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Abstract— In nonlinear Bayesian estimation it is generally
inevitable to incorporate approximate descriptions of the exact
estimation algorithm. There are two possible ways to involve
approximations: Approximating the nonlinear stochastic system
model or approximating the prior probability density function.
The key idea of the introduced novel estimator called Hybrid
Density Filter relies on approximating the nonlinear system, thus
approximating conditional densities. These densities nonlinearly
relate the current system state to the future system state at pre-
dictions or to potential measurements at measurement updates.
A hybrid density consisting of both Dirac delta functions and
Gaussian densities is used for an optimal approximation. This
paper addresses the optimization problem for treating the condi-
tional density approximation. Furthermore, efficient estimation
algorithms are derived based upon the special structure of the
hybrid density, which yield a Gaussian mixture representation of
the system state’s density.
Keywords: Nonlinear estimation and filtering, conditional
density, hybrid density, optimization.

I. INTRODUCTION

Many applications in technical fields like signal processing
involve estimating the dynamic state of a nonlinear system.
To comprise uncertainties that arise from imperfect knowledge
or imprecise measurements, random variable are widely used
for characterizing system states. Processing random variables
requires the Bayesian estimator for exactly determining pre-
diction and measurement update results. However, recursive
Bayesian estimation is typically impractical due to the in-
creasing complexity of the probability density functions, which
typically cannot be calculated in closed-form.

While for linear systems with Gaussian random variables the
Kalman filter provides exact solutions in an efficient manner
[1], the nonlinear case requires the approximation of the
underlying true density. The well-known extended Kalman
filter uses linearization to apply the Kalman filter equations
to nonlinear systems [2], [3], while the unscented Kalman
filter offers higher-order accuracy by using a deterministic
sampling approach [4]. The resulting single Gaussian density
of both estimation methods is typically not a sufficient rep-
resentation for the true complex density. Another possibility
arises from the usage of more generic parameterized density
functions. Gaussian mixtures are a convenient approach for
parameterized density functions. The bandwidth of estimators
using Gaussian mixtures ranges from the Gaussian sum filter
[5] that allows only an individual updating of the mixture

components up to computationally more expensive but precise
methods [6].

Instead of a parametric density representation, particle filters
use samples [7]. Since these estimators apply Monte Carlo
methods, i.e., random sampling, the estimation results are not
deterministic and a large number of samples is required in
order to get satisfactory results. As an alternative to random
sampling, Quasi-Monte Carlo estimators use deterministically
drawn samples [8]. The techniques used for generating these
samples are often very complex and thus scalability is a
critical problem [9]. A likewise computationally demanding
but optimal approximation of arbitrary prior densities with
deterministically drawn samples is proposed in [10]. Due to
the optimal placement, few samples are sufficient to achieve
precise estimation results.

In this paper we introduce a novel estimator, the Hybrid
Density Filter (HDF), for nonlinear dynamic discrete-time
systems basing on the fundamentals derived in [11]. While
most of the existing estimators focus on directly approximating
the density function representing the system state, our filter
approach is based on optimally approximating the conditional
density that is a probabilistic representation of the underlying
nonlinear system [12]. For approximating the conditional
density and as inspiration for naming our estimation approach,
a so-called hybrid density is used, that consists of Dirac
delta functions and Gaussian densities. To optimally adapt the
parameters of the hybrid density to the conditional density we
reformulate the approximation problem into an optimization
problem for minimizing the Cramér-von Mises distance. This
special type of a squared integral measure is defined over
the corresponding cumulative distribution functions of both
densities and allows quantifying the distance especially in case
of the used Dirac delta functions. In contrast to our purely
Gaussian mixture conditional density approximation approach
in [12], this optimization problem can be solved analytically
and is not restricted to time-invariant systems.

The hybrid structure of the approximate conditional density
allows an analytical and efficient evaluation of the prediction
step as well as the measurement update step. While performing
the prediction step is straightforward and results in a Gaussian
mixture representation of the predicted density, measurement
updating requires an additional, easy to compute interpolation
step for retaining a Gaussian mixture representation. However,
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Fig. 1. Hybrid Density Filter (HDF). (a) Nonlinear discrete-time system with additive noise and the Bayesian estimator. (b) Structure of the HDF prediction
and measurement update step. The shaded boxes highlight the approximations necessary for estimations by means of the HDF.

a very accurate approximation in shape and moments of
the resulting complex density function of the system state
is achieved. Predictions or measurement updates by means
of the hybrid conditional density approximation can also be
interpreted as sampling the prior density deterministically. This
deterministic sampling interpretation gives a straightforward
way for implementation. In contrast to methods using Monte
Carlo sampling the number of components is dramatically
reduced.

In the following section, we will give a review of conditional
densities and their role in Bayesian estimation. The rest of
the paper is structured as follows: Section III introduces
the hybrid density, formulates the optimization problem for
approximation, and derives the analytical solution. Performing
the efficient and closed-form prediction step as well as its inter-
pretation as a deterministic sampling approach is highlighted
in Section IV. Section V addresses the measurement update
of the HDF including its interpolation step. Section VI inves-
tigates an example system for demonstrating the performance
by means of simulations. The paper closes with conclusions
and an outlook on future work.

II. PROBLEM FORMULATION

In this paper, we only consider scalar random variables,
denoted by boldface letters, e.g. x. This restriction is made
for brevity and clarity only. All results are directly applicable
to vector-valued random variables (see e.g. [13]). Furthermore,
we consider nonlinear, discrete-time systems affected by ad-
ditive noise with a system equation

xk+1 = ak(xk) + wk (1)

and a measurement equation

yk = hk(xk) + vk , (2)

where ak(·) and hk(·) are nonlinear functions with at most
a finite number of points of discontinuities, xk ∈ Ωk is the
scalar system state at time step k with density fx

k (xk) and
support

Ωk := [αk, βk] ⊂ R ,

where ∀xk ∈ Ωk : fx
k (xk) > ε for constant ε with 0 < ε � 1.

A measurement ŷk is a realization of yk in (2). wk and
vk are zero-mean noise processes representing the unknown
disturbance affecting the system and the measurement, re-
spectively. They are assumed as stochastically independent,
white Gaussian processes. The noise densities are denoted as
fw

k (wk) = N (wk − μw
k , σw

k ) and fv
k (vk) = N (vk − μv

k, σv
k),

respectively, where N (wk − μw
k , σw

k ) is a Gaussian density
with mean μw

k and standard deviation σw
k .

A. Nonlinear Bayesian Estimation

To determine the probability density function of xk, two
steps have to be performed alternately in a Bayesian setting,
namely the prediction step and the filter step or measurement
update (see Fig. 1(a)).

1) Prediction step: Given a prior density fx
k (xk) for xk at

time step k, (1) is used for recursively propagating the system
state in time. The prediction step of the Bayesian estimator
is described according to the Chapman-Kolmogorov equation
(see for example [14]) and results in a predicted density

fp
k+1(xk+1) =

∫
R

fT (xk+1|xk) fx
k (xk) dxk (3)

for xk+1, where fT (xk+1|xk) is the transition density

fT (xk+1|xk) = fw
k (xk+1 − ak(xk))

in case of additive noise wk. Typically the posterior density
is used in (3), i.e., fx

k (xk) = fe
k(xk).

2) Measurement Update: The posterior density fe
k(xk)

itself is updated considering (2) and applying Bayes’ law [14]

fe
k(xk) = ckfp

k (xk) fL
k (xk) , (4)

where ck = 1/
∫
R

fp
k (xk) fL

k (xk) dxk is a normalization
constant and fL

k (xk) is the so-called likelihood

fL
k (xk) = f(ŷk|xk) = fv

k (ŷk − h(xk)) ,

for a given measurement ŷk. It is derived from the conditional
density f(yk|xk) = fv

k (yk − h(xk)) that gives the probability
for the occurrence of a measurement yk given the state xk, i.e.,
f(yk|xk) can be interpreted as the aggregation of all possible
likelihoods and thus is of higher dimensionality.
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Fig. 2. Conditional density of the nonlinear measurement equation yk =
x3

k + vk . The shape of the conditional density strongly depends on the
nonlinear function hk(xk) = x3

k . A hybrid density with L = 4 components
(red lines) slices the conditional density in 5 parts. Each slice is a Gaussian
density.

Example 1 (Cubic Sensor Conditional Density)
The measurement equation yk = x3

k + vk is well-known as
cubic sensor problem [15]. Fig. 2 depicts the conditional density
f(yk|xk) = N (yk − x3

k, σv
k) for σv

k = 1 and Ωk = [−2, 2].
The likelihood fL

k (xk) results from a horizontal cut through this
conditional density at position ŷk.

B. Conditional Densities in Bayesian Estimation

Both, the likelihood and the transition density are based
upon conditional densities, which in turn depend on the noise
densities fv

k (vk) and fw
k (wk) as well as on the structure of the

measurement and system equation, respectively. Additionally,
the likelihood depends on the actual measurement ŷk. Since
(1) and (2) are time-variant and both noise processes are
non-stationary, transition density and likelihood are also time-
variant, i.e., their shapes change with time index k.

Generally, recursive Bayesian estimation for nonlinear sys-
tems is of conceptual value only, since the complex shapes of
the conditional densities prevent a closed-form and efficient
solution. Furthermore, for the case of nonlinear systems with
arbitrarily distributed random variables, there exists no analytic
density that can be calculated without changing the type
of representation in general. To overcome this problem, an
appropriate approximation is inevitable. From now on, true
densities will be indicated by a tilde, e.g. f̃(·), while the
corresponding approximation will be denoted by f(·).

III. CONDITIONAL DENSITY APPROXIMATION

Instead of directly approximating the densities f̃p
k+1(xk+1)

and f̃e
k(xk) resulting from (3) and (4), respectively, which is

computationally demanding, we propose to approximate the
conditional density

f̃(y|x) = N (y − ψ(x), σ) .

Here, ψ(·) represents a nonlinear function over the random
variable x ∈ Ω = [α, β] ⊂ R. To obtain for example the

transition density, one has to substitute y, x, ψ(·) and σ such
that

f̃T (xk+1|xk) = f̃(y|x)
∣∣∣
y=xk+1, x=xk, ψ(·)=ak(·), σ=σw

k

.

A. Hybrid Density

As a novel type of density representation for approximating
the conditional density f̃(y|x), we propose the hybrid den-
sity [11]

f(y, x, η) =
L∑

i=1

ωi · δ(x − μx
i ) · N (y − μy

i , σy
i ) (5)

with parameter vector

η = [ηT
1
, ηT

2
, . . . , ηT

L
]
T
, where ηT

i
= [ωi, μ

x
i , μy

i , σy
i ] .

Here, L is the number of components, ωi are weighting
coefficients with ωi > 0, μx

i and μy
i are the means, and

σy
i is the standard deviation of N (y − μy

i , σy
i ). The marginal

densities of a hybrid density consist of two different types of
analytic densities: the densities of x are Dirac delta functions
δ(xk−μx

i ) and the densities of y are Gaussians N (y−μy
i , σy

i ).
Our goal is the minimization of a certain distance measure

G(η) between the true conditional density f̃(y|x) and its
approximation f(y, x, η). Generally, the calculation of an ap-
propriate parameter vector η for a high quality approximation
of the transition density is computationally demanding. Since
the conditional densities can be time-variant, these calculations
are required at every time step. By selecting a hybrid density
for approximation purposes, the required computational effort
can be drastically reduced and on-line approximation at every
time step is possible. With the given conditional density
approximation, the prediction and measurement update step
can be performed efficiently in closed form, as illustrated in
Fig. 1(b).

B. Optimal Approximation

The approximation quality of the HDF strongly depends on
the similarity between f̃(y|x) and its hybrid density approx-
imation f(y, x, η). The key idea is now to reformulate the
approximation problem as an optimization problem

η
min

= arg min
η

G(η) , (6)

by minimizing a certain distance measure G(η). The result of
this optimization problem yields the parameter vector η for
f(y, x, η), which minimizes the distance to f̃(y|x).

Typical measures quantifying the distance between densi-
ties, like the Kullback-Leibler distance [16] or the squared
integral measure [17], cannot be applied directly due to the
used Dirac delta functions in (5). Thus, the corresponding
cumulative distribution functions are employed instead. The
distribution function of the true conditional density f̃(y|x) for
x ∈ Ω = [α, β] can be written as

F̃ (y|x) =
1
2

∫ x

α

1 + erf
(

y − ψ(s)√
2σ

)
ds .



The hybrid distribution function of f(y, x, η) is given by

F (y, x, η) =
1
2

L∑
i=1

ωi H (x − μx
i ) (1 + erfi(y)) , (7)

where

erfi(y) = erf
(

y − μy
i√

2σy
i

)

is the error function of component i and

H(x − μ) =

⎧⎪⎨
⎪⎩

1, x > μ
1
2 , x = μ

0, otherwise

is the Heaviside function at position μ.
As distance measure we employ the so-called Cramér-von

Mises distance [18]

G(η) =
1
2

∫
R

∫
Ω

(
F̃ (y|x) − F (y, x, η)

)2

dxdy . (8)

Normally, the underlying nonlinearity complicates solving (6),
as pointed out for example in [12] for a pure Gaussian mixture
representation of the conditional density approximation. Since
we are using the hybrid distribution (7), the optimal solution
can easily be derived in closed form.

Theorem 1 (Optimal Approximation)
Given the distance measure (8), the elements ηT

i
=

[ωi, μ
x
i , μy

i , σy
i ] of the optimal solution η

min
of the optimiza-

tion problem (6) are

ωi =
β − α

L
,

μx
i = α + ωi · 2i − 1

2
,

μy
i = ψ(μx

i ) ,

σy
i = σ .

At first, a Lemma is developed, which is used to prove
Theorem 1.

Lemma 1 Given the distance measure

G∗(η) =
1
2

∫
Ω

(
F̃ (x) − F (x, η)

)2

dx (9)

for x ∈ Ω over the distribution functions

F̃ (x) =
∫ x

α

f̃(s) ds = x − α , (10)

F (x, η) =
∫ x

α

f(s, η) ds =
L∑

i=1

ωi · H(x − μx
i )

of the marginal densities

f̃(x) = 1 , (11)

f(x, η) =
L∑

i=1

ωi · δ(x − μx
i ) ,

minimizing (9) results in

μx
i = α +

1
2
ωi +

i−1∑
j=1

ωj .

Proof: [of Lemma 1] Omitted due to space limitations.

Proof: [of Theorem 1] The partial derivative of (8)
with respect to μx

i , i = 1, . . . , L under incorporation of the
necessary condition ∂G(η)/∂μx

i = 0 for a minimum leads to∫
R

∫
Ω

(
F̃ (y|x) − F (y, x, η)

)
· ∂F (y, x, η)

∂μx
i

dxdy = 0 ,

with
∂F (y, x, η)

∂μx
i

= −1
2
ωi · δ(x − μx

i ) (1 + erfi(y)) .

Utilizing the sifting property of the Dirac delta function we
get∫

R

F̃ (y|μx
i ) (1 + erfi(y)) dy

=
∫
R

F (y, μx
i , η) (1 + erfi(y)) dy .

To allow further simplifications, we apply nonlinear shear, i.e.,
we set

ψ(μx
i ) = K , K ∈ R (constant) . (12)

This changes only the position of the probability mass along
dimension y. The total probability mass and the total marginal
probability mass of y stay unchanged. Thus, we get∫

R

1
2
(μx

i − α)
(

1 + erf
(

y − K√
2σ

))
(1 + erfi(y)) dy

=
∫
R

F (y, μx
i , η) (1 + erfi(y)) dy .

Resubstituting (12) and comparing coefficients leads to

μx
i = α +

1
2
ωi +

i−1∑
j=1

ωj , (13)

μy
i = ψ(μx

i ) ,

σy
i = σ .

The result of Lemma 1 coincides with (13). Thus, minimizing
(9) is sufficient for obtaining ωi and μx

i .
In consideration of (10) und (11) it is obvious that F̃ (x)

represents the distribution function of an unnormalized uni-
form distribution on Ω. The optimal approximation of such
a distribution by means of Dirac and Heaviside mixtures is
well-known [19]. So, we obtain

ωi =
β − α

L
,

μx
i = α + ωi · (2i − 1)

2
.



Summarizing the result of Theorem 1, optimally approxi-
mating the conditional density is merely a uniform placement
of the Dirac delta functions of the hybrid density. The Gaussian
elements N (y−μy

i , σy
i ) of the hybrid density are displaced du-

plicates of the noise density fw
k (wk) or fv

k (vk) that are placed
along the nonlinear functions ak(μx

i ) or hk(μx
i ), respectively.

Remark 1 (Generalization)
Typically, a parametric structure is used for representing the
noise, which allows directly setting σy

i of N (y − μy
i , σy

i ) to
the corresponding parameter of the noise density. This can be
generalized to other parametric noise density representations
like Gaussian mixtures, exponential densities [20] or Edge-
worth series [21]. There, the non-Dirac mixture density type
of the hybrid density has to be chosen according to the current
noise density representation [11].

If a non-parametric noise density is available or the density
type of the noise differs from the desired type for representing
the system state’s density, it is possible to first find an
appropriate noise density approximation, e.g. using the method
described in [22] for non-parametric noise or the method
described in [6] for differing parametric noise, and then to
approximate the conditional density afterwards.

Example 2 (Hybrid Density)
Consider the cubic sensor measurement equation of Example 1
and its conditional density. Fig. 2 illustrates the approximate
hybrid conditional density for L = 4 components, where the opti-
mal parameters are ωi = 1, σy

i = 1, μx = {−1.5,−0.5, 0.5, 1.5},
and μy = {−3.375,−0.125, 0.125, 3.375}, for i = 1, . . . , 4. Due to
the Dirac delta functions, a single component can be interpreted
as a slice of the conditional density.

IV. HDF PREDICTION STEP

Due to the simplicity of calculating the optimal hybrid den-
sity, the conditional density approximation can be performed
on-line, i.e., at every time step k. This allows deriving an
efficient and closed-form prediction algorithm.

A. Closed-Form Calculation

The special structure of the hybrid transition density ap-
proximation is very convenient for efficiently performing the
prediction step, since it allows a closed-form solution of the
Chapman-Kolmogorov integral (3).

Theorem 2 (Approximate Predicted Density)
Given the density fx

k (xk) of the current system state xk and
the hybrid transition density approximation

f(xk+1, xk, η) =
L∑

i=1

ωiδ(xk − μx
i )N (xk+1 − μy

i , σy
i ) , (14)

with parameter vector η according to Theorem 1, the approx-
imate predicted density fp

k+1(xk+1) is a Gaussian mixture
density with L components that can be calculated analytically.

Proof: With (3) and (14) we obtain

fp
k+1(xk+1) =

∫
R

f(xk+1, xk, η) fx
k (xk) dxk

=
L∑

i=1

ωi · N (xk+1 − μy
i , σy

i )

·
∫
R

fx
k (xk) δ(xk − μx

i ) dxk︸ ︷︷ ︸
=fx

k (μx
i )

=
L∑

i=1

ωk+1,i · N (xk+1 − μy
i , σy

i ) , (15)

with ωk+1,i = ωi · fx
k (μx

i ). For i = 1, . . . , L, the weighting
coefficients ωi of the hybrid transition density have the same
constant value, where the value of ωi has no impact on the
prediction. Thus, we can set ωi = 1/

∑L
i=1 fx

k (μx
i ) to achieve

a normalized predicted density.
In a Bayesian setting according to Fig. 1, the prior fx

k (xk)
can be any continuous density. The HDF prediction step
preserves the density type representation subject to the con-
dition that the prior is a Gaussian mixture. Furthermore, the
complexity remains at a constant level, since the number of
components representing fp

k+1(xk+1) only depends on the
number L of components of the hybrid density. If desired,
this number can also be adjusted dynamically.

B. Relation to Sampling

It is worth mentioning that the predicted density is repre-
sented in a parametric and continuous form, since the closed-
form prediction of the HDF can also be interpreted as a
deterministic sampling of the prior fx

k (xk). The sampling is
called deterministic due to the Dirac delta functions of the
hybrid density that are always located uniformly in Ωk. Except
for the constant factor ωi the weights ωk+1,i in (15) coincide
with the function values of fx

k (μx
i ). Thus, we can replace

fx
k (xk) with

fx
k (xk) =

L∑
i=1

ωk+1,i · δ(xk − μx
i ) .

Using the true transition density f̃T(xk+1|xk) in (3) leads to

fp
k+1(xk+1) =

∫
R

f̃T(xk+1|xk) fx
k (xk) dxk

=
L∑

i=1

ωk+1,i

∫
R

f̃T(xk+1|xk) δ(xk − μx
i ) dxk︸ ︷︷ ︸

=fw
k (xk+1−ak(μx

i ))

=
L∑

i=1

ωk+1,i · N (xk+1 − μx
i , σy

i ) ,

which is identical to (14). Thus, the HDF prediction step can
be interpreted as an approximation of the underlying nonlinear
system as well as a sample approximation of the prior density.
This interpretation holds also for the measurement update



step and offers a very convenient way for implementing the
HDF [11].

Random sampling based estimators like the well-known
particle filters typically do not generate a continuous represen-
tation of fp

k+1(xk+1). Since they use Monte Carlo techniques,
a sample representation is generated. Exceptions are the Gaus-
sian (sum) particle filters described in [23], [24]. These filters
use a Gaussian or a Gaussian mixture representation. But still
random sampling is applied. The Dirac mixture estimator pro-
posed in [10] draws samples in an optimal, deterministic way
and calculates an analytic continuous density representation.
In contrast to the HDF, this estimator solves an optimization
problem on the prior density. Therefore, numerical and thus
computational demanding on-line processing is required.

V. HDF MEASUREMENT UPDATE

Performing measurement updates via the HDF differs in
two aspects from the prediction step. First, instead of directly
incorporating the hybrid conditional density, an approximate
likelihood has to be generated. Second, the posterior density is
not a Gaussian mixture due to the Dirac mixture representation
of the likelihood. Thus, an additional interpolation step is
needed in order to preserve a continuous density representation
(see Fig. 1).

A. Likelihood Generation and Measurement Updating
For a given measurement ŷk at time step k, generating

the likelihood is straightforward. Plugging ŷk into the hybrid
conditional density approximation f(yk, xk, η) yields the like-
lihood approximation

fL
k (xk, η

k
) = f(yk, xk, η)

∣∣∣
yk=ŷk

=
L∑

i=1

ωi · N (ŷk − μy
i , σy

i )︸ ︷︷ ︸
=:ωx

k,i

·δ(xk − μx
i )

=
L∑

i=1

ωx
k,i · δ(xk − μx

i ) , (16)

with η
k

= [ηT
k,1

, ηT
k,2

, . . . , ηT
k,L

]T , where ηT
k,i

= [ωx
k,i, μ

x
i ] .

Thus, the likelihood is represented by a Dirac mixture that in
subsequent processing steps is very convenient to efficiently
perform the measurement update.

Theorem 3 (Dirac Mixture Posterior Density)
Given the predicted density fp

k (xk) of the current system state
xk and the approximate likelihood (16), the posterior density
f̄e

k(xk) is a Dirac mixture.

Proof: By using Bayes’ law (4) we obtain

f̄e
k(xk) = ckfp

k (xk) fL
k (xk, η

k
)

= ck

L∑
i=1

ωx
k,i · δ(xk − μx

i ) · fp
k (xk)︸ ︷︷ ︸

=fp
k (μx

i )·δ(xk−μx
i )

= ck

L∑
i=1

ωk,i · δ(xk − μx
i ) , (17)

where ωk,i = ωx
k,i · fp

k (μx
i ). The normalization constant ck =

1/
∑L

i=1 ωk,i results from integrating over the sum in (17).
Feeding this Dirac mixture posterior density into the predic-

tion step leads to a degeneration of the predicted density, since
f̄e

k(xk) has to be multiplied with the Dirac delta functions of
the hybrid transition density. Instead, the Dirac delta functions
of f̄e

k(xk) can be interpolated with arbitrary functions since
the sampling property of the HDF prediction step allows to
process any continuous density representation.

B. Interpolation Step

In the following, Gaussians are used for interpolation. This
leads to a Gaussian mixture posterior density

fe
k(xk) =

L∑
i=1

ωk,i · N (xk − μx
i , σx

i ) (18)

of f̄e
k(xk). This density type representation coincides with the

result of the prediction step.
While the parameters ωk,i and μx

i in (18) can be directly
adopted from f̄e

k(xk), appropriate standard deviations σx
i have

to be determined. In general, such an interpolation is compu-
tationally demanding. Keeping in mind that the conditional
density f̃(yk|xk) has the uniform distribution property when
marginalizing along yk (see Lemma 1), the required com-
putational load can be drastically reduced and a suboptimal
interpolation can be performed. We assume that all Gaussian
components in (18) have the same standard deviation σx

i =
σx, i = 1, . . . , L. Then, the interpolation problem can be
reduced to an one-dimensional optimization problem with one
single optimum. Thus, σx can be derived by means of, e.g.
gradient descent. The required computational load can be
further reduced, if we use the approximate solution [25]

σx =
βk − αk√

2L
,

that convergences to the correct solution for increasing L.

Remark 2 (Posterior Mean)
The mean of the Dirac mixture posterior density and the Gaus-
sian mixture posterior density are equivalent, as calculating
the mean of fe

k(xk) is merely based on ωk,i and μx
i .

VI. SIMULATION RESULTS

For simulation purposes, we consider the nonlinear system
with system equation

xk+1 = sin(xk) + xk + wk

and measurement equation

yk = x3
k + vk

previously introduced in Example 1. Monte Carlo simulations
are performed with σw

k = 0.8, σv
k = 0.3, L = 75, and

an initial Gaussian density fx
0 (x0) = N (x0 + 1.5, 1.2).

Each of the 50 Monte Carlo simulation runs consists of 20
alternating prediction and measurement update steps, starting
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Fig. 3. Density and mean (stems) estimates after the first measurement
update.

with a prediction. For comparison, we take the results of the
unscented Kalman filter (UKF), Gaussian particle filter (GPF),
and the classical particle filter with systematic resampling (PF)
[26]1. Both particle filters employ 300 particles.

In Fig. 3, an exemplary result of the first measurement
update is depicted.2 We use the computationally demanding
Bayesian estimator to obtain the exact density as reference. It
is obvious that there is almost no shape difference between the
exact density and the Gaussian mixture density approximation
resulting from the HDF. Thus, the interpolation step of the
HDF measurement update can provide an accurate approx-
imation of the true continuous posterior denity. In contrast,
the Gaussian assumption of the UKF and GPF results in a
significant difference in shape. This also appears for the mean
estimates, while the HDF provides a mean estimate that is
very exact. Also higher-order moments cannot be tracked that
accurate by the UKF and GPF approach. In contrast, the shape
approximation provided by the HDF allows to cover higher-
order moments.

Focusing on the mean estimates, Fig. 4 depicts the root
mean square (rms) error for each of the 50 simulations runs.
The rms error of the HDF is the lowest in 45 simulation runs.
For the remaining 5 runs the PF performs best. Consequently,
as shown in Table I, the average rms error of the HDF over all
simulation runs is the lowest and is three times lower as the
average rms error of the GPF, although the number of particles
of the GPF is four times larger than the number of components
of the HDF, which also leads to a larger computation time of
the GPF. Increasing the number of particles of the GPF does
not improve the estimation accuracy significantly. Fig. 5(a)-(c)
exemplarily shows the mean estimates of all estimators for one
of the 50 Monte Carlo runs, while Fig. 5(d) illustrates for this
single run the mean estimation difference of all estimators to
the ground truth.

The relatively poor estimation results of the PF follows
from the potential multimodal nature of the predicted density.
So, the PF sometimes tracks the wrong modes and the mean
estimates strongly differ from the true means. Unlike the PF,
the HDF shows nearly no deviation from the true means.

1For UKF and PF we use the Matlab implementation available at [27].
2The PF provides just a particle representation of the density and thus is

omitted here.

10 20 30 40 50
0

0.5

1

1.5

1

HDF
UKF
GPF
PF

Fig. 4. Root mean square error over 50 Monte Carlo simulation runs.

TABLE I
AVERAGE RMS ERROR OVER 50 SIMULATION RUNS.

HDF UKF GPF PF
rms 0.029 0.490 0.094 0.167

VII. CONCLUSIONS AND FUTURE WORK

The Hybrid Density Filter is based on optimally approx-
imating the conditional densities involved in prediction and
measurement update. A hybrid density is used for approxima-
tion purposes. For achieving a high quality approximation of
the conditional density and thus of the estimation results, the
approximation is formulated as an optimization problem. Due
to the special structure of the hybrid density, this optimization
problem can be solved analytically. Given the hybrid condi-
tional density approximation, the prediction and measurement
update for nonlinear dynamic systems can be performed in
closed form with low computational effort.

Compared to the Gaussian assumption of the UKF, the
Gaussian mixture density, which is the output of the HDF,
offers an accurate approximation of the true complex density.
HDF estimations can also be interpreted as deterministic
sampling. Compared to particle filters, which utilize random
sampling, the proposed approach has the advantage of a
lower number of required samples as well as a continuous
density representation. Also, a random number generator is
not required, which leads to a simple implementation.

The described approach has been introduced for scalar ran-
dom variables for the sake of brevity and clarity. Generaliza-
tion to vector-valued random variables is straightforward and
has been done in numerous experiments. In a straightforward
implementation the number of required components grows
exponentially with the dimension. Investigating more elaborate
distance measures used for the optimization could counter
this exponential growth. Furthermore, the Gaussian noise
assumption can be relaxed resulting in very similar estimation
algorithms for the HDF. Improvements of the interpolation
step for measurement updates are also intended.
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