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Abstract: In many tracking applications, the extent of the target object is neglected
and it is assumed that the received measurements stem from a point source. However,
modern sensors are able to supply several measurements from different scattering cen-
ters on the target object due to their high-resolution capability. As a consequence, it
becomes necessary to incorporate the target extent into the estimation procedure. This
paper introduces a new method for tracking the smallest enclosing rectangle of an ex-
tended object with an unknown shape. At each time step, a finite set of noisy position
measurements that stem from arbitrary, unknown measurement sources on the target
surface may be available. In contrast to common approaches, the presented approach
does not have to make any statistical assumptions on the measurement sources.

1 Introduction

Target tracking methods usually assume that the object extension is negligible in com-
parison to the sensor noise. However, due to the high-resolution capabilities of modern
sensors, this assumption is not always justified. Therefore, target tracking algorithms have
to take into account that position measurements may stem from different locations, named
measurement sources, on the extended target object. Scenarios for tracking extended ob-
jects occur in military surveillance with radar devices [WD04, Koc08], but can also be
frequently found in many other areas like robotics. An overview of extended object track-
ing methods is given in [WD04]. In [SG99], the motion of the extended object is modeled
as one bulk that is determined by a finite set of individual components like points on the ob-
ject. In [GS05], the target geometry is modeled with a spatial distribution and in [Koc08],
an ellipsoidal object extension is modeled with random matrices.

In this paper, the extended target object, whose true shape is unkown, is modeled as an
axis-aligned rectangle in two-dimensional space. At each time step, several noisy position
measurements originating from unknown measurement sources on the target surface are
received. In contrast to common approaches, we do not have to make any (statistical)
assumptions on these measurement sources. This is a realistic point of view since the true
shape and properties of the target surface are usually unknown. This approach was first
introduced in [BH09] for circular discs and is applied here to axis-aligned rectangles.



2 Problem Formulation

The considered problem is to track an extended target object based on noisy position mea-
surements stemming from the target surface. In this paper, the true shape of the target
object is modeled as the smallest axis-aligned two-dimensional rectangle (in the follow-
ing abbreviated with SER) that includes the extended target object. An axis-aligned rect-
angle with center

[
xc, yc

]T
, width a, and height b is denoted with Rec(xc, yc, a, b) ={[

x, y
]T ∈ IR2 | |x− xc| ≤ a and |y − yc| ≤ b

}
. At each time step k, the parameters of

the true rectangle are denoted with the four-dimensional vector p̃
k

=
[
x̃c

k, ỹc
k, ãk, b̃k

]T
.We

treat the problem of estimating p̃
k
, which is not directly observable. Instead, at each

time step, nk two-dimensional position measurements {ẑk,j}
nk
j=1 may be available. Each

of these individual measurements ẑk,j is a noisy observation of a two-dimensional point
z̃k,j , called measurement source, which is known to lie in the true rectangle Rec(p̃

k
), i.e,

z̃k,j ∈ Rec(p̃
k
) and ẑk,j = z̃k,j + wk,j , where wk,j denotes two-dimensional additive

white observation noise1 that models a random Cartesian displacement. The probability
distribution of the measurement noise wk,j is known since it results from the particular
sensor model. On the other hand, the position of the measurement source z̃k,j is totally
unknown. It is only assumed to be an element of the true circular disc. This can be seen
as a set-valued uncertainty.

The temporal evolution of the smallest rectangle, which includes the extended object, is
modeled by means of a so-called extended motion model that captures both the motion and
the change of extent of the target object (details are given in Section 4).

3 Static Extended Objects

First, we restrict the problem to estimating the SER of a static extended object based on
measurements not corrupted by noise. We assume that at each time step k one (noise-free)
position measurement ẑk = z̃k ∈ IR2 is given. Each ẑk represents a point known to lie in
the true SER of the target object Rec(p̃), i.e., ẑk ∈ Rec(p̃). In the following, we are going
to derive a recursive procedure for determining the SER of all measurements ẑ1, . . . , ẑk

received so far. If we assume that the measurements cover the entire extended object in
the course of time, this rectangle converges against the SER of the extended object. Let
pe

k−1
=
[
xe

k−1, y
e
k−1, a

e
k−1, b

e
k−1

]T
be the parameters of the SER of the measurements

ẑ1, . . . , ẑk−1. Then, the parameters pe
k

=
[
xe

k, ye
k, ae

k, be
k

]T
of the SER of Rec(pe

k−1
) and

1Note that all random variables are printed bold face in this paper.



ẑk =
[
xm

k , ym
k

]T
are given by

[
xe

k

ae
k

]
=



0.5 ·
[
xm

k + xe
k−1 − ae

k−1

xm
k − xe

k−1 + ae
k−1

]
if xm

k > xe
k−1 + ae

k−1

0.5 ·
[

xm
k + xe

k−1 + ae
k−1

−xm
k + xe

k−1 + ae
k−1

]
if xm

k < xe
k−1 − ae

k−1[
xe

k−1

ae
k−1

]
otherwise

, (1)

[
ye

k

be
k

]
=



0.5 ·
[
ym

k + ye
k−1 − be

k−1

xm
k − ye

k−1 + be
k−1

]
if ym

k > ye
k−1 + be

k−1

0.5 ·
[

ym
k + ye

k−1 + be
k−1

−ym
k + ye

k−1 + be
k−1

]
if ym

k < ye
k−1 − be

k−1[
ye

k−1

be
k−1

]
otherwise

. (2)

Remark 1. In the following, G : IR2× IR3 → IR3 denotes the total function defined by (1)
and (2) that maps ẑk and pe

k−1
to pe

k
.

Remark 2. All rectangles that enclose the measurements ẑ1, . . . , ẑk are given by the so-
called solution set [BH09]

∆(pe
k
) :=

{[
xc, yc, a, b

]T | Rec(pe
k
) ⊂ Rec(

[
xc, yc, a, b

]T )
}

,

which can be computed recursively according to ∆(pe
k
) = ∆(pe

k−1
)∩∆(

[
xm

k , ym
k , 0, 0

]T ).
In this manner, a set-theoretic estimator for the true parameters is obtained (see [BH09]).

The next step is to consider the problem of estimating a static extended object from mea-
surements corrupted by stochastic noise. Now, we assume that at each time step one noisy
position measurement ẑk is available. The measurement ẑk is a noisy observation of the
measurement source z̃k according to z̃k ∈ Rec(p̃

k
) and ẑk = z̃k + wk. The term wk

denotes white measurement noise. Since the measurement source is unknown, no prior
information about z̃k is available. Thus, the knowledge about z̃k is given by the random
vector zk := ẑk − wk. Then, the SER of z̃1, . . . , z̃k−1 becomes a rectangle whose pa-
rameters are uncertain. We denote the random vector that specifies the parameter of this
random rectangle with pe

k−1
. A random point zk can be fused with pe

k−1
by evaluating

G(·) stochastically according to pe
k

= G(zk, pe
k−1

) and pe
1

=
[
z1, 0, 0

]T
. In general, the

distribution of pe
k

cannot be computed in closed form for given distributions of zk and
pe

k−1
, since G(·) is not linear but only piecewise linear. Nevertheless, the distribution of

pe
k

can be approximated with a Gaussian distribution by employing the prediction step
of a nonlinear stochastic state estimator [HH08, JU04]. In the following, we assume that
pe

k
∼ N (p; p̂e

k
,Ce

k) and zk ∼ N (z; ẑk,Cz
k). A point estimate is given by E[pe

k
] = p̂e

k
.

In case the support of the measurement noise wk is bounded, p̂e

k
approaches the true SER

plus the bounded support. Otherwise, p̂e

k
does not converge to a fixed point. In order to

cope with this behavior, one can assume the noise to be bounded and subtract the (known)
support afterwards from the estimated rectangle. This subtraction can be done in a purely
geometric fashion. Another solution, which is employed in Section 5, is to incorporate
further knowledge that allows to separate set-valued and stochastic uncertainties.



4 Dynamic Extended Objects

In order to track an extended object that moves and varies its shape over time, the current
random rectangle Rec(pe

k
) (and implicitly the random solution set ∆(pe

k
) ) has to be

propagated through an (extended) motion model to the next time step. Furthermore, at
each time step a finite set of noisy position measurements {ẑk,j}

nk
j=1 with measurement

noises wk,j is fused with the predicted random rectangle. In this paper, we consider linear
extended motion models of the form

p
k

= Akp
k−1

+ Bk(ûk−1 + vk−1) , (3)

which map the parameters p
k−1

of the rectangle at time step k − 1 to the parameters p
k

at time step k. The term vk−1 denotes zero mean Gaussian white noise and ûk−1 is a
deterministic system input. Since (3) is linear, the prediction pp

k
is Gaussian distributed, in

case pe
k−1

is Gaussian distributed and vk−1 is Gaussian noise. The mean and covariance
matrix of pp

k
can be computed with the Kalman filter prediction step, i.e., p̂p

k
= Akp̂e

k−1
+

Bkûk−1and Cp
k = AkCe

k−1A
T
k + Cv

k−1. In the strict sense, the entire set ∆(pe
k
) would

have to be propagated through the motion model, i.e., ∆(pp
k
) = Ak∆(pe

k−1
)+Bk(ûk−1+

vk−1), which only holds if Ak = I. However, the error made if this does not hold is
typically insignificant. The measurements {ẑk,j}

nk
j=1 can be fused with pp

k
by computing

the SER of Rec(pp
k
) and the random points {zk,j}

nk
j=1 with zk,j := ẑk,j − wk,j . This

can be done recursively by setting pe
k,0

:= pp
k

and computing pe
k,j

= G(zk,j , p
e
k,j−1

) for
j = 1, . . . , nk. The parameters of the random rectangle are then given by pe

k
:= pe

k,nk
.

5 Incorporating Knowledge About the Number of Measurements

In case of noise-corrupted measurements, it is necessary to incorporate further knowledge
about the size of the target object since it is not possible to tell set-valued and stochastic un-
certainties apart. A realistic assumption is that the number of measurements received from
the target object at a particular time step depends on its size [Koc08]. Here, we assume
that a conditional probability density f(nk|rk) that specifies the number of measurements
depending on the current perimeter2 of the true SER of the extended object is available. In
order to incorporate this knowledge into the estimation procedure, we additionally main-
tain a random variable re

k that captures the knowledge about the true perimeter obtained

from the number of measurements nk. The state vector is then given by
[
(pe

k
)T , re

k

]T
,

which can be propagated through the extended motion model according to[
pp

k
rp

k

]
=
[
Ak 0
0 1

] [
pe

k−1

re
k−1

]
+
[

Bk

b
(3)
k + b

(4)
k

]
(ûk−1 + vk−1) ,

where b
(3)
k resp. b

(4)
k denotes the third/fourth row of Bk. We assume that

[
(pe

k−1)T , re
k−1

]T
is Gaussian distributed such that

[
(pp

k
)T , rp

k

]T
is also Gaussian distributed and can be

computed with the Kalman filter prediction step. The prediction
[
(pp

k
)T , rp

k

]T
can be

2It would also be possible to consider the area of the true SER, but this would result in nonlinear constraints.
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(a) Snippet of the state-space for several time steps: True (blue) and estimated (red) rectangle.
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(b) Estimation error.

Figure 1: Tracking an extended object: Simulation run.

updated with {ẑk,j}
nk
j=1 in the following three steps:

1. Compute the joint pdf of
[
(pe

k
)T , re

k

]T
:=

[
(pe

k,nk
)T , re

k

]T
with pe

k,0
:= pp

k
and

pe
k,j

= G(zk,j , p
e
k,j−1

) for j = 1, . . . , nk.
2. Compute the posterior pdf f(pe

k
, re

k | nk) with Bayes’ rule according to

f(pe
k
, rp

k | nk) = c · f(nk | rk) · f(pe
k
, re

k) ,

where c is a normalization constant.
3. Compute the posterior pdf f(pe

k
, re

k | nk, {ae
k + be

k ≤ re
k}). This (truncated) pdf can

be approximated with a Gaussian distribution, if f(pe
k
, re

k | nk) is Gaussian (see the
algorithm for linear inequality constraints in [Sim06]). Note that the above constraint
arises from the fact, that there is no rectangle with perimeter re

k in the set of feasible
rectangles ∆(pe

k
) if ae

k + be
k > re

k.

6 Simulation

Figure 1 depicts the result of a simulation run where the true extended object is in fact
an axis-aligned rectangle. At each time step, the measurement sources are sampled uni-
formly from the true rectangle and the measurement noise wk,j is Gaussian with zero

mean and covariance matrix diag(
[
0.01, 0.01

]T ). Note that the introduced estimator does
not exploit any knowledge about the distribution of the measurement sources which is
assumed to be unkown. At the first time step, the true rectangle is located at position[
1, 1
]T

and has a width of 0.5 and a height of 0.3. We assume that the number of
measurements nk produced by the true rectangle with perimeter r to be approximately



Gaussian distributed, i.e., nk ∼ N ∗(nk; 10r, 0.6). The symbol N ∗ denotes the Gaus-
sian distribution with truncated negative values. The extended motion model is given by
Equation (3) with Ak = Bk = diag(

[
1, 1, 1, 1

]T ), input ûk−1 =
[
2, 0, 0, 0

]T
and input

noise Cv
k = diag(

[
0.02, 0.02, 0.001, 0.001

]T ). Furthermore, the unscented transforma-
tion [JU04] was used to evaluate G(·).

Figure 1a depicts a snippet of the state-space including the true rectangle (blue) for several
time steps. Note that the true rectangle does not necessarily enclose all measurements.
In general, the higher the measurement noise, the more measurements lie outside of the
rectangle. At each time step, the estimated rectangle are plotted red. Figure 1b depicts the
absolute estimation error of the width (blue) |E[ae

k] − ãk| and height (red) |E[be
k] − b̃k|

over 100 time steps. Figure 1b shows the estimation error ‖E[[xe
k, ye

k]T ]− [x̃c
k, ỹc

k]T ‖2 for
the center of the rectangle over the first 100 time steps.

7 Summary and Future Work

In this paper, a novel method for tracking the smallest enclosing axis-aligned rectangle of
extended objects was proposed. Future work consists of extending the proposed method
to rectangles with an arbitrary orientation.
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