
 

 

 

  

Abstract—Many distributed inference problems in wireless 

sensor networks can be represented by probabilistic graphical 

models, where belief propagation, an iterative message passing 

algorithm provides a promising solution. In order to make the 

algorithm efficient and accurate, messages which carry the belief 

information from one node to the others should be formulated in 

an appropriate format.  This paper presents two belief 

propagation algorithms where non-linear and non-Gaussian 

beliefs are approximated by Fourier density approximations, 

which significantly reduces power consumptions in the belief 

computation and transmission. We use self-localization in 

wireless sensor networks as an example to illustrate the 

performance of this method. 

I. INTRODUCTION 

DVANCES in sensor technology and telecommunications 

make wireless sensor network (WSN) an appropriate 

solution for a wide variety of applications[1][2]. In a WSN, 

sensor nodes are spatially distributed to monitor the physical 

or environmental states. Information can be exchanged 

through the wireless channel so that the whole network works 

in a cooperative fashion. Many estimation problems in WSNs 

can be represented by probabilistic graphical models and 

solved by belief propagation methods. Belief propagation 

(BP) is an iterative message passing algorithm in which each 

node calculates its belief about other nodes and communicates 

with them to exchange their beliefs about each other. Compact 

messages that are transmitted between nodes carry the 

necessary information of the beliefs, based on which the 

receiver can reconstruct the transmitter’s belief about it. For 

discrete beliefs, messages can be a short vector of 

probabilities. For continuous beliefs with Gaussian 

distribution, it is enough to ensemble the mean and variance in 

the message. However, in many applications, beliefs have 

non-linear and non-Gaussian distributions so that belief 

calculation and transmission consumes a lot of power.  That 

limits its application in WSNs which have strong power 

constraints. Hence, an appropriate representation of beliefs 

which reduces the complexity while keeping the accuracy is 

necessary but non-trivial.  

Monte Carlo methods can be used where messages contain 

samples that are drawn from the distribution to represent the 
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beliefs. Gibbs sampling is a popular method in this case. 

However, this is only possible for sufficiently small networks. 

Authors of [3] used non-parametric BP method where 

beliefs are represented by Gaussian mixtures. It generalizes 

particle filtering for inference in non-linear, non-Gaussian 

time series.  

In this paper, we introduce Fourier density approximation 

(FDA) method to represent the beliefs. Fourier series were 

first employed to estimate probability densities in [4]. 

Recently, [5] and [6] ensured the non-negativity of Fourier 

series by approximating the square root of the density instead 

of the density itself. The usage of Fourier series in nonlinear 

Bayesian filtering is also derived in [5] and [6]. Using Fourier 

density approximation, the belief can be represented 

sufficiently by only a small number of Fourier coefficients. 

Hence, the transmission power and time between sensor nodes 

are significantly saved. Compared to other density 

representations like Gaussian mixture or Monte Carlo 

methods, the optimal number of coefficients under a required 

approximation error with respect to a density distance metric 

is more efficiently obtained. Furthermore, the sum-product 

operations in BP algorithms can be more effectively 

calculated in Fourier domain since some convolution-like 

integral operations are more easily calculated than in space 

domain. Since the Fourier series are orthogonal expansions, 

the coefficients are derived independently and effectively [5]. 

In practice, this is done by efficient Fast Fourier Transform 

(FFT).   

In this paper, the self-localization in WSNs, a common 

practice of brief propagation, is used to evaluate the 

performance of Fourier density approximation. Two Fourier 

based algorithms are proposed, which are simplified 

transmission based on Fourier density approximation 

(ST-FDA) and simplified computation and transmission based 

on Fourier density approximation (SCT-FDA). ST-FDA 

reduces the size of the belief message to save radio 

transmission power, which is a critical factor for WSNs. 

SCT-FDA further simplifies the sum-product algorithm (SPA) 

to reduce computation power.  

The paper is organized as follows. Section II presents BP as 

a general approach to the inference problems in WSNs. 

Fourier density approximation method will be introduced in 

Section III. Section IV uses a sensor self-calibration example 

to illustrate the use of Fourier density approximation for BP. 

ST-FDA and SCT-FDA algorithms are proposed. Their 

performances will be evaluated through simulation and the 

results will be shown in Section V. Finally, Section VI 

concludes the paper.  
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II. BELIEF PROPAGATION IN WIRELESS SENSOR NETWORKS 

A. Probabilistic Model of a Wireless sensor network 

Let’s consider a WSN with N sensor nodes that are 

distributed in space. We use ix  to denote the physical state 

associated with sensor node i  and use x  to denote the 

collection of state variables at all sensor nodes. Each sensor 

makes a local noisy observation which we denote by iy . In 

general, the following assumptions are valid: 

o Given the state variables, observations at different nodes 

are independent, i.e. )|()|()|,( xxx jiji ypypyyp = . 

o Observation at one node depends only on a subset of state 

variables, i.e. )|()|( )( iyPaii ypyp xx = with { } { }xx ⊂)( iyPa
. 

o Usually, local correlation exists between neighboring 

nodes. This indicates that the joint probability of state 

variables can be factorized into a product of local 

functions which present the correlation among the nodes in 

neighborhoods, i.e. ∏=
c

cpp )()( xx .   

Based on these assumptions and using the Bayes rule, the 

joint distribution of state variables and observations can be 

factorized in the following form: 
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The conditional independences encoded in (1) can be 

presented by a graphical model, e.g. Markov random field [7]. 

A graphical model consists of a set of vertices which represent 

the variables. There exists an edge between two vertices which 

indicates the conditional dependence between them. So the 

whole graph represents the factorization of a joint distribution 

of all variables. The relationship between the graphical model 

and the joint distribution is given by the Hammersley-Clifford 

theorem [8], that is, a joint probability can be written as a 

product of potential functions ϕ  which are defined on cliques 

(sub-graphs that are fully connected). In probabilistic 

inference in WSNs, we’d like to write this factorization as: 
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so that each factor in (2) can be associated with one sensor 

node. Such a factorization automatically provides the 

possibility to distribute the computation. Each node processes 

parts of the total computation and results are eventually 

disseminated through the communication between nodes. 

Each potential function in (2) is obtained from (1). We first 

assign )|( )( iyPaiyp x as a factor of ),(
icii y xϕ , then distribute 

each factors in ∏
c

cp )(x  into one of the potential functions. 

In many applications, the distribution of ∏
c

cp )(x  is not 

unique. For the assignment, we should also take factors such 

as computational complexity, communication connectivity 

and transmission power into consideration. Authors of [9] 

have introduced a method that first constructs a spanning tree 

and then assigns factors to the nodes of the tree. Such an 

assignment eventually results in a junction tree that can be 

solved by message passing algorithms [10]. In some other 

applications, the final graphical model is a graph with loops.  

B. Belief Propagation in Wireless Sensor Networks  

Inference of the variables defined on a graphical model has 

been intensively studied. For a graph without loops, this can 

be solved by junction tree algorithm. Exact inference on a 

graph with loops is generally an N-P hard problem. 

Approximate methods, such as loopy BP [11] have produced 

convictive results in many applications. BP is an iterative 

message passing algorithm in which each node calculates its 

belief about other nodes and communicates with them to 

exchange their beliefs about each other. Each node updates its 

beliefs when it receives messages from other nodes. Updated 

beliefs will be sent in messages to other nodes. This procedure 

repeats for a number of iterations or until a defined 

convergence criterion has been met.  

In WSN applications, we are interested in the posterior 

probability of  )|( yixp  for each state variable ix . Such an 

inference problem on graphical models can be solved by using 

sum-product algorithm, which is a common practice [12].  

Having defined the local potentials for each node like in (2), 

we can write the analytic formula for the belief updating in 

SPA at each sensor node. We define )(
ji cc

t
ijm xx ∩ to be the 

message sent from node i  to node j  in the t
th

 iteration. 

Having received messages from all neighboring nodes in the 

t
th

 iteration, node i  calculates the message to be sent to node 

j  for the t+1
th

 iteration by: 
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where α  is a constant value to normalize the message. )(iN  

denotes the neighbors of node i . At node i , we can also 

conclude the marginal probability of the variables in 

),(
icii y xϕ . This is done by combining all the incoming 

messages with its local potential: 
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C. Form of the Messages 

The computation in SPA is relatively simple if the messages 

and potential functions involved in (3) are discrete or they are 

a Gaussian distribution. However, in many cases, the local 

potential functions have a very complex non-Gaussian 

distribution and there exist high non-linear relationships 

between the variables. Discretizing the continuous functions 

(uniform sampling method) would be too expensive for many 

inference problems. Other forms of representation of the 

belief functions are needed. 

A particle-based method, called non-parametric BP (NBP) 

is presented in [3] to solve self-localization problem in WSNs. 

In NBP, messages are presented by Gaussian particles which 



 

 

 

are generated from the belief functions. This method enables 

the use of SPA. However, calculating products of Gaussian 

mixtures and generating proper samples is not a trivial task. 

The following part introduces a novel implementation of 

messages in BP using FDA method.  

III. FOURIER DENSITY APPROXIMATION 

[5] and [6] derived the basic operations using Fourier 

density approximation. Here some important equations 

related to BP are briefly described. 

A. Definition of Fourier Densities 

A d-dimensional density function can be approximated by a 

d-dimensional Fourier expansion as 
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where [ ] [ ]dT
dxxxx ππ ,,, 21 −∈= K

r
 is a multidimensional 

variable. )( κκκ βαγ rrr +=  is the coefficients of the Fourier 

series. [ ] Κ∈=
T

dκκκκ K
r

,, 21  is an index vector, where 
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denotes the set of all valid indices [6]. 

In practice, the coefficients are obtained by the efficient 

Fast Fourier Transform (FFT) which has a complexity of 

( )nn logΟ  where n denotes the number of sampling points.  

B. Fourier Density Product 

Given two densities )(xpa r
 and )(xpb r

, they are 

represented by the Fourier density approximation as: 
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Their product can be expressed as: 
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where the bar denotes a valid index 





 Κ∈

= ⋅
⋅

⋅

otherwise0

)(
)(

)( µγ
γ µ

µ

r
r

r              (10)  

of  a
κγ r  and b

κγ r . The order of )(xpc r
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i.e. as many other approximation approaches like Gaussian 

mixture, the number of coefficient is significantly higher after 

production. But we can show later that the coefficient 

reduction in FDA is much easier than its counterparts. 

C. Generalized Convolution Integral 

Considering the Fourier densities of   
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their generalized convolution integral is given by 
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Note that the order of resulting density only depends on the 

order of function ),( xypb rr
 not )(xpa r

, which limits the 

computational complexity. 

In addition, if the function ),( yxpb rr
 has a form  

)(),( xypyxp bb rrrr
−= ,             (14) 

(13) becomes 
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which is actually a convolution. Thus the coefficients of  

)(ypc r
 are the multiplication of the coefficients of )(ypb r

 

and )(xpa r
. In this way, the computation is simplified by 

replacing a high dimensional function ),( yxpb rr
 with a 

low-dimensional function )(ypb r
. 

D. Coefficient Reduction 

For many density mixture approximation approaches like 

Gaussian mixture, Dirac mixture or Monte Carlo methods, the 

number of coefficients increased exponentially after the 

product operation. Keeping all coefficients are practically 

impossible. Determining how many coefficients and which 

ones are needed is challenging.  [13] provides a progressive 

way to calculate the parameters of mixture densities optimally. 

But the computational requirement is relatively high.  

The coefficient reduction in FDA is relatively more 

efficient. As well known, the signal power in space domain 

and Fourier domain are equal. The Fourier coefficients 

ordered by their squared magnitude reflect the order of their 

influences to the square error between true density function 

and its Fourier approximation. Therefore, coefficient 

reduction in FDA is just deleting the coefficients with minimal 

squared magnitudes under the required density square error. 

E. Ensuring Non-negativity 

FDA with reduced coefficients is sometimes negative 

which brings problem for further calculation. [5] proposed to 

use the square root of density function instead of density 

function itself for calculation. In this way, the final 

approximated density is ensured to be non-negative.  

F. Computational Complexity 

Table I lists the comparison of computational complexities 

for density product and generalized convolution between 

FDA and uniform sampling method where m denotes the 

number of coefficients used by Fourier density 

approximation. n is the number of uniform distributed 



 

 

 

samples. From this table, we see that the computation power is 

saved for the generalized convolution given the same number 

of m and n. By reducing the Fourier coefficients, both 

operations can be more efficient. 
TABLE I  

COMPUTATIONAL COMPLEXITY 

 FDA Uniform Sampling 

Generalized Convolution )(mΟ  )( 2nΟ  

Product )log( mmΟ  )(nΟ  

IV. A SENSOR LOCALIZATION EXAMPLE 

In this chapter, we will use a sensor localization example to 

illustrate the BP method we proposed. Sensor localization is 

obtained by combining absolute positioning information (e.g. 

GPS) with relative distance information (e.g. time delay or 

power decay of the signal transmitted between sensors). In this 

paper, we restudy the self-calibration problem presented in [3] 

where each sensor has noisy measurements of its distances to 

neighboring nodes. The problem is formulated as a 

probabilistic inference problem that can be presented by 

probabilistic graphical model. BP algorithm is applied to 

exchange the calibration information between sensor nodes so 

that each sensor can obtain the MAP estimate of its location. 

Instead of Gaussian mixtures, FDA will be used to present the 

messages that are transmitted between nodes. Relative sensor 

geometry or the absolute sensor positions can be obtained 

depending on whether extra information about absolute 

positions is available at certain sensors.  

A. System Model 

Let’s assume that we have a WSN with N  sensors 

distributed in a planar space. The position of sensor i  is 

denoted by ix
r

. The measurement taken at sensor i about its 

distance to sensor j  takes the form: 

ijjiij xxd ν+−=
rr

               (16) 

where ijd  denotes the observation, ijν is additive Gaussian 

noise with zero mean and standard deviation of σ . 

ji xx
rr

− calculates the Euclidean distance between two 

points. ijd  is not always available since sensor i  does not 

always detect its neighbor j . We use a binary random 

variable ijo to indicate whether a distance measurement is 

available, i.e. 1=ijo  when observation is made, 0=ijo  

otherwise. According to [3], the probability that distance 

between sensor i  and j is available with a probability of: 
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Furthermore, each sensor has a prior knowledge about its 

position, which is given by a prior distribution )( ixp
r

. The 

prior distribution is normally uninformative unless the sensor 

has obtained its position information from other resources, e.g. 

GPS signal. In this case, the prior distribution might look like 

a Dirac function. 

B. Belief Propagation in Sensor Localization 

Apparently, the assumptions mentioned in Section II are 

valid for this model. The joint distribution of the sensor 

locations }{ ix
r

 and the observations }{ ijd  and }{ ijo can be 

factorized as: 
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Based on (7), we can define the local potential for sensor i : 
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so that each sensor has now its local potential function.  

Distributed inference can be done by using SPA. For sensor 

location problem, the message updating equation, obtained 

from (3) and (19), takes the form: 
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Each message in (20) involves N  variables. The 

presentation of messages and the multiplication of messages 

will be too complicated that it makes the inference intractable. 

To simplify the problem, we define a message from node i  to 

node j  to be a function that only involves jx
r

 . In another 

word, message from node i  to node j  only contains a 

summary of sensor i ’s belief on the position of j , position 

information about other sensor nodes are summed out. Based 

on this simplification, (20) will be revised to: 
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where ),( jiij xx
rr

ϕ is defined as: 
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The marginal probability of sensor location is given by: 

∏
∈

+ ⋅=
)(

1
)()()(ˆ

iNk

i
t
kiii

t
i xmxpxp

rrr
α          (23) 

Although the complexity of messages has been greatly 

simplified in (21), calculation in (21) and (23) is still 

complicated because of its non-linearity and the non-Gaussian 

distribution. To solve this problem, we use FDA method to 

approximate the density functions and present the messages as 

a collection of Fourier components and their coefficients. 

C. Algorithm Description 

Using FDA and the coefficient reduction method introduce 

in Section III, the size of the messages are significantly 

reduced. This has brought benefits in two folds. On one side, it 

reduces the transmission power. On the other hand, it reduces 

the complexity of the SPA with a penalty of computing FFT.  



 

 

 

We propose two algorithms. The ST-FDA algorithm, 

depicted in Table II, uses FDA only to reduce the transmission 

power. SCT-FDA, depicted in Table III, does all the 

calculation in the frequency domain thus reduces both the 

transmission power and the computational complexity.  
TABLE  II  

DESCRIPTION OF ST-FDA ALGORITHM 

ST-FDA 

1. Discretize the local potential functions. 

2. Initialize messages, e.g. a vector of ones. 

3. Calculate the outgoing message using (21). Since now the 

potential functions and the messages are discrete, we 

replace the integral in (21) with sum. Use FFT to 

transform the outgoing message into the frequency 

domain and use coefficient reduction method introduced 

in Section III to reduce the size of the messages. 

4. Once a new message (presented by Fourier coefficients) 

is received, an IFFT will be used to change the message to 

the 2D space domain for the SPA. 

5. Run SPA for a defined number of iterations. 

6. Posterior probability can be calculated by using (23). 

 

TABLE  III 

DESCRIPTION OF SCT-FDA ALGORITHM 

SCT-FDA 

1. Discretize the local potential. 

2. Initialize messages, e.g. a vector of ones. 

3. Use FFT to transform all messages and potential 

functions to frequency domain. Use coefficient reduction 

method (Section III D) to reduce the number of Fourier 

components. All messages stay in frequency domain until 

the end of the algorithm. 

4. The SPA of (21) in the frequency domain is implemented 

by using (8) and (15). Coefficient reduction is done in 

each step. 

5. Run SPA for a defined number of iterations. 

6. Finally, use IFFT to convert the posterior probability 

from frequency domain into space domain. 

V. SIMULATION RESULTS 

To verify the performance of the FDA based BP methods, 

we simulate the BP for self-localization problem in a WSN 

that is illustrated in Fig. 1.  

 
Fig. 1 Sensor Distribution. 

The positions of sensor node 1, 2 and 3 are known as (0, 0), 

(1, 0) and (1, 1) respectively.  Unknown sensor nodes 4 and 5 

are located at (-1, 0.4) and (-0.2, 0.8). Note that although the 

Fourier densities are defined in [ ]dππ ,− in (5), the definition 

in a large area can be also derived by a simple linear mapping. 

In this paper, we limit the area to [ ]2
,ππ−  for simplicity.   

The parameter ρ  and 1R in (17) are set to 2 and 3m 

respectively. The standard deviation of distance 

measurements σ  in (16) is set to 0.4m. The BP is forced to 

stop after 7 iterations.  

 
Fig. 2. Comparison of distribution estimates by SCT-FDA with different 

number of coefficients 

Fig. 2 depicts the estimates of posterior distribution of 

sensor positions at node 4 (Fig. 2 (a2)–(a6)) and node 5 (Fig. 2 

(b2)–b(6)) by SCT-FDA using different number of Fourier 

coefficients to represent a single potential function or a 

message and compare them with the true result generated by 

uniform sampling based method (Fig. 2 (a1) and (a2)). The 

sampling resolution is 65x65 for all experiments. From the 

results we can see with 100 Fourier coefficients, the 

approximation is already very close to the true value, whereas 

too few components can not fully characterize the very 

non-linear, non-Gaussian distribution.  

Fig. 3 shows the estimation results from SCT-FDA 

algorithm using different sampling resolutions. Sampling 

resolution of 15x15, 25x25, 35x35, 65x65 are applied to Fig. 

3 (a1) to (a4) and Fig. 3 (b1) to (b4) respectively. The 

sampling resolution determines the precision of the estimate. 

According to Nyquist Theorem, original function can be 

recovered from its samples only if the sampling rate is greater 

than twice the maximum frequency of that function. Bad 
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results can be observed from Fig. 3 (b3) and (b4) because the 

sampling rate is too low. 

 

Fig. 3. Comparison of distribution estimate by SCT-FDA from different 

sample resolutions 

 
Fig. 4. Comparison of estimation errors in uniform sampling, STFDA and 

SCT-FDA. 

Fig. 4 plots the error of the position estimate of node 4 vs. 

number of Fourier coefficients curves of STFDA and 

SCT-FDA algorithms. It can be seen that, increasing number 

of coefficients results in a better performance for both 

methods. But compared to the result by uniform sampling 

which requires 4225 samples to represent a message, a close 

result is achieved by much less Fourier coefficients.  In the 

simulation, 119 messages are transmitted. If sample resolution 

is 65x65 and 50 Fourier coefficients are kept, ST-FDA and 

SCT-FDA methods transmit 23800 components while 

uniform sampling based method has to transmit 502775 

components. Obviously, Fourier density approximation 

significantly reduces the transmission power.  

ST-FDA method outperforms SCT-FDA methods in Fig. 4 

because approximation is only made for the transmission in 

ST-FDA while SCT-FDA method also greatly simplifies the 

computation by using fewer coefficients in the SPA. Although 

SCT-FDA loses some accuracy, it saves the computation 

power and time. Furthermore, note that ST-FDA performs 

FFT and IFFT at the transmission and reception of each 

message while in SCT-FDA, FFT is only performed at the 

beginning and the end of BP, which further reduces the 

complexity.  

VI. CONCLUSIONS AND FUTURE WORK 

WSNs can be modeled by graphical models, where BP 

algorithm provides a promising solution. However, in WSNs, 

the computational ability and battery life of sensor nodes are 

limited.  The intensive probability density computation and 

transmission between nodes required by BP make a big 

problem. This paper presents a method to use Fourier density 

approximation to represent belief densities. ST-FDA 

algorithm uses Fourier approximation to compress the 

complex non-Gaussian densities in order to reduce the radio 

transmission which is regarded as the most power consuming 

part in WSNs. Another algorithm SCT-FDA implements the 

SPA in Fourier domain so that it saves power consumptions 

not only in transmissions but also in belief calculations.     

 ST-FDA and SCT-FDA use a fixed number of Fourier 

coefficients. A more general algorithm with adaptive Fourier 

coefficient reduction can be investigated. In addition, other 

density representation like wavelet approximation could also 

be considered for the same application. The comparison 

between Fourier approximation and standard Gaussian 

mixture representation in [3] would also be interesting. 
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