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Abstract: This paper addresses the problem of decentralized state estimation of distributed physical
phenomena observed by a sensor network. The centralized approaches are not scalable for large
sensor networks, because all information has to be transmitted to a powerful central processing node
requiring an extensive amount of communication bandwidth and a lot of processing power. Thus, for a
decentralized reconstruction of distributed phenomena, we propose a novel methodology consisting of
three steps: (a) conversion of the distributed phenomenon into a lumped-parameter system description,
(b) decomposition of the resulting system in order to map the description to the actual sensor network,
and (c) decomposition of the density representation leading to a decentralized estimation approach. The
main problem of a decentralized approach is that due to the propagation of local information through the
network, unknown correlations are caused. This fact needs to be considered during the reconstruction
process in order to get correct and consistent estimation results. For that reason, we employ a robust
estimator (based on Covariance Bounds) for the local reconstruction update on each sensor node. By this
means, the individual sensor nodes are able to estimate the local state of the distributed phenomenon
using local estimates obtained and communicated by adjacent nodes only. The information about their
correlations is not stored in the sensor network.

1. INTRODUCTION

Recent developments and miniaturization of sensor nodes make
it possible to use a wireless sensor network for monitoring
natural large-area phenomena. In such scenarios, the individ-
ual sensor nodes are densely deployed inside the phenomenon
and only have spatially limited acquisition capabilities. By the
propagation of local information between the sensor nodes,
the entire distributed phenomenon can be cooperatively recon-
structed. Examples for such distributed physical systems are:
temperature distribution, fluid flow, structural deflection or vi-
bration in buildings.

The major challenge is that the individual sensor nodes in
the network are able to measure the physical quantity only
at discrete times and discrete locations, i.e., no information
between the nodes and the time steps is available. By exploiting
additional background information of the physical system in the
form of a mathematical model, it is possible to get meaningful
and more accurate information at any desired location and
time. Thus, by means of a model-based approach the entire
distributed phenomenon can be reconstructed.

In the case of a centralized reconstruction approach, as it was
introduced in (Rossi et al. [2004], Sawo et al. [2006], Sawo
et al. [2007]), the nodes locally collect observations and prop-
agate them through the network to a central processing node.
At the central node, this information can be fused with obser-
vations obtained by other nodes. In this case, the distributed
phenomenon can be reconstructed by applying a standard esti-
mator to the entire global state vector and storing the associated
correlations between the individual sensor nodes. However,
this approach for the reconstruction requires a powerful central
processing node, and an extensive amount of communication
bandwidth. For practical applications, a decentralized approach
for the reconstruction of distributed phenomenon is more ef-
ficient, which implies that the individual sub-state vectors are
manipulated separately at each reconstruction step.

For the decentralized reconstruction, the individual sensor
nodes rely solely on their local observations of the phenomenon
and on communicated information. The reconstruction process
occurs locally on the sensor nodes without a central process-
ing node. One possible implementation would be based on
a fully connected topology, where every node transmits local
information to all other nodes in the network and a centralized
reconstruction is performed on each node (Mutambara [1998]).
In such cases, the communication and computational load is
high and no significant reduction is achieved (compared to the
centralized approach). For that reason, it is more beneficial
when individual nodes exploit only local estimates of their
adjacent neighbors without storing any information about the
correlations, as visualized in Fig. 1 (a).
Besides the aforementioned Bayesian estimation approach,
there are other approaches tackling the problem of decentral-
ized estimation in sensor networks. In (Rabbat and Nowak
[2004], Blatt et al. [2007]), the problem of decentralized pa-
rameter estimation of distributed phenomenona is stated as a
distributed optimization problem, which minimizes a certain
cost function of interest. Although these algorithms are dis-
tributed, they do not provide a recursive characteristic and thus
extensive amounts of data need to be stored. The algorithm
introduced in (Lopes and Sayed [2007]) is both decentralized
and recursive. However, it addresses only the estimation of
stationary phenomena.

The main challenge for a fully decentralized reconstruction (in
terms of a Bayesian approach) is that due to the process itself,
imprecisely known correlations between the states are caused,
i.e., their joint statistics are simply not available. In that case,
classical filtering techniques like the Kalman filter conveniently
assume uncorrelated joint densities leading automatically to
unjustified improvement of estimation results. Coping with this
problem, estimators based on Covariance Intersection (Castel-
lanos et al. [1997], Julier and Uhlmann [2007], Chong and Mori
[2001]) were derived, which are quite common for simultane-
ous localization and mapping applications (SLAM). More gen-
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eral set-based approaches for robust estimation can be derived
based on Covariance Bounds (Hanebeck and Horn [2001]).
These methods allow to cope with unknown correlations, both
for the measurement step and the prediction step, as well as
allow us to consider uncertainties in the model description. Fur-
thermore, the systematic approach allows to find tight bounding
densities even with constrained correlations (Hanebeck et al.
[2001]). The issue of robustness against unknown correlations
and model uncertainties is the main justification of the afore-
mentioned methods.

The novelty of this article is to lay the foundation for an
efficient and fully decentralized reconstruction of distributed
phenomena. The introduced methodology basically consists of
three steps, visualized in Fig. 2 (a)–(c). In a first step, the dis-
tributed phenomenon is converted into a discrete-time lumped-
parameter system description (system conversion). The result-
ing state vector characterizing the system behavior is usually
high-dimensional, especially for large-area physical phenom-
ena. Therefore, in a second step, the lumped-parameter system
is decomposed in order to map the system description to the
actual sensor network (system decomposition). Based on this
decomposition, the density representation for the entire sensor
network is decomposed leading to a decentralized reconstruc-
tion of the distributed phenomenon (density decomposition).
During the reconstruction process, the unknown correlations
between the individual estimates are not neglected, but rather
are considered by producing conservative and consistent es-
timation results. Thanks to the employed Covariance Bounds
filter, all the individual sensor nodes are able to perform a local
reconstruction step using local estimates of adjacent nodes
only, see Fig. 1 (a). In addition, the information about their
correlations is not stored in the network; saving computational
and communication load.

The remainder of the paper is structured as follows. In Sec-
tion 2, a rigorous problem formulation for the decentralized re-
construction of distributed phenomena is given. Section 3 then
introduces the conversion and decomposition of distributed
phenomena leading to a lumped and decomposed system de-
scription. Section 4 is devoted to the decomposition of the
density representation in terms of decomposing the covariance
matrix characterizing the estimated phenomenon. In Section 5,
after a short description of the Covariance Bounds filter in
a tutorial fashion, the entire framework for the decentralized
reconstruction is introduced (for an example distributed phe-
nomenon). In Section 6, the performance of the fully decen-
tralized approach is demonstrated by means of simulations as a
proof of concept.

2. PROBLEM FORMULATION

The main goal is to design a fully decentralized reconstruction
method for distributed physical phenomena monitored by a
sensor network. In order to derive an efficient reconstruction,
we assume that the individual sensor nodes perform a local re-
construction step based on their own observations and estimates
of neighboring nodes. By this assumption the entire sensor net-
work and thus the reconstruction process can be conveniently
regarded as a lattice dynamical system, visualized in Fig. 1 (b).
The evolution of a large number of physical systems, such as
temperature distribution in a plate, heat conduction, flow in
ducts and in open-channels, wave propagation, and deflection
of bearings, can be described in terms of a set of partial
differential equations. In this paper, we consider only one-
dimensional linear partial differential equations for simplicity
and brevity, although similar expressions can be found for the
multi-dimensional nonlinear case. In its most general form, the
one-dimensional linear partial differential equation is given in
implicit form by
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Fig. 1. (a) Each sensor locally collects observations and prop-
agates local estimates to adjacent nodes. In a fully decen-
tralized propagation through the network, the correlations
between the individual estimates are not stored. (b) Lattice
dynamical system for the visualization of the decentralized
reconstruction process and cause of unknown correlations.
For example, the information from Node 1 at point A is
counted twice at point B1 and B2.
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where p(z, t) denotes the state of the distributed phenomenon,
e.g., the temperature at a certain time t and certain location z.
The source term driving the distributed phenomena is repre-
sented by s(z, t). The system input s(z, t), the state p(z, t) and
its derivatives are linearly related by the operator L( · ).

Besides the conversion and decomposition of the distributed
phenomenon, additional problems are the unknown correla-
tions. In general, there are two types of sources for unknown
correlations in sensor network applications. The first type is
inherent to the system and caused by partially dependent noise
sources for different sensor nodes. In other words, there are
usually additional external disturbances affecting more than one
sensor, e.g., sunshine, wind, or the same origin of a pollutant
cloud. Even for ideal sensor properties, this already would lead
to a partial correlation between the measured states.

On the other hand, the decentralized estimation process itself
causes a second source of unknown correlations. Let us assume
that a physical quantity is measured and processed only locally.
In order to improve the estimate of the physical quantity, the
individual sensor nodes exchange and fuse their local estimates.
In this case, the resulting estimates become automatically cor-
related after fusing the individual estimates. Unfortunately, ap-
plying the Kalman filter to decentralized problems, while ig-
noring the existing dependencies between the individual states,
leads to over-optimistic, even wrong estimation results. In this
article, only the unknown correlations caused by the fully de-
centralized reconstruction itself is considered. The additional
external disturbances are assumed to be uncorrelated.

3. CONVERSION AND DECOMPOSITION OF
DISTRIBUTED PHENOMENA

In this section, we describe a method for the conversion of
the partial differential equation (1) and the decomposition of
the resulting system description into a decomposed system.
Although the methods introduced here can be applied to general
linear partial differential equations (1), we restrict our attention
to a specific distributed phenomenon: the diffusion equation.



Example 1 (Considered distributed phenomenon)
Throughout this paper, we consider the following distributed system, the
one-dimensional linear partial differential equation,

L (p(z, t)) =
∂p(z, t)

∂t
− α(z, t)

∂2p(z, t)

∂z2
− s(z, t) = 0 , (2)

where the diffusion coefficient α(z, t) could be both time and space
varying. The aim is the estimation of the solution p(z, t) of the partial
differential equation in a fully decentralized fashion under consideration
of uncertainty influences in the system description and the measure-
ments. That means, we assume that local state estimates are commu-
nicated only between neighboring sensor nodes and information about
the resulting correlations are not stored in the network.

3.1 Conversion of Distributed Phenomena

The model-based state estimation of distributed phenomena
based on a distributed-parameter description is quite complex.
The reason is, a Bayesian estimation method usually requires
the system description to be in lumped-parameter form. In order
to cope with this problem, the system description has to be
converted from the distributed-parameter form into a lumped-
parameter form.

In general, the conversion of the distributed phenomenon (1)
can be achieved by methods for solving partial differential
equations, such as modal analysis (Bader et al. [2007]), the
finite-difference method (Chung [2002]), the finite-element
method, and the finite-spectral method (Karniadakis and Sher-
win [2005]). Based on these methods, the solution domain Ω
can be discretized, which results in a global state vector xk
characterizing the state of the distributed system. The individual
entries pi

k of the global state vector xk can be regarded as
so-called software nodes, since they are only necessary for
describing the distributed system in a finite state space form,
see Fig. 2 (a).
The simplest method for the conversion of a distributed phe-
nomenon is the finite-difference method. In order to solve the
partial differential equation (1), the derivatives need to be ap-
proximated according to
∂p(z, t)
∂t

≈
pi

k+1 − pi
k

∆t
,

∂2p(z, t)
∂z2

≈
pi+1

k − 2pi
k + pi−1

k

∆h2
,

(3)
where ∆t is the sampling time and ∆h the spatial sampling
period. The superscript i and the subscript k in pi

k denote the
value of the distributed system at discretization node i and
at time step k. The consideration of the boundary conditions,
such as Dirichlet boundary condition and Neumann boundary
condition, during the conversion process is omitted in this
paper; rather we refer to (Chung [2002], Rossi et al. [2004]).
Example 2 (Structure of converted distributed phenomenon)
In this example, we illustrate the structure of the converted diffusion
equation (2) derived by finite differences (3). Here, we assume that the
diffusion coefficient is time and space varying, and the individual coef-
ficients αi

k at location i are collected in the vector αk = [α1
k, . . . , α

N
k ].

The conversion results in the following system matrix Ak ∈ RN×N ,

Ak =
∆t

∆h2


−2α1

k 1 0 . . . 0
1 −2α2

k 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2αN−1
k

1

0 . . . 0 1 −2αN
k

+ I , (4)

where I ∈ RN×N represents the identity matrix. The state of the dis-
tributed system is characterized by the state vector xk = [p1

k, . . . ,p
N
k ].

For the conversion of the entire distributed phenomenon, the input
function s(z, t) needs to be discretized in the same way as the system
state. This leads to the input vector uk = [s1

k, . . . , s
N
k ]. The input matrix

Bk relating the input uk of the distributed system to its state vector xk
is given by a diagonal matrix with the sampling time ∆t as the diagonal
entries, according to Bk = diag {∆t, . . . ,∆t}.
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Fig. 2. Visualization of the three basic steps toward a fully
decentralized state estimation of distributed phenomena.
(a) Conversion of the distributed phenomenon into a
lumped-parameter system description. (b) Decomposition
of the resulting system in order to map the software nodes
to respective hardware nodes. (c) Decomposition of the
density representation for the decentralized estimation.

From the previous example it is obvious that in the case of
the finite-difference method, the propagation of the state at a
certain node i can be derived by considering their respective
adjacent nodes only. That means, the propagation of local
estimates over time and space can be conveniently visualized
by a lattice dynamical system, as shown in Fig. 1 (b). For the
decentralized approach, this property is exploited so that for
the reconstruction of distributed phenomena only estimates of
adjacent nodes need to be considered at each update step.

In general, the conversion of linear partial differential equa-
tions (1) results in a linear system equation for the state vec-
tor xk, which contains the estimates pi

k at the individual soft-
ware nodes. Adding noise terms and modelling error terms
leads to the following lumped-parameter system equation

xk+1 = Akxk + Bk (ûk + wk) , (5)
where the structure of the system matrix Ak and the input
matrix Bk merely depends on the applied method for con-
verting the distributed-parameter system (1). The measurement
equation providing a mapping of the finite-dimensional state
vector xk to the individual measurements ŷi

k at location i is
stated in a linear form according to,

ŷ
k

= Hkxk + vk , (6)

where vk denotes the uncertainty in the measurements. The
measurement matrix Hk is defined on the basis of geometric
relations between the state vector xk and the sensor locations.
For a more detailed description on the derivation and the struc-
ture of the measurement matrix Hk for distributed systems, we
refer to our previous research work (Sawo et al. [2006]).

3.2 Decomposition of the Lumped-Parameter System

For large-area distributed phenomena, the state vector xk be-
comes high-dimensional. Due to the fact that for a central-
ized estimation approach the entire state vector xk needs to
be communicated and updated, this results in high commu-
nication costs and high computational load. For that reason,



as a first step toward a decentralized estimation approach, a
decomposition of the lumped-parameter system (5) and (6) is of
major importance. Basically, the software nodes resulting from
the aforementioned conversion process of the distributed phe-
nomenon are allocated to respective hardware nodes (depend-
ing on their location). In other words, the lumped-parameter
system description (5) and (6) is mapped to the sensor network,
depicted in Fig. 2 (b).
For the system decomposition, the global state vector xk is
decomposed into appropriate sub-state vectors xi

k, according to

xk =
[
x1

k, . . . ,x
i
k , . . . ,x

M
k

]T
,

where each individual sub-state vector xi
k is allocated to appro-

priate hardware nodes. In a similar way, the system description
(5) and (6) has to be decomposed into appropriate sub-systems.
Here, we assume that the decomposed system and measurement
model for the i-th sub-state vector xi

k and the i-th measurement
vector ŷi

k
is stated as follows,

xi
k+1 =

M∑
j=1

Aij
k xj

k +
M∑

j=1

Bij
k

(
ûj

k+wj
k

)
, ŷi

k
=

M∑
j=1

Hij
k xj

k + vi
k

(7)
where Aij

k , Bij
k and Hij

k respresents the respective sub-matrices
of the global matrices Ak, Bk and Hk.

It is important to emphasize that generally, the decomposition
of the lumped-parameter system (5) and (6) into the decom-
posed system (7) is achieved in an exact fashion, i.e., no approx-
imation is necessary. However, for certain applications it might
be more beneficial to ignore neglectable sub-systems in (7), for
instance when certain sub-matrices Aij

k are close to zero. This
certainly could lead to a more efficient estimation process.

Furthermore, in the deterministic case, i.e., the uncertainties
in the models and in the measurements are not considered,
the decomposed system description (7) can be directly used
for a decentralized calculation. That means, the propagation
of the distributed phenomenon can be exactly derived in a
decentralized fashion. In the stochastic case, a decomposition
of the density representation is necessary in order to arrive at a
fully decentralized approach, introduced in the next section.

4. DECOMPOSITION OF DENSITY REPRESENTATIONS

This section is devoted to the decomposition of the density
representation, see Fig. 2 (c). In order to derive a fully decen-
tralized estimation approach, the decomposed density represen-
tation has to match the decomposed system equations (7). The
decomposition of the covariance matrix C̃k of the estimated
state of the distributed phenomenon is shown in Fig. 3.

In the centralized state estimation approach, all the information
about the distributed system and the measurements has to be
collected and processed at a central processing node. In the
case of a fully decentralized estimation, the individual sub-
state vectors xi

k are manipulated separately at each update step,
rather than the entire global state vector xk. By this means,
it is possible to perform the state estimation locally on each
hardware node. Furthermore, only local estimation results need
to be communicated between neighboring nodes, which dra-
matically reduces the communication load.

In a fully decentralized approach for the reconstruction of
distributed phenomena, it is beneficial not to store the occuring
correlations between the individual estimates. That means the
cross-covariances C̃ij

k between the sub-state vector xi
k and xj

k
with i 6= j are not stored in the network. Hence, the covariance
matrix of the state vector xk is characterized by

Ck =
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Fig. 3. Visualization of the decomposition of the density rep-
resentation. The covariance matrix C̃k is decomposed
with respect to the achieved system decomposition. The
covariances C̃ii

k are stored in the network and the cross-
covariances C̃ij

k with i 6= j are neglected.

C̃k = Cov
{

xi
k,x

j
k

}
=
{
C̃ij

k for i = j
unknown for i 6= j

, (8)

which reduces the computational burden, memory resources,
and communication activities between the individual nodes to
a minimum. The structure of the covariance matrix C̃k of the
entire network is depicted in Fig. 3.

In order to visualize the effect of neglecting unknown corre-
lations during the decentralized reconstruction of a distributed
phenomenon, we consider the following example.
Example 3 (Comparison of different reconstruction approaches)
In this example, the distributed system (2) is converted into state-space
form consisting of 3 nodes. The boundary conditions are assumed to be
gN = 0 at both ends. Applying the finite differences (3) and considering
the boundary conditions leads to a system matrix Ak with a similar
structure to (4). The initial state vector is assumed to be x̂0 = [0, 0, 0]T

and the true state to be x̃ = [10, 10, 10]T . The estimated state vector xe
k

can be propagated through the system equation to the next time step by
means of the Kalman prediction step,

x̂p
k+1

= Akx̂
e
k , Cp

k+1
= AkCe

kAT
k ,

where x̂p
k+1

and Cp
k+1

denote the predicted mean and covariance
matrix, respectively. Furthermore, we assume that at time steps k =
[10, 20, 30, 40, 50] a Kalman filter step is performed.

The simulation results are shown in Fig. 4. In the case of a central-
ized estimation approach, the entire covariance matrix Ce

k is stored
and considered in the update step. Hence, the estimation result can
be regarded as a reference solution, as shown in Fig. 4 (a). In the
decentralized approach, the cross-covariances Cij

k
with i 6= j are not

stored and thus cannot be considered in the prediction step. Simply
assuming the individual states xi

k to be uncorrelated leads to over-
optimistic results, as depicted in Fig. 4 (b). It is obvious that due to
the unjustified improvement of the variances, the filter step at k = 10
has almost no influence. In comparison, robust estimators based on
Covariance Bounds systematically consider the unknown correlations
between the individual estimates xi

k and thus provide a consistent and
conservative estimation result, see Fig. 4 (c).

5. DECENTRALIZED ESTIMATION OF DISTRIBUTED
PHENOMENA BASED ON COVARIANCE BOUNDS

In this section, we derive a fully decentralized estimation ap-
proach for the reconstruction of distributed phenomena charac-
terized by partial differential equations (1). As it was shown
in the previous section, neglecting the unknown correlations
during the reconstruction process leads to over-optimistic and



wrong estimation results. In order to get consistent and cor-
rect results, robust estimators are necessary, which consider
unknown correlations. Here, the Covariance Bounds filter is
employed for the decentralized reconstruction of distributed
phenomena. By this means, the individual sensor nodes in the
network locally observe the physical phenomenon and prop-
agate their local estimates to adjacent nodes (without storing
information about their correlations).

5.1 Covariance Bounds Filter

This section is devoted to the description of the Covariance
Bounds filter in a tutorial fashion. More details about this type
of bounding density and its application can be found in our
previous research work (Hanebeck [2001], Hanebeck et al.
[2001], Hanebeck and Horn [2001]).

Let’s assume that we are givenN individual random vectors xi
k

with expected values and individual covariances

E
{
xi

k

}
= x̂i

k , Cov
{
xi

k

}
= C̃ii

k ,

where the estimates xi
k are correlated with completely unknown

correlations. In the case of distributed systems, the individual
state vectors xi contain the local estimates of the phenomenon
to be reconstructed, e.g., local temperature or humidity values.
The main goal is to find a family of bounding covariances Ck
with

Ck ≥ C̃k

for all possible joint covariances C̃k. In our previous work
(Hanebeck [2001]), we have proven that given a positive def-
inite symmetric matrix C̃k with completely unknown correla-
tions (8), a “larger” matrix can be parameterized by

Ck(κk) = diag
(

1
κ1

k

C̃11
k , . . . ,

1
κM

k

C̃MM
k

)
, (9)

where the κi
k must satisfy 0 < κi

k < 1 and
∑M

i=1 κ
i
k = 1.

The individual parameters κi
k are collected in the vector κk.

A similar parameterization of the bounding density can be
found in the case of constrained correlations, i.e., symmetric
constraints (Hanebeck et al. [2001]) or asymmetric constraints.

Applying the Covariance Bounds (9) for bounding the un-
known covariance matrix during the estimation process re-
sults in a family of covariance matrices Ce

k(κk) for the es-
timated state xe

k. The individual members of the covariance
matrix Ce

k(κk) are an upper bound for the union of all possible
matrices with arbitrary correlations. Here, it is emphasized that
the intersection is a tight bound for this union.

In general, it would be best to keep the entire family of bound-
ing densities during their further processing. However, the
problem is that the dimension of the vector parameterizing the
member of bounding densities is increasing with every step.
Hence, for practical reasons it is necessary to select a specific
value κ∗ after certain processing steps. The κk may be selected
in some optimum way, for example minimizing the determinant
or trace of Ce

k(κk).

At this point, it is important to note that the systematic approach
of Covariance Bounds allows to find tight bounding densities
for constrained correlations (Hanebeck et al. [2001]). In addi-
tion, the application of the bounding density is not restricted to
the consideration of unknown correlations, but can be extended
to unknown system matrices and measurement matrices in a
fairly straightforward manner.

5.2 Decentralized Estimation of Distributed Phenomena

As it was demonstrated in Example 3, in the case of unknown
correlations, the decentralized reconstruction neglecting these

time step
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x̃
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)
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Fig. 4. Visualization of the effect of neglecting unknown corre-
lations during the propagation of information through the
network: (a) centralized Kalman filter, (b) decentralized
Kalman filter with neglected correlations, (c) Covariance
Bounds filter.

correlations cannot be applied since it leads to over-optimistic
and even wrong results. Therefore, we derive a robust estimator
based on Covariance Bounds for the decentralized reconstruc-
tion of distributed systems.

The methods introduced here can be applied to the general
decomposed system (7). However, we restrict our attention to
a specific structure where the individual estimates xi

k depend
only on estimates of adjacent nodes. This system structure
naturally results by the application of finite-difference methods
to the distributed system (2).
Example 4 (Considered system structure in decomposed form)
By applying the finite-difference method for the discretization step, the
global system equations (5) and (6) can be decomposed in such a
way that the local state vectors xi

k depend only on the previous state
of adjacent nodes i − 1 and i + 1 (see Example 2). Furthermore, it
can be assumed that the global measurement matrix Hk consists only
of diagonal entries. Thus, the structure of the general decomposed
system (7) reduces to the following

xi
k+1 =

i+1∑
j=i−1

Aij
k

xj
k

+ Bii
k

(
ûi

k + wi
k

)
, ŷi

k
= Hii

k xi
k + vi

k , (10)

where i is the node to be considered, i− 1 is the left neighboring node,
and i+ 1 is the right neighboring node.

In general, there exist both spatial and temporal correlations
inherent to the physical phenomenon to be observed. These cor-
relations are usually caused by partially stochastic dependent
and distributed noise sources affecting more than one location
in the distributed system, and thus more than one sensor node.
However, in this article we assume that the individual compo-
nents of both the global system uncertainty wk and the global
measurement uncertainty vk are uncorrelated. That means, the
covariance matrices of the noise terms are characterized by

Cw
k =

{
Cwij

k for i = j
0 for i 6= j

, Cv
k =

{
Cvij

k for i = j
0 for i 6= j

,

which means no common source term is affecting more than
one location and one sensor node. In the case of temporal
and spatial correlations inherent to the distributed system it is
necessary to derive an appropriate model. Thus, in this article,
only the unknown correlations caused by the decentralized
reconstruction process itself are considered, see (8).

Local Prediction Step The purpose of the local prediction
step is to propagate the state estimate xei

k−1 through the system
equation (10) to the next time step k. The prediction step can be
performed based on the state estimates received from adjacent
nodes. When performing a local prediction step, the mean value
x̂pi

k of the predicted state xpi
k is simply given by the weighted

sum of the mean of the previous states and the input state
according to

x̂pi
k =

i+1∑
j=i−1

Aij
k−1x̂

ej
k−1 + Biiûi

k−1 ,



which obviously does not depend on the correlation between
the individual local state estimates.

The problem is now to calculate the covariance matrix Cpii
k

of the predicted state xpi
k when the correlation between the

individual previous states is unknown. Replacing the unknown
covariance matrix C̃eii

k in the standard Kalman prediction step
by means of the Covariance Bounds (9) leads to the following
equation for the prediction step

Cpii
k (κk)=

i+1∑
j=i−1

1
κj

k

Aij
k−1C

ejj
k−1(A

ij
k−1)T+Bii

k−1C
wii
k−1(B

ii
k−1)T .

It is emphasized that the resulting predicted covariance matrix
Cpii

k (κk) depends on the parameter vector κk.

Local Measurement Step For the purpose of reducing the
estimation uncertainty, measurements are incorporated that are
related to the state via the local measurement equation (10).
Since we assume that there is no spatial correlation in the con-
sidered domain, the local measurement step can be performed
based only on local measurements ŷ(i)

k , i.e., exchange of mea-
surements between the nodes is not necessary in that case. Then
the mean and the covariance matrix are given by

x̂ei
k (κk) = x̂pi

k + Kk(κk)
(
ŷi

k
−Hii

k x̂
pi
k

)
,

Ceii
k (κk) = Cpii

k (κk)−Kk(κk)Hii
k Cpii

k (κk) ,

where the Kalman gain Kk(κk) is given by

Kk(κk) = Cpii
k (κk)(Hii

k )T
(
Cvii

k + Hii
k Cpii

k (κk)(Hii
k )T

)−1

,

which depends on the κk. Due to unknown correlations at
the local prediction step and the resulting family of predicted
covariances, the result of the local measurement step is a family
of bounding densities parameterized by κk.

For the next prediction and measurement step it is necessary
to select an optimal κ∗. There are several possibilities for the
selection of a specific κ∗, which result in a single predicted
density characterized by mean x̂pi

k and covariance Cpii
k . In this

article, the optimal κ∗ is selected immediately after the predic-
tion step when there are no measurements ŷi

k
available. In the

case of local measurements ŷi

k
, the optimal κ∗ is selected after

the measurement step.

6. SIMULATION RESULTS

In this section, the performance of the decentralized recon-
struction of a distributed phenomenon based on the Covariance
Bounds filter is demonstrated by some simulation results as a
proof of concept. We consider the following simulation setup:
Example 5 (Simulated system)
In this simulation, we consider the one-dimensional diffusion equa-
tion (2) subject to boundary conditions corresponding to insulation at
both ends and characterized by the diffusion coefficient α(z, t) = 1.
The distributed phenomenon is discretized by 50 nodes with a spatial
sampling period ∆z = 0.5 and a sampling time ∆t = 0.05. There exists
a noisy input in the center of the considered solution domain given by

û
(25)
k

=

{
100 for 0 ≤ tk < 200

0 for tk ≥ 200
.

The system noise term for the individual discretization nodes is assumed
to be Cwii

k = 0.5. The individual initial states for the estimator are
x̂i
0 = 20, whereas the true initial realization is assumed to be x̃i

0 = 19.
Furthermore, there is a sensor node at each discretization node pi

k with
a measurement noise variance Cvii

k = 3. At every time step, randomly
chosen sensor nodes are performing a measurement step, in order to
reconstruct the distributed phenomenon in a decentralized fashion.
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Fig. 5. (a) Numeric solution of the considered distributed phe-
nomenon. (b) Correlation coefficient rij

k between the indi-
vidual variances of node 25 with right and left neighbor-
ing nodes. It is obvious that the entire network becomes
almost fully correlated during the reconstruction (existing
correlations cannot be neglected).

The numeric solution of the considered distributed phenomenon
p(z, t) is depicted in Fig. 5 (a). Due to the propagation of state
information, the entire network becomes almost fully correlated
during the reconstruction process. In Fig. 5 (b), the correlation
coefficient rij

k between the state estimate xi
k at discretization

node 25 and the neighboring nodes is depicted. Hence, this cor-
relation cannot be neglected during the reconstruction process.

Fig. 6 (a) shows the root mean square error (rms) for 100
Monte Carlo simulation runs averaged over all discretization
nodes. At every update step, ten randomly chosen sensor nodes
are performing a measurement update. The centralized Kalman
filter (blue line) stores and considers the entire covariance
matrix at each update step. That means, the estimation result
can be regarded as the reference solution.

In the case of a fully decentralized reconstruction, the correla-
tions between the individual estimates are not stored and thus
are unknown at each update step. It is obvious from Fig. 6 (a)
(red line) that neglecting the unknown correlations between the
individual estimates causes over-optimistic and wrong results.
This leads to the unjustified improvement of the estimates of the
individual nodes. Therefore, the measurements have a minor
influence on the estimation and estimation error remains. An
higher number of sensor nodes or more accurate measurements
would be necessary to solve this problem, as can be seen in
Fig. 6 (b). The Covariance Bounds filter (green line) provides
a systematic way to consider the unknown correlations between
the individual estimates during the estimation process. By this
means it is possible to derive conservative and consistent esti-
mation results.



7. CONCLUSIONS

This paper introduces a methodology for the decentralized re-
construction of distributed phenomena by means of a sensor
network. In order to estimate the distributed state in a decen-
tralized fashion, the system description is converted and de-
composed, resulting in a network consisting of software nodes
mapped to hardware nodes. For the efficient reconstruction
of large-area distributed systems, local information has to be
propagated through the sensor network in a fully decentral-
ized fashion. This automatically causes unknown correlations
between the individual estimates.

Besides the introduction of a novel methodology for the decen-
tralized reconstruction of distributed phenomena, the novelty of
this article is the systematic consideration of unknown correla-
tions (caused by a fully decentralized approach). The method
of Covariance Bounds is applied to derive robust estimators for
both the local prediction step and the local measurement step.
By this means, it is possible that individual sensor nodes locally
reconstruct large-area physical systems and exchange their es-
timates only with adjacent nodes (without storing information
about correlations). It is important to emphasize that the method
of Covariance Bounds can be applied independently of the con-
version and decomposition method. Furthermore, within this
framework, the application of other estimators robust against
unknown correlations is possible.

For the considered one-dimensional partial differential equa-
tion, the decentralized solution may seem unnecessarily in-
volved. However, the same principles can easily be applied
to multiple dimensions. The consideration of spatial and tem-
poral correlations caused by additional external disturbances
affecting more than one sensor node is left for future research
work. However, it is believed that in such cases it becomes even
more important to consider unknown correlations during the
reconstruction steps.
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