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Abstract— In this paper, a novel distance-based density
estimation method is proposed, which considers the overall
density function in the goodness-of-fit. In detail, the parameters
of Gaussian mixture densities are estimated from samples,
based on the distance of the cumulative distributions over
the entire state space. Due to the ambiguous definition of the
standard multivariate cumulative distribution, the Localized
Cumulative Distribution and a modified Cramér-von Mises
distance measure are employed. A further contribution is the
derivation of a simple-to-implement optimization procedure
for the optimization problem. The proposed approach’s good
performance in estimating arbitrary Gaussian mixture densities
is shown in an experimental comparison to the Expectation
Maximization algorithm for Gaussian mixture densities.

I. INTRODUCTION

In many technical applications in robotics, computer vi-
sion, and machine learning, probabilistic information fusion
is fundamental. Typical applications range from vehicle or
person localization and tracking [1] to speech recognition and
non-verbal communication using Hidden Markov Models [2]
or Bayesian Networks [3]. Central to all these applications
is the information fusion according to probabilistic models
given in the form of conditional densities, i.e., f(y|x) =
f(x,y)
f(x) . There are essentially three ways how these densities

can be obtained: (a) domain knowledge, i.e., an expert quan-
tifies the uncertainty, (b) a functional dependency underlying
the density in conjunction with a noise description is given,
and (c) samples of a random variable are given and the den-
sity is estimated from these samples only. In this paper, the
latter problem is addressed for estimating continuous density
functions, as commonly used in probabilistic information
fusion, from sparse sets of samples.

Density estimation methods can be categorized [4, p.
33] into non-parametric [4], [5], [6] and parametric ap-
proaches [7]. The most prominent non-parametric method
is the Parzen-Window approach [8], also known as kernel
density estimation. There, a density function is obtained from
placing a kernel at each sample point and then optimizing
the kernels’ parameters. This approach to density estimation
suffers from the fact that all data points are stored in the
density function representation. This renders the use of these
densities for many applications in information fusion, but
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especially for recursive state estimation, impractical without
further sparsification.

In contrast, in parametric density estimation the data is
assumed to be generated from a specific, typically sparse
model and density estimation corresponds to estimating this
model’s parameters. Typically, finite mixture densities are
estimated [7] by maximizing the likelihood of the data em-
ploying the Expectation Maximization (EM) algorithm [9].
This means that, e.g., a Gaussian mixture density’s weights,
means, and covariances are estimated. Both frequentistic
and Bayesian approaches to parametric density estimation
exist [7], [10]. Yet, this advantage comes along with new
challenges: overfitting, singularities, and model selection.
Overfitting, as the overconfident estimation of a density,
may be alleviated by penalizing roughness [7]. Singularities
caused by the coincidence of a sample position with a
component position may be avoided by a good initialization
of the algorithm. Regarding model selection, there exists
a wealth of criteria to determine the appropriate number
of components, e.g., Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), or Minimum Message
Length (MML). Typically, parametric models are determined
by evaluating the density’s fit at the sample points only [9].
The goodness-of-fit is not tested over the entire density, but
only at distinct points.

In this paper, an approach is proposed that estimates
densities based on the minimization of a distance over
the entire state space and not at distinct points only. For
this reason, a squared integral distance of distributions is
employed. Since for the multivariate case, the definition
of the cumulative distribution function is not well defined,
the Localized Cumulative Distributions [11], [12] and the
corresponding modified Cramér-von Mises distance measure
are employed. The results of the proposed method are
Gaussian mixture densities with arbitrary weights, means,
and covariances. In contrast to non-parametric approaches,
the components are not centered about the samples.

The rest of this paper is structured as follows. Initially, the
mathematical problem formulation of the density estimation
problem is given. In Sec. III, the Localized Cumulative
Distributions in accordance with [11], [12] are derived and in
Sec. IV, the efficient minimization of the modified Cramér-
von Mises distance measure is devised. In Sec. V, the overall
algorithm is summarized and the algorithm’s properties are
discussed. After giving some advice towards an efficient
implementation, the approach is validated by comparing it
against EM in terms of estimation accuracy.
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II. PROBLEM DEFINITION

It is assumed that data D generated from an underlying
density f̃ is interpreted as a Dirac mixture density, also
known as the empirical probability density function [4]

fD(x) =
|D|∑
i=1

wi δ(x− xi) , (1)

with xi := [x(1)
i . . . x

(N)
i ]T ∈ IRN , x ∈ IRN , identical

weights for all components wi := 1/|D| and δ(.), the
Dirac distribution. The problem addressed in this paper is
the determination of a density fGM having minimal distance
to the true underlying density function f̃ that generated
the samples. Since f̃ is not accessible, the distance is
approximated by using the distance to fD instead of f̃ .
Throughout this paper, a solution in the form of mixtures
of multivariate normal distributed densities is sought

fGM(x) =
M∑
i=1

αiN (x− µ
i
,Σi) , (2)

with

N (x− µ,Σ) = 1√
|2πΣ|

exp
[
− 1

2 (x− µ)TΣ−1(x− µ)
]

and
∑M
i=1 αi = 1, 0 ≤ αi ≤ 1, mean vector µ ∈ IRN ,

covariance matrix Σ, and | . | denoting the determinant.
Estimating fGM corresponds to determining the weights αi,
means µ

i
, and covariance matrices Σi for all components

0 ≤ i ≤ M . In order to avoid the pitfall of comparing
probabilities at a set of distinct points, the distance between
the cumulative distributions of fGM and fD is considered.

III. LOCALIZED CUMULATIVE DISTRIBUTIONS (LCD)

The cumulative distribution is commonly used for com-
paring univariate densities. The standard cumulative distribu-
tion for multivariate density functions is non-unique as the
definition allows for several directions of integration. For
N dimensions a total of 2N possible functions exist [11].
Even worse is the fact, that these cumulative distributions
are non-symmetric, causing the estimates to be biased w.r.t.
the choice of the cumulative distribution function [11]. The
application of the LCD [11], as an alternative representation,
resolves this issue. For the sake of self-containedness, the
following definition is restated from [11].

Definition 1 (Localized Cumulative Distribution, [11]):
Given a random vector x ∈ IRN and the corresponding
probability density function f(x) : IRN → IR+. The
Localized Cumulative Distribution is defined as

F (m, b) =
ˆ

IRN

f(x) · K(x−m, b) dx (3)

with Ω ⊂ IRN × IRN
+ , F : Ω→ [0, 1], b ∈ IRN

+ , K(x−m, b)
a suitable kernel [11] centered at m = [m(1) · · ·m(N) ]T

with width b and K : Ω→ [0, 1].

The above definition shows how the LCD is obtained by
multiplying f(x) with the kernel K and integrating over x.
In the rest of this paper, the following kernel is employed

K(x−m, b) =
√
|2πΣb| N (x−m,Σb) ,

typically with Σb = diag(1b), i.e., identical width b for all
dimensions. This yields the LCDs of (1) and (2) given by

FD(m, b) =
L∑
i=1

wi
√
|2πΣb| N (xi −m,Σb) (4)

and

FGM (m, b) =
M∑
i=1

αi
√
|2πΣb| N (µ

i
−m,Σi+Σb) . (5)

IV. MINIMIZING THE DISTANCE MEASURE

As a measure of fit, the squared integral distance of
the cumulative distributions is employed. For this reason,
the modified Cramér-von Mises distance measure (mCvMD)
[11], between the LCDs of the Dirac mixture (4) and the
Gaussian mixture density (5), is calculated. This distance is
given by

D =
ˆ

IR+
w(b)

ˆ
IRN

(FGM(m, b)− FD(m, b))2 dm db . (6)

Similar to [11], the function w(.) is selected as

w(b) =

{
1

bN−1 b ∈ [0, bmax]
0 elsewhere

,

as it ensures convergence of the integral.

Evaluation of the distance measure

Minimization of (6) requires the solution of integrals
about the kernel position m and kernel width b. Closed-form
solutions to the m-integrals in (6) exist

D =
ˆ

IR+
w(b) |2πΣb| (P1 − 2 P2 + P3) db , (7)

where P1 − P3 denote the solutions to the m-integral over
the kernel positions, for each summand of the resolved term
(FGM(m, b)− FD(m, b))2 in (6). In particular, these are

P1 =
M∑
i=1

M∑
j=1

αi αj N (µ
i
− µ

j
, 2Σb + Σi + Σj) ,

P2 =
M∑
i=1

L∑
j=1

αi wj N (µ
i
− xj , 2Σb + Σi) ,

P3 =
L∑
i=1

L∑
j=1

wi wj N (xi − xj , 2Σb) .

Note that P3 is irrelevant for the minimization of D, as
it is constant w.r.t. the parameters of the Gaussian mixture
density to be determined. Yet, it needs to be calculated to
obtain the absolute value of the distance measure, e.g., for
experimental comparisons. For the integral in (6), which
ranges over the kernel width b, no closed-form solution



is known up to now. Numerical integration is required to
calculate D in (7). In summary, the amount of computation
necessary, is governed by (M ·L+M ·M) · e · s evaluations
of a multivariate Gaussian density. Here, M and L are
defined as in (4) and (5), e are the number of evaluation
points used by the numerical integration and s are the number
of steps to convergence. In the next section, the overall
algorithm is described in detail.

V. ALGORITHM

The proposed algorithm is an easy-to-implement optimiza-
tion scheme, consisting of two steps:

1) Choose starting parameters θ;
2) while (gradient(θ) 6= 0 and D too large)

change θ along search direction;

In step 1), the number of Gaussian mixture density com-
ponents M needs to be determined. This is a well known
problem, when estimating finite mixture models. Typically,
criteria like AIC, BIC, or MML are employed to solve this
problem [7], [10], [13]. Besides selecting M , an initial pa-
rameter set for each component {αi, µi, Σi} for 1 ≤ i ≤M
has to be selected. Identical weights αi = 1

M are appropriate.
The mean µi and covariance matrix Σi of each component
are chosen by the following, more elaborate method.

First, M · (N + 1) ≤ |D| points representing the given
N -dimensional data fD are chosen using either the cluster
centers of k-means or, as a deterministic approximation of
the data, a Dirac mixture reduction, as proposed in [14].
Random selection is an option too, but the proposed methods
provide a better coverage of the dataset.

In order to obtain the parameters µi and Σi the points are
randomly assigned to (N +1)-tuples Pi := {Pi,1, ..., Pi,N+1}
with 1 ≤ i ≤ M . Using the generated (N + 1)-tuples, the
values of µi and Σi are set to the sample mean and covari-
ance of the respective tuple Pi. By construction, all points
lie on the the same covariance ellipsoid of the associated
Gaussian component of the mixture. This method is intuitive
and guarantees valid covariance matrices for different Pi,j ,
which will come in very handy in the next section. We refer
the interested reader to [7] for a description of alternative
initialization methods.

In step 2), a quasi-Newton optimization procedure (lim-
ited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
algorithm [15]) is used for minimizing the distance measure.
This algorithm estimates the Hessian matrix and therefore
allows for high-dimensional optimization. This optimization
method requires a gradient, which is calculated numerically.
In order to evaluate (7), a numerical integration needs to
be performed too. Here, the use of an adaptive Lobatto
Quadrature is proposed as the distance measure is reasonably
smooth when integrated over b.

In order to obtain a valid probability density from the
optimization process, several constraints have to be fulfilled:
• All Σi need to be valid:

Constraint is achieved by optimizing Pi and calculation
the sample statistics.

• All weights must sum to one,
∑M
i=1 αi = 1, and

fGM(x) ≥ 0 for all x ∈ Ω:
Minimizing mCvMD penalizes deviations in probabil-
ity mass between fD and fGM. These constraints are
automatically enforced due to ∫IRN fD(x) dx = 1.

Finally, the occurrence of singular covariance matrices may
be prevented by adding a penalty for very small distances
within the (N + 1)-tuples Pi. This may be understood as
lower-bounding the allowed covariance dimensions. Note, for
all of the following experiments, no constraint was necessary.

VI. EXPERIMENTS

In this section, an experimental comparison of the pro-
posed approach to the standard parametric density estimation
method EM for Gaussian mixture densities is provided.

Geyser Data Set

As a benchmark data set, a rescaled version of the Old
Faithful Geyser data obtained from the website of [13] is
used. It consists of 272 data points. Each point corresponds
to the duration time of the current and waiting time until
the next eruption of a Geyser. The density estimate obtained
by the proposed approach is depicted in Fig. 1 (a). The red
points are the original samples and the contours show the
obtained Gaussian mixture density. In Fig. 1 (b), the Gaussian
mixture density estimated by EM is given. These results
show that EM and the presented approach yield visually very
similar results.

Two Components - Weakly and Strongly Overlapping

For these experiments, samples were drawn from a Gaus-
sian mixture density (2) with M = 2 components,

α = [0.5 ; 0.5]T , µ
1

= [β · 0.35 ; 0.0]T = (−1) ·µ
2
,

and

Σ1 = Σ2 =
[

0.05 0.0
0.0 3.0

]
.

The samples were generated for β = {1, 2}. The true density,
the respective samples and the estimated densities using the
proposed approach and EM for both β are given in Fig. 1
(c-h). As can be seen in Fig. 1 (c-e) and Tab. I, the proposed
algorithm can estimate the Gaussian mixture density with
their distinct clusters well. In contrast to the well separable
case, the visual results in Fig. 1 (f-h) as well as the results
in Tab. I show the increasing difficulty for both algorithms.

Coinciding means

To test the performance of the algorithm in estimating
Gaussian mixture densities with identical means, samples
were generated using the following density with M = 2

α = [0.5 ; 0.5]T , µ
1

= µ
2

= [0.0 ; 0.0]T ,

and

Σ1 =
[

6 −2
−2 6

]
, Σ1 =

[
0.5 0.0
0.0 0.5

]
.
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Fig. 1. Samples and obtained density estimation results for the Geyser Benchmark data set, weakly and strongly overlapping two components and two
components with identical means. More explanation can be found in the respective parts of Sec. VI.



The mixture contains two components with identical means,
but the first component’s covariance is more conservative
than the second component’s in all dimensions, i.e., the
variances are larger in all directions. The drawn samples and
the estimated densities using the proposed approach are given
in Fig. 1 (i-k). This experiment is hard due to overlapping
components, as the densities have identical means. The
proposed approach still produces good results.

Statistics

In this section, the statistics for the experiments described
above and depicted in Fig. 1 are reported. The estimation
performance of the proposed LCD method shall be compared
to EM method. For the comparison, the mCvMD described
in Sec. IV and the Kolmogorov-Smirnov distance (KSD) are
employed. As was shown in [12], the mCvMD is well suited
for comparing sample densities to continuous densities. The
KSD is employed to show the performance using a well
known benchmark distance.

Experiment 1 - MCvMD: The mCvMD results for the
artificial data sets described above are given in Tab. I. The
results are averages over 330 experiments with varying
samples size. The sample sizes ranged from 10 to 40 per
experiment. The results in Tab. I are given in the form of
mean distances µ and standard deviations σ averaged over all
respective experiments. Tab. I (d) gives the results averaged
over all experiments. In each table, the distances in the
mCvMD sense between the given samples, the Gaussian
mixture density, obtained using the LCD and the EM method,
is given w.r.t. the given samples and the true generating
mixture density.

Regarding the distance between the estimates and the
true underlying density, a strong correlation of the distances
of both mixture estimates and the distance between the
training samples and the true density can be observed. Yet, no
approach is consistently better than the other. The proposed
approach yields comparable distances to the true density
on average. Regarding the distance of the LCD method’s
estimates to the training samples, in all experiments, the pro-
posed approach achieves lower distances than EM. Note, that
the lower average distances have lower standard-deviations
than EM, too. This holds for all data sets.

Experiment 2 - KSD: In the previous experiment, the
mCvMD was used for the comparison. This result might have
been expected, due to the fact that the minimized distance
measure was used for the comparison. In order to perform a
neutral comparison, the Kolmogorov-Smirnov-Test and the
Kolmogorov-Smirnov-Distance (KSD) are employed, which
is a commonly used distance given by

DKS = sup
x∈D
|FD(x)− F (x)| .

Note, the KSD is only defined for scalar random variables.
For the presented two-dimensional examples, the cumulative
distribution of the scalar marginal densities f(x1) and f(x2)
are compared to the empirical distribution function.

In Fig. 2 (a-b), the average KSD of the experiments and
in Fig. 2 (c-d), the standard deviation over the respective

TABLE I
MCVMD - STATISTICS TO THE EXPERIMENTS DESCRIBED IN SEC. VI.

(a) MCvMD for Small Overlap
Samples LCD EM

µ σ µ σ µ σ
Samples - - 0.0066 0.0028 0.013 0.0095
True 0.0930 0.0836 0.0878 0.0826 0.0821 0.0775

(b) MCvMD for More Overlap
Samples LCD EM

µ σ µ σ µ σ
Samples - - 0.0042 0.0028 0.0101 0.0077
True 0.0860 0.0821 0.0815 0.0818 0.0780 0.0808

(c) MCvMD for Nested Components
Samples LCD EM

µ σ µ σ µ σ
Samples - - 0.0159 0.0099 0.0291 0.0209
True 0.1817 0.1407 0.1670 0.1383 0.1807 0.1422

(d) MCvMD for all Experiments
Samples LCD EM

µ σ µ σ µ σ
Samples - - 0.0089 0.0080 0.0174 0.0163
True 0.1204 0.1143 0.1122 0.1114 0.1137 0.1148

experiments for both marginal densities are given. In each
subfigure, the distances between Gaussian mixture densities
estimated using the LCD-based method and EM are given
w.r.t. the given samples and the true generating mixture
density. The results are averages over 240 experiments for
each sample size, which are equally split among the three
test cases. The sample sizes ranged from 10 to 100 per
experiment. Fig. 2 (a-b) show that the average KSD to
the samples is lower for the LCD method than for the
EM method. This holds for all marginal densities for all
experiments. As fD is an estimate of the true density, the
KSD between the data and the LCD method’s result is almost
always lower or at least comparable to EM, too. There is one
exception, shown in Fig. 2 (b). In this case, the distance to
the true density is slightly smaller for the EM estimate than
for the LCD estimate. Yet, the standard deviation for this
case is very high compared to the difference in distance.

VII. CONCLUSIONS

In this paper, a distance-based density estimation algo-
rithm was presented, which considers the overall density
function. The parameters of Gaussian mixture densities were
determined by minimizing the distances of the Localized
Cumulative Distribution of the data and the Gaussian mixture
density. The ambiguity of the definition of the standard
multivariate cumulative density function was removed by
using this distribution and the modified Cramér-von Mises
distance. The proposed optimization is easy to implement
and experimental comparison to EM shows the excellent
performance of the proposed approaches. Regarding the
modified Cramér-von Mises distance and the Kolmogorov-
Smirnov-Test, the proposed approach yields on average better
Gaussian mixture densities with respect to the training sam-
ples than EM. Not only is the mean distance closer, but the
standard deviations are drastically smaller, i.e., the proposed
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Fig. 2. Average KSD (a-b) of the experiments and standard deviations (c-d) averaged over the respective experiments for both marginal densities are
given. In each plot, the distances between the LCD-estimated and the EM-estimated Gaussian mixture density are given with respect to the given samples
and the true generating mixture density.

method should be preferred over EM when reliability is
important.

It remains future work to investigate consistency and
(probabilistic) error bounds. With regard to small sample
sizes, the introduction of prior knowledge into the density
estimation process as well as the introduction of constraints
on the state space appear promising. The former might be
introduced by adding soft/hard constraints penalizing the
deviation from a given function, e.g., a sine function. The
latter would allow for the exclusion of particular areas and
direct approximation of density slices, which are especially
useful for filtering and prediction purposes. In addition, the
execution time could be improved further by implementing
an analytic gradient. The proposed procedure’s capability to
solve high-dimensional problems needs to be tested.
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