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Abstract— Closed-loop model predictive control of nonlinear
systems, whose internal states are not completely accessible,
incorporates the impact of possible future measurements into
the planning process. When planning ahead in time, those
measurements are not known, so the closed-loop controller
accounts for the expected impact of all potential measurements.
We propose a novel conservative closed-loop control approach
that does not calculate the expected impact of all measurements,
but solely considers the single future measurement that has the
worst impact on the control objective. In doing so, the model
predictive controller guarantees robustness even in the face of
high disturbances acting upon the system. Moreover, by con-
sidering only a single dedicated measurement, the complexity
of closed-loop control is reduced significantly. The capabilities
of our approach are evaluated by means of a path planning
problem for a mobile robot.

I. INTRODUCTION

In contrast to regular control, model predictive control
(MPC) does not only try to find optimal control inputs for
the current state of the system under control, but also for
predicted states of the system [1]. By this prediction of
system states, it is possible to react earlier to the anticipated
development of the system state and achieve a higher quality
of control. Depending on how much model knowledge is
incorporated into the planning phase, there is a distinction be-
tween open-loop feedback control and closed-loop feedback
control.

In the setting of open-loop feedback control, a stochastic
model predictive controller predicts the development of the
system under control by solely employing knowledge about
the system model and the stochastic model of the noise
acting upon it. Exclusively in dependence of these predicted
states, the optimal sequence of control inputs is determined
[1]–[3]. However, if there are sensors that acquire new
information about the system state through measurements,
more information about the system under control is available.
In particular, this knowledge consists of a model of the
measurement process describing the relations between the
system state and the received measurements as well as a
stochastic characterization of the measurement noise. Open-
loop feedback control does not utilize this knowledge about
the measurement process and, consequently the stochastic
uncertainty about the actual system state may increase dras-
tically.
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In contrast, closed-loop feedback control approaches get
rid of this problem by actively incorporating future mea-
surements into the planning process [4], [5]. In addition to
the prediction of system states, the impact of possible future
measurements on the state estimate is considered. Since these
measurements are not known in advance, the controller has
to consider all potential measurements in the planning phase
[4]. As a result, the decision tree has to be branched for every
possible measurement at any time instant in the planning
horizon.

In the case of a continuous measurement space, there is
an infinite number of possible future measurements. So, the
insertion of knowledge about the measurement process is
computationally infeasible for general systems and, hence,
the measurement space has to be discretized. But even
finitely many possible measurements result in an increased
computational complexity of the predictive planning, as the
impact for every measurement has to be evaluated in advance
for every time step.

To ensure operability under real-time constraints, approx-
imations of closed-loop feedback control are necessary. One
possible approximation technique is to not make the planning
dependent on all future measurements, but to choose one spe-
cific measurement from all possible ones. The consequence
of such an approach is that knowledge about the measure-
ment process is still incorporated into the planning phase,
but the complexity is decreased significantly in comparison
to closed-loop feedback control. There are different ways to
pick a single measurement from all attainable ones at each
time step. In [6], the authors propose to always take the
nominal measurement for planning, i.e., the measurement
that confirms the current state estimate the most.

In this paper, we propose a novel approach to selecting
a single future measurement for planning at each time
instant in the planning horizon. The key idea of our control
algorithm is to always select the single measurement from
a discrete set of measurements for further planning that has
the worst impact on the control objective. Thus, we do not
take the expected reward over all measurements, but always
anticipate the least favorable measurement (LFM) in terms
of the control objective. Our approach results in solutions
to the optimal control problem that are by far more robust
than open-loop feedback control and other approximations to
closed-loop feedback control. By considering least favorable
measurements in the planning process, the controller acts
more carefully and avoids the violation of hard contraints
like the avoidance of crashes of a robot into a wall.
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However, the complexity of calculating the least favor-
able measurement equals the complexity of the closed-loop
control algorithm. We propose an approximation performed
by rating the impact of measurements on the systems state
through a greedy approach. This impact is expressed in
terms of a one-step objective function that evaluates how
beneficial or detrimental certain states of the system are.
Also, this approximation by a greedy selection of the least
favorable measurements leads to a considerable reduction in
complexity of the control problem.

The paper is structured as follows: In the following
section, we describe the considered optimal control problem
in detail. Our novel approach of conservative planning with
least favorable measurements is presented in Section III.
The capabilities and the efficiency of our approach are
evaluated by means of a path planning problem in Section IV.
Conclusions and an outlook to future work conclude the
paper.

II. PROBLEM FORMULATION

A model predictive controller predicts the system state
over a planning horizon in dependence on a sequence of
control inputs. The predicted states within the planning
horizon are rated by an objective function that models how
advantageous or disadvantageous specific states and control
inputs are. The sequence of control inputs is determined that
maximizes this objective and the first element of the optimal
sequence is applied to the system. In the next time step, this
procedure is repeated.

A. System Properties

The random variable xk characterizes the controller’s
estimate about the current state of the system. Throughout the
paper, we assume that the dynamic behaviour of the system
under control can be described by the discrete-time nonlinear
dynamic system

xk+1 = ak(xk, uk,wk) , (1)

in dependence of applied control inputs uk. The control input
uk that can be applied to the system is taken from a finite
discrete set

Uk := {u(1)k , u
(2)
k , . . . , u

(L)
k }.

The nonlinear measurement model

zk = hk(xk,vk) , (2)

describes how the outcome of the measurement process is
linked to the system state.

Furthermore, the random variables wk and vk subsume
the stochastic noises acting upon the system and the mea-
surement process. Both the system state xk ∈ X and the
measurements zk ∈ Z are continuous random variables
characterized by their probability density functions fxk and
fzk , respectively.

For the specific class of systems, whose internal states
are not completely accessible, these states can be estimated
on the basis of noisy measurements and the previously

applied control inputs. The current state estimate xk can be
calculated by a recursive Bayesian estimator, which will be
explained in the following subsection.

B. Bayesian Estimation

A Bayesian estimator consists of two alternating process-
ing steps called prediction and filtering step.

In the prediction step, the system state xk is updated to
the system state xp

k+1 at the next time step by means of the
Chapman-Kolmogorov equation

fpk+1(xk+1) =

∫
fT (xk+1|xk, uk)fk(xk)dxk , (3)

where the transition density fTk (xk+1|xk, uk) is a probabilis-
tic representation of (1).

The filtering step incorporates a new measurement ẑk into
a prior state estimate fpk , which is the result of the previously
executed prediction step, by employing Bayes’ law

fek(xk) =
1

ĉ
· fLk (ẑk|xk) · fpk (xk) . (4)

Here, ĉk is a normalization constant and the likelihood
fLk (ẑk|xk) can be derived from Eq. (2).

C. Considered Optimal Control Problem

In a setting with imperfect knowledge about the system
state, the model predictive controller has to deal with random
variables xk characterizing the current state estimate. The
desired behavior of the system is modeled via a reward
function r(xk, uk), which acts on probability densities over
the system state and assigns a scalar reward to the considered
state estimate xk and the control input uk. The controller
plans predictively into the future and aims at finding control
inputs that are optimal over a horizon of length N . This op-
timality is defined in terms of a cumulative reward function,
the sum of all one step rewards given at each time instant in
the planning horizon. At every time step k, the cumulative
reward function

Vk(xk, uk, µk,1:N−1)

= E

{
r(xk, uk) +

N−1∑
i=1

r(xk+i, µk,i(xk+i))

}
(5)

is maximized.
Since at every time instant, the stochastic estimator gives

feedback about the state of the system in terms of an updated
state estimate, the reward function at the planning time step i
has to consider a control policy µ

i
(xi), which maps the state

estimate xi to a control input ui. In other words, the optimal
control input at time instant i > k depends on the previously
applied control inputs and the estimate of the state xi.

The optimal control input

u∗k(xk) = arg max
uk

{
max

µk,1:N−1

{
Vk(xk, uk, µk,1:N−1)

}}
(6)

is applied to the system and the planning algorithm is
repeated at the next time step.

Since the planning should reflect the real estimation pro-
cedure as described in Section II-B as accurately as possible,
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ẑ22k

u2
k

Fig. 1. Exemplary search tree of a closed-loop planning for L = 2 different control inputs, M = 2 discrete measurements and N = 2 planning time
steps. Approaches considering all virtual measurements have to build the whole tree. In contrast, the proposed LFM approach reduces the complexity
significantly by selecting a specific single measurement. The pruning of subtrees is illustrated by light green nodes.

the controller not only has to incorporate the nonlinear sys-
tem dynamics, but also future measurements and properties
of the stochastic estimator.

III. LEAST FAVORABLE MEASUREMENTS

In this section, we will introduce our novel concept
of incorporating only one measurement into the planning
process. This will be a measurement that leads to the least
desirable posterior state estimate xe

k in terms of the reward
function. From a purely technical standpoint, we want the
planning to be as robust as possible, i.e., we want to account
for future possible measurements that may be undesirable in
terms of an application specific reward function.

In open-loop feedback control, it is assumed that the
controller does not receive observations about the system
under control. For the expected reward to be maximized in
(5) this means that future system states xk+i are generated
by prediction using (3). The cumulative reward function then
is

Vk(xk, uk, uk,1:N−1) = r(xk, uk) +

N−1∑
i=1

r(xk+i, uk,i)

The closed-loop feedback controller anticipates future
measurements and future beliefs are calculated by (3) and
(4). The cumulative reward function to be maximized be-
comes

Vk(xk, uk, µk,1:N−1)

= Ezk,...,zk+N

{
r(xk, uk) +

N−1∑
i=1

r(xk+i, µk,i(xk+i))

}
where µ(xk+i) is defined as in Section II. Instead of con-
sidering the weighted average over future measurments, we
consider
Vk(xk, uk, µk,1:N−1)

= inf
zk,...,zk+N

{
r(xk, uk) +

N−1∑
i=1

r(xk+i, µk,i(xk+i))
}
(7)

Since the infimum over future measurements in Eq. (7) may
become arbitrarily small, we assume in the following that

either the measurement space Z is a compact or a discrete
set. Ideally, one would evaluate the impact of possible
measurements on the complete planning process in Eq. (7).
However, this would not lead to a reduction in complexity
compared to closed-loop control because in order to evaluate
the impact of a measurement on future decisions, the whole
following decision tree would have to be expanded over all
successive control inputs and future measurements.

We propose a greedy approximation to judge on the impact
of a measurement at any instance in the planning process by
only evaluating the one step reward function of the posterior
state estimate. Thus, not the whole decision tree has to be
expanded for all future measurements.

We will first describe our novel approach for myopic
planning with time horizon of length one, the generalization
to arbitrary time horizons will be conducted afterwards.

A. Myopic Control with Least Favorable Measurements
For predictive control the current state estimate xk is

first predicted using the system dynamics depending on the
applied control input by equation (3). Thus, we obtain a
predicted state estimate xp

k+1 linked to a control input uk.
In the following, we assume that we have discretized the
space of possible measurements Zk+1 into a set of discrete
measurements

Zd,k+1 := {ẑ1k+1, . . . , ẑ
M
k+1} .

Methods for obtaining this discretized measurement space
are described in Subsection III-C. For each prospective
measurement ẑik+1 ∈ Zd,k+1, we can calculate the posterior
state estimate xe

k+1 linked to the control input uk and the
measurement ẑik+1.

The quality of this posterior state estimate can then be
evaluated in the one step reward function defined in Sec-
tion II-C by calculating r(xe

k+1, uk|ẑ
i
k+1), which denotes

the reward given for the estimate of the state xe
k+1 linked

to the control input uk and the measurement ẑik+1. For each
measurement in Zd,k+1, the corresponding one step reward
r(xe

k+1, uk|ẑ
i
k+1) can be calculated to obtain a set of one

step rewards

{r(xe
k+1, uk|ẑ

1
k+1), . . . , r(xe

k+1, uk|ẑ
M
k+1)} .



The reward we then attach to the control input uk is

r(xe
k+1, uk)

:= min
ẑik+1

{r(xe
k+1, uk|ẑ

1
k+1), . . . , r(xe

k+1, uk|ẑ
M
k+1)} ,

(8)
i.e., the minimal achievable greedy reward considering the
possible measurements. The objective of the myopic con-
troller is then to maximize this minimal reward over all
possible control inputs.

The minimum in (8) is always assumed, as we only
consider a discrete and finite subset of all measurements.

B. General Predictive Control with Least Favorable Mea-
surements

For predictive control with longer planning horizons, the
objective is to find a sequence of control inputs that maxi-
mizes the cumulative reward (5). For non-myopic planning,
the myopic approach explained above is repeated at each
time step j > k in the planning horizon. At each node in
the decision tree the controller considers control inputs in
U and for each input uj predicts its effect on the system
via (3) and obtains the predicted state estimate xp

j+1 linked
to the control input uj . Then, just like above, the controller
determines the set of greedy rewards

{r(xe
j+1, uj |ẑ

1
j ), . . . , r(x

e
j+1, uj |ẑ

M
j )}

and the minimal reward

r(xe
j+1, uj)

:= min
ẑij

{r(xe
j+1, uj |ẑ

1
j ), . . . , r(x

e
j+1, uj |ẑ

M
j )} . (9)

The planning for further time instants in the planning horizon
is then repeated with the reward (9). Just as in the open-loop
case, the decision tree now has to be branched only over
the possible control inputs (see Fig. 1). At each time instant
in the planning process, the one step reward attached to a
control input is defined via (9).

C. Obtaining Representative Measurements

There are several different techniques to determine a
suitable discretization of the continuous measurement space
at each time step. In this subsection, we will briefly describe
two methods to obtain such a discretization depending on
the probability of obtaining a measurement.

The most intuitive approach would be to employ ran-
dom sampling from the probability density f(zj) of the
measurement process. If we want to receive M possible
measurements, we can randomly draw M samples ẑij ∼
f(zj) from this probability density. For time instants that lie
in the future, i.e., j > k, the probability density f(zj) can
be constructed from the likelihood and the density describing
the state estimate f(xj) at time step j via

f(zj) =

∫
Xj
fL(zj |xj) · f(xj)dxj .

Another way to obtain M possible measurements would
be through deterministic approximation of the measurement

density f(zj) with the methods proposed in [4] and [7].
The advantage of deterministic sampling is that through the
systematic approach no outliers will occur and a certain
quality of representation can be guaranteed.

D. Complexity Analysis

At each time instant where a decision can be made, the
controller has to branch over all possible decisions in form
of possible control inputs. Let |U| denote the number of
(discrete) control inputs that can be applied to the system
under control and denote the maximal number of possible
measurements by |Zd|.

The computational complexity of expanding the whole
decision tree for the open-loop alogrithm is O(|U|N ), where
N is the length of the planning horizon. For closed-loop
planning, the complexity becomes O((|Zd| · |U|)N ), as the
controller not only branches over all possible control inputs
but also over all possible future measurements. For the
least favorable measurement algorithm, the controller has
to calculate the minimum of the rewards for every possible
future observation ẑij ∈ Zd at each time step j which is
O(|Zd|). Since the branching is now only conducted over
all control inputs, the complexity of the approach suggested
above is reduced to O(|Zd| · |U|N ).

IV. SIMULATIONS

To demonstrate the capabilities of the proposed conserva-
tive planning approach, we applied the LFM algorithm to a
robot control problem. In the considered simulation setting, a
robot [8] is supposed to reach a target area without colliding
with obstacles. The pose of the robot can be estimated by
means of the previous applied control inputs and distance
measurements to two landmarks. At every time step, the
controller determines the optimal control input with regard
to less favorable measurements. This specific input is applied
to the robot and the whole procedure is repeated in the next
time step.

A. System and Measurement Model

We model the pose of the robot as a three-dimensional
continuous state xk = [xk,yk,φk]T , where xk and yk are
the coordinates of the robot’s position in the plane and φk is
its orientation. The motion of the robot is described by the
following system modelxk+1

yk+1

φk+1

 =

xkyk
φk

+

(usk +ws
k) · cos(φk)

(usk +ws
k) · sin(φk)

uφk +wφk

 , (10)

motivated by the robots introduced in [8]. The two-
dimensional control input uk = [usk, u

φ
k ]T consists of the

step size usk in forward direction and a turning angle uφk .
We assume that the robot can either execute a forward step
with a fixed length of 10 cm or does not move forward.
Additionally, the robot can superimpose turns of π

8 rad in
both directions onto the forward motion or turn without
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Fig. 2. Environment setting. The grey shaded areas represent obstacles,
the red rectangle is the target area. S1 and S2 are the initial robot
configurations for both scenarios where the line whithin the circle denotes
the orientation. The two landmarks used for measurements are located at
[50 cm,−50 cm]T and [−50 cm, 50 cm]T

taking a forward step. Hence, the entire action space consists
of the finite discrete set

U =

{[
0 cm
±π8 rad

]
,

[
0 cm
0 rad

]
,

[
10 cm
±π8 rad

]
,

[
10 cm
0 rad

]}
.

The random variables ws
k and wφ

k in Eq. (10) subsume
the noise acting upon the forward step and the rotational
movement.

For state estimation, the robot can take noisy distance
measurements to two landmarks. The i-th entry of the
measurement vector zk is given by

zik =
√

(xk − x̌i)2 + (yk − y̌i)2 + vk , (11)

where [x̌i, y̌i]T is the position of landmark i = 1, 2 and vk
denotes zero-mean white Gaussian measurement noise.

B. Reward Function

The robot’s task is to reach the target area without col-
liding with obstacles. Therefore, we implemented a reward
function that assignes negative values to all state-action
combinations that cause the robot to crash. Additionally,
each step that does not result in a target state, results in
a small penalty value in order to prefer shorter paths over
longer ones. Finally, steps that let the robot reach the target
area safely have zero penalty. In detail, the values are set as
following:

r(xk, uk) =


−40, if action leads to collision

0, if target is reached
−1, otherwise .

(12)
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Fig. 3. Average rewards from 50 Monte-Carlo runs for different start
configurations and noise settings. Diagram (a) shows the achieved reward
from initial configuration S1 in Fig. 2, diagram (b) denotes results of S2.
For each configuration, LFM was compared to open-loop control (OL) and
Nominal Belief State Optimization (NBO) with different measurement noise
levels.

The planning horizon in our simulation is set to 40 time
steps as well, so any collision-free trajectory is preferred,
even if the target is not reached. Thus, the best a robot can
achieve is a cumulative reward of zero. Each additional step
and especially collisions decrease the attained reward. So
far, the function assigns values to combinations of states and
actions. The extension of the deterministic reward function
(12) to the probabilistic state description is conducted via

r(xk, uk) = E{r(xk, uk)} , (13)

the expected reward given an initial state estimate xk and a
fixed action uk.

C. Calculation of Optimal Policies

For efficiency reasons, the optimal solution to the planning
problem in Section II is calculated via the principle of
dynamic programming [9]. In order to ensure computational
feasability even for long time horizons, we employed a
parametrized fitted value iteration algorithm described in
[10]. In this approach, the authors propose a parametrization
of the belief space, i.e., the space of probability density
functions fj characterizing the state estimates xj . In our
simulation, we used an extended Kalman filter for state es-
timation that implicitly allows the parametric representation
of the belief space in form of Gaussian densities.

D. Test Scenarios

The following section describes test scenarios that differ
in the start configuration of the robot and in the measurement
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Steps: - 21 28

Target Reached: 0 54 68
Collisions: 0 9 5

(a) x0 = [55 cm, 5 cm]T , σx = σy = 3 cm

OL NBO LFM
Steps: - 23 30

Target Reached: 2 66 63
Collisions: 0 6 2

(b) x0 = [20 cm, 20 cm]T , σx = σy = 2 cm

Fig. 4. Average test data over all tested noise settings. Each table
lists average values for one initial configuration, where ‘Target Reached’
shows percentage of successful runs, i.e., target was reached without crash.
‘Collisions’ denotes percentage of runs that included collisions and ‘Steps’
are average number of steps needed to reach target in successful runs. The
maximal allowed number of steps was 40.

noise. Fig. 2 shows the target area and obstacles in an arena
of 100 cm × 100 cm. Two landmarks were positioned at
[50 cm,−50 cm]T and [−50 cm, 50 cm]T .

In all scenarios, the standard deviation of the system
noise is set to σws = 3 cm and σwφ = 0.2 rad. For the
measurement noise, three different standard deviations σv of
2 cm, 3 cm, and 4.5 cm were applied. The 3-σ ellipses of
the start configurations S1 and S2 are as shown in Fig. 2.
We compared the proposed approach to open-loop planning
(OL) [1] and Nominal Belief State Optimization (NBO) [6].

E. Results

The results listed in Fig. 3 show the achieved rewards after
50 Monte-Carlo runs with a controller employing open-loop
control, NBO control, and LFM control from two different
start configurations and different measurement noise settings.
Control with LFM performed best in our test scenarios. The
controller employing NBO tended to take the narrow path
B from both start positions. This plan can be too risky
under conditions where disturbances act upon the system.
This is the reason, why the robot crashed mostly during the
passing of the narrow section on path B. Open-loop control
resulted in a reward of −40 in all the test runs. The state
estimation after some planning steps without filtering gets
highly imprecise. After 40 prediction steps, which was the
planning horizon in our scenario, the expected probability
for reaching the target is relatively low compared to the
probability of crashing into obstacles. Thus, staying at the
current position was rated best among all available actions.
Fig. IV-D shows the percentage of successful runs, i.e.,
runs where the target was reached without colliding with
obstacles, percentage of collisions, and steps needed to reach
the target as average over the different noise settings. It can
be seen that open-loop control is not suitable for this kind
of planning problem, where measurements are mandatory for
successful behaviour, as the robot never reached the target at

all. In successful runs, the NBO-Algorithm needed slightly
less steps to bring the robot home safely but this advantage
comes at a price, as the percentage of collisions is higher
than by employing LFM.

V. CONCLUSIONS

We have proposed a novel control algorithm that is robust
against disturbances in the form of noisy and detrimental
measurements. Our approach allows for a conservative and
robust control even in the face of large measurement noise.
Furthermore, this algorithm is an efficient approximation to
the general model predictive closed-loop control framework.
The approximation consists of considering at each time
instant in the planning horizon the single measurement that
is the most detrimental to the control objective. We have
evaluated our approach against other approximative planning
algorithms and have shown that a controller employing
control with least favorable measurements is more careful
and the probability of a violation of hard contraints is
significantly lower. Future work will be concerned with
evaluating our approach on existing hardware [8].
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