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Introduction

To understand - means to simplify. Said by many, origin unknown.
When taking a complex phenomenon a physicist tends to break it into
smaller and simpler parts. Or, from other side, we build a complex and
useful object by taking simple and well studied components and binding
them together. Funny things start to happen with understanding when
a complexity by itself is an object. The latter happens often in nonlinear
physics and chaos along with solitary waves are best representatives.
The second one from this pair is going to be the main object of study
of this thesis in the form of flux solitons or Josephson vortices.

Josephson vortices

A Josephson vortex, or fluxon, is a magnetic quasi-particle existing in
distributed Josephson junctions. It was discovered through an occur-
rence of specific voltage steps on current-voltage characteristics of long
Josephson junctions [FD73]. The fluxon in underdamped Josephson
transmission line (JTL) has properties of a relativistic particle carrying
a magnetic flux quantum Φ0 = h/2e. The size of a vortex can vary
from few to several hundreds of microns, depending on the critical cur-
rent density jc and its velocity u inside the junction. By applying a
bias current, the vortex can be accelerated up to the Swihart veloc-
ity c0, which is the speed of light in JTL. The dynamical properties
of a fluxon resemble a classical particle with a well-defined mass and
velocity. Nevertheless, at sufficiently low temperatures, quantum prop-
erties of fluxons such as tunneling and energy level quantization can be
observed [WLU03].

Another distinctive property of the Josephson vortex in JTL is that it
has properties of a topological soliton [DJ89]. In other words, a fluxon
is a self-reinforcing solitary wave. Solitons are caused by a mutual can-
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celation of nonlinear and dispersive effects in the medium and possess
weird properties. The most notable of them is an ability of solitons to
emerge from a collision with each other unchanged, except for a phase
shift.

There were a number of various applications exploiting fluxons and
their distinctive properties. One of the most significant is the so-called
rapid superconducting single flux quantum (RSFQ) electronics. The
low-temperature RSFQ logic employs magnetic fluxons in Josephson
transmission lines as basic logic bits for classical computation [Lik12,
And10]. RSFQ clock frequencies can reach 770 GHz [CRL99] and, thus,
RSFQ can easily outperform modern room temperature computers.

Quantum computing

The idea of quantum computers has emerged at the end of 20-th cen-
tury. Generally, it was rather the idea of building a simulator for quan-
tum systems than solving classical problems with quantum mechanics
[Fey82]. However, later, some more practical applications of quantum
computing to a classical world were found. The best example to the
present time is a so-called Shor’s quantum factoring algorithm [Sho97]
which allows one to find the prime factors of an n-digit integer N in
only polynomial time of the order n. In comparison, all known classi-
cal algorithms for this problem require time exponentially rising with
t ∼ expn. Thus, the usefulness of quantum computers became obvious
for everyone (especially for military and banks, as both rely heavily on
public-key cryptography based on impossibility of factoring large num-
bers). So, the quest for building a full scale quantum computer began.

Most important building block for every quantum computer is a so-
called quantum bit or qubit. It is called by analogy to classical bits
composing the basis of all modern computers. The main difference be-
tween these two is that the qubit can be in a quantum superposition of
state 0 and state 1. Essentially, for physicists it means that a quantum
two-level system is needed in order to realize such the qubit. It took
some time to build the first real quantum bit in a real experiment with a
charge qubit [NPT99] with the coherence times of several nanoseconds
and a bit later with a flux qubit [Moo99]. Two years later, the first
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simple realization of Shor’s quantum factoring algorithm was demon-
strated with the use of nuclear magnetic resonance techniques and spin
qubits [VSC01]. After this, all kinds of experiments with qubits poured
as from the horn of plenty. Many other types of quantum bits were
invented and investigated [MMS01, YN05, CW08, Mar09].

Merging classical and quantum

Nowadays, quantum computing is a well developed field with many dis-
tinct branches and directions of research. Qubits are no mystery any-
more and the main remaining problem with them is their limited deco-
herence times which have reached these days 100 µs threshold [RGS12].
As the decoherence times are improving new challenges arise. One of
them is the problem of the appropriate interface between the quan-
tum bits and the classical control computer which should process huge
amounts of data to readout the qubit entangled states in order to per-
form quantum computation. There are several possible solutions to
this task - one of them is to use a so-called frequency division technique
to access every single qubit via slightly detuned microwave resonators
and, thus, build a multiplexing readout [JPU12]. Another intriguing ap-
proach is to directly link qubits to the existing low-temperature RSFQ
electronics via implementing a fluxon readout. Experimental investigat-
ing of the latter approach will be the grand goal of the current thesis.

Basically, the challenge is to directly link a single RSFQ logic bit - a
fluxon - and a flux qubit, preserving the quantum dynamics of the latter
and obtaining useful information from the former, all at the same time.
Performing such an experiment may open the road to construction of
a full-scale quantum computer as it allows to build both the quantum
part and the classical control counterpart (in the form of RSFQ digital
computer) on the same chip.

Thesis outlook

The thesis is organized as follows. In the first chapter, a general in-
troduction into superconductivity and related problems is given. It is
mainly dedicated for an unprepared reader and can be easily skipped if
necessary.
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The first part of the second chapter provides the required theoretical
basis of Josephson vortices and long Josephson junctions. The sine-
Gordon equation, governing the dynamics of fluxons in JTLs, is derived
from first principles. Possible excitations of sine-Gordon equation are
discussed as well as their interactions with fluxons. In the second part
of the second chapter, the basics of flux qubits are given. Classical and
quantum mechanical descriptions are provided.

The third chapter presents experimental results on creation and de-
tection of single fluxons in annular Josephson junctions via various
methods. A fine structure of resonant zero-field steps are discussed.
The measurements of fluxon radiation linewidths are presented. Re-
sults on a phase-locking of a single fluxon in the annular Josephson
junction are shown.

Finally, the fourth and last chapter presents results on an actual
fluxon readout of a flux qubit. First of all, the required theory of fluxon
interaction with a current dipole is developed and analyzed. Using
this theory, the discussed fluxon readout can be performed. A direct
spectroscopy of quantum energy levels of a flux qubit via the fluxon
readout is implemented.

4



1 From zero-resistivity to Josephson vortices

The main purpose of the present chapter is to provide a consistent and
simple introduction to the Josephson physics for an unprepared reader
(though the reader has to remember some basic facts from electrody-
namics and quantum mechanics). It will start from the general phe-
nomenon of superconductivity, proceed with basic theories and facts,
and end up with Josephson nonlinear physics.

1.1 Quantum mechanics and superconductivity phenomenon

One could say that the last century in physics passed under the sign of
quantum mechanics. Since the development of the axioms of quantum
mechanics by Nils Bohr, Erwin Schrödinger, and Werner Heisenberg,
huge progress was made on the way of understanding and manipulating
the world of micro- and nano-sizes where the laws of quantum mechanics
dominate over classical physics. Superconductivity, without any doubts,
belongs to one of the areas which benefited most from the development
of quantum mechanics and, virtually, may be a synonym of the word
"quantum".

1.1.1 Zero resistivity and Meissner effect

Zero resistivity and thus perfect conductivity is the property which gave
the name to the phenomenon of superconductivity. Superconductivity
has been known already for more than 100 years. It was discovered in
1911 by H. Kamerlingh-Onnes who studied the temperature dependence
of the resistance of a mercury sample and found its very surprising be-
havior: at a temperature of Tc = 4 K, the resistance abruptly dropped to
zero and remained unmeasurably small at temperatures below Tc. This
temperature dependence of the resistance is schematically illustrated in
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Chapter 1. From zero-resistivity to Josephson vortices

Fig. 1.1. It is important to notice that the resistance at temperatures
below Tc is not just very small, but is exactly zero! Thus, any small
electrical current which may occur in the superconducting sample will
not decay and persists as long as the sample temperature is kept below
Tc.

Figure 1.1: Temperature dependence of resistance R for a typical supercon-
ductor.

For some time, people have believed that a superconductor is simply a
perfect conductor with zero losses. In fact, the reality happened to be a
bit more complicated as it was found that superconductors also have the
wonderful property of expeling magnetic field. Thus, a superconductor
appears to be an ideal diamagnet. This property was experimentally
discovered in 1933 by W. Meissner and R. Ochsenfeld and since then
is called the Meissner effect. What is important for the description of
the Meissner effect is that for the final state of a superconductor it does
not matter whether the magnetic field was switched on for T > Tc or
for T < Tc (see Fig. 1.2).

1.1.2 Theory of superconductivity

The first approach to describe the electrodynamics of superconductors
was the phenomenological theory of the London brothers (1935). Basi-
cally, it was just a modification of the Maxwell equations in order to take
into account the absolute diamagnetism and the absence of dc-resistivity
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1.1. Quantum mechanics and superconductivity phenomenon

Figure 1.2: Meissner effect in a superconductor. An external magnetic field is
always expelled from the interior of the superconductor as it is cooled through
Tc. Taken from [UstNP].

in superconductors. According to the London theory, electrons were
considered as a mixture of two components: a superconducting one and
a normal one. Real superconductor in this theory is modeled by a par-
allel connection of a normal resistor and an ideal conductor. The ideal
conductor in this scheme should also have some finite inductance in
order to describe inertial properties of the superconducting electrons.
The London equations gave a basic description of the behavior of super-
conductors in permanent and variable electromagnetic fields. However,
in the late 1940-s, it became obvious that London theory gives a wrong
answer at least on one question. From this theory followed that the
surface energy between superconducting and normal phases should be
negative σns < 0. This means, that in the presence of external mag-
netic field it is energetically favorable for a superconductor to split into
a configuration of alternating normal and superconducting phases with
the largest surface area possible. This clearly contradicted certain ex-
perimental results which showed σns > 0 for superconductor materials
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Chapter 1. From zero-resistivity to Josephson vortices

as lead or aluminum.
This contradiction was lifted by the Ginzburg-Landau theory (1950),

which essentially was also a phenomenological one, but also took into ac-
count quantum effects. The need to consider quantum effects stemmed
from the fact that on a boundary between normal and superconduct-
ing phases there should always be a finite gradient of a wavefunction
of superconducting electrons (more details on this statement and the
following derivations can be found in [Sch97]). As it is well known
from quantum mechanics, the gradient of a wavefunction |∇Ψ|2 is pro-
portional to the density of kinetic energy. This means that by taking
into account quantum effects, we consider an additional positive en-
ergy stored in the NS-boundary. Thus, quantum effects can allow us to
obtain a positive surface energy σs > 0.

The behavior of superconducting electrons in the framework of Ginzburg-
Landau (GL) theory is described by some efficient wavefunction Ψ(r⃗),
the origin of which was not known at that time. It was postulated that
the superconducting state was a more ordered state than the normal
one and that the transition between them is a phase transition of sec-
ond order (when the state of the system changes continuously but its
symmetry undergoes an abrupt change). So, the low-temperature phase
is a less symmetric state with a larger degree of order. Another major
step made by Ginzburg and Landau was to choose the wavefunction of
superconducting electrons Ψ(r) as the order parameter itself. Moreover,
lets set the normalization of this wavefunction equal to the density of
superconducting electrons

|Ψ(r⃗)|2 = ns

2
. (1.1)

Around Tc and in the presence of magnetic field, the expansion of Gibbs
free energy in powers of Ψ takes the following form:

GsH = Gn+α|Ψ|2+β|Ψ|4+ 1
2m∗ |−i~∇⃗Ψ− 2e

c
A⃗Ψ|2+H2

8π
− H⃗H⃗0

4π
, (1.2)

where Gn is the superconductor density of free energy in the normal
state and H⃗0 is a homogeneous external magnetic field. To obtain the
first equation of the GL theory we integrate Eq.(1.2) over the full super-
conductor volume V and then solve a variational problem with respect
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1.1. Quantum mechanics and superconductivity phenomenon

to Ψ for the free energy. At the end, we obtain the sought-for equation
and the boundary condition for it:

αΨ + βΨ|Ψ|2 + 1
4m

(i~∇⃗ + 2e
c
A⃗)2Ψ = 0, (1.3)

(i~∇⃗Ψ + 2e
c
A⃗Ψ)n⃗ |

S
= 0, (1.4)

where n is the unitary vector, perpendicular to the surface of supercon-
ductor S. Solving the same variational problem on the vector potential
A⃗ we get the second equation of GL theory:

j⃗s = − i~e
2m

(Ψ∗∇⃗Ψ − Ψ∇⃗Ψ∗) − 2e2

mc
|Ψ|2A⃗ (1.5)

These two equations compose the skeleton of the GL theory. Despite
their phenomenological nature they are extremely efficient for the ana-
lytic description of superconductors and rather simple to employ. Ap-
plying GL theory to superconductor alloys it is possible to predict the
existence of two types of superconductors: those with positive and those
with negative surface energies σns, which correspond to the first and the
second type superconductors, respectively.

However, neither the London theory nor the Ginzburg-Landau theory
gave an answer to the question what those mysterious superconducting
electrons are and what the microscopic reason for their existence is.
The decisive step was proposed by L. Cooper - the idea was that if
two electrons in a normal metal, with opposite spins and in the close
vicinity of the Fermi surface, by any reason, are being attracted to
each other, then they assemble a bound state no matter how weak this
attraction is. It was followed by the renowned theoretical paper [BCS57]
by J. Bardeen, L. Cooper, and J. Schrieffer, which has developed the
foundations of microscopic theory of superconductivity - the so-called
Bardeen-Cooper-Schrieffer (BCS) theory.

In BCS theory it was shown that the electron-phonon interaction in
solids can lead, under certain conditions, to attraction between elec-
trons. Let us pretend the following situation: a free electron in a metal
propagates through a crystal lattice with the certain wavevector k⃗1.
Then, at some moment of time, it emits a phonon with a wavevector
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Chapter 1. From zero-resistivity to Josephson vortices

q⃗ which is, shortly after, absorbed by another electron with the ini-
tial wavevector k⃗2. Such a scattering process can be described by the
diagram (see Fig. 1.3) or by the law of momentum conservation:

k⃗1 + k⃗2 = k⃗
′
1 + k⃗

′
1 (1.6)

When an electron moves from the state k⃗1 into the state k⃗′
1, oscillations

Figure 1.3: The diagram illustrating the scattering process of two electrons
by means of a phonon emission and a consecutive absorbtion.

of electron density with the frequency ω = (ϵ
k⃗1

− ϵ
k⃗

′
1
)/~ arise, where ϵ1

and ϵ′
1 are energies in the states k⃗1 and k⃗′

1 respectively. If, as the result of
these oscillations, at this place a local increase of electron density occurs,
then ions of the crystal lattice are attracted to this place to compensate
the excessive negative charge. This motion continues even when the
excessive negative charge will disappear due to a large ion inertia and,
thus, an overcompensation can happen. So, in this place an excessive
positive charge can arise and the second electron with the wavevector k⃗2
is effectively attracted to the first electron. This is one of the possible
scenarios of attractive interaction between electrons in the solids, which
can only happen when lattice oscillations occur in phase with a "driving"
force (which is determined by the electron density oscillations). The
latter is only possible when the oscillation frequency of the driving force
is less than the eigenfrequency of the crystal lattice ω < ωD, where ωD

is Debye frequency. For an electron to move from the state k⃗1 to the
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1.1. Quantum mechanics and superconductivity phenomenon

state k⃗′
1, it is required that the latter state is non-occupied - because

of the Pauli principle. This means, that the described interaction is
realizable in the vicinity of a Fermi surface only. Summarizing all said
above in the form of a matrix element of electron interaction V

k⃗k
′ we

can write a basic law of the BCS theory:

V
k⃗k

′ =
{

−V, (|ϵ
k⃗

− ϵF | ≤ ~ωD) ∥ (|ϵ
k⃗′ − ϵF | ≤ ~ωD),

0, (|ϵ
k⃗

− ϵF | > ~ωD) ∥ (|ϵ
k⃗

′ − ϵF | > ~ωD).
(1.7)

Then, the full energy of the superconductor in the state described by
some arbitrary v

k⃗
distribution is:

Es = Σ⃗
k

2ϵ
k⃗
v2

k⃗
+ Σ

k⃗,⃗k′
V

k⃗k
′v

k⃗
′u

k⃗
v

k⃗
u

k⃗
′ , (1.8)

where the first part gives the full kinetic energy (ϵ
k⃗

= ~2k⃗2/2m −
~2k⃗2

F /2m - is the electron energy counted from Fermi level), v
k⃗

is a
probability that the couple of states (k⃗,−k⃗) are occupied, u2

k⃗
= 1 − v2

k⃗
.

Minimizing the energy Es with respect to v
k⃗

we obtain:

v2
k⃗

= 1
2

(1 −
ϵ
k⃗

ϵ2
k⃗

+ ∆2
0
), (1.9)

where
∆0 = V Σ⃗

k′

′
v

k⃗
u

k⃗
. (1.10)

The summation in Eq.(1.10) is carried only over the states k⃗ which lay in
the spherical layer nearby the Fermi surface, where the matrix element
V

k⃗k
′ is nonzero. Putting Eq.(1.9) into Eq.(1.10) and substituting the

summation over k⃗ by integration over the respective energy scale, we
obtain at the end:

∆0 ≃ 2~ωD exp(− 1
N(0)V

), (1.11)

where N(0) is the density of states near the Fermi level. The full energy
difference of a normal metal state and a superconducting state at zero
temperature T = 0 can be defined as:

W = Es − En. (1.12)
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Chapter 1. From zero-resistivity to Josephson vortices

Substituting Eq.(1.8) into Eq.(1.12) (the energy of the normal metal
state is simply defined by the kinetic energy of the Fermi sphere En =

Σ
k⃗≤k⃗F

2ϵ
k⃗

and taking into account Eq.(1.11), results in:

W = −1
2
N(0)∆2

0. (1.13)

Thus, the difference between the energies of the superconducting and
the normal states is negative which means that the superconducting
state is preferred at T = 0. Using the same approach, one obtains the

Figure 1.4: The energy gap ∆0 separates the area of elementary energy
excitations from the ground state of superconductor.

energy wq⃗ required to add a single unpaired electron with momentum
q⃗ to a superconductor. This energy turns out to be:

wq⃗ =
√
ϵ2q⃗ + ∆2

0. (1.14)

This is a very important formula for explaining superconductivity as it
tells us that when one electron is added to the superconductor in the
ground state, we increase the total energy at least by the amount of
∆0. It means that the spectrum of elementary excitations is separated
from the superconductor ground state by the value ∆0, also called the
"superconductor energy gap" (see Fig. 1.4). This property is very im-
portant for understanding of physics of superconductors and explains
the existence of the mysterious superconducting electrons. The latter
are simply the electron Cooper pairs condensed into the ground state.
As an energy larger than twice the gap E > 2∆0 is needed to tear apart
a single Cooper pair, it means that all inelastic scattering processes with
an energy difference smaller than 2∆0 are impossible in the supercon-
ducting state and therefore do not give rise to a finite resistance.
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1.1. Quantum mechanics and superconductivity phenomenon

1.1.3 Flux quantization

Figure 1.5: A superconductor with a hole and magnetic field H. Taken from
[UstNP].

The quantization of magnetic flux is an important phenomenon in
physics of superconductors. It can be derived from the following as-
sumptions: the charge carriers in superconductors are Cooper pairs
which are formed by two separate electrons, thus the elementary charge
is equal to 2e. The second idea is that all electron pairs form a con-
densate which is described by a wave-function Ψ and share a common
energy level:

Ψ =
√
ns

2
exp(iθ(r)). (1.15)

The continuity equation in quantum mechanics gives us the expression
for an effective particle flow:

ns

2
v⃗s = i~

2m
(Ψ∇⃗Ψ∗ − Ψ∗∇⃗Ψ). (1.16)

The canonical momentum of a Cooper pair in the magnetic field H⃗ =
∇⃗ × A⃗ is given by:

p⃗ ≡ ~∇⃗θ = 2mv⃗s + 2eA⃗ (1.17)

Taking the equations Eqs. (1.15),(1.16) and substituting them into Eq. (1.17)
results in the quantum-mechanical generalization of the second London
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Chapter 1. From zero-resistivity to Josephson vortices

equation in the gauge invariant form:

J⃗s = nsev⃗s = 1
∆0

(Φ0
2π

∇⃗θ − A⃗) (1.18)

where
Φ0 = π~

e
= 2.0678 × 10−15Wb (1.19)

is the magnetic flux quantum. Let us consider a situation with a super-
conductor with a hole as shown in Fig. 1.5. First, a magnetic field H⃗ is
applied perpendicular to the plane of superconductor at a temperature
T > Tc. Then, the superconducting state is achieved by lowering the
temperature T < Tc in the presence of constant external magnetic field
H⃗. One can estimate a total flux Φ inside the hole by integrating (1.18)
along the contour C, which yields:

Φ0
2π

∮
C

∇⃗θd⃗l =
∮

C
A⃗d⃗l = Φ. (1.20)

The wave function (1.15) must have a single value at any point of the
superconductor. This requires that exp(iθ) = exp(iθ + 2πk), where
k = 0, ±1, ±2, ... is an integer. Finally, it gives us:

Φ = kΦ0, (1.21)

i.e. the magnetic flux in the hole is quantized.

1.2 Josephson effect

The Josephson effect was predicted by Bryan David Josephson in 1962
in his classic paper [Jos62]. He stated a hypothesis that a tunnel junc-
tion between two superconductors should allow a small non-dissipative
current flow through it because of the tunneling of Cooper pairs. He
also predicted that an application of a constant voltage V to such a
junction will cause the current to oscillate with a frequency ν = 2eV/h.
Back at that time, it was a pretty arguable result which has created
turbulent discussions. It seemed, that if an amplitude of tunneling
probability for a single electron is equal to exp(−a) ≪ 1, so that the
tunneling probability is exp(−2a), then the tunneling amplitude for two
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1.2. Josephson effect

electrons would be exp(−2a) and, consequently, the tunneling probabil-
ity of Cooper pairs would be negligible with respect to single electron
tunneling exp(−4a) ≪ exp(−2a). However, such reasoning does not
take into account the coherence of Cooper pairs tunneling, because of
which the tunneling current of a pair becomes proportional to exp(−2a).
The first experimental evidence for the Josephson effect was found by
Anderson and Rowell [AR63].

1.2.1 Semi-phenomenological approach

There are many ways of deriving Josephson equations. It is very useful
and simple to use the semi-phenomenological approach proposed by
Feynman [FLS65]. Lets consider the tunneling system: superconductor
- tunnel barrier - superconductor, as illustrated in Fig. 1.6. If the current

Figure 1.6: General model of a Josephson junction as a tunnel barrier be-
tween two bulk superconductors S1 and S2.

flowing through the tunnel barrier is large enough, I > Ic, a finite
voltage V appears across the junction. The energetic spectrum of the
Josephson junction with applied voltage V is shown in Fig. 1.7. If our
system can exist only in discrete energy states, then the system wave
function can be expanded into the full basis:

Ψ(t) = Σ
i
ci(t)ψi. (1.22)

A transition of a Cooper pair from the ground level of S1 to the ground
level of S2 is defined by the matrix element of a system Hamiltonian:

Hij =
∫

Ψ∗
i ĤΨjdV,H12 = H21 = K. (1.23)
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Chapter 1. From zero-resistivity to Josephson vortices
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Figure 1.7: The energy spectrum of a tunnel Josephson junction with an
applied voltage V . The ground states of S1 and S2 are separated by the
voltage 2eV .

Substituting (1.22) into the time-dependent Schrödinger equation and
taking into account (1.23), we get:

i~
dc1
dt

= eV c1(t) +Kc2(t), i~dc2
dt

= Kc1(t) − eV c2(t). (1.24)

Now, we recall that we are dealing with superconductors and c1 and c2
are the state amplitudes of Cooper pairs on the ground levels of S1 and
S2, respectively. This means that |c1|2 and |c2|2 are normalized in a way
to give the mean density of superconducting electrons |c1|2 = |c2|2 = nS .
Here, for simplicity, we assume that S1 and S2 superconductors are
made from the same material. Introducing amplitudes c1 and c2 as
follows:

c1 =
√
nSeiθ1 , c2 =

√
nSeiθ2 , (1.25)

substituting them into (1.24) and separating real and imaginary parts,
we obtain the following equations:

dnS

dt
= 2KnS

~
sin φ, (1.26)

dθ1
dt

= −K

~
cos φ− eV

~
, (1.27)

dθ2
dt

= −K

~
cos φ+ eV

~
, (1.28)
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1.2. Josephson effect

where φ = θ2 − θ1. The current through the junction is proportional to
the time derivative of the superconducting electron density I ∼ dnS/dt

(see [Tin75] for details). Then, from Eq. (1.26), we immediately obtain
the first Josephson equation:

I = Ic sin φ. (1.29)

Subtracting Eq. (1.27) from Eq. (1.28), we obtain the second Josephson
equation:

V (t) = h

2e
dφ

dt
. (1.30)

.

1.2.2 Microscopic approach

The derivation of the Josephson relations made above is sufficient for the
phenomenological explanation of weak superconductivity. However, for
the microscopic deciphering of constants such as the Josephson critical
current Ic, the microscopic approach of the Bardeen-Cooper-Schrieffer
(BCS) theory is required. It is based on the tunneling Hamiltonian HT

written in terms of creation and annihilation operators:

H = HL +HR +HT , (1.31)

where HL and HR are the Hamiltonians of left and right supercon-
ducting electrodes, HT = Σ⃗

kq⃗p
[T

k⃗q
c+

k⃗p
dq⃗p + T ∗

k⃗q
d+

q⃗pck⃗p
] corresponds to the

tunneling interaction and is responsible for the transfer of electrons be-
tween superconducting electrodes (c+

k⃗p
(c

k⃗p
) is the operator of creation

(annihilation) of an electron with momentum k⃗ and spin p in the left
electrode, d+

q⃗p(dq⃗p) is the operator of creation (annihilation) of an elec-
tron with momentum q⃗ and spin p in the right electrode, T

k⃗q
is the

matrix element defining the probability of electron transfer from the
left state k⃗ into the right state q⃗). The derivation of the Josephson re-
lations is reduced to the calculation of this tunneling matrix T

k⃗p
. This

is a rather long and complex procedure, not suited well for the theory
introduction of this experimental thesis, so I will proceed right away to
the main results of such a derivation.
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Chapter 1. From zero-resistivity to Josephson vortices

One of the most important results from the BCS calculation of the
Josephson current is the estimate of the Josephson critical current based
on microscopic parameters versus temperature for the case of two similar
superconductors forming the Josephson junction. This calculation has
been done for the first time by V. Ambegoakar and A. Baratoff [AB63]
and concludes as:

Ic(T ) = π∆(T )
2eRn

th
(∆(T )

2kBT

)
, (1.32)

where Rn is the normal state resistance of the Josephson junction. It
is important for us to remember this formula as it fuses together two
of the most important quantities for superconductors as a function of
electron temperature T : the critical current Ic and the energy gap ∆.

Another interesting result arises during the direct calculation of a
Josephson current through the BCS theory. The resulting formula for
the current through the junction, derived from the Hamiltonian (1.31),
for a finite applied voltage, reads [Jos62]:

I(t, V, T ) = Ic(V, T ) sinφ(t)+V σ0(V, T ) [1 + ϵ(V, T ) cosφ(t)] , (1.33)

where the first part of the equation describes the supercurrent, while the
second - a quasiparticle current in the finite voltage regime which, sur-
prisingly, contains the cos φ contribution. It is interesting to mention
that the parameter ϵ, which determines the sign of this additional con-
tribution, is roughly ϵ ≃ −1 (basically this contribution is absent and
non-observable) as found from various experiments [PFL72, FPT73]
while it should vary from −1 to 1 based on different theoretical predic-
tions. This mysterious problem of the cos φ term has stayed unsolved
despite many publications on-topic.

1.3 Conclusions

This chapter presented a simplified introduction into the physics of
conventional superconductors and Josephson junctions. The concepts
of flux quantization, superconducting energy gap, and Josephson equa-
tions were developed. For a more detailed exposition of the general
physics of superconductivity and Josephson effects, the reader is ad-
vised to address one of the following textbooks [Sch97, Tin75, Lik86].
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2 On fluxons and flux qubits

In this chapter, a basic description on Josephson vortices or fluxons and
flux qubits as well as the idea of fluxon based readout of superconducting
qubits is given.

2.1 Fluxons

Quantization of magnetic flux is the well-known phenomenon for super-
conductors (see Section 1.1.3). Magnetic flux quanta Φ0 can exist in an
isolated form of magnetic particles in long Josephson junctions. They
are known as Josephson vortices or fluxons. Physically, each fluxon is
formed by a screening current, circulating between two electrodes of a
long Josephson junction (illustrated below in Fig. 2.3). Since the dis-
covery of Josephson vortices in 1972 [FD73], a lot of efforts were put
into the investigations of fluxon physics and related topics. Detailed
research of current-voltage characteristics (so-called zero field steps),
caused by the fluxon motion, and their fine structure has received a lot
of attention [MBM93, BMU96, MMF98, WUV00, PAU08]. Advanced
experiments have also showed the quantum limited behavior of single
Josephson vortices [WLU03].

A theoretical description of fluxons can be given via considering a
long Josephson junction as a medium for propagation of electromagnetic
waves and applying Josephson relations to it, thus obtaining a model in
terms of the Josephson phase. To do so, it is useful first to describe the
dynamics of the Josephson phase in a point-like Josephson junction.

2.1.1 RSCJ model

To understand and describe physical processes in a single lumped Joseph-
son junction it is helpful to use the equivalent schematic approach de-
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Chapter 2. On fluxons and flux qubits

Figure 2.1: a) Sketch of a lumped Josephson junction. b) Equivalent circuit
representation of a lumped Josephson junction.

picted in Fig. 2.1. The electrodynamics of a small Josephson junction
can be accurately described neglecting a variation of the phase differ-
ence across the junction area. This approximation is valid given the
lateral junction dimensions are less than the characteristic length scale
of magnetic field screening inside the Josephson junction - the so-called
Josephson penetration depth λJ - and given that external magnetic
fields are small enough. In this limit, a small junction is accurately
described by the lumped circuit model shown in Fig. 2.1. The junction
is modeled by a parallel connection of an ideal Josephson junction with
a certain critical current Ic, a resistor Rn and a capacitor C. Writ-
ing down the Kirchoff laws for the equivalent circuit, the total current
through the junction can be represented as:

I = Ic sin φ+ V

Rn
+ C

dV

dt
. (2.1)

Equation (2.1) can be rewritten in terms of the superconducting phase
difference φ using the Josephson equations (1.30) and (1.29):

I = Ic sin φ+ Φ0
2πRn

dφ

dt
+ Φ0C

2π
d2φ

dt2
. (2.2)

This model is called the resistively, capacitively shunted junction (RCSJ).
It maps the described Josephson junction to another system which is
a driven and damped pendulum. In other words, it corresponds to a
motion of a point-like particle in a tilted sinusoidal potential, which is
also sometimes called a wash-board potential. The rich and non-linear
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2.1. Fluxons

dynamics of such a system can be investigated by means of Josephson
junctions.

The Josephson energy stored inside a junction can be derived using
U =

∫
IV dt and the Josephson relations (1.29), (1.30), yielding:

U(φ) = EJ (1 − cosφ) , (2.3)

where EJ = ~Ic/2e. The constant of integration is chosen in such a way
that U(φ) has a minimum of 0 in the case of vanishing phase difference,
which is the case in a bulk superconductor.

In a situation when an alternating current is applied, the Josephson
junction can be considered as a non-linear inductor. One can estimate
the Josephson self inductance LJ(φ) by recalling, again, the Josephson
relations (1.29), (1.30) and applying the response relation of a linear
inductor V = −LdI/dt:

LJ(φ) = Φ0
2πIc cosφ

. (2.4)

2.1.2 sine-Gordon equation

The wave equation governing electrodynamics of a long Josephson junc-
tion (LJJ) can be derived from the RCSJ model discussed above. For
this we separate the LJJ in many elementary cells as depicted in Fig. 2.2
and write a system of Kirchoff equations while taking the flux quanti-
zation (1.19) into account:

φk+1 − φk = Φk = 2π
Φ0

(Φext − ILkL), (2.5)

where Φext = µ0HΛ∆x is the flux threading the k-th loop cell (Λ is a
magnetic penetration length deep into the superconducting electrodes).
In the limit ∆x → 0 we can write:

φk+1 − φk

∆x
= ∂φ

∂x
= 2π

Φ0
(µ0ΛH − LdIL), (2.6)

where Ld = L/∆x. Differentiating Eq. (2.6) with respect to the space
variable we find:

∂2φ

∂x2 = 2π
Φ0

(µ0Λ∂H
∂x

− L
∂IL

∂x
). (2.7)
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Chapter 2. On fluxons and flux qubits

Figure 2.2: a) Sketch of a long Josephson junction. b) The lumped elements
model of a long Josephson junction. The superconducting phase difference at
the node k is given by φk. Φk is the total flux enclosed in the k-cell.

From the Kirchoff law at the node k + 1 we get:
∂IL

∂x
= j − jRCSJ − ∂IRs

∂x
, (2.8)

where j = I/∆x and jRCSJ = IRCSJ/∆x. Substituting in Eq. (2.8),
IRs = −1/ρs∂V/∂x, the RCSJ current density from Eq. (2.2) and con-
sidering a homogeneous external magnetic field ∂H⃗/∂x = 0, we derive
the following equation:

Φ0
2πLd

∂2φ

∂x2 = −j + jc sinφ+ V

ρn
+ Cd

∂V

∂t
− 1
ρs

∂2V

∂x2 , (2.9)
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2.1. Fluxons

where Cd = C/∆x , ρn = Rn∆x and ρs = Rs∆x. Expressing voltages in
terms of phase using the second Josephson relation results in the one-
dimensional non-linear wave equation for the superconducting phase
difference φ(x, t), the so-called perturbed sine-Gordon equation (PSGE):

Φ0
2πLd

∂2φ

∂x2 − Φ0Cd

2π
∂2φ

∂t2
−jc sinφ = −j+ Φ0

2πρn

∂φ

∂t
− Φ0

2πρs

∂3φ

∂x2∂t
, (2.10)

where ρn is the quasiparticle resistance per unit length, ρs is the surface
resistance of the superconducting electrodes per unit length, Ld is the
specific inductance of the junction, Cd is the specific capacitance, jc
is the critical current density, and j is the bias current density. This
equation provides us with the main tool of describing the behavior of
long Josephson junctions in various regimes. The electric and magnetic
fields between junction electrodes can be expressed in terms of phase
difference as:

E = Φ0
2πdt

∂φ

∂t
, (2.11)

H = Φ0
2πLd

∂φ

∂x
. (2.12)

The characteristic inductance and capacitance of the junction are given
by:

Ld = µ0d, (2.13)

Cd = ϵ0ϵt
dt

, (2.14)

where d is the magnetic thickness of the junction. In the limit of thick
electrodes (thicker than λL), it is given by:

d = 2λL + dt. (2.15)

Dividing Eq. (2.10) by the critical current density jc and introducing the
characteristic screening length of magnetic field, which is the Josephson
penetration depth λJ , and the characteristic plasma frequency ωp:

λJ =
√

Φ0
2πLdjc

, (2.16)

ωp =
√

2πjc
Φ0Cd

, (2.17)
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Chapter 2. On fluxons and flux qubits

the PSGE can be rewritten in a clearer format:

λ2
J

∂2φ

∂x2 − 1
ω2

p

∂2φ

∂t2
− sinφ = − j

jc
+ 1
ω2

pCdρn

∂φ

∂t
− λ2

JLd

ρs

∂3φ

∂x2∂t
. (2.18)

From the form of this wave equation it is easy to see that the phase
velocity of linear waves in the considered system is given by:

c0 = ωpλJ = c

√
dt

ϵtd
, (2.19)

where c0 is usually called the Swihart velocity [Swi61] and c is the phase
velocity of light in vacuum. Typically, in long Josephson junctions, cS

is only a few percent of c.
For theoretical studies and especially for numerical applications it

is useful to normalize the PSGE by redefining the time and space as
follows:

t̃ = ωpt, (2.20)

x̃ = λ−1
J x. (2.21)

Then, the PSGE equation takes the form:

∂2φ

∂x̃2 − ∂2φ

∂t̃2
− sinφ = −γ + α

∂φ

∂t̃
− β

∂3φ

∂x̃2∂t̃
. (2.22)

The perturbation terms in the right part of Eq. (2.22) are defined as:

γ = j

jc
, (2.23)

α =
√

Φ0
2πjcCd

, (2.24)

β = ωpLd

ρs
, (2.25)

where the first term γ in equation (2.22) is the normalized bias current,
the second one is the damping due to quasiparticle resistance and the
last one is the damping due to surface losses in the superconducting
electrodes.
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2.1. Fluxons

2.1.3 Josephson vortices

Quantization of magnetic flux is a well-known phenomenon in supercon-
ductivity. The same applies to long Josephson junctions. Magnetic flux
quanta Φ0 can exist there in a form of specific magnetic particles. These
are known as Josephson vortices or fluxons. Physically, each fluxon can
be treated as a screening current, circulating between two electrodes of
a long Josephson junction (see 2.3). Since the discovery of Josephson
vortices in 1972 [FD73] a lot of efforts were put into detailed investi-
gations of fluxon’s physics and related topics. Particular experiments
have also shown the quantum limited behavior of a single Josephson
vortex [WLU03].

Figure 2.3: Schematic cross section (a) of a distributed Josephson junction
with a fluxon (Josephson vortex) located deep inside it. Spatial profiles shown
below are (a) the phase difference φ, (b) the normalized magnetic field H ∼
dφ/dx , and (c) the supercurrent density js ∼ sin φ. Taken from [UstNP].
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Chapter 2. On fluxons and flux qubits

2.1.4 Excitations in long Josephson junctions

Different types of excitations (including fluxons) in long Josephson junc-
tions can be explained by means of the sine-Gordon equation. For this
we can take the normalized PSGE (2.22) and consider the situation of
a linear infinitely long Josephson junction with the following boundary
conditions (from here on we omit the tilde sign ˜ on top of space and
time variables in the normalized sine-Gordon equation and other related
formulas):

∂φ

∂x
|x=±∞ = 0. (2.26)

Neglecting all perturbation terms in the PSGE, Eq. (2.22) becomes

∂2φ

∂x2 − ∂2φ

∂t2
− sinφ = 0, (2.27)

which has an exact solution:

φf (x, t) = 4 arctan
[
exp

(
±x− ut− x0√

1 − u2

)]
. (2.28)

This solution describes a kink or antikink in the phase difference φ

(depending on the polarity of the sign in the exponent) moving with a
certain velocity 0 ≤ |u| < 1. In Fig. 2.3 we can see the magnetic field
profile of such an excitation. Integrating the magnetic field over the
profile of a single vortex (antivortex) we obtain that the total amount
of magnetic flux carried by the kink equals exactly one flux quantum
Φf = Φ0. Therefore, such a kink is usually called fluxon or Josephson
vortex.

Kinks in the sine-Gordon system have all properties of solitons. One
of the most amazing properties of solitons is that after the collision of
two solitons, they sustain their respective velocities and shapes. Colli-
sion usually results only in a slight time delay (or, in a phase shift, in
other words). Solitonic solutions usually appear in a media with strong
nonlinear effects and finite dissipation. A fluxon in the long Josephson
junction is a topological soliton as there are no dynamical restrictions
of its existence. This is in contrast to dynamical solitons, which have
to have a certain energy to exist. The latter usually arises in media
where energy pumping stimulates non-linear effects (for instance, such
a situation occurs in optical fibers).
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2.1. Fluxons

Figure 2.4: The dispersion relation for Josephson plasma waves.

Solutions of the PSGE in the form of topological solitons (2.28)
may be the most beautiful ones but the simplest possible solution of
Eq. (2.29) is trivial small amplitude oscillations |φ| ≪ 1 in the form of
plasma waves:

φpw = A exp[i(kx− ωt)], (2.29)

where k is the wave number, ω is the frequency of the linear wave with
the dispersion relation (also see Fig. 2.4):

ω =
√

1 + k2. (2.30)

Another interesting analytic solution of Eq. (2.27) describes the bound
kink-antikink (or fluxon-antifluxon) state. This so-called breather solu-
tion has the form:

φbr = 4 arctan
[
tan θ sin(t cos θ)

cosh(x sin θ)

]
, (2.31)

where 0 < θ < π/2 is the initial phase of the breather. Basically, this
solution describes bound oscillations of a fluxon-antifluxon pair around
a certain point (see Fig. 2.5). The breather cannot decompose into
separate fluxons because its total energy is less than the rest energy of
two separated solitons.
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Chapter 2. On fluxons and flux qubits

Figure 2.5: Breather solution of the unperturbed sine-Gordon model with
θ = 1 and initial velocity v = 0. Taken from [UstNP].

Unfortunately, it is difficult to observe Josephson breathers as they
tend to decay in the presence of perturbations in the sine-Gordon model
(for instance, finite damping for high frequencies, which is, in fact, al-
ways present in real systems, kills these oscillations rather quickly). So
far, there is no confirmed direct observation of breathers in continuous
long Josephson junctions but there are many speculations and theories
about them. However, there are confirmations of observance of analo-
gous breathers (so-called rotobreathers) in discrete systems, e.g. discrete
Josephson junction ladders [BAZ00].

At last, there are many other more sophisticated solutions of the per-
turbed sine-Gordon system and even more of them for the full PSGE
equation. Most of them can be treated as various non-linear super-
position of different number of fluxons or antifluxons, plasma waves,
breathers, etc. The details of these solutions can be found elsewhere
[BP82, Lik86].

2.1.5 Dynamics of fluxons

A Josephson vortex can be driven by external forces, for an example by
a bias current applied to the junction. The bias gives rise to a Lorentz
force acting on the fluxon, resulting in acceleration of a Josephson vortex
along the junction. Due to the presence of quasiparticle dissipation,
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2.1. Fluxons

Figure 2.6: The I-V characteristic of a quasi-one-dimensional Pb-PbOx-Pb
junction (0.80 mm × 0.10 mm) at 4.2 K, measured by Chen, Finnegan and
Langenberg in 1971 [CFL72, CL72].

the driving force and the damping are balanced for a certain vortex
velocity, leading to a steady motion of a kink and, therefore, due to the
AC Josephson relation, to the emergence of a finite voltage drop across
the Josephson junction.

This motion usually appears on the IVC of the junction as an almost
vertical voltage step (see Fig. 2.6). These steps were discovered in the
past as anomalous dc current singularities [CFL72, CL72]. Such sin-
gularities appear in Josephson junctions with lateral dimensions much
greater than λJ . Later, the name of "zero field steps" was applied to
these peculiarities underlining the absence of any external magnetic field
needed to observe them.

More generally, for a single Josephson vortex, an ideal current-voltage
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Chapter 2. On fluxons and flux qubits

Figure 2.7: A four-pole measurement scheme of an annular Josephson junc-
tion in the "Lyngby" geometry. This type of electrodes supposes to organize a
homogeneous bias current in the AJJ and, thus, a homogeneous Lorentz force
acting on a fluxon.

characteristic looks like as it is shown later in Fig. 2.8. The under-
lying physical picture here is rather simple: for small bias currents
γ = Ib/Ic ≪ 1 the fluxon behaves as a purely classical particle moving
under an external force in a medium with viscous losses; for larger bi-
ases γ ∼ 1, the fluxon velocity approaches the phase speed of light in
the long Josephson junction and therefore the fluxon starts to undergo
Lorentz contraction as well as other relativistic effects. It is possible to
calculate the precise form of the I-V curve for the single fluxon taking
into account losses in the form of viscous damping with a coefficient α
and energy insertion in the form of a homogeneous bias current γ. For
every bias current value γ a certain equilibrium fluxon’s velocity vfluxon
exists for which the energy input by bias current is exactly compen-
sated by losses. This calculus has been done by McLaughlin and Scott
[MS78]. The resulting formula of the equilibrium fluxon velocity has
the following form:

u = 1√
1 + (4α/πγ)2 . (2.32)
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2.1. Fluxons

2.1.6 Detecting a fluxon

For experiments with fluxons it is convenient to use so-called annular
Josephson junctions (AJJs) rather than the linear ones. A sketch of
such an AJJ is shown in Fig. 2.7. A convenience of AJJs lies in the
absence of boundaries for the fluxon moving inside. Further, due to
the closed topology of the annular Josephson junctions, it is possible
to permanently trap the fluxon in it and study fluxon dynamics with
minimum complications. Various techniques for creation and detection
of fluxons in the AJJ will be discussed below.

There are several means of detecting Josephson vortices in the annu-
lar Josephson junctions. The simplest is to measure a current-voltage
characteristic using the scheme depicted in Fig. 2.7. Characteristic ver-
tical current step for a small non-zero voltage indicate trapped a fluxon
inside the AJJ (see Fig. 2.8). In the case of several oscillating fluxons
in the AJJ, the characteristics form of the current-voltage dependence
stay the same but the maximum voltage scales proportionally with the
fluxon number Vmax = (nΦ0c0)/L.

Critical current diffraction patterns

Another method for fluxon detection is to measure a dependence of
the critical current of the AJJ versus an in-plane magnetic field H⃗.
Observation of a characteristic minimum of the critical current around
the zero magnetic field (see Fig. 2.9) also provides an evidence of having
the Josephson vortex inside the AJJ [MMF98].

Microwave radiation measurements

The third way can be realized by detecting a direct microwave radiation
of the resonant fluxon motion inside the annular Josephson junction.
As the fluxon carries a net Φ0 magnetic flux, its oscillations with the
frequency ν in the AJJ create cyclotron radiation at the same frequency.
This radiation can be detected by coupling a microwave antenna to the
AJJ. The obvious problem here is that the power of radiation from
the single fluxon oscillations can be very low so the use of a low-noise
microwave amplifier with sufficient gain is required to resolve a tiny
microwave signal.
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Figure 2.8: An ideal current-voltage characteristics of the annular Josephson
junction with a trapped fluxon inside for the damping α = 0.025. Calculated
numerically using the perturbed sine-Gordon equation (2.22).

Measurements of current-voltage characteristics for AJJs is a simple
and reliable technique of investigating fluxon dynamics. However, in
case of long junctions with L ∼ 1 mm and longer, it is hard to extract
all needed information from simple IVCs as it becomes progressively
complex to measure accurately enough small voltages on the scale of
nanovolts across the AJJ with a single oscillating fluxon. Such detec-
tion of the single fluxon radiation has been performed in the case of a
linear Josephson junction in [MBM93]. To our knowledge, there were
no experiments conducted on detection of fluxon radiation from the AJJ
and comprehensive studies of the later. The only know research which
involves this topic was described in [KV05], where the AJJ was used in
order to construct a low-temperature microwave clock generator. There,
the oscillating fluxon was employed as a heterodyne on-chip microwave
source with a specific microwave antenna coupled to the junction. The
detailed results on microwave radiation measurements of fluxon oscilla-
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Figure 2.9: A typical Fraunhofer diffraction pattern for the critical current
of an AJJ versus the in-plane magnetic field H. The blue dashed line depicts
the situation of the fluxon-free AJJ. The red line corresponds to the case with
a single fluxon trapped in the AJJ.

tions in the AJJ will be presented in the Chapter 3.

2.1.7 Creating a fluxon in annular Josephson junctions

One can create a single Josephson vortex inside ring-shaped Josephson
junctions by different means. The simplest one is to cool down the
sample several times in a small magnetic field and hope to trap a single
fluxon during one of these cooldowns [MAK08] (a so-called "try and
pray" method). Another approach is to apply a certain dc current to
the current injectors into the top electrode of the AJJ [Ust02]. The
later way is much more reliable than the first one.

However, the injection current creates an additional inhomogeneity
in the junction and perturbs the current-voltage characteristics, thus,
making the task to analyze the internal fluxon dynamics more complex.
The simple understanding of this one can obtain from considering the
current injectors as an additional current (magnetic) dipole in the AJJ.
Due to solitonic nature of the fluxon, it does not interact with the
mentioned dipole except for a phase shift. However, other excitations
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Figure 2.10: Fluxon creation in an annular Josephson junction by a local
current dipole. Purple lines show the flow of electrical currents.

as, for example, plasma waves can emerge and serve as intermediate
interaction medium between the dipole and the fluxon. Thus, the whole
fluxon dynamic and the final structure of the zero-field step can become
complicated.

The third method, the most complicated and reliable at the same
time, considers using a low-temperature laser (or electron) scanning
microscope in order to create a local hot-spot in the AJJ and, thus,
locally breaking superconductivity. Applying a small magnetic field, at
the same time, allows to insert a fluxon through this local hot-spot.
Then, the laser is switched off, the hot spot vanishes and superconduc-
tivity recovers leaving the fluxon trapped inside the annular Josephson
junction.

2.1.8 Resonant modes in long Josephson junctions

Resonant modes in long Josephson junctions can arise due to several
reasons. In the case of linear junctions, the simplest reason is the pres-
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Figure 2.11: The schematic view of Fiske steps on current-voltage curve of
a long Josephson junction at a nonzero in-plane magnetic field. Dashed lines
show instable parts of the curves. Arrows indicate voltage jumps.

ence of the junction boundaries which can effectively form a distributed
Fabri-Perot resonator for electromagnetic waves in the junction [Fis64].
These resonances appear as vertical voltage steps when the frequency of
the Josephson currents (spatially modulated in the case of nonzero in-
plane magnetic field) matches the frequencies of electromagnetic stand-
ing waves in the junction (see Fig. 2.11). The series of Fiske steps
appear at voltages Vn = (nΦ0c0)/(2l) so they are equidistant with a
voltage separation ∆VF = (Φ0c0)/(2l).

For the annular Josephson junctions, the situation changes a bit due
to the absence of boundaries (and absence of corresponding reflections)
which can form a cavity for electromagnetic waves. One cannot insert
the fluxons into the junction by applying the in-plane magnetic field.
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Plasma waves resonances

The Josephson vortex is predicted [MS79] to excite plasma modes in a
long Josephson junction with spatially periodic potential if it moves at
a velocity higher than a certain threshold value:

uthr = 1/
√

1 + (2π/a)2, (2.33)

where a is the potential period (or, a = l in the case of the ideal uni-
form AJJ in the in-plane magnetic field, which creates an additional
non-uniform potential for the fluxon). At velocities above this thresh-
old, a frequency and a wavenumber of the excited plasma waves depend
on the fluxon velocity. The excited plasma waves form a certain addi-
tional effective potential for a moving fluxon and can provide attractors
for certain fluxon frequencies. This interaction occurs only when the
fluxon is able to emit plasma waves by itself. Once the wavelength of
excited plasma waves times an integer equals the length of the junction,
a resonance occurs. This resonant-like interaction leads to an appear-
ance of series of vertical constant voltage (or frequency) steps arising
from the smooth ideal zero-field step at fluxon velocities:

um =

√(
1 − b

ma

)2
+
(

b

2πm

)2
, (2.34)

where m is an integer, b is the spatial period of the fluxon chain (b = l

in the case of a single fluxon), a is the spatial period of inhomogeneities
in the AJJ (again, a = l in the case of the non-uniform AJJ) [UMG99].

In the same paper it was mentioned that for very low damping α ≪ 1
the higher fluxon harmonics may contribute to the excitation of plasma
waves (2.35). Thus, the radiation threshold relation transforms into:

uthr = 1/
√

1 + (2πn/a)2, (2.35)

where n is the harmonic number. An interesting idea can be to up-
grade the theory of the fluxon fine structure (2.34) in respect of this
new threshold value (2.35). This is especially relevant for milli-Kelvin
temperatures where the fluxon damping is extremely low, so many high
harmonics can contribute to the excitation process of plasma waves.
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Whispering gallery modes

Another possibility to generate plasma waves is to use a wide annular
Josephson junction which is effectively two-dimensional. As the Joseph-
son vortex is a topological soliton, the vortex phase string moves almost
rigidly across the junction’s width. At a certain threshold fluxon veloc-
ity, the tangential projection of the phase velocity of the outer edge of
the string can exceed the Swihart velocity while the average speed of
the fluxon is still below c0. This gives rise to a well-known Cherenkov
radiation of linear plasma waves in the AJJ [KYV98, WUV00]. Such
type of resonances are usually called whispering gallery modes as they
originate from the similar acoustic resonances in the famous Whispering
gallery of St. Paul’s Cathedral.

2.2 Flux Qubit

A qubit is a quantum system with two states which can be distinguished
by a measurement. Natural two-level system are rare and can be found
in photonic crystals, or as two-level fluctuators and nuclear spins in
solids. Other approaches for artificial qubits rely on employing a non-
linear energy spectrum to isolate two lowest quantum states. Josephson
junctions are a reasonable choice for making a qubit because of inher-
ent nonlinearity, absence of dissipation and well developed fabrication
techniques. Generally, at least three types of superconducting qubits
can be distinguished: charge qubits, phase qubits and flux qubits. All
of them are exploiting the Josephson nonlinear physics to some extent.

2.2.1 Quantum bits and quantum computing

Quantum bits are considered as analog of classical bits in quantum me-
chanics. Their main difference is that while a classical bit can have only
two states: 0 and 1, a quantum bit can sustain any linear superposition
of 0 and 1. Any two-level quantum system can serve as a qubit which
basically means - anything can work as a qubit, so the problem is not
to find or create a qubit but to find a good one. To be a good qubit
means to fulfill a number of certain conditions introduced by DiVin-
cenzo [DiV00] and, accordingly the called DiVinchenzo criteria:
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j3, aIc

j1, Ic
j2, IcFe

Figure 2.12: Sketch of a flux qubit. The red crosses denote Josephson junc-
tions, the black line denotes a superconducting loop.

1) a scalable physical system with well characterized qubits;
2) the ability to initialize the state of the qubits;
3) long relevant coherence times, much longer than the gate operation

times;
4) a "universal" set of quantum gates;
5)a qubit-specific measurement capability.
The flux qubit possesses (at least, potentially) all of these qualities.

The main advantage of the flux qubit in comparison with the phase
and the charge ones is that its coherence times are considerably longer.
At the same time, the flux qubits are relatively small which allows to
achieve better scalability on-chip.

2.2.2 Persistent current qubit

The flux qubit, or the persistent current qubit, was initially proposed
and developed by Hans Mooij and his colleagues [Moo99, CNM03]. This
superconducting quantum bit is based on the tunneling process of a
Josephson phase between two neighboring shallow potential wells. Due
to the such specific process, also illustrated by the Fig. 2.14, it is possible
to realize a two-level quantum system. In reality, such an object can be
implemented as a superconducting loop separated by three Josephson
junctions: two of the same critical current Ic1 = Ic2 = Ic and one with
the critical current alpha times smaller than others Ic3 = αqIc (see
Fig. 2.12).
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2.2.3 Flux Qubit Potential

Using the flux quantization condition (1.18) for the superconducting
loop intersected by the three Josephson junctions (Fig. 2.12) one can
write:

Σφi + 2πΦe

Φ0
= 2πN, (2.36)

where N is the number of flux quanta trapped inside the qubit loop.
Combining this equation with the Josephson potential energy (2.3)
yields the total energy U of the qubit loop:

U = EJ (2 + α− cosφ1 − cosφ2 − α cos(2πf − φ1 − φ2)) , (2.37)

where EJ is the Josephson energy of each of the large junctions and f =
Φe/Φ0 is the magnetic frustration. Here, we neglect the energy stored
in the magnetic field generated by the geometrical inductance of the
flux qubit loop. This assumption is valid if the geometrical inductance
is much smaller than the Josephson inductance Lg ≪ LJ .

The potential given by (2.37) does not depend on the number of
trapped flux quanta, has two internal degrees of freedom and is 2π
periodic in both. By means of mathematical analysis it can be shown
that the two-well configuration (see Fig. 2.13), required for the flux
qubit, is achievable only within the range 0.5 < α < 1.

A magnetic moment generated by the current in the flux qubit loop
can be coupled to a external magnetic field (flux bias) and tilt the
double well potential. This happens for all flux biases f ∼ 0.5 when the
two persistent current states are no longer degenerate and their energy
difference is:

~ϵ = 2Ip(Φe − Φ0/2) = 2IpΦ0(f − 0.5), (2.38)

where ϵ is also called the asymmetry energy.
The dynamics of the flux qubit system is described by an additional

kinetic energy term T . To derive this, the charge energy of the islands
between the Josephson junctions should be taken into account:

T = 1
2
∑

i

CiV
2

i = 1
2

(Φ0
2π

)2∑
i

Ciφ̇
2, (2.39)

where Ci denotes the Josephson junction capacitance while neglecting
the capacitances of the islands to the ground.
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Figure 2.13: Josephson energy of a flux qubit in phase space for α = 0.75
and f = 0.490. a) Energy is plotted as a function of the Josephson phase
differences φ1 and φ2. There are two minima in each unit cell (with the
periodicity of 2π) denoted with R00 and L00. b) Energy profiles along the
red and black trajectories. The trajectory between R00 and L00 is indicated in
red; between R00 and L10 - in blue. For the chosen parameters the tunneling
rate between different cells is greatly suppressed.

2.2.4 Quantum mechanical description

Knowing the kinetic energy term T and the potential energy U , the
classical Hamiltonian of the flux qubit can be derived. Considering the
classical phases and their conjugate momenta as operators, the following
quantum mechanical Hamiltonian can be obtained:

H = 1
2
P 2

m

Mm
+ 1

2
P 2

p

Mp
+EJ (2 + α− 2 cos φ̂m cos φ̂p − α cos(2πf + 2φ̂m)) ,

(2.40)
where the momentum operators are Pp = −i~∂/∂φp and Pm = −i~∂/∂φm,
the mass terms are Mp = 2C(Φ0/2π)2 and Mm = 2C(1 + 2α)(Φ0/2π)2

and the phases are defined as follows:

φ̂m = (φ̂1 − φ̂2)/2, φ̂p = (φ̂1 + φ̂2)/2. (2.41)

By numerical simulation of (2.40) the eigenstates and eigenenergies
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2.2. Flux Qubit

Figure 2.14: a) The cross section of the flux qubit potential in the L00-R00
direction. The red (the ground state) and the blue (the first excited state)
lines illustrate an approximate Josephson phase probability amplitudes. The
minimum energy difference between these two states is ∆. b) The energy
diagram for the first two quantum levels in the flux qubit. The symbols in
bra and ket show the sign of the corresponding persistent current, ∆E is the
energy splitting of the flux qubit detuned from the frustration point.
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Figure 2.15: a) The typical dependence of energy levels for the flux qubit
versus the flux bias. The modeled qubit parameters are: α = 0.54 and Ic = 380
nA. The whole picture is Φ0 periodic. b) Zoom into the area around the half
frustration point f = 0.5.
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Figure 2.16: a) The dependence of the energy splitting ∆E = E1 − E0
between the ground (zero) and the first excited (one) flux qubit states. The
modeled qubit parameters are: α = 0.54 and Ic = 380 nA. b) Zoom into the
area around the frustration point f = 0.5. The minimum qubit splitting is
around ∆ = 2.3 GHz.

of the flux qubit can be found. This simulation is based on a truncation
of H to a discrete grid in a phase space and numerical diagonalization
of the resulting Hamiltonian matrix. The result of such numerics is
illustrated in Fig. 2.15 for the eigenenergies of the flux qubit versus the
flux bias. As it can be seen, the qubit potential is symmetric at half
frustration and the two persistent currents of the ground.

From the point of view of quantum computing, we are interested in
the two lowest ground states which we would like to use as a qubit
basis. The energy splitting ∆E between these two state are shown in
Fig. 2.16 for the typical flux qubit parameters. The lowest possible
energy splitting is usually called the qubit gap and is denoted as ∆ in
reference to the notation used for the description of tunneling systems
(which basically the flux qubit is).

It is also possible to calculate the averaged amplitudes of the per-
sistent current in the flux qubit loop corresponding to different states.
This knowledge is particularly important for the fluxon readout. Illus-
trations for persistent currents of the ground and the first excited states
are given in Fig. 2.17. In the classical situation, at half frustration these
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Figure 2.17: a) The dependence of the persistent current Ip for the ground
(black line) and the first excited (red line) flux qubit states. The modeled
qubit parameters are: α = 0.54 and Ic = 380 nA. b) Zoom into the area
around the frustration point f = 0.5

two states (clockwise and counterclockwise currents) are degenerate as
the potential is symmetric at this point. In the quantum mechanical
description, the degeneracy is lifted.

To simplify the description of qubits, the truncation to the two lowest
energy levels is commonly used. This approach is based on the assump-
tion that the transition between the first two levels requires the energy
which is, at least, several times less than the energy required to reach
the qubit’s second excited state. This usually holds in the vicinity of
the degeneracy point for the flux qubits. A two-level Hamiltonian can
be constructed using the gap ∆ and the asymmetry energy ϵ:

H = ~
2

∆σx + ~
2
ϵσz =

(
ϵ ∆
∆ −ϵ

)
, (2.42)

where σx and σz are the first and the third Pauli matrices. This
Hamiltonian also corresponds to a 1/2-spin particle in an external mag-
netic field and can be diagonalized by a unitary rotation around y axis
A = exp(iθσy) by the angle tan(2θ) = ∆/ϵ. In the rotated basis, the
flux qubit Hamiltonian reads:

H̃ = A†HA = ~
2
√

∆2 + ϵ2σz, (2.43)
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where the qubit transition frequency is identified as ωq =
√

∆2 + ϵ2.

2.2.5 Driven qubit

An external drive is usually required to excite transitions between the
quantum levels in a qubit. In the case of a flux qubit, it is usually
implemented as a microwave signal coupled to the former. This signal
is an oscillating electromagnetic field and can be treated as such in the
Hamiltonian:

Hd = A

2
cos(ωdt+ ϕ)σz, (2.44)

where A is the amplitude of the drive. One can apply a rotation trans-
formation to Hd as it was done in (2.43):

H̃d = A†HdA = A

2
cos(ωdt+ ϕ)

[
ϵ

ωq
σx + ϵ

ωq
σz

]
. (2.45)

By adding the drive Hamiltonian H̃d to the flux qubit Hamiltonian H̃

in the rotated frame and applying the so-called rotation wave approxi-
mation [MMS01] to the full Hamiltonian one can find the solution for
the qubit state in the following form:

U(t) = exp(−iΩ⃗t · σ⃗/2), Ω⃗ =


A∆

2~ωq
cosϕ

A∆
2~ωq

sinϕ
ωq − ωd

 , (2.46)

where Ω⃗ defines the rotation axis. In the case of a resonant drive, when
ωq = ωd, the state vector describes rotations with the frequency:

Ω = A∆
2~2ωq

, (2.47)

which is known as the Rabi frequency. The rotations occur around the
x- or y-axis depending on the starting phase ϕ of the drive signal. In a
more general situation of an off-resonant drive ωq ̸= ωd, the state vector
also precesses around the quantization axis of the rotation frame and
the generalized Rabi frequency is:

Ω =

√√√√( A∆
2~2ωq

)2

+ (ωq − ωd)2. (2.48)
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A simple and important application of the presented results is that,
if one applies a continuous resonant drive in the ground state ψ = |0⟩,
the qubit oscillates between the ground and the first excited states and
its average corresponds to a mixed state ψ = (|0⟩+ |1⟩)/

√
2. Obviously,

the persistent current of the mixed state is different from the one of the
ground state and this allows to detect the quantum excitation the qubit
in experiment.

2.2.6 Qubit readout techniques

An essential part of any qubit circuit is a readout scheme. It is extremely
important for quantum computation that a given readout method of a
qubit is of high-fidelity, fast and weakly perturbing. Since the invention
of quantum bits, scientists have actively searched for new and better
ways of acquiring information from quantum bits.

Some of the ways to readout the qubit are called destructive as they
destroy the quantum state during the readout process. For instance,
the readout process of a phase qubit [Mar09] through an escape of a
Josephson phase from a potential well in rf-SQUID is the classic exam-
ple of a destructive readout. Other, so-called non-destructive, methods
allow to learn something about a quantum system without complete de-
struction of its state. These methods are usually based on a dispersive
interaction between the qubit and some other well-defined classical sub-
system, the state of which is dependent on the state of the investigated
qubit. This second system can be, for instance, a classical harmonic
oscillator (an electromagnetic resonator) whose frequency slightly de-
pends on the qubit state. Thus, measuring the amplitude or the phase
of this oscillator at a particular frequency, we project the qubit quantum
state onto a certain basis and acquire information about it. Ultimately,
such a readout usually destroy the phase of the qubit during the pro-
jection but leaves the qubit energy unperturbed, thus holding the name
of non-destructive readout (which is not completely true, as the qubit
phase is usually changed after the readout).

45



Chapter 2. On fluxons and flux qubits

Destructive readout

The typical example of a destructive readout is the one used for the
phase qubits formed by a Josephon junction enclosed in a loop. By
tilting the phase qubit potential by an external magnetic field, one may
force a tunneling event of the Josephson phase linked with the quantum
state of the phase qubit. This tunneling event can be recorded by
measuring a magnetic field generated by the qubit. Different quantum
states correspond to different external fields required for the tunneling
events to happen. Thus, by placing a sensitive magnetic detector (a
dc-SQUID, for instance) nearby the phase qubit and measuring the
magnetic field of the qubit versus the tilt of the qubit potential, one can
distinguish different quantum states. Details of the described procedure
can be found elsewhere [Mar09].

Unfortunately, once the tunneling event in the phase qubit happens,
the quantum state is destroyed. This is why this method for reading
out of the phase qubit is called destructive.

Dispersive readout

Another approach can be realized with the use of so-called dispersive
readout. Usually, it is based on a coupling of an investigated qubit
with an electromagnetic LC resonator, in other words, with a harmonic
oscillator [WSS05, SVD06]. The coupling can be magnetic or electric,
depending on the type of the qubit. For flux qubits, the magnetic
coupling is preferable because of a significant magnetic dipole moment
of the flux qubits.

By exciting the resonator and measuring its resonance frequency, one
projects the qubit state onto the energy basis of the coupled resonator.
In this case, different quantum states in the qubit directly correspond
to the slightly different resonance frequencies of the resonator. One
can explain this by taking into account a variable inductance of the
Josephson junctions in the flux qubit loop which depends on the quan-
tum state of the flux qubit itself. Thus, a change in the quantum state
of the qubit introduces a small deviation in a total inductance of the
coupled resonator, shifting its respective resonance frequency.
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Figure 2.18: Illustration of the initial idea by Averin et al. [ARS06] of a
fluxon readout of a flux qubit. The fluxons are meant to be periodically in-
jected in the JTL with momentum k by the generator and their scattering
characteristics (transmission and reflection coefficients t(k) and r(k) are reg-
istered by the receiver. The potential U(x) is controlled by the measured
qubit.

The Fluxon Readout

Our interest is to develop a new type of dispersive readout for flux
qubits. It is based on magnetic coupling between a flux qubit and a
moving fluxon. This approach should preserve most of the advantages
of the non-destructive readouts and, at the same time, provide a better
shielding of a qubit from noisy environment and a compatibility with
rapid single flux quantum (RSFQ) superconducting electronics. The
latter is viewed as a major step towards a full-scale implementation of
a quantum computer. Chapter 4 is fully dedicated to theoretical and
experimental investigations of this path.

Initially, the idea of fluxon readout was proposed in Ref. [ARS06].
A theoretical treatment for a problem of ballistic fluxon scattering on
the flux qubit potential was given in this paper. Figure 2.18 illustrates
this process. An important peculiarity is that a Josephson transmis-
sion line is considered to be discrete which matches better the general
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Figure 2.19: Illustration of the information acquisition process by the fluxon
readout in the time-delay mode. The fluxon packet is shifted in time (fre-
quency) by the time ti dependent on the state |i⟩ of the measured qubit.

RSFQ approach. It is assumed that one can inject separate fluxons at a
fixed rate f into this JTL by a specific generator and then detect them
by a receiver at the other end without any reflections. The qubit is
considered to be inductively coupled to the JTL (see Figure 2.18). In
each qubit’s state |i⟩, there is a different scattering potential U(x) for
the fluxons propagating through the JTL. Different realizations U(x)
produce different scattering coefficients t(k) and r(k). Since they de-
pends on the state |i⟩ of the measured system, scattered fluxons carry
information about the qubit state.

Naturally, two regimes of the fluxon readout can be distinguished:
a time-delay detection mode and a transmission detection mode. Fig-
ure 2.19 provides an illustration for the time-delay mode, when the
qubit is weakly coupled to the JTL. The transmission detection mode
operates in the regime than a useful signal is provided by the presence
(successfully propagated through the JTL) or the absence (reflected by
the qubit potential) of the fluxon at the detector. Obviously, this regime
requires strong coupling (and a strong unwanted fluxon backaction on
the studied qubit) of the qubit with the JTL or (and) extremely low
kinetic energies of the fluxon itself. Overall, the time-delay method
is preferable over the transmission detection for the fluxon readout in
most circumstances.
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The fluxon readout potentially can also have several working regimes
depending on the velocity of fluxons in the JTL. The best one (from
the theoretical point of view) is the situation when the fluxon is in
the "nonrelativistic" regime with its kinetic energy Ef smaller than the
lowest plasmon energy ~ωp:

Ef = ~ωp(2u/c0β)2, (2.49)

where the parameter β2 = (4e2/~)
√
L/C is the wave resistance of the

JTL. Here, β2 ≪ 1 should be small enough in order to preserve the
quasi-classical dynamics of fluxons. In case when β2 ≥ 8π,

√
L/C ≥

h/e2 ∼ 25 kΩ, quantum fluctuations of the field φ completely destroy
the quasiclassical excitations of the junction [Raj82]. Equation (2.49)
suggests that for u < c0β/2 the fluxon cannot emit a plasmon even
when it is scattered by inhomogeneities of the JTL. The latter is espe-
cially good for the qubit protection as it shields the qubit from outer
world excitations which may come through the JTL itself. This hap-
pens because the plasma gap in the dispersion relation of JTLs for linear
waves does not allow the propagation of waves with the frequencies be-
low plasma one ω < ωp and, at the same time, for the considered case
of "nonrelativistic" fluxons, plasma waves cannot be emitted due to the
fluxon scattering on imperfections in the JTL. Thus, the JTL works as
a specific filter, allowing the qubit to be disturbed by fluxons only. The
latter is considered as a major advantage of the fluxon readout versus
the dispersive readouts via linear resonators, where linear excitations
can, in principle, propagate via the resonator line.

The fluxons in the JTL can also be quantum objects as it was already
proven in experiment [WLU03] and the fluxon readout can be in quan-
tum regime for the case of "nonrelativistic" fluxons. For this one should
consider a couple of limitations: the fluxon energy should be larger than
the ambient temperature Ef > kBT , and the fluxon size in the discrete
JTL should not be smaller than a single JTL cell. The latter imposes
another restriction on the fluxon energy Ef < (e2/C)(λJ/4). Unfortu-
nately, for the standard niobium trilayer process, it is possible to meet
these both requirements only by implementing Josephson junctions with
sub-micron lateral sizes.

Also, the authors of Ref. [ARS06] showed an intriguing possibility to
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use the fluxon as an ultimate quantum non-demolition readout when the
fluxon injection frequency is matched to the qubit oscillation frequency,
so that the individual acts of measurements are done when the qubit
density matrix is nearly diagonal in the σz basis, and the measurement
back action does not introduce a dephasing in the oscillation dynamics
of the flux qubit.

Using the described model [ARS06], in Ref. [HFS07] useful estima-
tions of fluxon readout parameters employing RSFQ type of discrete
JTLs were given. In particular, the dephasing time due to perturbation
of the flux qubit by passing fluxons for reasonably long transmission
lines were estimated to be of the order of T2 ∼ 20 µs.

In the case of relativistic fluxons, with the respective velocities close to
the Swihart velocity u ∼ c0, the fluxon can also generate linear plasma
waves while scattering on the JTL inhomogeneities [MS79]. This may
decrease coherence times of the coupled qubit, however, there is also a
hidden experimental advantage of relativistic fluxons is that they are
much more stable at low temperatures T ∼ 50 mK required for the qubit
experiments. The latter turns out to be crucial for an experimental
implementation of the fluxon readout.

In our experiments, continuous annular Josephson junctions were
used instead of the discrete JTL. This provides a simpler experimental
set-up as there is no need in complex RSFQ drivers required for creation
and detection of fluxons. At the same time, such an approach preserves
the general scheme of the fluxon readout and allows to study physical
principles of the latter.

2.3 Conclusions

In the first part of this chapter, the classical theory on Josephson vor-
tices and their implications in dynamics of long Josephson junctions
have been presented. Various creation and detection schemes for flux-
ons were discussed. The problem of fluxon resonant modes and their
interaction with linear plasma waves was described.

In the second part, the quantum mechanical theory of the flux quan-
tum bit has been introduced. It was shown that, under the external
resonant drive, the flux qubit oscillates between its ground and first
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excited states with the Rabi frequency which depends on the drive am-
plitude and the detuning of the drive frequency from the qubit transi-
tion frequency. Conventional readout techniques for qubits were briefly
described and the idea of fluxon readout was introduced.
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3 Measurements of fluxon radiation

As theoretically described in the previous chapter, magnetic flux quanta
Φ0 can exist in an isolated form in long Josephson junctions. They are
known as Josephson vortices or fluxons. To employ the fluxon read-
out scheme for superconducting qubits, it is important to learn how
to experimentally create, control and detect fluxons in long Josephson
junctions.

In this chapter, experiments on the first-time detection of a single
fluxon’s radiation from an annular Josephson junction (AJJ) are de-
scribed leaving the topic of an actual interaction of a fluxon with a
superconducting qubit for the next chapter. In the first section a brief
description on the fabrication techniques of niobium Josephson junc-
tions, experimental methods and equipment is given. In the second
part of this chapter, actual measurements of zero-field steps in various
samples are presented along with theories required for a proper explana-
tion and understanding of observed phenomena. A possibility to resolve
a fine structure of zero-field steps via measurements of microwave radi-
ation of the oscillating fluxon in the AJJ is demonstrated. Studies of
the fluxon radiation linewidth are carried out. Finally, a phase-locking
experiment for the fluxon oscillator capable of locking single fluxon os-
cillations to an external reference signal were performed.

The first task in order to build a working fluxon readout is to detect
the microwave radiation from oscillatory movement of the fluxon in the
AJJ. The proposed experimental scheme is illustrated in Fig. 3.1. All
later experiments will be based on the shown scheme. Specially designed
current injectors were used in order to controllably create and destroy
fluxons in the AJJ. A microstrip line, capacitively coupled to the AJJ,
functions as a microwave antenna, allowing to pick up electromagnetic
radiation from the moving fluxons.
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Chapter 3. Measurements of fluxon radiation

Figure 3.1: The schematic view of an annular Josephson junction with cur-
rent injectors for creating fluxons and a capacitively coupled microstrip an-
tenna for receiving fluxon microwave radiation.

3.1 Experimental setup and technique

For a theoretician in physics, usually it is enough to invent an idea and
describe it in reasonable mathematical terms to be successful. For an
experimentalist, besides the idea itself, it is needed to build some robust
manifestation of this idea, stable enough to survive in the imperfect
real world. In the area of superconducting thin film technology, this
enterprize starts from understanding a particular fabrication process
allowing one to fabricate a structure similar to the one shown in Fig. 3.1.
Then, it continues with making estimations for the suitable designs,
fabricating them and, finally, measuring them with a carefully built
experimental setup.

3.1.1 Sample design and fabrication

The conventional processes of fabricating long Josephson junctions make
use of thin-film technology, historically developed for the semiconductor
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industry. It includes making metal masks with photolithography, using
the latter for exposing photoresist masks on silicon chips and patterning
structures. Subsequent sputtering of certain metal allows one to create
a thin multilayer of different compounds with the desired dimensions.
In our case, several external foundries have been used in order to ful-
fil this important task. Mainly, two have been used. The first one was
Hypres Inc., Elmsford, NY 10523, USA, which is a commercial company
specialized in delivering superconducting schemes for rapid single flux
quantum (RSFQ) electronics. The second one was the IPHT "FLUX-
ONICS" foundry in Jena, Germany, with the same type of specialization.
Both foundries employ the conventional Nb/AlOx/Nb trilayer process
in order to form Josephson junctions with additional three layers of
metallization for wiring purposes.

Fabrication process

Here, a brief technical description of the conventional Nb/AlOx/Nb
trilayer process for the critical current density of jc ∼ 1 kA/cm2 is given.
The process exploited at the IPHT Jena foundry is used as a reference.
The layer structure for IPHT Jena and for Hypres is almost the same,
however, some particular numbers for layers thicknesses, minimal lateral
widths and some other parameters may differ. For other typical critical
current densities like jc ∼ 30 A/cm2 the layer structure is usually the
same, with insignificant deviations.

The general picture of a cross section of a superconducting thin-film
structure consisting of two layers of metallization, a Josephson junc-
tion, a resistive shunt and a bonding pad is shown in Fig. 3.2. The
third layer of metallization and a ground plane (a special "zero" layer of
metallization) are omitted here because they do not add anything new
to the whole structure (only complicate it). Also they have been rarely
used for the real designs. The fabrication of such a chip usually begins
from taking a silicon substrate (usually 400-500 µm thick) with an oxi-
dized surface (shown in grey color). During the next step, one usually
patterns and sputters the layer M1 made of superconducting niobium
(shown in red color) and the trilayer structure Nb/AlOx/Nb (shown in
blue color) on top of it. Building of the trilayer usually consists of sev-
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Figure 3.2: Cross section of RSFQ sandwich for the conventional
Nb/AlOx/Nb trilayer process with two layers of metallization. The equiva-
lent scheme of the presented cross section is depicted on top.

eral steps: at the beginning one sputters a thick base Nb electrode, then
an additional thin Al layer on top, then oxidize the aluminum to create
a d ∼ 1 nm thin tunnel barrier and concludes the process by sputter-
ing a top niobium electrode. This comparatively complex process was
chosen because of its reproducibility and good parameters of output
Josephson junctions (jc, RN ). The main reason for using aluminum for
making Josephson junctions in niobium process is that it gives almost
perfectly smooth tunnel barriers which are hardly achievable with other
superconducting materials (including niobium).

After depositing the trilayer onto the chip, one usually performs spin-
coating with a photoresist, patterning, chemical etching and a subse-
quent oxidization of the top electrode idle regions in order to create
the isolation layer I1A made of Nb2O5 (shown in light purple color) to
avoid parasitic superconducting shorts in parallel with the Josephson
junction. This is a very important step for the whole process as these
shorts may completely disrupt the performance of Josephson junctions.
To ensure the insulation between M1 and the other metallization lay-
ers, the second layer of insulation I1B made of SiOx is sputtered on top.
When needed, structures out of a normal metal (here it is molybdenum
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Figure 3.3: The general view of an annular Josephson junction, with current
injectors for creating fluxons and a capacitively coupled microstrip antenna
for detecting fluxon microwave radiation.

R1, shown in green color) may be placed to create resistive shunts. This
may be used when it is necessary to break superconducting loops on the
chip by inserting a normal metal shunt. The next step includes making
the second layer of metallization M2 on top of the other layers. M2
connects the top electrodes of Josephson junctions with resistive shunts
R1 and subsequent gold bonding pads R2. A more detailed description
of these fabrication processes can be found elsewhere [FF, Hyp].

Designs and estimations

The general structure of samples for experiments is shown in Fig. 3.3.
They usually consist of an annular Josephson junction with bias leads,
current injectors, one or two microwave antennas and a specially de-
signed loop for a later coupling of a superconducting qubit to the AJJ
(not shown in Fig. 3.3). The next important step is to determine the
preferred parameters and sizes of the described structures.

In order to estimate the fluxon properties in the annular Josephson
junction, we need several parameters (see Section 2.1.1): the critical
current density jc, the specific capacitance of the Josephson junctions
Cs, the normal state resistance RN as well as the width of the long
Josephson junction W and its length L. For the Hypres process, the
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specific capacitance Cs can be estimated using the following approxi-
mation formula:

Cs = 1.0
24.7 − 2.0 · lnjc

(pF/µm2), (3.1)

where jc is the critical current density in µA/µm2. This gives roughly
Cs = 0.05 pF/µm2 for jc = 1 kA/cm2 and Cs = 0.037 pF/µm2 for jc =
30 A / cm2. These values are in good agreement with the experimental
data.

For an experimental detection of the fluxon oscillations, the AJJ needs
to be designed in such a way that the fluxon oscillation frequency lies in
the acceptable range. The maximum oscillation frequency of the fluxon
in the AJJ is:

ν0 = c0/L, (3.2)

where L is the circumference of the annular Josephson junction and c0
is the Swihart velocity (the phase speed of light in the long Josephson
junction). One also should keep in mind the frequency range of available
low-noise cryogenic microwave amplifiers to make sure that the fluxon
frequencies are in the working range. Basic available (at the time of
designing first samples) cryogenic amplifiers had a bandwidth from 4
to 8 GHz and from 8 to 12 GHz. According to Eq. 2.19 we estimate
the maximum velocity c0 of the fluxon in the long Josephson junction
for the given parameters and, thus, the maximum frequency of fluxon
oscillations in the AJJ. For the process with the critical current density
jc = 30 A / cm2 and Cs = 0.037 pF/µm2, using Eqs. 2.16,2.17,2.19,
one gets:

ωp/2π = 25 GHz, λJ = 69 µm, c0 = 0.036 c. (3.3)

Then, it is easy to calculate that an AJJ length (full circumference) of
about L ≃ 1 mm corresponds to a maximum fluxon oscillation frequency
νr ≃ 11 GHz. For the process with the higher critical current density
jc = 1 kA / cm2 and Cs = 0.05 pF/µm2, one gets:

ωp/2π = 124 GHz, λJ = 12 µm, c0 = 0.031 c. (3.4)

It corresponds to the maximum fluxon oscillation frequency νr ∼ 9.4
GHz for the same junction length L ∼ 1 mm.
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The initial goal was to design the samples with the fluxon resonant
frequency at about 10 GHz. In order to avoid samples with too high
characteristic fluxon oscillation frequencies and being unable to ade-
quately measure them, the length of AJJs in the first batch of samples
was set to be L = 1.3 µm for the jc = 30 A/cm2 process and therefore
the maximum fluxon oscillation frequency should have been at about
ν ∼ 8 GHz. The reason for this was that we had amplifiers for the lower
frequency band but not for the higher one.

The design of other pieces of layouts (such as current injectors, bias
electrodes, microwave antennas) were mainly defined by the limitations
of the fabrication process. As described in Refs. [Ust02, GSK04], the
smaller the distance d between the current injectors, the larger injec-
tion current is needed to create a fluxon. The minimum distance be-
tween two separate electrodes in the M2 layer was set by design rules
to be at δM2 = 2.5 µm due to the photolithography resolution limit.
This minimal distance was used as the spacing between the current
injectors assigned to create fluxon in the AJJ. Same applies to the mi-
crowave antennas for picking up radiation from the oscillating fluxon.
Most antennas were designed using capacitive coupling to the Josephson
transmission line. To increase this coupling, one needs to increase the
capacitance or to decrease the distance between the antenna and the
Josephson transmission line (a galvanic coupling was initially avoided
because of risk of parasitic ground loops and an interference with the
bias current distribution in the superconducting leads). This distance
was again set at the minimum achievable by the current technology
δM1 = 2.5 µm to obtain the best coupling possible. Retrospectively,
that was crucial for the samples with the low critical current jc ∼ 30
A/cm2. However, for the samples with the high critical current jc ∼ 1
kA/cm2 it was not important at all as the radiation power of the fluxon
was relatively large and even with weakly coupled antennas there was
no problem to detect the fluxon radiation.

Later samples were designed and fabricated in the process with the
high critical current density jc ∼ 1 kA/cm2 because of a better stability
of the fluxon resonance step for this jc at low temperatures T ∼ 100
mK and the higher microwave power emitted by the fluxon. For this jc,
a shift towards smaller AJJ diameters and, therefore, also higher fluxon
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Figure 3.4: Photo of the first test sample fabricated in the process with
jc = 30 A/cm2. a) Overview of the whole structure with the bonding pads
(the black spots on the latter is the remnants of bonding wires). b) The current
injectors for creating the fluxon. c),d) The capacitively coupled microwave
antennas. e) The coupling loop and the control line for a future qubit.

frequencies was made. This was done in order to make the structures a
bit smaller and, thus, more compact on-chip. Also, the availability of
a broadband 6 − 20 GHz low-noise cryogenic amplifiers from the Low
Noise Factory (Sweden) solved most of problems with the bandwidth
limitation imposed by the older types of cryo-amplifiers. Thus, for
jc ∼ 1 kA/cm2, for the chosen radius of the AJJ R1 = 140 µm the
maximum resonance frequency should be at about ν ∼ 12.5 GHz. All
the other parameters stayed the same.

Physical layouts and its functionality

The first designed and fabricated samples were implemented in the jc ∼
30 A/cm2 process. The optical photo of it is given in Fig. 3.4 with
additional zooms into its separate important areas - the area of current
injectors, microwave antennas and a qubit coupling loop.

Later samples contained various minor improvements (see Fig. 3.5)
as: microwave antennas with better coupling and different geometry
(bi-coplanar instead of microstrip), additional precautions in the form
of patterned arrays of square holes in the bias leads in order to decrease
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Figure 3.5: Optical photograph of various samples containing annular
Josephson junctions with microwave antennas of different types (microstrip
- a), b); bi-coplanar - c), d), e)), current injectors, qubit coupling loops and
other features as rectangular holes in bias leads for Abrikosov vortices trap-
ping(b) and d)).

magnetic noise in the AJJs due to a random movement of Abrikosov
vortices, qubit coupling loops with different coupling strengths etc.

Both types of antennas demonstrated approximately the same mea-
sured microwave power of the fluxon signal. The notable advantage
of the bi-coplanar antennas was the absence of many parasitic reso-
nances, which are commonly present for the case of microstrip antennas.
This happens due to a much smaller "crosstalk" of the microwave signal
for the bi-coplanar antennas. Patterned holes for Abrikosov vortices
trapping allowed to slightly decrease low-frequency fluctuations in the
fluxon spectrum (basically, the long term stability of fluxon oscillation
frequency was improved). Unfortunately, a try to organize inductive
biasing of the current injectors through an additional loop (one can
roughly see it in Fig. 3.5,c)) was not successful, presumably, because
of a large "crosstalk" between the biasing magnetic field and the AJJ
itself. The influence of the qubit coupling loops with different strength
will be discussed in the next Chapter.
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Figure 3.6: Different types of the sample holders. a)The mostly used type of
sample holders compatible with microstrip microwave antennas. b) Old type
of a sample holder compatible with bi-coplanar microwave lines. c) "New"
generation of sample holders for bi-coplanar microwave lines. The interior
view. d) Same holder as presented in c), the exterior view of the closed
sample holder with the attached rigid microwave cables.

3.1.2 Sample holder

The next step for preparing the experiment was to attach the sample
to external wires (low-frequency dc lines and high-frequency microwave
lines). This was done with the use of so-called sample holders. Dif-
ferent types of sample holders were used in experiments depending on
the sample under test (see. Fig. 3.6). As most of the samples em-
ployed the microstrip microwave lines, the sample holder of the type
presented in Fig. 3.6.a) has been typically used. However, as microstrip
lines usually have more problems with crosstalk [Sim49] and noise than
bi-coplanar waveguides, some of the samples were redesigned to utilize
the latter and therefore required another type of sample holders shown
in Fig. 3.6.b),c). These holders were also better in terms of electromag-
netic shielding as they provide additional metallic encasing around the
sample. Importantly, these holders were also covered from inside by
epoxy mixed with copper powder in order to reduce the reflection coef-
ficient for electromagnetic waves and damp parasitic volume resonances
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inside the sample holder. The absence of volume resonances inside of
the sample holders is especially important for the qubit experiments as
the former tend to couple directly to the qubit, decrease its coherence
times and broaden a characteristic spectroscopy line.

Bonding a chip

The actual connection of a chip to sample holders were done with the
IPT HB06 ultrasonic wire bonding machine. An aluminum wire with a
diameter of d = 25 µm were ultrasonically welded to the chip to provide
a good galvanic contact between the bonding pads of the sample and the
sample holder. These wires can be seen in Fig. 3.6.a) as thin metallic
threads between the sample and the sample holder. For microwave
lines, where a characteristic impedance matching is crucial, aluminum
ribbon is often used or many thin wires in parallel to reduce the total
inductance of the bonds and provide minimum reflections in GHz range.

Magnetic shielding

To improve the quality of the experiments it is important to protect the
sample from all kinds of noise. Magnetic fluctuations present the first
obstacle for the current experiments as the fluxon is a magnetic parti-
cle by itself and, thus, is easily disturbed by the tiniest magnetic fields
(which also has a benefit of being a good detector for anything mag-
netic sitting around, for example - a superconducting flux qubit). The
magnetic shielding is designed to cancel out the stray magnetic fields
(Earth’s self-field, fields from working pumps all around the laboratory,
fields of weakly magnetic microwave connectors etc.). The shielding
was implemented as shown in Fig. 3.7. Usually, two shields have been
employed: a smaller superconducting shield made of lead and a bigger
µ-metal shield made of cryoperm.

3.1.3 Cryogenic setup

After bonding the chip to the chosen sample holder, closing it and pro-
tecting by various magnetic shields, the next task was to place it into
a cryostat and then cool it down. There are at least several types of
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Figure 3.7: a) Sample glued and bonded to a sample holder. Set of dc twisted
pairs and a couple of microwave lines are exploited. b) Sample holder covered
by a superconducting led shield. c) Sample holder with the second µ-metal
shield attached, ready to be inserted into a cryostat.

cryostats which can be used for testing niobium samples with the tem-
perature of superconducting transition around Tc ∼ 9 K. The simplest
one is the so-called dipstick which is a simple metallic tube that is in-
serted into a dewar with liquid helium at T = 4.2 K. It allows one
to quickly test the basic properties of the chips and with minimal ef-
forts required for the preparation. It is the most convenient and fast
measurement test which was available for niobium Josephson junctions.
The general scheme of fluxon radiation detection type of experiments
is shown in Fig. 3.8. However, for more interesting measurements of
fluxon dynamics at low temperatures and especially for qubit measure-
ments, the temperature should be at least less than the critical tem-
perature of the aluminum forming the qubit T < 1.2 K. To observe
the actual quantum dynamics of the qubit and its interaction with the
fluxon, the temperature should be lowered even further to stay below
the energy splitting between ground and first excited states of the qubit
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Figure 3.8: The general scheme of all measurements of fluxon radiation from
the AJJ.

T ≪ ∆E which, usually, corresponds to the temperatures of about
T ∼ 30mK ≪ 300 mK.

He-3 cryostat

For testing of superconducting aluminum samples one needs to achieve
a temperature below the superconducting transition temperature of alu-
minum T < TAl = 1.2 K. A so-called He-3 cryostat offers an appropriate
possibility to do so. Its working principle is based on the evaporation
cooling of liquid He-3 [Whi87]. It is possible, in principle, to use He-
4 for the same type of cooling method but its vapor pressure rapidly
drops below 2 K point and the cooling process becomes inefficient, lim-
iting the minimum reachable temperature with this method to about
1.5 K. As He-3 is the lighter isotope, its vapor pressure is two orders of
magnitude greater than that of He-4 below 1 K. A well isolated bath of
liquid He-3 may be boiled under the pressure of about P ∼ 10−3 mbar
which corresponds to the temperatures of about 300 mK. This allows
to cover the temperature range 1 − 0.3 K with pumping on liquid He-3.
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The general scheme of experiments stayed the same as for the dipstick
measurement (see Fig. 3.8).

Dilution refrigerator

To get access to even lower temperature it is required to use more
sophisticated techniques than simple evaporation cooling or its combi-
nations. There are many ways for reducing the temperature to 30 mK
though not all of them are reasonable for solid-state experiments. The
most popular one is the adiabatic dilution of He-3 in liquid He-4. This
technique was proposed by London, Clarke and Mendoza in 1962. It is
based on the big difference of entropies between liquid He-3 and He-4,
so it is possible to reduce the ambient temperature by adiabatic dilu-
tion of He-3 in He-4 when the former expands and thus cools down the
whole mixture [Whi87]. Cryostats working on this principle are com-
mercially available and have a base temperature of about 15 mK. We
have used dilution refrigerator produced by Oxford Instruments with a
cooling power of 100 µW at a temperature of 100 mK. While the gen-
eral scheme for measurements stay the same as it was shown in Fig. 3.8,
the inner wiring inside the cryostat becomes extremely important. The
overview of the experimental wiring in the Oxford dilution refrigerator
is given in Fig. 3.9.

The wiring consisted of two microwave lines (in and out of the dilution
refrigerator) and a set of low-frequency twisted pairs (see Fig. 3.10).
The radiation from the AJJ was picked up by the capacitively coupled
microwave antenna and fed through a low-loss superconducting Nb cable
to a broadband cryogenic LNF6-20 amplifier thermally anchored to the
T = 4.2 K stage with a gain G1 = 31 dB and an equivalent noise
temperature T1 ≃ 9 K. A cryogenic circulator Pamtech PTC1351K7 in
the range 8−18 GHz with an isolation of −20 dB has been used in order
to protect the sample from the backaction of the cryogenic amplifier at
the 4.2 K stage. The cryogenic amplifier was usually followed by Mini-
Circuit room temperature amplifier ZVA-183-S+ with a gain G2 = 26
dB and a noise temperature T2 = 600 K. The total noise temperature
can be estimated using Friis formula [Fri44]:

Tnoise = T1 + T2/G1 ≃ 9.6 K. (3.5)
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Figure 3.9: Photo of the experimental setup: a) Insert of the dilution refrig-
erator with the attached sample holder (covered by magnetic shields) in the
lowest part. b) Racks with room temperature high-frequency (left one) and
dc control electronics (right one) connected to the dilution refrigerator. c), d)
Bonded samples (size 5x5 mm) in different sample holders used in experiments.

As it can be seen, Tnoise is dominated by the noise temperature of the
first amplifier in the chain what makes it crucial to have a good low-
noise cryogenic amplifier.

Filtering

To accurately measure current-voltage characteristics of the samples
and to detect clear resonance radiation spectra from the fluxon oscilla-
tions in the AJJ one needs to filter both low frequency and microwave
lines. For dc lines low-pass RC and LC filters have been used with ad-
ditional specific copper powder filters. The latter are essentially well-
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Figure 3.10: Experimental wiring inside the dilution refrigerator. The tem-
perature stages are shown on the left hand side.

known LC π-filters with the one addition: the inductance in this filter is
implemented using a long twisted wire immersed in epoxy with copper
powder [LU08]. This allows one to effectively reduce the amplitude of
electromagnetic waves with a frequency higher than 100 MHz (where
the actual resonant properties of the LC filter does not bring an atten-
uation).

In some measurements, the current dividing technique was used to
reduce thermal Johnson Ű Nyquist noise below the room temperature
level. At the same time, it is also useful for filtering out technical noise
of the current source. This is implemented by dividing the current I
by the fixed factor n = T1/T2 through a cold resistor at temperature
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T2 < T1 and feeding the rest current I/n to the sample under test
(basically, introducing a standard microwave attenuator but to a low-
frequency line). This trick allows one to bring the level of thermal
fluctuations from T1 to T2. The described simple approach is valid only
in the case when the load has the same resistance (impedance) as the
current source. The latter is usually true for microwave devices and
high-frequency lines. In case of low frequencies and dc-lines, ideally,
one should also take into account a difference in resistances at different
temperature levels to calculate precisely RMS current fluctuations In =√

4kBT/R due to Johnson - Nyquist noise, but the general approach of
the current dividing still remains the same.

Unfortunately, the current dividing technique was not very useful for
our experiments as it imposed heavy technical constraints on the ex-
perimental setup - as the bias currents we routinely needed were rather
high, about 10 mA. To reduce thermal noise in the bias current from
ambient room temperature T = 300 K to the base temperature of the
dilution refrigerator Tbase = 30 mK, one would need to apply an initial
current of 100 A which was not possible due to extreme overheating
of the whole cryogenic setup. However, sometimes, particular improve-
ment by current dividing was possible when smaller currents were used
(for example, in the case of the samples with low critical current density
jc ∼ 30 A/cm2).

Microwave lines were filtered using bandpass filters when necessary.
Typically, VHF-6010+ Mini-Circuits filters with a bandpass of 6.3−15.0
GHz have been used. Double dc-breaks were always used for all mi-
crowave lines to galvanically decouple high-frequency room tempera-
ture electronics from the cryostat. Essentially, every of these double
dc-breaks is a piece of a microwave cable with both an inner electrode
and a ground encasing intersected by a small slit (capacitor), thus,
breaking a galvanic link through the microwave lines. This was crucial
for the described experiments as without this precaution, 50 Hz and
1 kHz harmonics, routinely generated by computers, spectrum analyz-
ers, oscilloscopes and other devices, interfered with the very sensitive
oscillations of the single fluxon. This effect, not strongly visible on
simple voltage-current characteristics, was devastating for spectra mea-
surements as it deforms the very spectral line of fluxon radiation.
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Figure 3.11: Principal schematic for measuring a current-voltage character-
istic of a long annular Josephson junction with current injectors.

3.2 Experimental results

In this section results on the experiments with a single fluxon in an
annular Josephson junction are presented. These results include dc
measurements of resonant zero-field steps (ZFS) of fluxon oscillations
inside the AJJ, direct detection of microwave radiation of the fluxon
and investigation of a fine structure of ZFS, studies of a linewidth of
fluxon radiation, a phase-locking of the single fluxon using an external
microwave source and fluxon phase-noise measurements. The main aim
of this work is to provide a necessary knowledge and techniques to
implement fluxon readout for superconducting qubits.

3.2.1 Zero-field step measurements

Recording a current-voltage characteristic is the most basic approach
to measure a Josephson junction. It allows to immediately estimate
the critical current Ic, the normal state resistance RN and some other
derived parameters of the Josephson junction (critical current density,

70



3.2. Experimental results

damping, plasma frequency). As it was discussed in Chapter 2, the
presence of a fluxon inside the annular Josephson junction also gives
rise to a finite-voltage vertical step in the IV characteristic which allows
to make swift testing of samples and proceed with more sophisticated
techniques and studies.

DC measurements

First measurements of a zero-field step (or a fluxon resonant step) were
performed for the sample shown in Fig. 3.4 with the low critical current
density jc ∼ 30 A/cm2. A schematic for the first experiments is shown
in Fig. 3.11. It is a simple four-point setup for detecting a voltage across
the AJJ while feeding a bias current through it. This allows to observe
a supercurrent step at zero voltage (see black curve in Fig. 3.12) with
the critical (switching) current of about Ic ≃ 700 µA and a normal state
resistance RN ≃ 9 Ω.

By applying a certain permanent electrical current through the cur-
rent injectors in the top electrode of the AJJ, it is possible to create
a fluxon inside the AJJ. This corresponds to a drastic decrease of the
switching current as the junction switches to the finite-voltage state im-
mediately as the fluxon starts moving. Fluxon movement is reflected on
the current-voltage characteristic as a small vertical finite-voltage step
as shown in Fig. 3.13.a) for a fixed injection current ICI = 2.18 mA.

Microwave measurements

First experiments for detection of a microwave radiation from annular
Josephson junctions were performed with the use of a cryogenic X-band
microwave amplifier with a noise temperature of about Tnoise = 15 K,
a room temperature amplification cascade (when it was necessary) and
a FSUP26 spectrum analyzer. The result of the first measurements is
shown in Fig. 3.14. In the lower part of Fig. 3.14 there are measured
spectra for different bias points, while the upper part shows the result
of frequency conversion into voltage using the second Josephson rela-
tion V = νfluxonh/2e. Figure 3.13,b) shows the comparison between
the direct voltage measurements and the results of the microwave fre-
quency detection approach. As it is seen, the precision of frequency
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Figure 3.12: Basic current-voltage characteristics of a Josephson junction.
The black line corresponds to the case with no injection current ICI = 0,
while the red one corresponds to the case with ICI = 2.18 mA and an injected
fluxon.

Figure 3.13: a) The experimental zero-field step measured by the four-point
method. The area highlighted by the red rectangle is shown in greater detail
in part b). b) Zoom of the zero-field step area. The red line shows the
reconstructed ZFS measured in the frequency domain.
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Figure 3.14: Experimental zero-field step and the spectral line-shapes for
the corresponding bias values. Red and blue dots denote two "branches" of the
zero-field step. Fluxon switches from the blue branch to the red one jumping
backwards in frequency while increasing the bias current.

measurements (or, by other words, the level of noise) is much higher
(lower) than that for a direct voltage measurement.

Figure 3.15 shows an another example of spectra of the single fluxon
radiation from the AJJ along with a respective recalculated ZFS branch.
Complicated fluxon dynamics in the AJJ becomes obvious from looking
at these graphs (Figs. 3.14,3.15) with many strange peculiarities of the
ZFS’s fine structure. Some of them can be analyzed and understood
but some remain mysterious. Generally, most of the presented pecu-
liarities are possible to simulate using the full perturbed sine-Gordon
2.18 equation with addition assumptions about the biasing electrodes
and other inhomogeneities in the AJJ. Such an approach is cumber-
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Figure 3.15: Experimental zero-field step and the spectral line-shapes for
the corresponding bias values. Different line colors correspond to the different
bias points. The lower part of the graph which contains spectra is indicated
in dBm vs. GHz. The upper one with the recalculated IV characteristic is
indicated in µA vs. µV. The voltage points were extracted as mean frequency
values of corresponding peaks (multipeaks) times the Josephson constant.

some and usually does not give too much insight into the physics of
obtained results but allows to make some quantitative estimations and
even predictions. Similar studies of the fine structure of fluxon zero-
field steps were performed in the past via dc voltage measurements
[MBM93, BMU96, UMG99, PAU08].
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3.2.2 Fine structure of zero-field steps

The previous section demonstrated that it is possible to reconstruct the
zero-field step in a long Josephson junction by measuring the frequency
of fluxon microwave radiation. The precision of this techniques is by
many orders of magnitude better than that of the direct voltage mea-
surements. The fundamental reason behind this fact is that it is always
easier (in terms of noise and resolution) to measure a signal at high
frequencies since low (or zero) frequencies are always strongly affected
by 1/f noise.

As shown before, the presented ZFSs have been measured manually
in the microwave detection regime which is, obviously, not a fast and
a good way to proceed with such kind of measurements. From here
and further, measurements are obtained using automatic scripts writ-
ten in Python programming language. Automatization of microwave
measurements allows to routinely measure zero-field steps with unsur-
passed precision and reveal interesting fine structure of the former.

Lorentz profile

To study the spectral form of fluxon radiation, it is necessary to build
up a theoretic model or, rather, to use an already built one. The single
fluxon oscillating in the AJJ under the influence of the fixed bias current
γ with the fixed frequency ω0 can be treated as a linear (harmonic)
oscillator if the intensity D of thermal fluctuations is small enough in
comparison with ∂2ω0/∂γ

2. In other words, a nonlinearity of the fluxon
should be small in comparison with the noise amplitude which perturbs
the former. Here, we consider only a fundamental fluxon harmonic
(neglecting all higher ones). The equation for the simple linear oscillator
usually is given by the equation for a generalized coordinate x(t):

d2x

dt2
+ α

dx

dt
+ ω2

0x = f(t), (3.6)

where f(t) is an external force (in our case this is the homogeneous and
constant bias current), and α is the damping parameter. The transfer
function K(ω) of such the system has a well-known form:

|K(ω)|2 = A2

(ω2 − ω2
0)2 + 4α2ω2 . (3.7)

75



Chapter 3. Measurements of fluxon radiation

Generally, the response of the system GA(ω) with transfer function
K(ω) is given by [Ryt88]:

GA(ω) = |K(ω)|2GF (ω), (3.8)

where GF (ω) is the spectral density of the input force. Introducing
fluctuations in our system as the Langevin force, we write:

d2x

dt2
+ α

dx

dt
+ ω2

0x = f(t) + η(t), (3.9)

where η(t) is the random process. In case of white noise, the spectral
density of the random process is constant GF (ω) = const, which leads
to the following spectral density of the output:

GA(ω) = A2
0

(ω2 − ω2
0)2 + 4α2ω2 . (3.10)

This shape is usually called a "Lorentzian" or a Lorentz profile (see
Fig. 3.16). It is characteristic for cases of linear or quasi-linear oscilla-
tors exposed to white noise. Deviations from the Lorentz profile may be
caused by a considerable non-linearity of the oscillator and thus by a de-
viation of the transfer function from the case (3.10). Another common
reason for these deviations, is the change of the spectral density of the
fluctuations which happens when the noise becomes quantum-limited
or simply non-white (both change the spectral noise power density and
therefore the output spectrum).

Advanced samples

For the further measurements, the type of samples under test were
changed in favor of structures with greater critical density jc = 1
kA/cm2 and smaller diameter 2R1 ≃ 280 µm. In fact, the real crit-
ical current density varied from the designed valued and was found (by
measuring additional test Josephson junctions) to be at about jc = 800
A/cm2. The maximum frequencies of fluxon oscillations in such sam-
ples were at about 15 GHz for ambient temperatures much less than
the critical temperature of niobium Tambient ≪ Tc.

We can employ equation (3.10) for fitting the spectrum of fluxon radi-
ation. As we see in Fig. 3.17, for a particular bias point the coincidence
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Figure 3.16: Output spectral density of a linear oscillator in the case of white
noise influence. The linewidth of the spectral line is ∆ω.

between the fit and the experimental data is good. This means that
fluctuations in our fluxon oscillator are dominated by the thermal noise
and the fluxon oscillator by itself is in the quasi-linear regime. This is
not true for all bias currents values along the ZFS as it can briefly seen in
the previous Figs. 3.14, 3.15 where some spectra can have several max-
imums and generally can be non-Lorentzian. This can be explained by
the emerging nonlinearity in some cases or by the situation when several
fluxon attractors happen to be located close to each other separating a
single spectrum into several Lorentzians. The typical reason for these
attractors is a presence of unwanted inhomogeneities in the AJJ.

The full ZFS of one of the advanced samples is shown in Fig. 3.18
measured at temperature T = 4.2 K in the dilution refrigerator.
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Figure 3.17: Snapshot of fluxon radiation spectrum fitted by the correspond-
ing Lorentzian. The measurement has been performed at an ambient temper-
ature T = 4.2 K, for a fixed bias current Ib = 5.3 mA and an injection current
ICI = 3.973 mA.

Fluxons: natural and artificial

One can create a single Josephson vortex inside such a ring-shaped
Josephson junction by different means. The most natural one is to cool
down the sample several times in a small magnetic field and eventually
be lucky enough to trap a single fluxon (the so-called "try and pray"
method) [MAK08]. Another approach, as it was already discussed in
Chapter 2, is to send a certain dc current through the current injec-
tors embedded into the top electrode (see Fig. 3.1). The latter way
is much more reliable than the cooling in magnetic field method and
allows to obtain reproducible results. However, it also has some dis-
advantages - the injection current creates an additional inhomogeneity
in the junction’s potential and additionally twists the current-voltage
characteristics which complicates the analysis of the fluxon dynamics.
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Figure 3.18: Zero-field step measured in the frequency domain for an ambient
temperature T = 4.2 K and injection current ICI = 3.973 mA. The inset shows
the sample spectrum for the fixed bias current Ib = 5.3 mA with the respective
Lorentz fit.

Both approaches have been exploited in order to compare zero-field
steps (ZFS) of naturally born and artificially created fluxons.

Measurements: natural fluxon

We use an annular Josephson junction as a medium for a single fluxon
(see Fig. 3.1). The sample was simply cooled in a small magnetic field
in order to trap a fluxon. To achieve this, the process of cooling below
Tc and then heating above the latter, was repeated 10 − 20 times until
a fluxon was caught.

For this particular experiment the He-3 cryostat was used. This cryo-
stat allowed to perform rapid thermal recycling over the niobium critical
temperature Tc ≃ 9 K because it has an internal vacuum chamber with
a heater. For multiple thermal cycling experiments it is a much more
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Figure 3.19: Experimental zero-field step of a single trapped fluxon in the
AJJ.

convenient design than the dipstick. Also, it allows one to investigate
stability issues of ZFSs down to the temperatures of T ∼ 300 mK to
prepare for the experiments in the dilution refrigerator. Of course, on
the other hand-side, a certain price was paid because of the complex-
ity handling of this type of cryostat plus severe spatial limitations on
wiring, filtering etc. inside the cryostat itself.

Figure 3.19 shows a typical zero-field step of a single fluxon trapped
during cooling below Tc in the AJJ. The notable fine structure in the
form of many distinct steps in this figure can be explained by the res-
onant interaction of a moving fluxon with small-amplitude Josephson
plasma oscillations generated by the fluxon motion [BMU96, MMF98].
Each vertical step in Fig.3.19 should correspond to a resonant condition
ωm = γmkm (in case of large km), where ωm is the angular frequency of
the plasma waves, km is the their wave number, γm is the fluxon veloc-
ity at the resonance, and m is an integer resonance index. The physical
mechanism of this resonant condition is similar to phase locking of an
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Figure 3.20: Experimental zero-field step of a single fluxon in the AJJ created
by the current injection with the corresponding currents, noted in the insert.

oscillator (fluxon) by an external microwave source (plasma waves).

Measurements: artificial fluxon

Figure 3.20 shows the current-voltage characteristics of an "artificial"
fluxon created by current injection. Four different curves for different
values of the injection current are shown. An interesting observation is,
that, in contrast with zero-field steps for the "naturally" trapped fluxon,
these curves do not show such a developed fine structure of constant
voltage steps as in Fig. 3.19. This fact can be linked with the passive
presence of the second fluxon trapped between the current injectors or
with an additional noise introduced by the current injectors, so that
the inhomogeneity potential fluctuates and the fine structure steps are
smeared.
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Backbending

The notable "backbending" of the ZFS curve in the Fig.3.20 most likely
happens because of two combined reasons. The first one is the nonlinear
term ∼ A2 in the dispersion relation for the finite-amplitude plasma
waves in Josephson junctions ω2 = 1 + k2 −A2/8, where k is the wave-
vector, A is the amplitude of plasma waves [UMG99]. The second reason
is the presence of the radiation threshold at the fluxon velocity vthr =

1√
1+(2πn/l)2 , below which fluxons do not emit plasma waves (l = L/λJ

denotes the normalized circumference of the AJJ, n is the integer wave
index). According to Mkrtchyan and Schmidt [MS79], the amplitude of
the emitted plasma waves is largest near the radiation threshold. As can
be seen from the dispersion relation, an appearance of finite-amplitude
radiation at a certain bias point renders A ̸= 0 and thus decreases
the frequency ω. This explains the backbending nature taking into
account that the fluxon oscillation frequency, in this case, is locked to
the frequency of plasma waves.

Comparison

Figure 3.21 shows a comparison of data obtained for "natural" and "ar-
tificial" fluxons. Striking difference is the absence of the fine structure
in the second case. This can be caused by the presence of the second
static fluxon created by the injection current. Normally, it is situated
in-between the injection electrodes and does not move and therefore
does not give any direct contribution to the observed current-voltage
characteristics. However, this fluxon may also interact with plasma
waves and thus may disrupt (or change) the fine structure of ZFS. The
intuitive explanation of this may be obtained from a simple model con-
sidering moving fluxon, plasma waves, and the static fluxon. While
the moving fluxon can easily be locked by the plasma modes due to its
dynamic freedom (i.e. it can change its velocity and place in space rel-
atively easy), the static fluxon cannot do it. It is permanently trapped
in the narrow area between the injectors and can undergo only very
slight oscillations. At the same time plasma modes interact with both
fluxons, but the static one cannot tune its oscillation frequency as eas-
ily as the dynamic fluxon to the plasma modes. Thus, the static fluxon
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Figure 3.21: Comparison of zero-field steps of a single fluxon in the AJJ for
the cases of "natural" and "artificial" fluxons.

may work as a damper for plasma waves in the AJJ effectively reducing
their amplitude. However, the given explanation is rather speculative
and requires a proper numerical simulation of sine-Gordon equation or
an analytic consideration.

Another, more trivial explanation of the smeared fine structure of the
zero-field step in the case of "artificial" fluxon is that the presence of the
injection current itself provides additional fluctuations of the scattering
potential for the fluxon and, thus, smoothen the fine structure.

Also, one might note that the frequency range of the "artificial" fluxon
is shifted to higher frequencies in comparison with the "natural" one.
This shift may be explained by the injection current itself, which cre-
ates a well in the potential profile on the spatial scale of 2λJ for the
moving fluxon making the oscillation time shorter and, respectively, the
oscillation frequency larger.
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3.2.3 Radiation linewidth

The linewidth of a spectral peak carries valuable information about
fluctuational properties of an investigated system and its quality factor.
It allows to extract useful information about the system parameters and
noise sources.

Linewdith measurements

To measure the linewidth of fluxon radiation δνfluxon it is necessary to
extract the shape of the spectral line near its maximum and estimate
its full width at half-power as it is shown in Fig. 3.16. The simplest
way to do so is to record a spectrum using a simple averaging to smooth
out the noise and measure a linewidth δν at the 3 dB down from the
maximum value width of the final averaged curve. However, despite
the simplicity of such an approach, it contains some critical flaws. The
most important one is that if the averaging process is longer than the
correlation time of long-term fluctuations τ caused by the technical
noise, the resulting shape will be non-Lorentzian and therefore the esti-
mated linewidth δνfluxon will be ill-defined. To overcome this problem
it possible to use an approach developed by L. Bernstein [Ryt88] for
measurements with noticeable low-frequency noise: to measure the nat-
ural linewidth of a spectral line one has to measure for a time shorter
than τ and, thus, avoid distortions by low-frequency fluctuations. To
measure the linewidth of fluxon radiation δνfluxon in the experiments
the least squares method was used to fit every single spectral line of
fluxon radiation with the Lorentzian curve (3.10) and extracted the 3
dB linewidth of the peaks from the fitting parameters. This has been
done on-fly during the measurement process of ZFSs using an autom-
atized Python script. Every experimental curve was measured within
20 ms time on the spectrum analyzer. It was the shortest time possible
for our FSUP26.

The first consistent approach for a description of fluxon radiation
linewidth accompanied by measurement data was given in the paper
by Joergensen et al. [Joe82]. According to their approach, the fluxon
linewidth for a fixed point on the zero-field step can be estimated by
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the following simple expression:

∆νfluxon = πkBTambient

Φ2
0

R2
D

RS
, (3.11)

where RD is the differential resistance, and RS is the static resistance.
This result can be achieved by assuming that the noise in a long Joseph-
son junction is described by the Nyquist formula [Nyq28, Ryt88] and
then using the second Josephson relation to transform voltage fluctua-
tions to the current noise.

Figure 3.22 presents experimental results on measurements of the
spectral linewidth of fluxon radiation for the single trapped fluxon (see
Fig. 3.19) and the appropriate comparison with theory. Red points
denote the experimental data, while the blue ones indicate the predic-
tions using equation (3.11). Differential and static resistances have been
calculated using experimental data presented in Fig. 3.19 and assum-
ing Tambient ≃ 310 mK. As can be seen, the quantitative discrepancy
between the theory curve and the experimental data is huge, though,
qualitatively, the shapes of both curves coincide well. This, probably,
means that the effective noise temperature in the experiment is much
higher than the 310 mK indicated by the He-3 cryostat sensor. How-
ever, to fit theory to experiment, the effective temperature should be
about 1000 times higher which is very strange as the deviation of 2 − 3
times could be possible due to the difference between phonon and elec-
tron temperatures but 1000 does not make any sense (superconductivity
would disappear at temperatures "only" 100 times higher than the cur-
rent Tambient).

This strange phenomena suggests two things: either we had in our
measurements extremely strong external noise which widens the ∆νfluxon

or the model proposed in [Joe82] is simply not correct for the single
fluxon oscillations in the AJJ.

Filtering and noise issues

To check the aforementioned ideas, some improvements in the experi-
mental setup have been made, in order to bring the noise level down as
low as possible. The main change was that the whole room tempera-
ture dc electronics was put onto a battery power supply and completely
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Figure 3.22: Measurements of fluxon ("natural") radiation spectral linewidth
and its comparison with theoretical predictions.

galvanically decoupled it from the high frequency electronics in order
to get rid of unwanted 50 Hz (common network frequency) and 1 kHz
harmonics (typically employed in power transformers in all computers
etc.). To check the effect of these changes the measurements of a fluc-
tuation spectrum of fluxon resonant peak by itself have been used. The
procedure was the following: the Lorentzian peak from fluxon radiation
as it is shown in Fig. 3.17 was routinely recorded. Then, the spectrum
analyzer has been set in the time domain regime tracking the single
fixed frequency νfluxon (which was determined and fixed using the pre-
vious measurement). Finally, a lengthy trace of power dependence on
the fixed fluxon frequency versus time Pfluxon(t) for fixed time T = 100
s with the typical number of resolution points N = 30001 was recorded.
The Fourier transformation of the recorded set of data Pfluxon(t) pro-
vides access into a spectrum of fluctuations at the fluxon frequency
itself. At the very beginning, such a spectrum contained many par-
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Figure 3.23: The black line shows a typical example of a time trace of power
fluctuations at the fixed frequency ν = 14.31 GHz corresponding to the center
frequency of fluxon oscillations. The red and the green lines are showing the
result of the Fourier transform of a such time trace. The red line is given for
an experimental setup with galvanically coupled dc and microwave grounds.
The green line illustrates the situation when these two are isolated from each
other and additional precautions are made.

asitic peaks (see Fig. 3.23) indicating that there were many different
noise sources affecting the fluxon. With every change of the experimen-
tal setup a check of the spectrum of fluxon fluctuations has been made
in order to find out and to remove all possible parasitic frequencies. At
the end, it was possible to achieve a rather clean picture of fluxon fluc-
tuations, removing all low-frequency parasitic peaks as well as lowering
general 1/f noise (see Fig. 3.23, the comparison of the red and the green
lines).

Measurement: dilution refrigerator

After fixing the problem with parasitic signal coupling to the fluxon in
the AJJ, the linewidth measurements of fluxon radiation were repeated.
This time, the dilution refrigerator setup (see Fig. 3.10) was used for the
measurements as it allowed to test a wider range of temperatures and
also has better filtering (because it has much more space for filters etc.).
The results of typical measurements of ZFSs in the dilution refrigerator
is shown in Fig. 3.24 for four typical temperatures.

Linewidth dependencies correspondent to Fig. 3.24 are shown in sub-
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Figure 3.24: Measurements of zero-field steps ("artificial" fluxon is considered
here) performed in the dilution refrigerator at different temperatures.

sequent Fig. 3.25. In this figure, a theoretical fit is shown for the temper-
ature T = 75 mK using the differential RD and the static RS resistances
extracted from the previous plot. Again, the qualitative coincidence be-
tween the theory and the experiment is good, however, the quantitative
one is terrible as the theory values stand aside the measured ones by
approximately 3 orders of magnitude. Here we can be sure that this
deviation is not caused by any parasitic noise source coupled to the AJJ
(see Fig. 3.23). This means that the deviation can be caused by the the-
ory not being appropriate for the studied experimental conditions. One
obvious reasons for this discrepancy can be the fact that Joergensen et
al. theory does not take in account the surface losses. However, at very
low temperatures T ≪ 4 K, the usual damping term α is known to drop
considerably while the major damping the fluxon experiences due to the
surface losses. At any rate, we have to state that the problem of the
discrepancy between experimental and theoretically predicted linewidth
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Figure 3.25: Measurements of linewidth of the fluxon radiation in the AJJ
in the dilution refrigerator at different temperatures.

remains unsolved and puzzling, and requires further studies.

3.2.4 Phase-locking of a fluxon oscillator

Phase-locking is a very well known technique in radioelectronics. Its
main idea lies in the fact that it is possible to stabilize a bad oscillator
by connecting it in a special way to a better one. Thus, one suppresses
phase fluctuations of the bad oscillator by continuously comparing its
signal with the good oscillator (whose phase fluctuations should be much
smaller) and generating a so-called feedback signal, which is then fed
back to the first oscillator and hereby cancel out phase noise. This
technique is very powerful and is widely used in almost all modern rf-
electronics. In the case of the fluxon oscillator, it can help to stabilize
its oscillation frequency and can also be used in a special fashion to
readout a superconducting qubit.
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Figure 3.26: Basic phase-lock loop for a voltage-controlled oscillator (VCO).

General scheme and purposes

A phase-lock loop (PLL) usually contains two essential elements (see
Fig. 3.26): a phase detector and a voltage-controlled oscillator. The
phase detector compares the phase of a periodic reference signal with
the phase of the VCO signal and produces a feedback signal proportional
to the phase error between these two. Usually, an additional element
is also present in most PLLs, which is a loop filter. It allows to filter
unwanted frequencies in the feedback signal, amplify it or make another
appropriate transformations. The simplest version of the loop filter is a
passive low-pass filter or a PID amplifier. The filtered feedback signal is
sent back to the VCO changing its frequency in a direction that reduces
the phase error between the reference signal and the VCO. When the
loop is locked, the control voltage sets the average frequency of the
VCO exactly equal to the average frequency of the reference signal. The
detailed description of underlying physics can be found in, for example,
[Gar05].

Implementation

The experimental scheme for implementing a phase-lock of the Joseph-
son vortex oscillations in the annular Josephson junction to an external
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Figure 3.27: Implemented scheme of phase locking the fluxon oscillator. The
fluxon radiation from the AJJ is amplified by the chain of amplifiers and fed
to the RF port of the harmonic mixer. The reference signal from the external
microwave generator is fed to the LO port of the mixer. The IF port provides
the difference signal at the frequency νIF = νLO − νRF . This feedback signal
is filtered loop filter (which can be an active one if needed) and fed back to the
bias current line in order to compensate for the fluxon deviations and phase
lock it to the reference frequency. The loop filter also usually contains a phase
shifter.

signal is shown in Fig. 3.27. A harmonic mixer was used as the phase
detector. For first experiments, a simple low-pass filter with a cutoff
frequency νc = 100 kHz was used as the loop filter.

Surprisingly, the most primitive scheme with the low-pass filter and
harmonic mixer already functioned well enough. It allowed us to im-
plement the first phase-locking of the fluxon oscillator. We note that
previously the phase-locking of fluxons has been realized only in much
high frequency range of several hundreds GHz using a flux-flow oscilla-
tor (basically, in the case of a dense chain of moving fluxons) [KS00].
The resulting spectrum are shown in Fig. 3.28 as well as the compar-
ison of the phase-locked signal with the autonomous fluxon spectrum.
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Figure 3.28: Phase-locked fluxon spectrum, indicated by the red line and its
comparison with the autonomous fluxon spectrum given by the blue line.

A very characteristic for a phase-locked oscillator plato with two ad-
ditional smaller peaks appeared (see the red line in Fig. 3.28). The
frequency span between these two peaks generally equals to a band-
width of the PLL and is roughly ∆P LL = 1 MHz here. Notably, the
spectral linewidth ∆ν ≃ 1 Hz of the phase-locked signal is many orders
of magnitude less than the linewidth of the autonomous signal ∆ν ≃ 10
kHz and, generally, is limited only by the linewidth (or phase fluctua-
tions) of the reference signal (precision of the typical modern microwave
source is about 1 mHz).

In Fig. 3.29 one can see spectral snapshots of locking of the free fluxon
oscillations by the phase-lock loop as it happened on the screen of the
spectrum analyzer. Four instances of spectra are shown in Fig. 3.29,
each of them corresponding to the specific reference signal frequency
approaching the fluxon frequency and marked by arrows. We can see
that when the reference signal frequency is far away from the fluxon
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Figure 3.29: Curves (1)-(4) illustrate the phase locking process during ap-
proach of the reference frequency (its position is indicated by vertical arrows)
to the fluxon frequency.

frequency nothing is happening except emergence of a small symmet-
ric satellite peak (the black line). When the reference frequency ap-
proaches closely, at the very border of the PLL bandwidth, the partial
synchronization of the fluxon oscillations occurs and the spectral line
takes a weird shape given by the green line. The next step closer to
the autonomous fluxon frequency increases the synchronization and, as
a result, the power of the phase-locked signal grows (the red line). Fi-
nally, the blue line illustrates a situation when the reference signal and
the autonomous fluxon frequencies are almost equal to each other. The
power of the phase-locked signal is maximum here and at least 7 dB
higher than the maximum power of the autonomous fluxon oscillations.

For the better performance, for a wider frequency range of the phase-
locking, the passive loop filter was replaced by the low-noise preampli-
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fier SR560 with an embedded tunable band-pass filter due to the need
for an amplification of the feedback signal in a certain bandwidth. A
phase shifter before the preamplifier is also very useful for phase-locking
(sometimes, indispensable) due to the need to adjust the phase of the
feedback signal.

Phase noise

A good way to characterize the quality of an oscillator is to measure
its so-called phase noise. It is defined as the power at the offset fre-
quency ν from the carrier frequency ν0 (which is in our case equals to
the fluxon frequency νfluxon) related to the maximum power of the os-
cillator. Therefore, the phase noise is measured in dBc which indicates
how much power in dB related to the maximum power of the oscillator
phase noise has at the certain offset frequency ν. Generally, a good os-
cillator is characterized by a low phase noise. Therefore, it is reasonable
to compare the autonomous fluxon oscillator and the phase-locked one
via the phase noise measurements.

To measure the noise one needs to measure microwave power at the
offset frequency from the carrier. Fortunately, our spectrum analyzer
has an embedded option and all required software to do this automat-
ically which makes the whole measurement process comfortable. The
results of experimental measurements of the phase noise for different
types of the fluxon oscillator is presented in Fig. 3.30. As it can be
seen, the phase noise for locked fluxon is lower than for its free coun-
terpart for 10 − 20 dB for the whole frequency range.

PLL applications

From the author’s point of view, the phase-locking of the fluxon oscil-
lator was by itself an intriguing part of the presented experiments. But
as usual, men is interested in the practical applications of any kind of
physics. The phase-locked fluxon oscillation in the AJJ, is no exception.
One of the possible applications for such scheme was already proposed
and developed in Ref. [KV05]. The idea is to use the phase-locked
fluxon in the AJJ as a local clock-generator, allowing one to distribute
an important clock signal within an RSFQ digital circuit. Our prac-
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Figure 3.30: Phase noise measurements of the fluxon oscillator.

tical reason to investigate this matter experimentally was to make an
improved fluxon readout of a superconducting qubit via implementing
the phase-lock of the former. The idea was that by removing a part of
the noise from fluxon oscillations (and putting it to the feedback chan-
nel), one makes an environment around the qubit linked to the fluxon
in the AJJ less noisy and therefore improves the whole readout and
coherence times of the qubit. In this scheme, the feedback signal of
the PLL loop is designed to carry a useful information about the qubit
state.

3.3 Conclusions

In this chapter, the designs and the practical implementations of differ-
ent annular Josephson junctions for detecting microwave radiation of a
single fluxon have been demonstrated. It was shown that it is possible
to measure this radiation with the use of a cryogenic low-noise amplifier.
The resolution of such measurements is found to be much higher than
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the resolution of standard direct voltage measurements of Josephson
junctions. This technique has been employed to resolve a fine structure
of zero-field steps and measure a corresponding linewidth of fluxon ra-
diation for different bias points. The fine structure of the zero-field step
was studied for two different cases: a randomly trapped "natural" fluxon
and an "artificial" fluxon created by current injection. We carried out a
comparison between these two cases which has shown that the resonant
interaction between the fluxon and plasma waves leading to a series of
constant voltage (frequency) steps may be disrupted in the case of the
"artificial" fluxon.

It was also observed that the linewidth of the fluxon radiation from
the AJJ at low temperatures T < 2 K is not described well the by
the existing theory. This very interesting, rather fundamental problem
deserves further investigations. The successful experimental implemen-
tation of a phase-locking technique allowed to stabilize (lock) the fluxon
oscillations in the AJJ and significantly reduce the phase noise of the
latter.
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Nowadays, a classical interface for qubits is an emerging milestone in
the development of circuits with multiple solid state qubits. An efficient
control and readout of several quantum bits requires a powerful classical
computer in order to process the vast amount of real-time measurement
data from a quantum counterpart. These days, researchers often use
specific programmable electronic boards (so-called FPGA boards) in
order to meet the requirements for high processing speed, flexibility
and reasonable price. However, in the near future this approach will
become inefficient due to the complexity demanded by communication
between many qubits and room temperature readout electronics. The
fluxon readout for superconducting qubits can potentially fill this gap
via merging together superconducting digital logic in the form of RSFQ
and the quantum counterpart.

The idea to use fluxons for detecting the state of flux qubits was
initially proposed and analyzed in [ARS06]. It was theoretically shown
that a ballistic fluxon, weakly coupled to a superconducting flux qubit,
can be used to readout the quantum state of the flux qubit [ARS06,
HFS07]. An advantage of the fluxon readout over the usual dispersive
readout with the use of linear resonators is that the distribution of
the electro-magnetic field in the conventional bi-coplanar resonator is
such that it perturbs the qubit as long as there are photons inside
the resonator. For the fluxon readout, the situation is different. A
fluxon interacts (and perturbs) a qubit for a very short time due to its
localized nature. This time depends on JTL parameters with typical
time scales of about 1 ps. That, potentially, allows to further improve
the screening of a quantum circuit from the outer world and hence
improve its coherence times.

In the tested approach towards fluxon readout of superconducting
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Figure 4.1: Annular Josephson junction with an injected fluxon coupled to
a flux qubit homogenously biased by an external current source Ib. The bias
electrodes are not shown for better clarity. The purple lines show the flow
of the electrical currents forming the fluxon and the current dipole. A fluxon
equilibrium oscillation frequency ν0 is shifted by an amount δν due to a fluxon
scattering on a current dipole produced by a flux qubit. Microwave radiation
from the fluxon is received by a microstrip antenna and later fed to a cryogenic
amplifier (not shown).

qubits, a flux qubit is placed close to the annular Josephson junction
and coupled magnetically to the latter via an additional superconduct-
ing coupling loop (see Fig. 4.1). Thus, the fluxon interacts with a cur-
rent dipole formed by the electrodes of the loop coupled to the qubit.
The frequency of fluxon radiation (or its equilibrium velocity) carries in-
formation about the state of the coupled qubit. Using the experimental
techniques for detecting the fluxon radiation from the AJJ (demon-
strated in the previous Chapter 3), one can resolve oscillations of a
persistent current in the flux qubit loop as variations of the fluxon ra-
diation frequency. This variations, however, are complicated by the
specific interaction between the moving fluxon and the static current
dipole. It is possible to analyze such a system via a perturbation the-
ory of the sine-Gordon equation. Using the latter we demonstrate that
the frequency shift of the fluxon oscillations depends only on the current
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Figure 4.2: Illustration of the ballistic fluxon scattering on the current dipoles
with different signs plotted as the dependencies of the fluxon velocity u and
the bias current γ versus spatial coordinate x (the left part corresponds to
the positive dipole, the right one - to the negative) in the absence of damping
and homogeneous bias current. The sign of the dipole (or, simply, what comes
first - the dip or the peak) determines the sign of the velocity change and
thus the total change of the propagation time (frequency). Note that the
deceleration process (negative dipole, the right part of the figure) is always
stronger than acceleration one (positive dipole) in the ideal case due to the
relativistic correction. This is true only in the aforementioned ideal case.

dipole strength and does not depend on its polarity. This holds for all
meaningful fluxon velocities u > 0.1 · c0.

At last, using all the gathered knowledge about the fluxon readout
scheme, we were able to resolve the flux qubit quantum transition be-
tween the ground and first excited states as the frequency shift of fluxon
oscillations. This transition was excited by an additional continuous
microwave signal from an external microwave generator at a fixed fre-
quency. An energy spectrum of the superconducting flux qubit was
measured using the fluxon readout technique.
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Figure 4.3: Illustration of the ballistic fluxon scattering on the current dipoles
with different signs (the right part corresponds to the positive dipole, the left
one - to the negative) in the presence of damping and homogeneous bias current
γ0. Now, the resulting change of a total propagation time is not obvious.

4.1 Scattering of a fluxon on a current dipole

To couple a flux qubit to the fluxon inside an annular Josephson junc-
tion, it is necessary to engineer an interaction between two orthogonal
magnetic dipoles. To facilitate this interaction, we have added a super-
conducting coupling loop embracing a flux qubit, as shown in Fig. 4.1.
The current induced in the coupling loop attached to the AJJ is propor-
tional to the persistent current in the flux qubit. Thus, the persistent
current in the qubit manifests itself in the AJJ as a current dipole with
an amplitude µ on top of the homogeneous background of bias current.
Similar models, but for the static fluxon and the static dipole, were
already considered in the past in [MU04, GSK04]. In our case the sit-
uation is different as the fluxon moves. When the fluxon scatters on a
positive current dipole, it is first accelerated and then decelerated by
the dipole poles. In the ideal case of absence of damping and bias cur-
rent, the sign of frequency change δν is determined only by the polarity
of the dipole (see Fig. 4.2).
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In the presence of finite damping and homogeneous bias current, the
situation completely changes - as the total propagation time becomes
dependent on the complex interplay between bias current, current dipole
strength and damping. In this real case, taking into account the damp-
ing, which itself dependens on the fluxon velocity, the homogeneous bias
current γ0, the fact that the acceleration and the deceleration now hap-
pens on different spatial scales, we obtain an intricate nonlinear system
to deal with. The response of this dynamical system on the introduction
of the fixed current dipole with the strength µ on top of the homogenous
bias current γ0 can be much more complex than it was for the case of
Fig. 4.2.

One of the possible scenarios for the fluxon scattering on the current
dipole to happen in the case of damped and biased long Josephson
junction is shown in Fig. 4.3. The considered figure was drawn for a case
of low bias current γ0 ∼ 0.05 and α ∼ 0.01 so that the fluxon velocity is
small comparable with the Swihart velocity u ≪ c0. Looking at Fig. 4.3
it is not simple to evaluate what frequency change such a scattering
process causes as it is needed to calculate a fluxon propagation time
T for every phase trajectory and compare them to each other. To
do this two parallel approaches were used as described in the further
subsections.

4.1.1 Perturbation approach

A classical theoretical description of interaction between the Josephson
vortex and the current dipole in the AJJ can be done in terms of the
well-known perturbed sine-Gordon equation (PSGE) [MU04, GSK04,
MS78]:

∂2φ

∂t2
+ α

∂φ

∂t
− ∂2φ

∂x2 = γ − sin(φ) + µ(δ(x− d/2) − δ(x+ d/2)), (4.1)

with the periodic boundary conditions

φ(−l/2, t) = φ(l/2, t) + 2πn, ∂φ(−l/2, t)
∂x

= ∂φ(l/2, t)
∂x

, (4.2)

where n is the number of trapped fluxons, γ = Ib/Ic is the normalized
bias current, α = ωp/ωc is the damping parameter, l = L/λJ is the
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normalized junction circumference, µ = Iµ/(jcλJW ) is the amplitude
of the current dipole and d = D/λJ is the normalized distance between
the dipole poles. Direct analytic solution of (4.1) is not an easy task.
Therefore, we analyze Eq. (4.1) using the perturbation approach devel-
oped in [MS78]. In the limit of small perturbations γ ≪ 1, α ≪ 1 and
µ ≪ 1, the motion of a single fluxon in the AJJ can be described by
a system of ordinary differential equations for the fluxon velocity u(t)
and its spatial coordinate X(t):

du

dt
= −πγ

4
(1 − u2)3/2 − αu(1 − u2) − µ

4
(1 − u2)×

×
[
sechd/2 − X√

1 − u2
− sech−d/2 − X√

1 − u2

]
, (4.3)

dX

dt
= u− µu

4

[
(d/2 −X)sechd/2 − X√

1 − u2
+

+(d/2 +X)sech−d/2 − X√
1 − u2

]
, (4.4)

u(−l/2) = u(l/2). (4.5)

Calculation of phase trajectories

By numerically solving (4.3)-(4.5) as a parametric set of first order
differential equations with variables X(t) and u(t) one can calculate an
equilibrium trajectory in phase space for fluxon oscillations in the AJJ
with the current dipole. The standard procedure was the following: one
starts with an initial guess value u(t = 0) for the fluxon velocity and
X(t = 0) = −l/2 for the fluxon initial coordinate and then calculates
the trajectory X(t) in a time span from 0 to a value T . The value
T should be simply large enough so that X(tl < T ) = l/2. After this
step, the value of fluxon velocity u(tl) has been evaluated and compared
with the initial guess u(t = 0). If the difference δu = u(tl) − u(t = 0)
is larger than a predefined constant |δu| > δ0, the initial guess value
is changed according to a special algorithm and the whole calculus is
repeated. This procedure is done until the right initial guess is found
which corresponds to the condition δu < δ0. Thus, setting δ0 to be small
enough, one can find a solution for the perturbed set of equations (4.3)-
(4.5). Taking into account that a perturbation by the current dipole is
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Figure 4.4: Examples of the phase trajectories for the fluxon scattering on
the current dipole in the AJJ for the different bias currents. Other system
parameters were the following: µ = 0.1, l = 70, α = 0.025, d = 10.

considered to be small, the unperturbed value of fluxon velocity u0 =
1√

1+(4α/πγ)
(2.32) can be safely taken as the initial guess. The precision

constant was usually set to about δ0 ∼ 10−14 to achieve the required
precision in numerical simulations. The whole programming has been
done in Wolfram Mathematica 7.0. The calculation time of a single
equilibrium phase trajectory using the described method took about
5 − 10 seconds and provides a great flexibility and speed in estimating
different outcomes for different system parameters.

Examples of the resulting phase trajectories are shown in Fig. 4.4.
One can see that the current dipole strongly changes the fluxon velocity
locally for the small bias currents γ ∼ 0.01 which eventually can even
lead to a pinning of the fluxon at the poles of the current dipole (the
black curve in Fig. 4.4). For larger γ, the influence of the current dipole
decreases as it should because of the increasing fluxon energy.
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Figure 4.5: Equilibrium frequency deviation of the fluxon in the AJJ due
to the scattering on the current dipole with different strengths µ. The other
system parameters were the following: l = 20, α = 0.02, d = 2.

Equilibrium frequency deviation

Using the calculated phase trajectories for the fluxon scattering on the
current dipole in the AJJ, one can estimate the deviation of fluxon os-
cillation frequency from the unperturbed case δν = νµ − ν0, where ν0
is the oscillation frequency for µ = 0. The black line in Fig. 4.5 shows
the dependence of the relative deviation δν/ν0 versus bias current γ
calculated from the perturbation theory for the following set of system
parameters: l = 20, α = 0.02, µ = 0.05, d = 2. The deviation δν is
large and negative for small bias currents γ ≪ 0.1, what means that
the fluxon is slowed down by the current dipole and eventually can be
pinned at the dipole if the bias current is too small. Surprisingly, for
larger currents γ > 0.05, the sign of δν becomes positive indicating
that the current dipole accelerates the fluxon. To understand this phe-
nomenon, we need to look at Eq. (4.3) and notice that the effective
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Figure 4.6: Equilibrium frequency deviation (the vertical axis is common for
the both graphs) of the fluxon in the AJJ due to the scattering on the current
dipole. The system parameters were the following: a) α = 0.02, µ = 0.05,
d = 2; b) l = 20, µ = 0.05, d = 2.

damping term αe = αu(1 − u2) has a non-monotonic behavior. When
increasing the fluxon velocity u, the effective damping is increased for
u ≤ 1/

√
3 and then starts to decrease. This means that deceleration

(acceleration) is favorable for low (high) bias currents.
Figure 4.6 illustrates the dependence of the relative fluxon frequency

deviation δν/ν versus the damping and the length of the AJJ. Gener-
ally, with higher damping the transition point from negative to positive
δν shifts to larger bias currents. The AJJ length influences only the am-
plitude of the frequency deviation leaving the position of the transition
point intact.

4.1.2 Numerical simulation

To verify the results of the perturbation theory, we performed direct
numerical simulation of Eq. (4.1) with the delta functions replaced by
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the hyperbolic secants in order to smoothen the current distribution:

∂2φ

∂t2
+ α

∂φ

∂t
− ∂2φ

∂x2 = γ − sin(φ)+

+ µ

πad

[
sech

(
x− d/2
ad

)
− sech

(
x+ d/2
ad

)]
. (4.6)

The parameter ad characterizes the width of current distribution and
is ad ∼ 1 in the experiment. The prefactor B = 1/(πad) is chosen
to keep the normalization constraint B

∫+∞
−∞ sech((x− d/2)/ad)dx = 1.

The simulation of (4.6) with the boundary conditions (4.2) was done
with the use of the original modification of the implicit finite-difference
scheme [Zha91]. It is based on the reduction of derivatives in (4.6) and
(4.2) by finite differences and transforming the whole equation to a set
of N linear equations in the form of a quasi-triangular matrix. Matrix
inversion was done with the use of methods provided by the Numerical
Recipes textbook [PTF07]. The resulting scheme was verified in vari-
ous ways and used many times before for simulating the PSGE equation
[FP07b, FP09, FFU11]. The precision of the numerics was mainly con-
trolled by discretization steps in time ∆t and in space ∆x. To achieve
a precision which can be compared with the results of perturbation
theory, these discretization steps should be around ∆t ≃ ∆x ≃ 10−5

which yields for the typical AJJ length of l = 20 and time Tmax = 1000
around N ≃ 2 · 1014 points to be calculated. Due to this extreme task
the program was rewritten to employ OpenMP techniques and was run
on several nodes of the KIT computational cluster HC3 which allowed
to rapidly perform all required calculations using parallel computing.
"Rapidly" here means that the typical calculation time for a single curve
was about 2 − 3 days using 3 eight cores nodes (the same task running
on a single threaded machine of comparable power would take a couple
of months).

The red curve in Fig. 4.7 shows the results of the numerical calcu-
lations of Eq. (4.6) with boundary conditions (4.2). As it can be seen
in Fig. 4.7, results of the numerical simulations qualitatively agree with
the perturbation theory. We see that this agreement is improving for
smaller ad as Eq. (4.6) takes form of Eq. (4.1) in the limit of ad → 0.
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Figure 4.7: Relative frequency deviation from the equilibrium δν/ν0 of the
fluxon oscillation frequency versus bias current. The black line shows the
result of perturbation approach, while the red line depicts results of direct
numerical simulations of the PSGE equation (4.6) with ad = 1. The blue
curve corresponds to the case with ad = 0.2.

4.1.3 Flux qubit as a current dipole

In the experiments, the current dipole amplitude was controlled by the
persistent current in the coupled flux qubit:

µ = kIp

jcλJW
, (4.7)

in the absence of offset current µ0 = 0. The proportionality coefficient
k = M/LCL was determined by a mutual inductance between the qubit
and the coupling loop M , and by a self-inductance of the coupling loop.
A persistent current Ip of the ground state in the flux qubit can be
calculated by a numerical simulation of its Hamiltonian [Orl99].

The fluxon response to the persistent current in the flux qubit loop
is depicted in Fig. 4.8 by the red curve. It was calculated for a fixed
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Figure 4.8: Persistent current for a ground state of the flux qubit versus
magnetic frustration (black line). The red line shows the corresponding fluxon
shift calculated using the perturbation theory for the following parameters:
γ = 0.2, l = 20, α = 0.02, µmax = 0.05.

bias current γ = 0.2, l = 20, α = 0.02, µmax = 0.05 using the pre-
sented perturbation theory (4.3)-(4.5). The response is indicated in
kHz assuming ν0 ∼ 13 GHz (as it corresponds in experiment to the bias
current γ ∼ 0.2). Noticeably, the response signal δν is approximately
proportional to the amplitude of the persistent current and stays posi-
tive despite the change of the sign of Ip. The asymmetry of deviation δν
for the positive and negative branches of Ip is less than 3%. This means
that the fluxon scattering is nearly independent of the polarity of the
current dipole. It depends dominantly on the bias γ and the absolute
amplitude of the current dipole µ.

The surprising independence of the fluxon scattering on the dipole
polarity can be explained noticing that the dipole length d is much
larger than the characteristic size of the fluxon at relativistic velocities,
the contributions of the separate dipole poles to δν is additive and
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is not dependent on their order. For small bias currents (small fluxon
velocities) or small dipole lengths, when d is comparable with the fluxon
size, δν becomes dependent on the dipole sign.

4.2 Experimental results

In this section the experimental results on the fluxon readout are pre-
sented. They consist of measurements of the fluxon radiation frequency
shift versus flux bias through the coupled superconducting flux qubit.
This flux bias was created by a current through the control line (see
Fig 4.9). Further presented results include spectroscopy measurements
of the flux qubit.

Four different samples with deposited qubits will be considered in
the respective measurements. The first two of them (#1 and #2) have
been implemented with weak coupling, the other two (#3 and #4) were
strongly coupled.

4.2.1 Fluxon and flux qubit: weak coupling

The coupling between the fluxon in the AJJ and the flux qubit can
be estimated in terms of the maximum dipole the qubit can create
in the AJJ. The first sample #1 (whose optical photo with the elec-
tric schematics is shown in Fig 4.9) had a maximum estimated current
dipole amplitude of about µmax ≃ 3 ·10−5. One can calculate this value
from (4.7) assuming the mutual inductance M ≃ 6 · 10−12 H, the cou-
pling loop self-inductance LCL ≃ 1.7 ·10−10 H, the maximum persistent
current Ip ≃ 300 nA, the critical current density jc ≃ 800 kA/cm2, the
Josephson length λJ ≃ 12 µm, and the AJJ width W ≃ 5 µm. This
case is considered as the weakly coupled qubit.

It is needed to note that this classification of coupling is not intended
to be linked with quantum information processing standard definitions
on strong and weak coupling.

Sample and flux qubit

The annular Josephson junction shown in Fig. 4.9 was fabricated using
photolithography and a standard Nb/AlOx/Nb trilayer process with
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Figure 4.9: Optical photograph of the chip with the annular Josephson junc-
tion on the right part and experimental set-up schematics. The left part shows
a zoom into the area with the flux qubit with a coupling loop (yellow loop) and
control line (green loop). Red crosses indicate the positions of three Josephson
junctions in the flux qubit loop. Sample #1.

a critical current density jc ≃ 1 kA/cm2. The estimated Josephson
penetration depth is λJ ≃ 12µm, the Josephson plasma frequency
ωp/2π ≃ 124 GHz, and the estimated damping parameter α ≃ 0.02.
The circumference of the junction L = 880 µm determines the fre-
quency of the radiation corresponding to a single fluxon moving with
the Swihart velocity c0 to be at about 15 GHz. The width of the AJJ
was W = 2µm and its fluxon free critical current Ic = 23 mA.

The flux qubit was made using a standard aluminum shadow evap-
oration process [Dol77, Moo99] and was deposited after the niobium
structures were fabricated. Estimated parameters for the Josephson
junctions in the flux qubit loop were the following: critical current
Ic = 380 nA, alpha factor αq = 0.54, ratio of Josephson and charging
energies EJ/EC = 830. The post-deposition of all aluminum qubits
was done in KIT Campus Nord facilities by Anastasia Shcherbakova.
Figure 4.9 presents the optical photograph of the first flux qubit (on the
left part). To resolve the samll Josephson junctions in the flux qubit
in detail a scanning electron microscope (SEM) was used due to their
small lateral sizes (∼ 200 nm). Figure 4.10 provides the examples of
such SEM images.
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Figure 4.10: Scanning electron microscopy pictures of Josephson junctions
intersecting the flux qubit loop. On the left hand side the normal junction is
shown. The right picture illustrates the α-junction. Sample #1.

Fluxon frequency shift

The fluxon radiation was detected as described in the Chapter 3 using
the dilution refrigerator experimental set-up. The zero-field resonance
step for this particular sample at liquid helium temperature is shown
Fig. 4.11.

To experimentally test the qubit readout scheme discussed above,
the temperature was lowered to T ≃ 70 mK, well below the super-
conducting transition temperature Tc of aluminum forming the qubit.
The long junction was biased at a fixed current Ib. Then, we varied
the current through the control line ICL in order to change the mag-
netic flux through the flux qubit. The experimental curve showing the
reaction of the fluxon to the magnetic flux through the flux qubit are
presented in Fig. 4.12. The periodic modulation of the fluxon frequency
versus magnetic flux through the qubit corresponds to the changing of
the persistent currents in the qubit as Fig. 4.12 suggests. We did not
observe clear and narrow peaks at the half flux quantum point, most
probably due to excess fluctuations. Emerging dip-like peculiarities can
be noted at presumed half flux quantum points which suggest that the
dips may be there, covered by noise and insufficient resolution. Further
improvements of the experimental setup are required to resolve these
dips. The presented measurement curve has a convex profile which in-
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Figure 4.11: Zero-field step measured in the frequency domain for the ambi-
ent temperature T = 4.2 K and injection current ICI = 3.973 mA. The inset
shows the sample spectrum for the fixed bias current Ib = 5.3 mA with the
respective Lorentz fit. Sample #1.

dicate that indeed the deviation of frequency δν is positive, consistent
with predictions made by the perturbation approach and the numerical
simulations.

Advanced samples

For the first sample, clear indications of the qubit interaction with the
fluxon in the AJJ were observed. However, the quality of the alu-
minium film forming the flux qubit was questionable from the very
beginning and absence of narrow qubit dips in Fig. 4.12 also suggested
that something might be wrong with the qubit itself. Therefore, addi-
tional qubits have been fabricated with the use of an UHV evaporation
chamber with a much better vacuum and, thus, a much better quality
and reproducibility of the final aluminum flux qubits. The same type
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Figure 4.12: Variations of the fluxon frequency νfluxon versus the current
through the control line ICL (the flux bias) due to the coupling to the flux
qubit. a) The bias current Ib = 12.0 mA, in the normalized units γ = 0.521.
b) The bias current Ib = 1.1 mA, in the normalized units γ = 0.048. Sample
#1.

of samples with annular Josephson junctions was used as it was shown
in Fig. 4.9. The design parameters of those qubits were a bit different:
critical current Ic = 500 nA, alpha factor α = 0.63, ratio of charging
and Josephson energies EC/EJ = 0.0034. In order to decrease the low-
frequency fluctuations in the experimental setup, the whole dc room-
temperature electronics were switched to a battery supply as described
before in Section 3.2.3. The latter change was crucial and allowed to
observe clear indications of fluxon-qubit interactions.
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Figure 4.13: a) Theoretical persistent current Ip of the ground state of the
flux qubit versus magnetic frustration (black line) calculated for our flux qubit
parameters. The red line shows the expected fluxon frequency shift in kHz for
γ = 0.4. b) The experimentally measured modulation of the fluxon oscillation
frequency due to the coupling to the flux qubit. Black dots show the measured
mean frequency of fluxon oscillations. Every point consists of 100 averages;
bias is γ = 0.39. The red line shows the corresponding fit. Sample #2.
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For the sample #2 with the "advanced" qubit, Fig. 4.13.b) shows the
experimental shift of the fluxon oscillation frequency due to the cou-
pling to the flux qubit at the fixed bias current γ = 0.39. We measured
a Lorentzian radiation peak of fluxon oscillations in the AJJ for fixed
values of ICL and then determined the mean frequency νf for which
the radiation power was maximal. The narrow flux qubit peaks are
clearly seen in the presented figure. To fit our experimental data with
theory, we take into account the parasitic coupling between the con-
trol line current and the fluxon leading to an additional linear shift of
νf versus ICL. The corresponding fit is presented by the red line in
Fig. 4.13.b showing fairly good agreement between theory and experi-
ment. Smaller irregular peaks visible in Fig. 4.13.b are low-frequency
fluctuations, most probably arising from trapped Abrikosov vortices in
the superconducting leads of the AJJ. Presumably, these Abrikosov vor-
tices are also responsible for the parasitic flux offset in Fig. 4.13.b as
this offset varied for different cooldowns.

To speed up the measurement process and decrease the noise, we
switched to zero-frequency span and measured the power at the fixed
frequency νf + 50 kHz. Figure 4.14.b) shows the results of such mea-
surements around Φ ∼ Φ0/2. A sharp dip is clearly visible at a flux
bias of Φ0/2 as well as two other smaller symmetric satellites around
it. These satellites occur when the energy splitting E01 between the
ground and excited states of the qubit coincides with the fluxon oscil-
lation frequency νf . This leads to a change of the persistent current
in the qubit for two values of flux bias Φ shown by the black line in
Fig. 4.14.a). The theoretical fit of the data for the fluxon resonance
frequency νf = 14.031 GHz is presented by the red line in Fig. 4.14.b).
At resonance, pumping at the fluxon frequency should lead to Rabi os-
cillations in the flux qubit between its ground and excited states and,
therefore, the measured signal reflects a mixture of the ground and the
first excited states. This operation is similar to resonant interaction
between qubit and resonator in a cavity QED setup.

It is important to note that, in real experiments, the values of maxi-
mum current dipole is usually of the order µmax ∼ 10−5 which is much
smaller than the discussed values µmax ∼ 0.05. The problem here lies
in the fact that the effective differential resistance Rd = ∂ν/∂γ differs a
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Figure 4.14: a) The theoretically expected persistent current Ip for the
ground state of the flux qubit versus magnetic flux (black line). The spikes
indicate presumed transitions to the first excited state at flux bias points cor-
responding to E12 = 14 GHz flux qubit energy splitting. The green line shows
the expected persistent current Ip for the first excited state. b) Modulation of
the fluxon’s oscillation frequency due to the coupling to the qubit, measured
in the power domain. Measured power P relates to the power at the fixed fre-
quency offset +50 kHz from the fluxon mean oscillation frequency νf . Every
point consists of 10 averages with video filter bandwidth of 10 Hz. The red
line depicts the corresponding theory fit. Sample #2.

116



4.2. Experimental results

lot between the experiment and the theory. This is due to the presence
of the fine structure in the experimental zero-field steps. At the same
time, the differential resistance affects strongly the sensitivity of the
fluxon frequency shift due to the scattering on the current dipole. The
theoretical value of Rd can be easily calculated using equation (2.32):

RT
d = 1

l

∂u

∂γ
= 16α2

lπ2γ3(1 + (4α/πγ)2)
3
2
. (4.8)

The experimental value of differential resistance RE
d can be extracted

from the zero-field measurements in the frequency domain. The ratio
between these two RE

d /R
T
d can vary a lot. For typical good working

points, the experimental RE
d is much larger than the theoretically ex-

pected values and the sought-for ratio turns to be large RE
d /R

T
d ∼ 103.

So, one can estimate the effective current dipole amplitude as µe
max =

µmax ·RE
d /R

T
d ∼ 0.05 for the typical working points of the fluxon read-

out. The corresponding amplitude of the fluxon frequency modulation
due to the current dipole scattering is about 10 kHz which lies in the
same range with the measured values of 20 kHz. This approach of using
the effective current dipole amplitude is a purely phenomenological one
but allows to achieve a reasonable quantitative agreement between the
theory and the experiment.

Flux qubit spectroscopy

As the last step, we performed microwave spectroscopy of the qubit.
We applied an additional continuous excitation tone from an external
microwave source at the frequency νe and swept the control line current
between two resonant dips due the excitation of the qubit (as it was dis-
cussed earlier). The output from microwave source was typically set at
a constant power Pe ≃ −15 dBm, which corresponds to approximately
−90 dBm of the microwave power at the excitation antenna. The first
reasonable measurement results for fluxon readout of flux qubits were
obtained by the frequency detection method (rather unreliable in com-
parison with the amplitude detection). These results are presented in
Fig. 4.15.a) and are related to the sample #1. One can see a couple of
traces marked by dark-green pixels on the spectrum. These traces cor-
respond well to the theoretical fits for the flux qubit with the following
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Figure 4.15: First spectroscopic measurements of a flux qubit. a) Fluxon
response on the microwave excitation applied to the flux qubit. Color scale
corresponds to the detected frequency. The flux qubit spectrum can be seen
as the trace of dark-green spots. The solid colored lines depict the correspond-
ing fit for transitions between quantum levels in the flux qubit. b) The cross
section of the spectrum made for the region underlined by the red box. The
characteristic dip in the fluxon frequency for certain excitation frequency cor-
responds to qubit transition from the ground to the first excited state. Sample
#1.

parameters: critical current Ic = 380 nA, alpha factor α = 0.54, ratio
of charging and Josephson energies EJ/EC = 0.0012. A cross section
of this spectrum for a fixed flux bias also shown in Fig. 4.15.b) in order
to illustrate a particular transition from the ground to the first excited
state in the flux qubit due to the resonant excitation by the external
microwave signal.

The frequency detection method is inherently slower and less reliable
(more noisy) than the amplitude one. So, for later qubit scans the latter
was mostly used. The color-plot of P (νe, ICL) is shown in Fig. 4.16,
corresponding to the sample #2 ( Fig. 4.14 illustrates modulation of
the fluxon frequency versus the flux bias for the same sample ). The
signal of the fluxon readout for every flux bias point without microwaves
was subtracted from the actual response with microwaves to get rid of
an unwanted background slope. One can clearly recognize the hyperbola
of the flux qubit spectrum [Moo99] as a white-blue curved line between
2 and 10 GHz, with the minimal energy splitting ∆ ≃ 2.7 GHz. We can
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Figure 4.16: Fluxon response on the microwave excitation applied to the
flux qubit. Color scale corresponds to the detected power. Measured power
P relates to the power at the fixed frequency offset +50 kHz from the fluxon
mean oscillation frequency νf . Every point consists of 10 averages with video
filter bandwidth of 1 Hz. The flux qubit spectrum can be clearly seen as the
blue curved trace. The black dashed line depicts the corresponding fit of the
flux qubit. Sample #2.

very well fit the measured spectrum by the theoretical curve (shown by
the black dashed line in Fig. 4.16) for the following parameters: critical
current Ic = 320 nA, alpha factor αq = 0.58, ratio of charging and
Josephson energies EJ/EC = 0.0034.

The results of both presented measurements are the same (though,
the quality of the second is much better). However, the first one is very
useful from the instructive point of view as it shows the direct exper-
imental frequency shift of the fluxon in the AJJ due to the quantum
level transition in the flux qubit.
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4.2.2 Fluxon and flux qubit: strong coupling

In the strongly coupled case (samples #3 and #4) the inductances are
different (the coupling loop is significantly shorter and the qubit, overall,
is closer to the JTL): M ≃ 7 · 10−12 H and LCL ≃ 6 · 10−11 H. Other
parameters stay the same except for the maximum persistent current in
the flux qubit Ip ≃ 400 nA. The corresponding maximum current dipole
is about µmax ≃ 1 · 10−4. The initial idea for employing such coupling
was, of course, that a larger coupling should also provide a larger qubit
signal.

Fluxon frequency shift

The measurements of the fluxon frequency shift versus the flux bias
through the qubit was done in the same way as described before. Fig. 4.17
depicts the dependence of the measured microwave power at the fixed
frequency offset +50 kHz from the fluxon mean oscillation frequency
νf . One can notice that the linear slope observed in this figure is much
larger than before for the samples with weak coupling. This, obviously,
happens because the control line is more strongly coupled directly to
the fluxon than before. But the most interesting feature here is that we
did not observe any qubit-like peculiarities around the presumed half-
flux quantum point (marked by the arrow in Fig. 4.17). However, a
strange symmetric peak-dip structure was found around ∼ Φ0/4 point
(underlined by the black dashed line). A crazy idea to explain this can
be that, by some reason, the point where the transition energy between
the ground and the first excited states are minimal (the frustration
point) E12 is shifted. The reason for this can be that the strongly cou-
pled fluxon magnetically perturbs the qubit so much that it effectively
shifts the working point of the latter.

One might ask why the whole curve is not shifted then by the same
amount as the flux qubit symmetry point did. A possible answer might
be that while the fluxon is far from the qubit (which is true for around
95 % of total time) there is no interaction (and perturbation) between
them. Therefore, the current dipole strength is controlled by the unper-
turbed persistent current in the qubit loop (plus the direct effect from
the control line current itself). When the fluxon scatters on the flux
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Figure 4.17: Modulation of the fluxon oscillation frequency due to the cou-
pling to the qubit, measured in the power domain. Measured power P relates
to the power at the fixed frequency offset +50 kHz from the fluxon mean os-
cillation frequency νf . Every point consists of 10 averages with video filter
bandwidth of 10 Hz. The area underlined by the black dashed line shows is a
presumable flux qubit working point. Sample #3.

qubit, it feels the flux qubit mostly as the unperturbed current dipole.
It does not feel the shift of the flux qubit state which is induced by
itself. However, when the fluxon shifts the flux bias point of the qubit
exactly in resonance with the resonance frequency of the latter - there
is a finite probability that the qubit will instantly absorb a photon gen-
erated by the fluxon motion and change its state from the ground to
the first excited one. Then the qubit stays in this state for the time
equal to its energy relaxation time T1. This new state corresponds to
another persistent current and, thus, to another current dipole ampli-
tude which is reflected in the measurements (see Fig. 4.17, the dashed
line box). Of course, this idea is rather "hand-weaving" and requires a
proper theoretical proof to become a valid argument.
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Figure 4.18: Fluxon response on the microwave excitation applied to the flux
qubit strongly coupled to the AJJ. Color scale corresponds to the detected
power. Measured power P relates to the power at the fixed frequency offset
+50 kHz from the fluxon mean oscillation frequency νf . Every point consists
of 10 averages with a video filter bandwidth of 1 Hz. The flux qubit spectrum
can be clearly seen as the red-blue curved trace. The black dashed line depicts
the corresponding fit of the flux qubit. Sample #3.

Flux qubit spectroscopy

To check the hypothesis described above one can do a very simple thing:
sweep the control line current ICL in between the peak and the dip, and
apply an additional continuous excitation tone at the fixed frequency
νe from the external microwave generator. Basically, it means to do the
standard spectroscopy measurements around the shifted working point.

Figure 4.18 shows the result of such measurements. One can see a very
clear spectrum of the flux qubit indicated by the curved blue-red line.
Interestingly, the signal sign of the qubit transition line changes from
positive to negative when crossing the shifted half flux quantum point.
It is possible to fit the given spectrum by the standard flux qubit theory
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(the black dashed curve) for the following fitting parameters: critical
current Ic = 320 nA, alpha factor αq = 0.58, ratio of charging and
Josephson energies EJ/EC = 0.0034. The correspondence between the
theory and the experiment is good around the frustration point while
a clear difference develops with larger detuning. This deviation might
be also a result of strongly non-adiabatic interaction between the qubit
and the fluxon.

The presented results on the strongly coupled Josephson vortex in the
AJJ are not fully understood at the moment. As it was said, there is
no proper theoretical description of strongly non-adiabatic perturbation
and excitation of the flux qubit by the propagating fluxon. However,
the experiment suggests that even in such a regime it is possible to
readout the state of the qubit as demonstrated above.

4.2.3 Back-action

A back-action may be a serious problem for many experiments. Physi-
cally, it is a perturbation caused by the measurement set-up or a partic-
ular device to the system under test. This becomes especially important
while dealing with quantum objects as quantum bits. Basically, it is im-
possible by the laws of quantum mechanics to acquire some knowledge
about the coherent quantum state without destroying it or, at least,
perturbing it in different ways. The ultimate goal in qubit experiments
is to measure a given quantum bit with the minimum back-action.

Magnetic flux back-action

In the case of flux qubit inductively coupled to the fluxon oscillator,
the back-action can be defined by the magnetic flux Φba through the
qubit loop which is created by the propagating Josephson vortex. First
of all, let us consider the situation of the flux qubit coupled with the
AJJ by the coupling loop as shown in Fig. 4.9. We consider that some
part of the magnetic flux, produced by the Josephson vortex, couples to
the superconducting loop and thus generates the screening current ICL.
This current is proportional to the part of the vortex flux caught by the
coupling loop and inverse proportional to the geometric inductance of
the coupling loop ICL = ΦCL/LCL. As there is no ground plane here,
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Figure 4.19: a) Time domain profile of magnetic flux through the qubit for
the fluxon velocity u = 0.9. b) The dependence of a maximum back-action
versus fluxon velocity. The backaction here is indicated in mΦ0 = 10−3 · Φ0.

our system is symmetric along the vertical axis perpendicular to the
plane of the structure. To estimate ΦCL we can make a reasonable sim-
plification considering that half of the total flux generated by the fluxon
goes through the coupling ring. These two assumptions allows one to
estimate ΦCL = Φf/2. Calculation of the fluxon generated magnetic
flux inside the ring is straightforward and can be done using the fact
that the spatial derivative of the Josephson phase defines the magnetic
field component φx = B. The part of the fluxon which is "inside" the
coupling ring ("inside" means here - between the electrodes in the top
bias lead forming the coupling loop, see Fig. 4.1 or Fig. 4.9) creates
magnetic flux equals to:

Φf = A

∫ l

0
φx(x, v)dx, (4.9)

where A is the constant of proportionality. Using the normalization
condition:

Φ0 = A

∫ +∞

−∞
φx(x, v)dx, (4.10)
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we can find this constant to be A = Φ0/π. Thus, we know everything
to estimate the screening current inside the coupling loop:

ICL = Φ0
2πLCL

(φ(x+ l, v) − φ(x, v)). (4.11)

The last step is to calculate the back-action flux as Φba = ICLM where
M is the mutual inductance between the coupling loop and the flux
qubit. At the end, normalizing Φba to the flux quantum Φ0, the sought-
for quantity takes the following form:

Φba = M

2πLCL
(φ(x+ l, v) − φ(x, v)). (4.12)

Now, one can, using FastHenry3 or any other program suitable for finite-
element calculations of inductances, evaluate the mutual inductance M
and the self-inductance LCL and, then, calculate the total back-action of
the propagating Josephson vortex to the flux qubit in terms of magnetic
flux. Fig. 4.19 illustrates the magnetic back-action of the propagating
fluxon to the flux qubit calculated with the use of (4.12). In the time
domain, the fluxon creates spikes of magnetic flux through the qubit as
shown in Fig. 4.19.a). A maximum height (maximum back-action flux)
of these spikes can be used to define Φmaxba and used further to study
the dependence of Φmaxba versus the fluxon velocity u. As follows from
Fig. 4.19.a), the maximum back-action Φmaxba grows with the fluxon
velocity u and saturates when the latter approaches the Swihart velocity
u → c0. Back-action saturates for higher velocities because once the
fluxon magnetic profile shrinks less than the size of the dipole D (or,
the width of the coupling loop), it transfers all its magnetic flux Φ0 to
the coupling loop. Obviously, the fluxon cannot generate flux greater
than single flux quantum Φ0.

Phase perturbation

Estimations of the back-action to the flux qubit in terms of magnetic
flux is simple and straightforward, however, it gives us no information
how fast the qubit loses its coherence due to this perturbation. To esti-
mate this back-action coherence time, first of all, one needs to calculate
the phase deviation of the qubit per one fluxon revolution in the AJJ.
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Figure 4.20: Measured flux qubit spectrum for the weakly coupled case (with
the horizontal axis denoting the flux bias renormalized to Φ0 units). Sample
#2.

This phase shift can be defined as:

δϕ = ϕ(t) − ϕ0 =
∫ τ

0

E12(t) − E0
~

dt, (4.13)

where E12(t) is the time-dependent (because of the fluxon back-action)
energy splitting between the first excited and the ground states in the
qubit, and E0 is the energy difference in the unperturbed case. Gener-
ally, the fluxon magnetic back-action shifts the qubit working point by
the amount of Φba, thus changes E12(t) and introduces the certain phase
perturbation δϕ to the qubit state. The estimated maximum back-
action flux Φba is less than 35 mΦ0 (for the weakly coupled case) and
around 120 mΦ0 (for the strongly coupled case). The magnetic backac-
tion here is measured in mΦ0 = 10−3 ·Φ0. Assuming that all reasonable
measurements of qubits have been made for the pretty large bias cur-
rents γ > 0.2, where the estimated fluxon velocities lie close to the Swi-
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hart velocity u ≃ c0, one can approximate integral
∫ τ

0 E12(t)dt ≃ τ ·Es,
where Es denotes a shifted by the amount of Φmaxba working point of
the flux qubit. This shifted energy can be simply estimated from the
typical experimental spectrum of the flux qubit (see Fig. 4.20). The
interaction time of the fluxon with the qubit is estimated to be of the
order τ ∼ 3 ps in the experiment.

The total dephasing time per fluxon revolution is δϕ ≃ 2 ·10−3 ·2π for
the weak coupling and δϕ ≃ 8 · 10−2 · 2π for the strong coupling. This
means that the qubit dephasing time due to the fluxon back-action will
be around Tba ≃ 35 ns for the weak coupling, and Tba ≃ 8 ns for the
strong coupling.

Generally, these numbers on dephasing time are rather small. How-
ever, one should remember that the fluxon back-action can be easily
improved by at least 2-3 orders of magnitude by simply scaling down
the critical current density of the JTL and by increasing the length of
the coupling loop (basically, putting the qubit farther away from the
JTL), and, thus, the self-inductance of the coupling loop LCL. Lowering
the JTL’s width W or decreasing the dipole length D, and increasing
LCL at the same time would also improve the back-action, leaving the
signal strength of the fluxon readout at the same level.

Non-adiabatic excitations

Since the fluxon profile becomes abrupt for relativistic velocities u ∼ c0
( see Fig. 4.21.a) ), it can potentially excite a qubit due to its non-
adiabatic photon emission. In other words, the fluxon spectrum at
high velocities broadens as its magnetic profile tends to an ideal delta-
function ( see Fig. 4.21.b) ). However, the power of an emerging broad
plato of non-adiabatic frequencies in Fig. 4.21.b) is relatively small in
comparison with the power at fundamental fluxon frequency. The dif-
ference between them is at least 100 dB. The fluxon emitted power on
the main frequency can be estimated as a product of the bias current
and the voltage at the working point Pf ≃ αIbias ·V . As for the typical
working point, Ibias ∼ 10 mA, V ∼ 20 µV and α ∼ 0.02, so the total
emitted power per second is about Pf ∼ 4 ·10−9 W. This roughly corre-
sponds to 105 photons at the fundamental frequency of about 14 GHz
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Figure 4.21: a) Lineshapes of fluxon magnetic back-action for different fluxon
velocities u. Calculated with the use of (4.12). b) The results of a Fourier
transformation of the periodic fluxon back-action on the flux qubit for different
fluxon velocities u.

per fluxon revolution in the AJJ and leads to absence of non-adiabatic
photons (as there is simply not enough power available to support their
existence).

One should also take into account the inductive coupling strength
k between the qubit and the fluxon. The latter typically decreases
strongly with frequenc. So, non-adiabatic excitations at GHz frequen-
cies should not happen (unless there are a lot of photons at the certain
frequency - as it happens at the fluxon oscillation frequency νfluxon).
Ultimately, the experimental spectra performed for fluxon velocities
u ∼ 0.99 · c0 (see Fig. 4.15,4.16,4.18) do not show any notable signs
of non-adiabatic excitations.

In the future, it can be interesting to consider this problem in de-
tails, looking at the exact frequency dependent coupling between the
fluxon and the qubit. This question contains not only a negative side of
avoiding unwanted excitations but also can be useful, from the general
point of view, for experimental studies of highly non-adiabatic interac-
tions between the classical fluxons and the quantum bits. One can also
try to use the oscillating fluxon in the AJJ as a microwave source to
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manipulate the qubit.

4.3 Conclusions

In conclusion, we demonstrated the coupling of an oscillating single
fluxon in an annular Josephson junction to a flux qubit. Using the pos-
sibility to detect the microwave radiation of the fluxon oscillations in
the AJJ, we detected the fluxon frequency variations induced by the
persistent current in the flux qubit coupled to the AJJ. We thus im-
plemented a microwave generator controlled by the flux qubit. It was
observed that the scattering of the fluxon on a current dipole can lead to
acceleration of the fluxon, regardless of a dipole polarity. The perturba-
tion theory and direct numerical simulations qualitatively well describe
this phenomenon. The tested fluxon readout scheme is compatible with
Rapid Single Flux Quantum (RSFQ) superconducting logic and can
also be useful for applications where fast, weakly perturbing magnetic
signal detection is needed.

The persistent current in the flux qubit was detected as a shift of the
fluxon oscillation frequency. Resolution of the measurement scheme is
high enough to measure transitions between quantum states as shown by
the acquired energy spectrum of the flux qubit. The sensitivity of this
readout can be significantly improved in various ways (and the fluxon
back-action can be decreased), for instance, by lowering the critical
current density jc or decreasing the width W of the long Josephson
junction, as both increase the current dipole strength and therefore the
fluxon frequency shift. Our results prove the possibility of detecting
quantum states by classical fluxons and, thus, open the way to applying
RSFQ technique in the field of superconducting quantum computing.
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Zusammenfassung und Ausblick

Diese Doktorarbeit präsentiert experimentelle Befunde zur Entwicklung
eines neuen Auslesemechanismus von Fluss-Qubits mittels Fluxonen.
Dieses basiert auf der Detektion von ausgesandten Mikrowellen eines
Fluxons, welches sich in einem ringförmigen Josephson-Kontakt (RJK)
bewegt. Die Resonanzfrequenz zeigt dabei eine charakteristische Ab-
hängigkeit vom Ruhestrom durch den Kontakt, die so genannte res-
onante Nullfeldstufe. Die erreichte Präzision übersteigt die von der
direkten Spannungsmessung um einige Ordnungen und erlaubt es ohne
weiteres, die Feinstruktur der Nullfeldstufen aufzulösen. Des Weiteren
liefert der hier beschriebene Ansatz auch die Möglichkeit zur Unter-
suchung faszinierender, nicht-linearer Dynamik des getriebenen Flux-
ons im RJK bei Benutzung konvertioneller Mikrowellenmethoden, wie
die Phasenregeltechnik, die Resonanzbreite und die Phasenrauschenun-
tersuchungen (Kapitel 3). Uns ist es gelungen, das System von unge-
wollten Rauschen und Fluktuationen zu befreien und das Ziel, das als
Stromdipol gekoppelte, supraleitende Flussqubit auszulesen, zu real-
isieren (Kapitel 4).

Analytische und numerische Untersuchungen an einem entsprechen-
den Modell des zirkulierenden Fluxons im RJK in der Gegenwart eines
Stromdipols haben viele unerwartete und nicht offensichtliche Resul-
tate offenbart. Wie in Kapitel 4 beschrieben, kann eine Streuung eines
Fluxons an einem Stromdipol dazu führen, dass dieses beschleunigt
wird. Zusätzlich stellt sich heraus, dass das Fluxonverhalten bei einem
großen Ruhestrom nicht von der Polarität des Dipols abhängt. Nu-
merische Simulationen und die Analyse der Störungstheorie basierend
auf der gestörten Sine-Gordon-Gleichung beschreiben dieses Phänomen
nicht nur theoretisch sehr gut, sondern stimmen auch quantitativ mit
den gemessenen Daten überein.

Mittels der Detektierung der ausgesandten Mikrowellen des zirkulieren-
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den Fluxons im RJK wurde auch die resonante Anregung des gekoppel-
ten Flussqubit untersucht. Das Qubitspektrum in Abhängigkeit vom
angelegten Fluss wurde durch die gemessene Frequenzänderung des
Fluxons aufgezeichnet. Einer der größten Vorteile des hier beschriebe-
nen Systems ist seine Kompatibilität mit der supraleitenden, digitalen
RSFQ-Logik (rapid singlefluxquantum), die möglicherweise in zukün-
ftigen Quantencomputern eine wesentliche Rolle spielen könnte. Die
potentiell hohe Zeitauflösung des Qubitauslesens und die Möglichkeit,
das Fluxon als eine lokale Mikrowellenquelle zur Steuerung des Qubits
zu nutzen, sind dabei auch von großem Interesse, wenn auch diese An-
wendungen noch weitere Forschung erfordern.

Als die Herausfordernen des Qubitauslesens erwiesen sich die rela-
tiv hohe Wärmeentwicklung und die nicht zu vernachlässigende Rück-
kopplung an das Qubit. Allerdings gibt es auch viele Ansätze für
Verbesserungen. Die Naheliegenden sind die Reduzierung der kritischen
Stromdichte des RJK und die Vergröerung des Abstandes zwischen dem
Qubit und dem RJK, dass sowohldie Erwärmung als auch die Rückkop-
plung unterdrückt. Andere Mölichkeiten wären die Verkleinerung der
Lateralachse des RJK oder die Verwendung eines Wellenleiters beste-
hend aus vielen diskreten Josephson-Kontakten anstelle eines Kontinuier-
lichen wie in diesem Experiment.

Man muss auch anmerken, dass unsere Fluxonen eher dem klassischen
als dem Quantenbereich zuzuordnen sind. Die Verwendung desFluxon-
sals quantenmechanisches System zur kohärenten Wechselwirkung mit
oder sogar als Qubits, wie theoretisch [KI96, KWU02] und auch exper-
imentell [WLU03, PKU10] beschrieben, ist eines der aufregendsten und
herausforderndsten zukünftigen Projekte.
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Conclusion and Outlook

This thesis presents experimental studies on developing of a novel fluxon
readout for superconducting flux qubits. It includes an experimental
scheme for detecting the microwave radiation of an oscillating fluxon
in an annular Josephson junction and, thus, recovering a characteristic
dependence of fluxon frequency versus bias current, a so-called reso-
nant zero-field step. The precision of this approach is many orders of
magnitude higher than the precision of direct voltage measurements and
allows one to easily resolve a hidden fine structure of the zero-field steps.
At the same time, the given approach provides an opportunity to study
the fascinating nonlinear dynamics of the driven fluxon in the annular
Josephson junction (AJJ) using various techniques typical for radio-
electronics: the phase-locking technique, the radiation linewidth and
the phase-noise studies (Chapter 3). Altogether, these studies allowed
one to rectify the system from the unwanted noise and fluctuations and
perform the sought-for fluxon readout scheme for a superconducting
flux qubit coupled as a current dipole to the annular Josephson junc-
tion (Chapter 4).

Analytical and numerical studies of a toy model of the oscillating
fluxon in the AJJ in the presence of the fixed current dipole showed
several highly unexpected and nontrivial results. As it was shown in
Chapter 4, the scattering of the fluxon on a current dipole can lead
to an acceleration of the fluxon. Additionally, for high bias currents
the fluxon response turns out not to depend on the dipole polarity. A
perturbation theory based on the perturbed sine-Gordon equation and
direct numerical simulations of the latter qualitatively well describe this
phenomenon. The experimental data are in a good agreement with the
theoretical predictions.

By means of detection of the fluxon oscillating frequency in the AJJ
coupled to the flux qubit, a resonant excitation of the latter was in-
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vestigated. A spectrum of the flux qubit was measured via detecting a
frequency shift of the fluxon oscillations versus a flux bias through the
qubit. The major advantage of the used scheme is its compatibility with
the Rapid Single Flux Quantum (RSFQ) superconducting digital logic
which can be useful for large scale quantum computers in the future. A
potential high-time resolution of the fluxon readout and possibilities to
use the fluxon as a local microwave drive for the qubit are also of the
interest, though, they require additional experimental improvements.

One of the main drawbacks of the given readout is its relatively large
heating and a notable back-action on the measured flux qubit. How-
ever, there is plenty of room for battling these problems. The most
straightforward way to do this is to reduce the critical current density
of the annular Josephson junction and increase the distance between
the qubit and the AJJ, lowering the heating and the back-action at the
same time. Other ways can be implemented via reducing a lateral width
of the AJJ or switching to discrete Josephson transmission lines instead
of the continuous ones used in the presented experiments.

It is worth noting that the fluxon readout in our experiments was
operated in the classical rather than quantum regime. Employing flux-
ons to interact with or act as qubits in the quantum regime, as dis-
cussed theoretically [KI96, KWU02] and also detected experimentally
[WLU03, PKU10], would be very exciting and challenging in the future.

134



References

[AB63] V. Ambegaokar, A. Baratoff, Tunneling between superconduc-
tors, Phys. Rev. Lett. 10, 468 (1963).

[And10] S. Anders et al., European roadmap on superconductive elec-
tronics - status and perspectives, Physica C 470, 2079-2126 (2010).

[AR63] P.W. Anderson, J.W. Rowell, Probable observation of Joseph-
son superconducting tunneling effect, Phys. Rev. Lett. 10, 230-232
(1963).

[ARS06] D.V. Averin, K. Rabenstein, and V.K. Semenov, Rapid ballis-
tic readout for flux qubits, Phys. Rev. B 73, 094504 (2006).

[BAZ00] P. Binder, D. Abraimov, A.V. Ustinov, S. Flach, Y.
Zolotaryuk, Observation of breathers in Josephson ladders, Phys.
Rev. Lett. 84, 745-748 (2000).

[BCS57] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Microscopic Theory
of Superconductivity, Phys. Rev. 106, 162-164 (1957).

[BMU96] P. Barbara, R. Monaco, A.V. Ustinov, Model for the fine
structure of zero field steps in long Josephson tunnel junctions and
its comparison with experiment, Jour. of Appl. Phys. 79, 327-333
(1996).

[BP82] A. Barone and G. Paterno, Physics and Applications of the
Josephson effect, J. Wiley (1982).

[CFL72] J.T. Chen, T.F. Finnegan, D.N. Langenberg, Anomalous DC
current singularities in Josephson tunnel junctions Physica 55,
413-420 (1972).

135



References

[CL72] J.T. Chen, D.N. Langenberg, Fine structure in the anomalous
d.c. current singularities of a Josephson tunnel junction, LT 13 3,
289-292 (1972).

[CRL99] W. Chen, A.V. Rylyakov, V. Patel, J.E. Lukens, K.K.
Likharev, Rapid single flux quantum T-flip flop operating up to
770 GHz, IEEE Trans. Appl. Supercond. 9, 3212-3215 (1999).

[CNM03] I. Chiorescu, Y. Nakamura, C.J.P.M. Harmans, and J.E.
Mooij, Coherent quantum dynamics of a superconducting flux qubit
Science 299, 1869 (2003).

[CW08] J. Clarke, F.K. Wilhelm, Superconducting quantum bits, Na-
ture 453, 1031-1042 (2008).

[DiV00] D.P. DiVincenzo The physical implementation of quan-
tum computation, Fortschritte der Physik 48, 771 (2000),
http://arxiv.org/abs/quant-ph/0002077.

[DJ89] P.G. Drazin, R.S. Johnson, Solitons: an introduction, Cam-
bridge University Press (1989).

[Dol77] G.J. Dolan, Offset masks for lift-off photoprocessing, Appl.
Phys. Lett. 31, 337 (1977).

[FD73] T.A. Fulton, R.C. Dynes, Single vortex propagation in Joseph-
son tunnel junctions, Solid St. Commun. 12, 57-61 (1973).

[Fey82] R.P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467Ů488 (1982).

[FF] http://www.ipht-jena.de.

[Fis64] M. D. Fiske, Temperature + magnetic field dependeces of
Josephson tunneling supercurrent, Rev. Mod. Phys. 36, 221 (1964).

[FLS65] R.P. Feynman, R.B. Leighton, and M. Sands, The Feyman
Lectures on Physics Vol.3, Chap.21 Addison-Wesley, (1965).

[FPT73] C.M. Falco, W.H. Parker, S.E. Trulling Observation of a
phase-modulated quasiparticle current in superconducting weak
links, Phys. Rev. Lett. 31, 933-936 (1973).

136



References

[Fri44] H.T. Friis, Noise Figures of Radio Receivers, Proceedings of the
IRE 32, 419Ű422 (1944).

[Gar05] F.M. Gardner, Phaselock techniques, Wiley (2005).

[GSK04] E. Goldobin, N. Stefankis, D. Koelle, R. Kleiner, Fluxon-
semifluxon interaction in an annular long Josephson 0-pi junction,
Phys. Rev. B. 70, 094520 (2004).

[HFS07] A. Herr, A. Fedorov, A. Schnirman, E. Il’ichev, and G. Schon,
Design of a ballistic fluxon qubit readout, Supercond. Sci. and Tech.
20, S450 (2007).

[Hug04] R. Hughes et al., A quantum information science and technol-
ogy roadmap, http://qist.lanl.gov/qcomp_map.shtml (2004).

[Hyp] www.hypres.com.

[Il’02] E. Il’ichev et al., Characterization of superconducting structures
designed for qubit realizations, Appl. Phys. Lett. 80, 4184-4186
(2002).

[Joe82] E. Joergensen et al., Thermal fluctuations in resonant motion of
fluxons on a Josephson transmission line: theory and experiment,
Phys. Rev. Lett. 49, 1093 (1982).

[Jos62] B.D. Josephson, Possible new effects in superconductive tun-
nelling, Phys. Lett. 1, 251-253 (1962).

[JPU12] M. Jerger, S. Poletto, P. Macha, U. Hüner, E. Il’ichev, A. V.
Ustinov, Frequency division multiplexing readout and simultaneous
manipulation of an array of flux qubits, Appl. Phys. Lett. 101,
042604 (2012).

[KI96] T. Kato, M. Imada, Macroscopic quantum tunneling of a fluxon
in a long Josephson junction, J. Phys. Soc. Jpn. 65, 2963-2975
(1996).

[KS00] V.P. Koshelets, S.V. Shitov, Integrated superconducting re-
ceivers, Super. Sci. Tech. 13, R53-R69 (2000).

137



References

[KV05] D.E. Kirichenko, I.V. Vernik, High quality on-chip long annular
Josephson junction clock source for digital superconducting elec-
tronics IEEE Trans. Appl. Supercond. 15, 296-299 (2005).

[KWU02] A. Kemp, A. Wallraff, A.V. Ustinov, Josephson vortex qubit:
design, preparation and read-out, Phys. Stat. Sol. (b) 233, 472-478
(2002).

[KYV98] V.V. Kurin, A.V. Yulin, I.A. Shereshevskii, N.K. Vdovicheva,
Cherenkov radiation of vortices in a two-dimensional annular
Josephson junction, Phys. Rev. Lett. 80, 3372-3375 (1998).

[Lik12] K.K. Likharev, Superconductor digital electronics, Physica C
482, 6-18 (2012).

[Lik86] K.K. Likharev, Dynamics of Josephson junctions and circuits,
Gordon and Breach (1986).

[LU08] A. Lukashenko, A.V. Ustinov, Improved powder filters for qubit
measurements, Rev. Sci. Instr. 79, 014701 (2008).

[MAK08] R. Monaco, M. Aaroe, J. Mygind, R.J. Rivers, V.P.
Koshelets, Spontaneous fluxon production in annular Josephson
tunnel junctions in the presence of a magnetic field, Phys. Rev.
B 77, 054509 (2008).

[Mar09] J.M. Martinis, Superconducting phase qubits, Quantum Inf.
Process. 8, 81-103 (2009).

[MBM93] R. Monaco, P. Barbara, J. Mygind, Fine structures on zero-
field steps in low-loss Josephson tunnel-junctions, Phys. Rev. B 47,
12292-12295 (1993).

[MMF98] N. Martucciello, J. Mygind, V.P. Koshelets, A.V. Shchukin,
L.V. Filippenko, Fluxon dynamics in long annular Josephson tun-
nel junctions, Phys. Rev. B 57, 5444-5449 (1998).

[Moo99] J.E. Mooij et al., Josephson persistent-current qubit, Science
285, 1036 (1999).

138



References

[MS79] G.S. Mkrtchyan, V.V. Shmidt, On the radiation from inho-
moheneous Josephson junction, Solid St. Commun. 30, 791-793
(1979).

[MS78] D.W. McLaughlin and A.C. Scott, Perturbation analysis of
fluxon dynamics, Phys. Rev. A 18, 1652-1680 (1978).

[MMS01] Y. Makhlin, G. Schön, A. Shnirman, Quantum-state engi-
neering with Josephson-junction devices, Rev. Mod. Phys. 73, 357-
400 (2001).

[MU04] B.A. Malomed, A.V. Ustinov, Creation of classical and quan-
tum fluxons by a current dipole in a long Josephson junction, Phys.
Rev. B 69, 064502 (2004).

[NPT99] Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of
macroscopic quantum states in a single-Cooper-pair box, Nature
398, 786-788 (1999).

[Nyq28] H. Nyquist, Thermal activation of electric charge in conduc-
tors, Phys. Rev. 32, 110 (1928).

[Orl99] T.P. Orlando et al., Superconducting persistent-current qubit,
Phys. Rev. B 60, 15398-15413 (1999).

[PAU08] J. Pfeiffer, A.A. Abdumalikov, M. Schuster, A.V. Ustinov,
Resonances between fluxons and plasma waves in underdamped
Josephson transmission lines of stripline geometry, Phys. Rev. B
77, 024511 (2008).

[PFL72] N.F. Pedersen, T.F. Finnegan, D.N. Langenberg, Magnetic
field dependence and Q of the Josephson plasma resonance, Phys.
Rev. B 6, 4151-4159 (1972).

[PKU10] A.N. Price, A. Kemp, D.R. Gulevich, F.V. Kusmartsev, A.V.
Ustinov, Vortex qubit based on an annular Josephson junction con-
taining a microshort, Phys. Rev. B 81, 014506 (2010).

[PTF07] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery,
Numerical recipes: the art of scientific computing, Cambridge Uni-
versity Press (2007).

139



References

[Raj82] R. Rajaraman, Solitons and instantons, North Holland, New
York (1982).

[RGS12] C. Rigetti, J. M. Gambetta, S. Poletto, B.L.T. Plourde, J.M.
Chow, A.D. Córcoles, J.A. Smolin, S.T. Merkel, J. R. Rozen,
George A. Keefe, M.B. Rothwell, M.B. Ketchen, M. Steffen, Su-
perconducting qubit in a waveguide cavity with a coherence time
approaching 0.1 ms, Phys. Rev. B 86, 100506 (2012).

[Ryt88] S.M. Rytov, Introduction to statistical radiophysics, Springer
(1988).

[SA03] V.K. Semenov, D.V. Averin, SFQ control circuits for Josephson
junction qubits, IEEE Trans. Appl. Supercond. 13, 960 (2003).

[Say01] C. Sayrin et al„ Real-time quantum feedback prepares and sta-
bilizes photon number states Nature 477, 73 (2011).

[Sch97] V.V. Schmidt, The physics of superconductors, Springer Berlin
(1997).

[Sho97] P. Shor, Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer, SIAM J. Com-
put. 26, 1484-1509 (1997).

[Sim49] R.N. Simons, Coplanar waveguide circuits, components and
systems, Wiley (1949).

[SVD06] I. Siddiqi, R. Vijay, M. Metcalfe, E. Boaknin, L. Frunzio, R.J.
Schoelkopf, M.H. Devoret, Dispersive measurements of supercon-
ducting qubit coherence with a fast latching readout, Phys. Rev. B
73, 054510 (2006).

[Swi61] J.C. Swihart, Field solution for a thin-film superconducting
strip transmission line J. Appl. Phys. 32, 461 (1961).

[Tin75] M. Tinkham, Introduction to superconductivity, McGraw-Hill
(1975).

[UMG99] A.V. Ustinov, B.A. Malomed, E. Goldobin, Backbending
current-voltage characteristic for an annular Josephson junction
in a magnetic field, Phys. Rev. B 60, 1365-1371 (1999).

140



References

[Ust02] A.V. Ustinov, Fluxon insertion into annular Josephson junc-
tions, Appl. Phys. Lett. 80, 3153 (2002).

[UstNP] A.V. Ustinov, Solitons in Josephson junctions, unpublished
book.

[Vij12] R. Vijay et al., Stabilizing Rabi oscillations in a superconducting
qubit using quantum feedback, Nature 490, 77-80 (2012).

[VSC01] L.M. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H.
Sherwood, I.L. Chuang, Experimental realization of Shor’s quan-
tum factoring algorithm using nuclear magnetic resonance, Nature
414, 883-887 (2001).

[Whi87] G.K. White, Experimental techniques in low-temperature
physics, Oxford University Press (1987).

[WLU03] A. Wallraff, A. Lukashenko, J. Lisenfield, A. Kemp, M.V.
Fistul, Y. Koval, A.V. Ustinov, Quantum dynamics of a single
vortex, Nature 425, 155 (2003).

[WSS05] A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, J. Majer, M.H.
Devoret, S.M. Girvin, R.J. Schoelkopf, Approaching unit visibility
for control of a superconducting qubit with dispersive readout, Phys.
Rev. Lett. 95, 060501 (2005).

[WUV00] A. Wallraff, A.V. Ustinov, V.V. Kurin, I.A. Shereshevsky,
N.K. Vdovicheva, Whispering vortices, Phys. Rev. Lett. 84, 151-
154 (2000).

[YN05] J.Q. You, F. Nori, Superconducting circuits and quantum In-
formation, Phys. Today 58, 42-47 (2005).

[Zha91] Y. Zhang, Ph.D. thesis, Chalmers University of Technology,
(1991).

141





List of publications

[FP07a] K.G Fedorov, A.L. Pankratov, Influence of fluctuations on the
dynamic properties of distributed Josephson junctions, J. Commun.
Technol. El.+ 7, 114-118 (2007).

[FP07b] K.G Fedorov, A.L. Pankratov, Mean time of the thermal escape
in a current-biased long-overlap Josephson junction, Phys. Rev. B
76, 024504 (2007).

[FPS08] K.G Fedorov, A.L. Pankratov, B. Spagnolo, Influence of length
on the noise delayed switching of long Josephson junctions, Int. J.
Bifurcat. Chaos 18, 2857Ű2862 (2008).

[FP09] K.G Fedorov, A.L. Pankratov, Crossover of the Thermal Escape
Problem in Annular Spatially Distributed Systems, Phys. Rev. Lett.
103, 260601 (2009).

[FFU11] K.G Fedorov, M.V. Fistul, A.V. Ustinov, Pinning of charge
and flux solitons in disordered Josephson junction arrays, Phys.
Rev. B 84, 014526 (2011).

[FSU12a] K.G Fedorov, S.V. Shitov, H. Rotzinger, A.V. Ustinov, Non-
reciprocal microwave transmission through a long Josephson junc-
tion, Phys. Rev. B 85, 184512 (2012).

[FSU12b] K.G. Fedorov, A. Shcherbakova, R. Schäfer, A.V. Ustinov,
Josephson vortex coupled to a flux qubit, Appl. Phys. Lett. 102,
132602 (2013).

[FSU13] K.G. Fedorov, A. Shcherbakova, M.J. Wolf, D. Beckmann,
A.V. Ustinov, Fluxon readout of a superconducting qubit, Preprint
at http://arxiv.org/abs/1304.0645.

143




