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Abstract— In this paper, we present a novel approach to
parametric density estimation from given samples. The samples
are treated as a parametric density function by means of a
Dirac mixture, which allows for applying analytic optimization
techniques. The method is based on minimizing a distance
measure between the integral of the approximation function
and the empirical cumulative distribution function (EDF) of the
given samples, where the EDF is represented by the integral
of the Dirac mixture. Since this minimization problem cannot
be solved directly in general, a progression technique is applied.
Increased performance of the approach in comparison to iterative
maximum likelihood approaches is shown in simulations.
Keywords: Density Estimation, Dirac Mixture Densities,
Gaussian Mixture Densities, Distance Measure

NOTATION
˜̃
f(x) true underlying probability density function

f̃(x) representation of samples drawn from ˜̃
f(x)

f(x) approximation of f̃(x)
δ(x) Dirac Delta function
H(x) Heaviside step function

G distance measure
η Dirac mixture parameter vector
κ parameter vector of arbitrary mixture density
γ progression parameter

N (., μ, σ) Gaussian density with mean μ
and standard deviation σ

erf(x) error function

I. INTRODUCTION

The problem of identifying an underlying density from
finite sets of observations or measurements is very important
in many fields. Traditionally, this problem is considered in
statistical analysis, where only samples of a population can
be observed and the distribution of the complete population
is searched for. The methods applied for that purpose can be
summarized as density estimation techniques.

In technical systems, density estimation approaches are very
popular in systems identification [1]. Especially the quantifica-
tion of noise terms by means of probability density functions
in probabilistic filters calls for efficient density estimators.

Another application of density estimation lies in model
learning for Bayesian networks [2]. Dependencies between
nodes in such a network are modeled by means of conditional

densities. In the case of nonlinear dependencies between
continuous random variables, data driven methods for learning
the stochastic models are often inevitable.

Density estimation methods can be divided into two fami-
lies – parametric approaches and non-parametric approaches.

Non-parametric density estimators in general make no as-
sumptions on the type of the density that produced the sam-
ples. The most basic approach in that context are histograms
[3], where the observed data is distributed in so called bins and
counted, which obviously leads to a discrete representation of
the true density. A continuous density representation can be
obtained by so called kernel estimators. In that approach, a
continuous density function (kernel) is placed on the position
where the sample occurred and summed up over all samples.
The most prominent representative of this technique is the
so called Parzen estimator [4]. The applied kernel is often a
Gaussian normal density with a fixed standard deviation called
bandwidth.

Parametric methods assume a certain type of density for ap-
proximating the true underlying density, which can be any type
of parametric density representation like Gaussian, Laplacian,
uniform, etc., or mixtures of such densities. This assumption
does not mean that the true underlying density has to be of
this type! The traditional method for estimating the parameters
of parametric density functions from a set of samples is the
Maximum Likelihood approach dating back to R.A. Fisher
in 1912 [5]. The idea behind this approach is to find the
parameters of the chosen density type such that the observed
data has the highest possible probability. The problem of that
approach is that the likelihood function may have several local
maxima and finding the global maximum depends strongly
on the choice of the initial parameter vector of the method
applied. The most prominent algorithm to solve the maximum
likelihood problem is the Expectation Maximization (EM)
method [6], which is an iterative algorithm known to converge
to a maximum of the likelihood function.

In this paper, we will focus on parametric density estima-
tion and present an alternative to the maximum likelihood
approach. The method that will be presented here is inspired
by previous work we have done on the dual problem. In [7],
[8] we have derived a method for approximating continuous
probability density functions by means of so called Dirac
mixture functions. These Dirac mixtures can be interpreted
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as an analytical parametric representation of discrete samples.
The method is based on minimization of a distance measure
between the continuous function and the Dirac mixture. So the
question occurred: “Is it possible to turn around the argument”,
i.e., is it possible to approximate a set of samples represented
as a Dirac mixture by means of a parametric continuous
density function. The benefit of such a consideration would be
that one can switch from one representation to the other and
vice versa. Typical distance measures quantifying the distance
between two densities, however, are not well defined for the
case of Dirac mixtures. Hence, in this paper the corresponding
cumulative distribution functions of the true density and its
approximation are compared in order to define an optimal
approximation similar to the procedure described in [9].

It is interesting to mention that this approach finally leads
to a curve fitting problem in the tradition of [10]. Curve fitting
can easily be solved for basic density functions like a single
Gaussian, but it is hard for Gaussian mixtures and even harder
for arbitrary mixture densities.

The remainder of this paper is structured as follows. In
Sec. II, we will give a precise formulation of the problem
to be solved. The optimal density approximation scheme will
be presented in Sec. III followed by explicit derivations for
the special case of Gaussian mixture densities in Sec. IV.
Sec. V has some results of the proposed method. A benefit
of the connection to the dual problem is shown in Sec. VI
by presenting an optimal reapproximation approach. Final
conclusions are given in Sec. VII.

II. PROBLEM FORMULATION

We consider a continuous probability density function ˜̃
f(x).

The characteristics of this density are unknown but a set
of samples that was generated by this function is available.
We assume the samples to be independent and identically
distributed (i.i.d.) with respect to ˜̃

f(x).
The goal is to find a parametric density representation

f(x, κ) governed by the samples that serves as an approxi-
mation of ˜̃

f(x), where κ is the parameter vector of f( · ). For
f(x, κ) we will use a finite mixture density representation [11]
of the type

f(x, κ) =
M∑
i=1

wifi(x, κi) ,

where wi are weighting factors and fi(x, κi) are parametric
density functions with parameters κi. The weights must be
positive and have to sum up to one according to

M∑
i=1

wi = 1 .

Hence, we have a parameter vector

κ =
[
w1, w2, . . . , wM , κT

1 , κT
2 , . . . , κT

M

]T
.

We interpret the given samples as a density function on
a continuous scale, which can be achieved by applying a so

called Dirac mixture function

f̃(x, η̃) =
L∑

i=1

w̃iδ(x − x̃i) ,

where η̃ is a parameter vector consisting of L weights w̃i and
positions x̃i (i = 1 . . . L) of the samples. Since all samples
are of the same importance, we have equal weights w̃i = 1

L ,
which yields

f̃(x, η̃) =
1
L

L∑
i=1

δ(x − x̃i) ,

with
η̃ =

[
x̃1, x̃2, . . . , x̃L

]T
.

For the remainder of this paper, it is assumed that the compo-
nent locations are ordered according to

x̃1 < x̃2 < . . . < x̃L−1 < x̃L .

In general, the true density ˜̃
f(x) is unknown and can

therefore not be approximated directly. Since f̃(x, η̃) is the
only information about the true density we have, we will
instead approximate f̃(x, η̃) by means of f(x, κ).

Traditionally, this problem is addressed by maximizing the
likelihood f(η̃|κ) for a fixed η̃. In contrast to this approach,
our key idea is instead to minimize a certain distance measure
G between the Dirac mixture f̃(x, η̃) and the approximation
density f(x, κ). Hence, the estimation problem is considered
as an optimization problem. Furthermore, we require that
this minimum also minimizes the dual problem given in [7],
namely finding Dirac mixture parameters for approximating a
continuous density function.

For the reason of brevity we restrict ourselves to the case
of densities over scalar random variables.

III. OPTIMAL DENSITY ESTIMATION

Comparing the densities directly does not make much sense
for mixtures of Dirac delta functions. Hence, the key idea is to
compare the corresponding (cumulative) distribution functions.

The distribution function corresponding to the density
f(x, κ) is given by

F (x, κ) =
∫ x

−∞
f(t, κ) dt .

The distribution function corresponding to the equally
weighted Dirac mixture is a staircase function and can be
written as

F̃ (x, η̃) =
1
L

L∑
i=1

H(x − x̃i) ,

where H(.) denotes the Heaviside step function defined as

H(y) =

⎧⎨
⎩

0, y < 0
1
2 , y = 0
1, y > 0

.

This mixture is also called empirical distribution function
(EDF) [12].



The task is now to find a parameter vector κ that minimizes
a distance measure between the two distribution functions
F (x, κ) and F̃ (x, η̃) for a given η̃ according to

κ̂ = arg min
κ

G(η̃, κ) .

A possible distance measure is the integral quadratic distance
between the distributions given by

G(η̃, κ) =
∫ ∞

−∞

(
F̃ (x, η̃) − F (x, κ)

)2

dx . (1)

Since we want to find a minimum with regard to the inverse
problem described in [7], we have to consider the partial
derivative of (1) with respect to η̃. By setting the derivative to
zero we obtain the following system of (non-linear) equations

F (x̃i, κ) =
2i − 1

2L
, for i = 1, . . . , L , (2)

which is similar to results in optimal quantization theory
[13]. There is one equation per sample x̃i. Since the number
of samples determined by the dimension of η̃ is in general
much larger than the number of mixture components used for
approximation determined by κ, we have an overdetermined
system of equations. Furthermore, these equations are nonlin-
ear in general.

Taking a closer look at the graphical representation of the
two distribution functions, (2) implies that the continuous
distribution F (x, κ) has to meet the staircase function F̃ (x, η̃)
right in the middle of each step.

Solving this system of non-linear equations is basically
identical to finding the root of the vector valued function

g(κ) =

⎡
⎢⎣

F (x̃1, κ) − 2 · 1−1
2L

...
F (x̃L, κ) − 2 ·L−1

2L

⎤
⎥⎦ .

Using standard approaches like Newton iteration or gradient
descent in general yields no satisfying results. This is due to
the fact that the convergence of most of these algorithms relies
heavily on the choice of the initial parameters.

In order to overcome this problem, we apply a so called
progression technique similar to the method applied in [14].
The idea of this approach is to begin with some combination
of κStart and η

Start
known to be optimal, i.e., the distance

between F (x, κStart) and F̃ (x, η
Start

) is in a global min-
imum. Note that η

Start
is also a configuration of sample

points but may be completely different from η̃. Starting from
this configuration, we move the samples gradually towards
their desired final positions determined by η̃ while tracking
the minimum via adjusting κ. The transition from η

Start
to

η̃ is guided by a so called progression parameter γ, which
gradually progresses from 0 to 1. The idea of the progression
is to move the samples from initial positions determined by
η

Start
to the desired positions given by η̃. This shift of the

sample positions guided by γ can be formulated as

η(γ) = γ η̃ + (1 − γ) η
Start

.

+

Fig. 1. Progressive solution approach: Progression parameter γ is increased
by Δγ, which results in a modified η

k+1
. κ is updated via Newton iteration

and serves as input to the next update step. We begin with γ0 = 0 and the
iteration runs while γ < 1.

While continuously increasing γ from 0 to 1, the minimum of
the distance measure can be tracked by adapting the parameter
vector κ by means of e.g. a Newton iteration. In order to
calculate the parameter adaptation we increase γ only by small
increments. This yields a step-wise iteration, which is depicted
in Fig. 1. Each step consists of two phases. First, γ is increased
by some step size Δγ followed by an update of κ in order
to minimize G(η(γ + Δγ), κ). We assume that the current κ
yields the global minimum of G before γ is increased. Since
only infinitesimal small steps γ + Δγ are applied, we do not
move far away from the global minimum. Hence, we can apply
a Newton iteration in order to update κ. The resulting κ serves
as initial parameter for the next Newton iteration.

The remaining question is how to find initial parameters for
the first step (γ = 0). We have to choose a pair of parameter
vectors κStart and η

Start
that minimizes the distance between

F (x, κStart) and F̃ (x, η
Start

). For that purpose, we apply the
algorithm presented in [7] in order to calculate η

Start
for a

given κStart. The best results for the subsequent progression
are obtained by choosing f(x, κStart) as a density function
that covers the range of the samples x̃i uniformly. Since we
use finite mixtures, the uniform distribution in general can
only be approximated.

The progressive procedure can be further improved by two
extensions to the basic algorithm – step size control and
tolerance control.

The step size control adapts the step size Δγ: In the first
step, Δγ is at some minimum step size. If the last Newton
iteration converged successfully, the resulting κ is accepted
as starting parameter for the next step and the step size is
increased (until some given maximum is reached). In the case
that the Newton iteration did not converge successfully, the
resulting κ is discarded, γ is reset to the value of the previous
step, and the step size Δγ is decreased (until some given
minimum is reached).

The tolerance control manipulates the convergence criterion
of the Newton iteration: The Newton iteration has converged
successfully if the parameters or the function value changed
less than some ε before having done a certain number of
iterations (ε > 0 but very small). The tolerance control
influences this ε in the following way: At the first step, we
begin with some minimal ε. When performing the next steps,
tolerance control takes action in two cases: If the Newton



iteration did not converge and the step size Δγ is already
minimal, we discard the resulting κ, reset gamma to the value
from the previous step and increase the ε (until some given
maximum is reached). The other case occurs when the Newton
iteration converged and the step size Δγ is already maximal.
Then the resulting κ is accepted as starting parameter and ε
is decreased (until some given minimum is reached).

The whole algorithm is also shown in pseudocode notation
in Alg. 1.

Algorithm 1 Progressive method with step size control and
tolerance control for parameter tracking

1: γ := 0
2: κ := Uniform(M, range(η̃))
3: η

Start
:= DiracApprox(κ,L) // Alg. from [7]

4: ε := εmin
5: Δγ := γstep min

6: function η = η(γ)
7: η = γη̃ + (1 − γ)η

Start
8: end function
9: repeat

10: γ := γ + Δγ
11: η = η(γ)
12:

[
κtmp, success

]
:= NewtonApproach

(
κ, η, ε

)
13: if success then
14: κ := κtmp

15: if Δγ < γstep max then
16: Increase(Δγ, γstep max)
17: else
18: Decrease(ε, εmin)
19: end if
20: else
21: γ := γ − Δγ
22: if Δγ > γstep min then
23: Decrease(Δγ, γstep min)
24: else
25: Increase(ε, εmax)
26: end if
27: end if
28: until γ = 1

IV. SPECIAL CASE: GAUSSIAN MIXTURES

In this section, we discuss how to estimate the parameters
of f(x, κ) being a Gaussian mixture density

f(x, κ) =
M∑

j=1

ωj N (x, μj , σj) .

This type of representation has good approximation capabili-
ties and is very popular in the literature [11].

Here the parameter vector contains the weight ωj , the mean
μj , and the standard deviation σj of each Gaussian density in
the mixture.

In order to obtain a normalized density, the weights are
positive and sum up to one according to

M∑
k=1

ωk = 1 .

Hence, the parameter vector contains only M−1 weights. The
M-th weight can be calculated from the weights ω1 to ωM−1

as

ωM = 1 −
M−1∑
k=1

ωk

and the parameter vector is

κ =
[
ω1, ω2, . . . , ωM−1, μ1, μ2, . . . , μM , σ1, σ2, . . . , σM

]T
.

The corresponding distribution function of a Gaussian mix-
ture density can be written as

F (x, κ) =
1
2

M∑
j=1

ωj · erf

(
x − μj√

2σj

)
+

1
2

,

where erf( · ) denotes the error function.
The resulting system of nonlinear equations with one equa-

tion per sample xi we have to solve in every step is hence

1
2

M∑
j=1

ωj · erf

(
xi − μj√

2σj

)
+

1
2

=
2i − 1

2L

for i = 1, . . . , L. Solving this system of equations is basically
the same as finding the root of the vector valued function

g(κ) =

⎡
⎢⎢⎢⎣

1
2

∑M
j=1 ωj · erf

(
x1−μj√

2σj

)
+ 1

2 − 2 · 1−1
2L

...
1
2

∑M
j=1 ωj · erf

(
xL−μj√

2σj

)
+ 1

2 − 2 ·L−1
2L

⎤
⎥⎥⎥⎦ .

Here we apply a modification of Newton’s method that
uses a pseudoinverse, as the Jacobian of g(κ) is not square
in general. In each iteration, the κk+1 is calculated by the
rule

κk+1 = κk −
(
Jg(κk)T Jg(κk)

)−1

Jg(κk)T · g(κk) ,

where Jg(κ) denotes the Jacobian of the vector valued func-
tion g(κ). In this special case the Jacobian consists of three
blocks

Jg(κ) = [J1 J2 J3] .

The first of these blocks given by

J1(i, j) =
1
2

[
erf

(
xi − μj√

2σj

)
− erf

(
xi − μM√

2σM

)]

is an (L×M −1)-matrix, which contains the derivatives with
respect to the weights ωj , j = 1, . . . ,M − 1. The second
erf-function appears because of the normalization constraint,
which says that the weights have to sum up to one. So here
ωM is calculated from ω1, . . . , ωM−1 as stated above, which
has to be considered when taking the derivative.



Fig. 2. Example for progression: Estimating a Gaussian mixture density with three components from 20 optimal samples at four different values for γ. Top:
Density function. Bottom: Distribution function.

The second of these blocks given by

J2(i, j) = −ωjN (xi, μj , σj)

is an (L×M)-matrix. It contains the derivatives with respect
to the means μj , j = 1, . . . ,M .

The third block given by

J3(i, j) = −ωj
xi − μj

σj
N (xi, μj , σj)

is an (L×M)-matrix as well. It contains the derivatives with
respect to the standard deviations σj , j = 1, . . . ,M .

V. EXPERIMENTAL RESULTS

Before we present some results of our approach, there is
an important remark to be made: We distinguish between
two different types of sample sets. The first type contains
purely random samples. They are drawn randomly from a
given probability density function. The other type consists of
so called optimal samples. They are not drawn randomly but
calculated as an optimal approximation of the given probability
density function using the algorithm given in [7].

A. Progression

Here we assume the underlying true density ˜̃
f(x) to be a

Gaussian mixture with parameter vector

˜̃κ = [0.5, 0.3, −1, 0, 1, 0.3, 0.4, 0.5]T ,

which implies that there are three not equally weighted com-
ponents (ω1 = 0.5, ω2 = 0.3, ω3 = 1−(ω1+ω2)). The means
are μ1 = −1, μ2 = 0, and μ3 = 1 and standard deviations
σ1 = 0.3, σ2 = 0.4 and σ3 = 0.5.

From this density we calculated 20 optimal samples using
the algorithm explained in [7] in order to obtain η̃.

Fig. 3. The resulting density f(x, κ) can be seen in the upper plot. Below
the difference ˜̃

f(x) − f(x, κ) is shown.

At γ = 0 we start with some density function with three
components that covers the interval [-3, 3] uniformly, since
the samples in η̃ are located in this range. Its parameter vector
κStart contains the values

κStart =
[
1
3
,

1
3
, −2, 0, 2, 1.4, 1.4, 1.4

]T

.

η
Start

is computed from κStart by the algorithm given in [7]
and is hence known to minimize G(η

Start
, κStart).

Four different stages of the progression are shown in Fig. 2
for illustrating this example. The two leftmost plots show the
density function (above) and the distribution function (below)



Fig. 4. Estimating a Gaussian mixture density with three components from
30 random samples. Top: True density function ˜̃

f(x) (dashed black line),
random samples f̃(x, η̃) (red), estimated density function f(x, κ) (solid blue
line). Bottom: Staircase function resulting from the samples F̃ (x, η̃) (red),
estimated distribution function F (x, κ) (blue)

at γ = 0. The two rightmost pictures show the density function
(above) and the distribution function (below) at γ = 1. The
two columns in the middle show stages after approximately
one third respectively two thirds of the progression.

The resulting density f(x, κ) can be seen in the upper plot
in Fig. 3. This is identical to the γ = 1 stage of Fig. 2. Below,
the difference ˜̃

f(x) − f(x, κ) to the true density is shown.
In this first example we used deterministically computed

samples instead of random samples in order to explain the
basic principle of the progression. An example with random
samples is shown in the next section.

B. Random Samples

Here we assume the same underlying true Gaussian mixture
density ˜̃

f(x) with parameter vector

˜̃κ = [0.5, 0.3, −1, 0, 1, 0.3, 0.4, 0.5]

as in the section above. But in this example we draw 30
random samples from ˜̃

f(x) in order to obtain η̃.
We start again with the same parameters as in the section

above: some density function with three components that
covers the interval [−3, 3] uniformly. From this density we
compute 30 optimal samples to obtain η

Start
. The resulting

density and distribution function for γ = 1 are shown in Fig. 4.
In addition, the true density function ˜̃

f(x) is shown as a dashed
line in the upper plot. As can be seen from the distribution plot
of Fig. 4 the continuous distribution F (x, κ) does not meet the
staircase function F̃ (x, η̃) exactly in the middle of each step.
This means the condition (2) is not fulfilled. The reason for this
is that the system of nonlinear equations is overdetermined and
there exists no exact solution for this system of equations for

finite Gaussian mixtures. Nevertheless, the proposed method
yields the best possible parameter vector κ from a least squares
perspective.

C. Performance

In this section, we compare the progressive method to the
Expectation Maximization method which is the state-of-the-
art algorithm in parametric density estimation. In order to
obtain comparable results, we draw random samples η from a
Gaussian mixture density function with parameter vector

˜̃κ = [0.5, 0.3, −1, 0, 1, 0.3, 0.4, 0.5]T

and choose for both algorithms the starting parameters

κStart =
[
1
3
,

1
3
, −2, 0, 2, 1.4, 1.4, 1.4

]T

,

which implies a density function that covers the range [−3, 3]
uniformly. In order to compare the approaches for different
numbers of samples, we draw 20 sets with the same number of
random samples, estimate the densities, and measure the error
using the integral quadratic distance measure of the resulting
densities to the true density ˜̃

f(x) from which the random
samples were generated. This distance measure can be written

G(˜̃κ, κEM ) =
∫ ∞

−∞

( ˜̃
f(x) − f(x, κEM )

)2

dx ,

and

G(˜̃κ, κP ) =
∫ ∞

−∞

( ˜̃
f(x) − f(x, κP )

)2

dx .

for EM and the progressive approach respectively.
The root mean square error (eRMS) of the distances gener-

ated by both algorithms is shown in the right part of Fig. 5.

( | )

Fig. 5. Left: Histogram of the distribution of G(˜̃κ, κEM ) for L = 14
samples. Right: Root Mean Square error of the progressive method (blue)
and EM (red) over the distance between the resulting densities and the true
density ˜̃

f(x) for 20 runs per L.



Fig. 6. Top row: a) True density function ˜̃
f(x). b) 30 optimal samples generated from ˜̃

f(x). c) Density estimated from the samples in b). d) 20 from optimal
samples computed the density in c). e) Density estimated from the samples in d). Second row: f) True density function ˜̃

f(x), the same as in a). g) 30 random
samples drawn from ˜̃

f(x). h) Density estimated from the samples in g). i) 20 optimal samples computed from the density function in h). j) density function
estimated from the samples in i)

It can be seen that the progressive method performs much
better than EM – especially for a small number of samples.
The reason for this is motivated by the left plot in Fig. 5. Here
we show a histogram of the distribution of G(˜̃κ, κEM ) for
L = 14 samples. It shows that for some sample configurations
the EM algorithm converges to the global maximum, but
for a large number of configurations it converges to a local
maximum.

VI. REAPPROXIMATION

We will now present a reapproximation scheme as an
application of the combination of the approach presented
here and the dual one presented in [7]. Reapproximation by
optimal samples can for example be applied instead of random
resampling in sample-based filtering techniques like particle
filters, where sample degradation is a problem.

The idea of the reapproximation scheme we present here
is simple and straightforward: Given a set of samples, a
continuous probability density function can be estimated by
the approach presented in this paper. From the resulting
density an arbitrary number of optimally placed samples with
respect to this density can be generated by the dual algorithm.

Since [7] is dual to the new progressive method introduced
in this paper, one can switch back and forth between the
continuous density function and its discrete representation by

optimal samples without causing a major loss. This means
some initial density function ˜̃

f(x) can be approximated op-
timally by means of Dirac mixtures, then be reestimated by
means of Gaussian mixtures, and again be approximated by
means of Dirac mixtures – even with a different number of
samples – and reestimated again, and the error towards the
original function ˜̃

f(x) increases just marginally.

A. Example
In Fig. 6 an illustrative example is presented. The first row

shows the completely deterministic case, in the second row
the case where random samples are involved is displayed.

In plot a), the true continuous probability density function
˜̃
f(x) given by a Gaussian mixture with parameters

˜̃κ = [0.5, 0.3, −1, 0, 1, 0.3, 0.4, 0.5]T .

is depicted. Plot b) shows 30 optimal samples generated from
˜̃
f(x) using the algorithm from [7]. From these samples a
density is estimated using the approach presented in this paper.
The resulting density is shown in in plot c). This density is
again represented by 20 optimal samples displayed in plot d)
followed by an estimation shown in plot e).

The error with respect to the true density function ˜̃
f(x) that

arises from this reapproximation is charted in the first row of
Fig. 7. The error is quantified by the difference between the



Fig. 7. Top row, left plot: Difference between the density of Fig. 6.a) and
the density of Fig. 6.c). Top row, right plot: Difference between the density of
Fig. 6.a) and the density of Fig. 6.e). Second row, left plot: Difference between
the density of Fig. 6.f) and the density of Fig. 6.h). Second row, right plot:
Difference between the density of Fig. 6.f) and the density of Fig. 6.j).

density of plot a) and the densities in c) and e) respectively.
It can be seen that the error is very small and increases only
marginally.

In the second row basically the same actions are taken
beginning in plot f) with the same density as in plot a), but
now there are 30 random samples drawn. The result is shown
in g). From these samples the density function depicted in plot
h) is estimated by application of our approach. The samples
shown in i) are optimal samples computed from the density
function in h). The estimated density based on these samples
is shown in j). The arising error with respect to the true density
function ˜̃

f(x) is given in the second row of Fig. 7. The left
plot shows the error after the random sampling-and-estimation
step. This error is determined by the quality of the random
samples. The right plot gives the error after the subsequent
optimal sampling-and-estimation step. It is to be recognized
that the error did not increase.

VII. CONCLUSIONS

We have presented an approach for parametric density
estimation by minimizing the distance between the distribution
functions of a set of samples represented by means of a Dirac
mixture density and a parametric continuous mixture density.
The presented approach is strongly tied to the dual problem
of approximating a continuous density by means of a Dirac
mixture density. Considering the necessary condition of the
dual problem, we have shown that the minimization of the
distance measure boils down to a curve fitting problem.

The new approach leads to higher computational effort than
the popular EM method. However, the experiments show that
the proposed method yields significantly better results for a

small number of random samples. The reason for this lies in
the fact that the EM method tends to converge to local maxima.
Furthermore, the higher computational effort is a minor issue,
as the new approach is designed to be used offline.

For the general case, where random samples are given, our
approach yields the best possible solution from a least squares
perspective due to the applied distance measure. Since the
problem is overdetermined, an exact solution in general is not
available.

The simulations have also shown that our approach yields
very good results for samples generated by the algorithm in
[7]. This observation emphasizes that we indeed solve the dual
problem, which allows us to switch back and forth between a
Dirac mixture and a Gaussian mixture representation

The coexistence of the two approaches given here and in
[7] can be used to implement a reapproximation scheme which
yields a desired number of optimally placed samples from a
given number of purely random samples as shown in Sec. VI.

Due to the fact that in many applications samples appear
sequentially, a modified progression scheme allowing for suc-
cessive insertion of samples would be beneficial, resulting in
a sequential density estimator.
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