paper, we present early experiences with
libRIPC, a light-weight communication library for high-
performance cloud networks. Coming cloud networks are ex-
pected to be tightly interconnected and to show capabilities
formerly reserved to high-performance computing. LibRIPC
aims to bring the benefits of such architectures to heterogeneous
cloud workloads.

LibRIPC was designed for low footprint and easy integration;
it supports reconfiguration and mutually untrusted communica-
tion partners. LibRIPC offers short and long transmit primitives,
which are optimized for control messages and bulk data transfer
respectively. Early experiments with a Java-based web server
indicate that libRIPC integrates well into typical cloud workloads
and brings substantial speedup of at least a factor of three
for larger data transfers compared to socket-based TCP/IP
communication.

I. INTRODUCTION

Over the last decade, the Internet architecture has converged
from a paradigm of loosely coupled distributed nodes towards
a centralized structure, with data centers and cloud platforms,
typically consisting of tightly interconnected commodity com-
puters hosted in one large facility, being the principal agglom-
erations. Most parts of the hardware were designed specifically
to be operated in a massive data center [1], [2]. Furthermore,
coming cloud and data center processors will not be able to
sustain the per-core performance of previous, less scalable
systems, and large numbers of low-power chips such as ARM
or Intel Atom are expected to become prevailing technology.

These trends cause an orientation shift from pure “compute
power” towards a balanced system design, where power and
capabilities of the interconnects are as crucial as those of the
processors. Modern cloud interconnects increasingly focus on
high bandwidth and low latency on the one hand, and balanced
design and power awareness on the other: HPC network fabrics
such as InfiniBand or Blue Gene are being investigated in
cloud computing setups [3]–[6]; their underlying technologies
such as user-level I/O and remote DMA are gaining momen-
tum also for commodity Ethernet networks [7]. Research is
also investigating power-efficient network alternatives such as
PCIe for their suitability as inter-node fabric [8].

Cloud workloads are immensely complex, however, and
interfacing cloud applications with increasingly powerful net-
work fabrics has become a challenging problem. Workload
types range from conventional multi-tiered architectures (Web
Services), over memory-intensive distributed systems (Object

Caching, Stream Computing), to large-scale data processing
platforms (Social Messaging, Big Data). Often, they comprise
a heterogeneous variety of smaller, already complex compo-
nents, and they make use of a wide variety of programming
paradigms, systems and runtime environments, encompassing
everything from low-level interfaces through virtual machines
to managed runtime systems such as Java and Python.

There has been an increasing amount of efforts that inves-
tigate how efficient communication can be facilitated across
heterogeneous cloud components. To the best of our knowl-
edge, none of these approaches have specifically explored
how coming interconnect architectures and their anticipated
high-performance capabilities can be leveraged for efficient,
message-based communication in the cloud in a generic and
easy-to-integrate fashion.

In this paper, we present early experiences with libRIPC,
a light-weight communication library for high-performance
cloud networks. LibRIPC targets heterogeneous cloud work-
loads with multiple, potentially untrusted domains, and strives
to deliver high performance as well as flexibility and ease of
integration. Instead of the traditional socket-based networking
semantics, libRIPC provides a message-based communication
interface atop a flat endpoint space, allowing it to better exploit
the tight coupling and the advanced networking capabilities
(e.g., user-level I/O, remote DMA) of present and coming
high-performance cloud networks. LibRIPC offers two main
functions, short and long send, separating the signaling path
from the bulk data transport path. In contrast to HPC commu-
nication stacks like MPI, libRIPC does not assume mutual trust
between communication partners; libRIPC primitives perform
effectively even when endpoints do not trust each other. Early
experiences with integrating our library into a Java-based web
server indicate that libRIPC integrates well into typical cloud
workloads and brings a substantial speedup of at least a factor
of three for larger data transfers. The remainder of the paper is
structured as follows: § II presents a motivation for message-
based communication, while § III presents libRIPC’s basic
architecture. § IV presents our initial evaluation, followed by
related work in § V and a summary in § VI.

II. THE CASE FOR MESSAGE-BASED COMMUNICATION

In the traditional model of server computing and networked
applications, companies posses and operate their own comput-
ers, which are based on commodity components and operating



systems. The protocols and abstractions used in these operating
systems are still largely the same that enabled the rise of
the Internet in the 1980s, the most important ones being
the Berkeley socket interface and the TCP, UDP, and IP
protocol suites. They are still well-suited for today’s Internet
communication: TCP/IP, for example, enables efficient and
reliable communication over unreliable, wide-area networks.
Berkeley sockets, conversely, provide an easy-to-use interface
which maps well to the semantics of TCP and UDP.

Since the last decade, companies have increasingly moved
applications from their own, dedicated hardware to external
data centers in order to save costs of ownership and operation.
The data centers, in turn, are thus faced with the demand
to host and support a variety of different applications; as
a result, they resort to the same commodity hardware and
operating systems their customers’ applications were designed
for. Consequently, the internal networks of current data centers
rely heavily on TCP/UDP/IP and Berkeley sockets in order to
maintain application compatibility. These internal networks,
however, are fundamentally different from the Internet that
TCP/UDP/IP were designed for: Endpoints are physically
close to each other, resulting in low interconnect latencies,
low failure rates and no need for routing or fragmentation in
software, rendering TCP/UDP/IP’s most important functional-
ities largely superfluous.

In addition, we expect special features currently found
mostly in high performance computing – like protocol offload-
ing, user-level I/O and remote DMA – to become increasingly
common in future datacenters. Some of these features, such as
remote DMA, imply message-based semantics: The hardware
is programmed with a network transaction – such as sending
a packet – and then executes that transaction autonomously.
On the other hand, many applications use high-level protocols
based on self-contained messages and thus could, in principle,
exploit such special features. For example, both HTTP requests
sent to a web server and the files returned in response to
these requests can be regarded as self-contained messages.
However, the socket interface does not preserve information
about the boundaries between messages, forcing messages to
be fragmented. In addition, since a message can often not
be processed until it has been fully received, a receiving
application can be forced to poll its socket repeatedly until a
complete message has been received. Such applications would
be better served by a message-based communication interface.

Since interconnect hardware is often too complex to be used
directly by applications, an abstraction layer is needed in order
to facilitate application development. The interface offered by
that abstraction layer to applications should be simple enough
to allow for easy application development, yet close enough
to the native hardware semantics to achieve high performance.
Fortunately, high-performance interconnects typically share
the same core functionality and differ mainly in the details.
By exploiting the common features found in all interconnects,
the interface we envision offers a simple messaging interface
to the application, while hardware-specific details are handled
transparently by an interface library.

III. LIBRIPC DESIGN

The design of libRIPC is driven by the characteristics of
present and future, tightly-networked cloud applications [1].
We anticipate that, in the near future, such environments will
feature capabilities formerly reserved to HPC architectures,
including user-level I/O, protocol offloading, and remote DMA
(rDMA). We also expect such environments to increasingly
trade hardware reliability for power, cost, and scale, leading
to increased rates of failure and imbalance. Software-wise, we
assume heterogeneous, federated workloads showing different
communication patterns including request/reply and peer-to-
peer schemes as well as distributed signaling and object access,
and different, from very small to very large, transfer volumes.
We derive the following design goals:

Low footprint: Many coming cloud workloads will have
strong demands on network latency and throughput. Our li-
brary should enable low-overhead communication, avoid copy-
ing overhead, and make use of high-performance hardware
whenever possible.

Ease of integration: Our library should integrate easily
into the wide variety of cloud applications. Given high-
performance networking typically involves user-level I/O, the
library should interface with different run-time environments
and allow generic access to different high-performance net-
work hardware.

Support for reconfiguration: Nodes, networks, and ap-
plications may fail or be reconfigured (join, leave) at run
time, and thus require a high degree of flexibility and fault-
tolerance. Our library should treat reconfiguration as common
case, with endpoints migrating or even disappearing during
normal operation.

Safety for untrusted partners: In contrast to cooperative
workloads like HPC, communication partners are not neces-
sarily inside the same trust domain. We thus need to support
high-performance communication among untrusted parties.

A. LibRIPC Communication Primitives

LibRIPC differs from conventional network layers such
as TCP/IP in that it assumes very close interconnection;
communication is message-based rather than stream-oriented,
and libRIPC does not provide any means for fragmentation or
flow-control. LibRIPC resembles the minimalistic design of
in-kernel high-performance messaging systems like in L4 [9],
extending it to remote communication. LibRIPC strives to
achieve performance comparable to HPC communication li-
braries such as MPI, but for heterogeneous workloads with
varying communication and trust patterns. Messages are al-
ways transferred in their entirety, leading to lower waiting
times at the receiving end, as there is no need to wait for more
data on a socket. In order to separate the path for signaling
from the path for bulk data transport, libRIPC offers two main
functions, one for short and one for long messages (Fig. 1).

LibRIPC assumes direct access to the network hardware
from applications and avoids copying data as much as possible.
Send data is always passed as pointers and read directly from
its location in memory. The receive path places data directly in



libRIPClibRIPC
SND Buffer RCV Bufferlong send

shortsend

rDMA

Figure 1. LibRIPC design.

the user’s address space, returning a pointer when the transfer
is finished. To ease porting across different network architec-
tures, libRIPC’s interface is hardware-independent. LibRIPC
addresses services (i.e., programs) rather than physical ma-
chines, allowing services to join or leave the network, or to
migrate between machines without disturbing communication.

Short Messages

Short messages are optimized for signaling purposes such
as synchronization, remote interrupts, or request distribution.
Such messages are usually small, but tend to have tight latency
requirements. For example, read requests to a database are
often small, but their latency should be low to minimize wait-
ing for the response. Short messages require no negotiation
between the sender and receiver, which lowers the overall
latency. The amount of data transmitted is limited by the
receive buffer size and possibly other factors (e.g., the MTU).
Sending messages larger than the limit will fail as messages
are not automatically fragmented. Some hardware platforms
have dedicated support for interrupt and signaling across nodes
(e.g., barrier network on Blue Gene/P). If available, libRIPC
exports these capabilities through the short message protocol.

Short messages contain the source and destination service
IDs, the number of data items, and an array of individual
payload items. If possible, libRIPC uses user-level I/O to send
the message payload directly from the sender to the receiver
address space. To further lower latency, libRIPC short send
does not implement reliability, dropping messages silently on
transmission failures. Users are free to implement their own
reliable protocol atop.

Long Messages

Long messages allow carrying larger payloads. For long
send, libRIPC assumes rDMA capabilities to directly store or
read data from a remote node. Since sender and receiver may
not trust each other, and endpoints may service huge numbers
of clients not known in advance, it is not feasible to allocate
static memory segments for rDMA. Unless the rDMA engine
features append semantics (which current hardware does not),
it is also not possible to provide a safe, shared receive buffer
for multiple clients [10].

LibRIPC long send therefore resorts to a two-phase protocol
comprising a short control message and a follow-up rDMA
read (Fig. 2(a)): the sender puts the payload into a buffer
accessible by the rDMA engine. The client then sends a (short)
control message to the recipient, which describes one or more
data buffers on the sender side. The recipient then performs a
rDMA read operation for each buffer to copy the data from the

(a) Without return buffers (b) Using return buffers

Figure 2. Long send without and with return buffers.

sender’s memory directly into a receive buffer. This protocol
allows a server to place a large response in its own memory
and then serve the next request, leaving the transfer to the
client. As the recipient is free to specify the location and size
of the receive buffers, the size of long messages is principally
unlimited. Note that, since the recipient’s rDMA reads are
invisible to the sender on typical network architectures, the
recipient notifies the sender after the complete read cycle
in order to allow releasing send buffers. This notification,
however, is not part of libRIPC long send, as it could be
issued explicitly, piggybacked to follow-up messages, or even
completely omitted in favor of a timeout protocol.

Return buffers

As alternative to the default long send path, libRIPC intro-
duces the concept of return buffers. It is inspired by the works
in [11] and is based on rDMA writes instead of reads: here, the
sender allocates a number of return buffers, and then attaches
buffer descriptors to a short message (Fig. 2). The recipient
may later issue direct rDMA writes into those return buffers.
While the number of round trips required with and without
return buffers stays the same, return buffers allow choosing
the particular communication partner where the transmit phase
should run. A heavily loaded client can resume other work
while the server is writing the reply into the client’s memory.
When the client finally calls the receive function, the transfer
is already complete and computation can resume immediately.
Conversely, a heavily loaded server may choose to ignore the
return buffers and revert to the regular long send protocol.

Addressing

LibRIPC uses hardware- and location-independent ad-
dresses, which we call service IDs, to name endpoints.
Applications register one or more service IDs with libRIPC
before sending or receiving messages. Service IDs are resolved
to physical addresses dynamically and transparently to the
application. Applications can also migrate between machines
or crash and restart with the same service ID. In both cases,
libRIPC will transparently resolve the new location of the
process and communication will resume seamlessly.

Our current implementation uses a multicast-based resolver
which works similar to the ARP protocol for Ethernet and
IP, which has the advantage that services can find each other
without needing to know the location of a central directory
beforehand. Another solution would be to use a (possibly
distributed) directory service that holds information about



all services on the network, and use our current multicast
scheme to initially discover the location of the directory. After
discovery, services could query location information from the
directory service instead of broadcasting. A central service
would also ease detection of service migrations, as migrated
services could explicitly notify the directory of the change.

IV. INITIAL EVALUATION

As initial application scenario, we have integrated libRIPC
into the Jetty HTTP server [12]. Jetty is a full web server
with support for dynamic content, for stand-alone or embedded
use. We chose Jetty because it is used in several well-known
software projects, including Apache Hadoop [13], Eclipse
and Google AppEngine. Jetty allowed us to explore how
libRIPC, which is written in C, can be used efficiently in
other runtime environments such as Java. Jetty interfaces with
libRIPC through Java Native Access (JNA) [14].

For data management, Jetty’s core uses ByteBuffers man-
aged by the JVM. JNA supports direct access to memory al-
located by C code through the same ByteBuffer class, allowing
us to pass data between Jetty and libRIPC without copying. In
order to emulate the synchronous behavior Jetty expects, our
implementation transparently swaps buffers containing sent
data with new, empty ones, giving Jetty the illusion that buffers
are empty after transmit. Similarly, when receiving data, we
swap the empty buffer meant to contain the received data
against a receive buffer returned by libRIPC’s receive function.

We have initially evaluated libRIPC on an InfiniBand (IB)
cluster, with nodes equipped with 2.26 GHz Xeon E5520
CPUs and 6 GiB RAM each, and the network comprising
Mellanox ConnectX-2 adapters connected through a DDR (16
GBit/s) switch. We used CentOS 5 with 64-bit Linux kernel
2.6.35. We considered performance and ease of integration as
the most interesting evaluation criteria. Integration of libRIPC
into Jetty was surprisingly simple. We finished a first working
implementation within a week; the current, improved version
amounts to about 400 lines of Java code. No modifications
to the JVM were necessary, and the implementation does not
assume any details about the network hardware.

To evaluate performance, we compared Jetty/libRIPC to the
vanilla, socket-based version. The benchmark lives on a remote
node and issues HTTP GET requests to Jetty, requesting files
filled with random data of increasing size. For fair comparison,
we ran the vanilla Jetty on the InfiniBand network as well,
through the IP-over-InfiniBand emulation layer of the Linux
kernel. For each file size we tested, we fetched the same file ten
thousand times, using the same files for both versions of Jetty.
Fig. 3 shows the results. Vanilla Jetty features an internal cache
that keeps content buffers smaller than 10 MiB (by default) in
RAM after sending, indexed by a hash table. Our modified
Jetty sends those cached buffers directly via long send if
present. With this cache enabled, libRIPC always outperforms
the vanilla implementation, for larger file sizes by a factor
of three. With the cache disabled, however, libRIPC performs
worse than the socket implementation for file sizes smaller
than about 6 MiB. This is owed to differences in the file read

20

40

60

80

10 20 30 40 50

Tr
an

sf
er

 ti
m

e 
(m

s)

File size (MB)

TCP-nocache
RIPC-nocache

TCP-cache
RIPC-cache

Figure 3. Performance of Jetty file fetch over libRIPC compared to sockets
and IP-over-InfiniBand. Note that files larger than 10 MB are not cached.

paths: vanilla Jetty uses mmap to load files into memory, while
Jetty/libRIPC presently uses slower sys_reads to fetch data
into rDMA buffers. We are working on an implementation that
allows rDMA on mmapped files as well.

Altogether, we draw the initial conclusion that libRIPC
poses a promising approach to deliver high performance com-
munication to today’s and coming cloud workloads. However,
we expect the results to vary with the features present in the
underlying network hardware: On BlueGene/P, the long send
may perform better since no memory registration is required,
while on iWARP, the short send may perform worse as iWARP
supports user-level I/O only for remote DMA. Also, other
applications may not integrate as well with libRIPC as Jetty.
Since such effects are difficult to quantify, further exploration
on different network hardware as well as other application
scenarios is necessary.

V. RELATED WORK

In presence of the growing complexity and heterogeneity
of cloud workloads and runtime environments, there has been
an increasing amount of efforts investigating efficient commu-
nication across heterogeneous cloud components: Enterprise
Service Busses attempt to ease interconnecting SOA compo-
nents; messaging middlewares such as ZeroMQ [15] aim to
ease developing scalable distributed applications independent
of the programming language. To the best of our knowledge,
none of these approaches have specifically explored how
coming interconnect architectures and their anticipated high-
performance capabilities can be exploited and integrated for
efficient, low-latency communication in the cloud.

The Sockets Direct Protocol [16] accelerates standard socket
semantics by incorporating low-level network link capabilities
such as remote DMA. Applications communicate directly
using zero-copy, OS-bypass transfers from within their address
space, without relying on a TCP/IP stack. MegaPipe [17]
eliminates most of the overhead associated with sockets and
extends their functionality by asynchronous I/O. The most
notable difference of both to libRIPC is that they still mimic
socket semantics, while our library strives to move away
from sockets in favor of more elementary primitives. Wang
and colleagues have extended Hadoop to take advantage of
InfiniBand [3]. Similarly in spirit, works by Jose et al [4]



and by the authors themselves [5] have investigated how a
distributed memory cache can exploit HPC interconnects such
as InfiniBand or those of the Blue Gene/P supercomputer for
better efficiency. LibRIPC strives to generalize such efforts
both with respect to the cloud workloads running atop and the
hardware architectures running underneath.

The Message Passing Interface [18] is the dominant tool for
communication in high-performance computing. Like libRIPC,
it offers a message-based interface and transfers messages
atomically, achieving both high performance and low latency.
However, MPI, comprising over 300 functions, is too complex
for use in general-purpose applications. MPI also assumes
mutual trust between all communicating nodes, provides only
limited fault-tolerance, and does not support restarting or
migrating of processes. We therefore conclude that MPI lacks
the flexibility necessary for cloud applications.

The Common Communication Interface [19] is similar to
our approach in that it provides a simple and hardware-
independent interface to high-performance hardware. It offers
message-based, zero-copy communication and leverages hard-
ware features to achieve high performance. However, CCI re-
lies on connections between communicating endpoints, which
incur management overhead. CCI also exposes the exchange
of pointers and subsequent remote DMA transactions to the
application. While this may improve performance for certain
applications, we believe that simple send/receive semantics are
more desirable for others.

Finally, our approach shares the message-oriented interface
and the flat endpoint identifier space with the Fast Local
Internet Protocol (FLIP) [20] of the Amoeba distributed
system [21]. Also related are the send and receive window
semantics of the IPC primitive of the L4 micro-kernel [9].
Effectively, our approach strives to extend those approaches to
high-performance interconnects and remote communication.

VI. CONCLUSION

In this paper, we have presented libRIPC, a light-weight
communication library for high-performance cloud networks.
LibRIPC assumes heterogeneous cloud workloads running
on closely-interconnected networks, with features similar to
those found in present-day’s HPC platforms. A key feature
of libRIPC is that it offers separate transmit functions for the
signaling- and data path. Early experiences with a libRIPC-
powered Java web server indicate that libRIPC is easy to
integrate and brings substantial speedup to cloud workloads.

Future work foremost includes evaluating libRIPC on
other network architectures and workloads: a version for
Ethernet/iWARP is underway, Blue Gene/P and PCIe versions
are planned. Regarding workloads, we are currently exploring
the benefits of libRIPC to Hadoop and to MongoDB, a NoSQL
database written in C++. Conceptually, future work includes
exploring how libRIPC could leverage group communication
primitives that are often available on high-performance net-
works. Also, we plan to further explore and evaluate the
reliability and reconfigurability of libRIPC in realistic cloud
scenarios.

LibRIPC is open source and can be downloaded from http:
//github.com/jkehne/libripc.

REFERENCES

[1] L. A. Barroso and U. Hölzle, The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines, ser. Synthesis
Lectures on Computer Architecture. Morgan & Claypool, 2009.

[2] A. Zeichick, “How Facebook works,” Technology Review, Jul. 2008.
[3] Y. Wang, X. Que, W. Yu, D. Goldenberg, and D. Sehgal, “Hadoop

acceleration through network levitated merge,” in Proceedings of the
2010 International Conference on Supercomputing, Seattle, WA, USA,
Nov. 2011, p. 57.

[4] J. Jose, H. Subramoni, M. Luo, M. Zhang, J. Huang, M. W. ur Rahman,
N. S. Islam, X. Ouyang, H. Wang, S. Sur, and D. K. Panda, “Memcached
design on high performance RDMA capable interconnects,” in Proceed-
ings of the 2011 International Conference on Parallel Processing, Taipei,
Taiwan, Sep. 2011, pp. 743–752.

[5] J. Appavoo, V. Uhlig, J. Stoess, A. Waterland, B. Rosenburg, R. Wis-
niewski, D. D. Silva, E. van Hensbergen, and U. Steinberg, “Providing a
cloud network infrastructure on a supercomputer,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing, Chicago, IL, USA, Jun. 2010, pp. 385–394.

[6] J. Stoess, J. Appavoo, U. Steinberg, A. Waterland, V. Uhlig, and
J. Kehne, “A light-weight virtual machine monitor for Blue Gene/P,”
in Proceedings of the 1st International Workshop on Runtime and
Operating Systems for Supercomputers, Tucson, AZ, Jul. 2011, pp. 3–10.

[7] D. Cohen, T. Talpey, A. Kanevsky, U. Cummings, M. Krause, R. Recio,
D. Crupnicoff, L. Dickman, and P. Grun, “Remote direct memory access
over the converged enhanced ethernet fabric: Evaluating the options,”
in Proceedings of the 17th IEEE Symposium on High Performance
Interconnects, New York, NY, Aug. 2009, pp. 123–130.

[8] J. Byrne, J. Chang, K. T. Lim, L. Ramirez, and P. Ranganathan, “Power-
efficient networking for balanced system designs: early experiences with
PCIe,” in Proceedings of the 4th Workshop on Power-Aware Computing
and Systems, Cascais, Portugal, Oct. 2011, pp. 3:1–3:5.

[9] J. Liedtke, “Improving IPC by kernel design,” in Proceedings of the
14th Symposium on Operating System Principles, Asheville, NC, USA,
Dec. 1993, pp. 175–188.

[10] J. Pinkerton and E. Deleganes, “Direct Data Placement Protocol (DDP)
/ Remote Direct Memory Access Protocol (RDMAP) Security,” RFC
5042 (Proposed Standard), Internet Engineering Task Force, Oct. 2007.
[Online]. Available: www.ietf.org/rfc/rfc5042.txt

[11] R. Noronha, L. Chai, T. Talpey, and D. K. Panda, “Designing NFS with
RDMA for security, performance and scalability,” in Proceedings of the
2007 International Conference on Parallel Processing, Washington, DC,
USA, Sep. 2007, pp. 49–56.

[12] Codehaus Foundation, “Jetty WebServer,” jetty.codehaus.org/jetty/.
[13] Apache Software Foundation, “Hadoop,” hadoop.apache.org/.
[14] JNA Team, “Java Native Access,” github.com/twall/jna.
[15] iMatix Corp., “ZeroMQ,” zeromq.com/.
[16] D. Goldenberg, M. Kagan, R. Ravid, and M. Tsirkin, “Zero copy

sockets direct protocol over InfiniBand-preliminary implementation and
performance analysis,” in Proceedings of the 13th IEEE Symposium on
High Performance Interconnects, Palo Alto, CA, Aug. 2005, pp. 128–
137.

[17] S. Han, S. Marshall, B. Chun, and S. Ratnasamy, “MegaPipe: A new
programming interface for scalable network I/O,” in Proceedings of
the 10th Symposium on Operating Systems Design and Implementation,
Hollywood, CA, USA, Oct. 2012, pp. 135–148.

[18] F. MPI, “MPI: A message-passing interface,” Oregon Graduate Institute
School of Science & Engineering, Tech. Rep., 1994.

[19] S. Atchley, D. Dillow, G. Shipman, P. Geoffray, J. M. Squyres,
G. Bosilca, and R. Minnich, “The common communication interface
(CCI),” in Proceedings of the 19th IEEE Symposium on High Perfor-
mance Interconnects, ser. HOTI ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 51–60.

[20] M. F. Kaashoek, R. van Renesse, H. van Staveren, and A. S. Tanenbaum,
“FLIP: An internetwork protocol for supporting distributed systems,”
ACM Transactions on Computer Systems, vol. 11, no. 1, pp. 73–106,
Apr. 1993.

[21] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, and
S. J. Mullender, “Experiences with the Amoeba distributed operating
system,” Communications of the ACM, vol. 33, no. 12, pp. 46–63, 1990.


