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Abstract— In Model Predictive Control, the quality of control
is highly dependent upon the model of the system under control.
Therefore, a precise deterministic model is desirable. However,
in real-world applications, modeling accuracy is typically lim-
ited and systems are generally affected by disturbances. Hence,
it is important to systematically consider these uncertainties
and to model them correctly. In this paper, we present a
novel Nonlinear Model Predictive Control method for systems
affected by two different types of perturbations that are
modeled as being either stochastic or unknown but bounded
quantities. We derive a formal generalization of the Nonlinear
Model Predictive Control principle for considering both types
of uncertainties simultaneously, which is achieved by using
sets of probability densities. In doing so, a more robust and
reliable control is obtained. The capabilities and benefits of
our approach are demonstrated in real-world experiments with
miniature walking robots.

I. INTRODUCTION

In recent years, Model Predictive Control (MPC), which
is also called Receding or Rolling Horizon Control, gained
increasing interest for control applications from various
fields. In contrast to regular control, MPC does not only
consider the current state of the system under control, but
also its future dynamic behavior. By model-based prediction
of future system states, it is possible to react earlier to the
anticipated development of the system and thus, a higher
quality of control can be achieved.

Even though the incorporation of uncertainties leads to
a significant increase in quality of control, most MPC ap-
proaches do not explicitly consider the influence of noise
on the system [1]. In real-world applications, the controlled
systems are generally affected by disturbances, caused by an
uncertain state estimation, exogenous influences, or modeling
errors. In order to achieve a robust Model Predictive Control
in the presence of these unknown quantities, it is important
to systematically consider these uncertainties and to model
them correctly.

Consideration of uncertainties in the optimal control prob-
lem has traditionally been treated in a stochastic way, cf.
[2], [3], and [4]. Therefore, all disturbances affecting the
system are described by random variables characterized by
the underlying probability density functions. The objective of
control is to maximize the expected rewards of the predicted
states, obtained by applying the control sequence.
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Fig. 1. Schematic left turn of a miniature walking robot. The light (green)
labeled robot represents the theoretically intended movement, the dark (red)
one is the result subject to real-world conditions with errors.

In many practical applications, the characteristics of the
perturbations may not be known in detail, but can be assumed
to belong to a bounded set. In addition, the system can also
be affected by errors, which do not have a probabilistic nature
or which we cannot model sufficiently precise in a stochastic
manner. Thus, these uncertain quantities can be modeled far
better by their membership to a given set rather than by a
probabilistic description [5], [6], [7], [8], and [9]. The most
popular set-membership approaches, where the sets admit
a simple parametrical characterization, are polyhedral and
ellipsoidal descriptions of the error [2]. In both cases, the
predicted states of a linearized system can also be modeled
by a polyhedron or an ellipsoid, respectively.

These existing methods always model disturbances either
in a purely probabilistic or in a purely set-valued manner.
However, in real-world applications, both kinds of errors
affect the system at the same time. Thus, these purely
probabilistic or purely set-valued models impose a specific
uncertainty representation on each disturbance, even if its
natural characteristics deviate severely from this representa-
tion. In this paper, we introduce a novel approach combining
both probabilistic and systematic uncertainties by using sets
of densities. In doing so, a more sophisticated description
of uncertain quantities and accordingly of the whole system
under control is possible. This results in a more realistic
prediction of the future development of the system and,
hence, a more robust and reliable control is achievable.

This procedure is different from methods such as [10]
or [11], which model the uncertainties exclusively in a
stochastic, but not in a set-valued way. These approaches
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use set-membership to ensure soft and hard constraints on
stochastic states for a robust control.

The paper is structured as follows: In the next section,
the considered MPC problem is described. In Section III,
the prediction step of a generalized Extended Kalman Filter
(EKF) incorporating both probabilistic and systematic noise
is presented. By using this prediction method in a Model
Predictive Controller, conventional stochastic or set-valued
reward functions are no longer directly applicable. Therefore,
a generalization of existing approaches will be introduced in
Section IV. In Section V, we present the results of a real-
world experiment, in which the methods of our proposed
approach are compared to an EKF-based MPC. An outlook
to future work will conclude this paper.

II. PROBLEM FORMULATION

We present a novel approach for Nonlinear Model Predic-
tive Control (NMPC) of systems that are affected by different
disturbances. These disturbances will be modeled not only
as stochastic, but also as set-valued quantities.

The dynamic behavior of the system is described by a
nonlinear discrete-time system of the form

xk+1 = ak(xk, uk,wk, dk) , (1)

where underlined letters denote vectors and random vectors
are written in boldface letters. The possibly time-variant
system function ak( · ) maps the inaccessible vector-valued
system state xk ∈ IRn to the state xk+1 at time step k + 1.
Furthermore, uk denotes the applied control input taken from
a discrete set Uk.

The random variable wk represents those errors that we
model stochastically, characterized by a probability density
function fwk , and dk ∈ Dk ⊆ IRn denotes the errors
that will be modeled as systematic disturbances. There is
no more knowledge about dk than its membership to a
known bounded set. In particular, dk does not have to be
constant over time. Hence, deriving an appropriate model
for the evolution of dk can turn out to be an elaborate
task. Additionally, an explicit estimation of dk by means of
a disturbance observer generally suffers from slow conver-
gence rates especially when dk is subject to abrupt changes
over time. Thus, especially when reliable results are instantly
required, it is not suitable to estimate the unknown bias by
means of state augmentation.

Based on the system equation (1), the Model Pre-
dictive Control problem is to find an optimal sequence
u∗k:k+(N−1) = [u∗k, . . . , u

∗
k+(N−1)] of control inputs. Opti-

mality is defined in terms of maximizing a cumulative reward
function Vk(xk:k+N , uk:k+(N−1)), giving rewards over a
time horizon of length N [2]. The first control input u∗k from
the sequence u∗k:k+(N−1) is then applied to the system. For
details on the cumulative reward function, see Section IV.

Example System: System Equation
For the purpose of illustration, we consider throughout the
whole paper the specific example of a mobile miniature walk-
ing robot (Fig. 1) moving on a 2D-plane with constant ve-
locity. This omnidirectional robot is used in a specific mode

of operation, where left and right turns are superimposed
onto the forward motion [12]. Similar to the motion of two-
wheeled differential-drive vehicles, the motion can be modeled
by means of a nonlinear discrete-time system equation

xk+1 =

xk+1

yk+1

φk+1

 =

xkyk
φk

 +

T · cos(φk)
T · sin(φk)

uk

 +

wx
k

wy
k

wφ
k

 , (2)

where xk and yk are the coordinates of the position and φk
is the orientation of the robot. Furthermore, T denotes the
constant step size and wk the noise influence on the system.
The input uk is a steering action, i.e., a change of direction of
the robot, chosen from the discrete set

Uk = {0◦,±2◦,±4◦} .

In real applications, movement of the robots is imprecise and
despite individual calibration it cannot be ensured that the
chosen angle is applied correctly. Because this error does not
have a probabilistic manner, it is more suitable to model it
as a systematic error instead of modeling it stochastically. By
assuming that the systematic error dk only affects the steering
angle directly, the system equation is given byxk+1

yk+1

φk+1

 =

xkyk
φk

 +

T · cos(φk)
T · sin(φk)

uk

 +

wx
k

wy
k

wφ
k

 +

 0
0
dk

 . (3)

III. STOCHASTIC AND SET-VALUED STATE PREDICTION
WITH SETS OF DENSITIES

In order to allow for the simultaneous treatment of stochas-
tic and systematic uncertainties, we propose a generalization
of classical probability theory. In the following, the combi-
nation of a stochastic and a set-valued quantity will turn out
to be characterized by a set of probability densities.

A. Generic State Prediction with Sets of Densities

In terms of the underlying probability density functions,
the system dynamics (1) can also be expressed by the
transition density

fT
k (xk+1|xk, ûk, dk)

=
∫

IRn

δ
(
xk+1 − ak(xk, ûk, wk, dk)

)
fwk (wk)dwk ,

where δ denotes the n-dimensional Dirac delta function. For
concrete ûk and dk, the probability density function fp

k+1 of
xk+1 can then be computed from the Chapman-Kolmogorov
equation

fp
k+1(xk+1) =

∫
IRn

fT
k (xk+1|xk, ûk, dk)fp

k (xk) dxk . (4)

However, due to the unknown but bounded quantity dk ∈ Dk,
the state transition is not unique. Thus, in contrast to a purely
stochastic modeling, one has to consider the whole set of
possible transition densities

FFFT
k =

{
fT
k (xk+1|xk, ûk, dk)

∣∣ dk ∈ Dk} .

Consequently, equation (4) has to be calculated elementwise
for every fT

k ∈ FFFT
k and a set FFFp

k+1 of predicted densities is
obtained. For the subsequent time update, this set will then
be processed elementwise with FFFT

k+1.



Obviously, the uncertain state xk is not characterized by
a single probability density anymore, but rather by a set of
densities. While focussing on convex sets of functions, this
way of generalizing classical probability theory has been
studied in [13]. Also, approaches to Bayesian state estimation
such as [14] and [15] are based on sets of densities. All of
these concepts are aimed at providing wider possibilities of
modeling uncertainty in order to overcome the limitations of
a purely stochastic point of view.

Without utilizing appropriate approximation techniques,
the prediction step (4) is in general infeasible to compute,
even when dealing with unique densities, i. e., in the purely
stochastic case. So using sets of arbitrary densities aggravates
this issue. For the important special case of linear system
dynamics perturbed by Gaussian noise, the prediction step
with sets of densities can be expressed in closed form, as it
will be shown in the following section.

B. Linear State Prediction with Ellipsoidal Sets of Means

Let the initial state x0 be characterized by a Gaussian
density N (x̂p

0 ,C
p
0) with mean x̂p

0 and covariance matrix Cp
0 .

By assuming that the system function (1) can be rewritten
as a linear mapping

xk+1 = Ak xk + Bk (ûk + wk + dk)

and that wk is a zero-mean Gaussian white noise N (0,Cw
k ),

the predicted density fp
k+1 for a certain dk will become also

a Gaussian density

fp
k+1 = N (x̂p

k+1,C
p
k+1)

with mean

x̂p
k+1 = Ak x̂

p
k + Bk (ûk + dk) (5)

and covariance matrix

Cp
k+1 = AkC

p
kA

T
k + BkCw

kBT
k . (6)

Apparently, the unknown but bounded vector dk ∈ Dk
only affects the computation of the expected value x̂p

k+1.
Therefore, equation (5) turns into a Minkowski sum

X p
k+1 = Ak X p

k ⊕Bk Uk , (7)

which is the elementwise summation of Ak X p
k and

Bk Uk = {Bk(ûk + dk) | dk ∈ Dk} .

Finally, the predicted state xk+1 is characterized by a set

FFFp
k+1 =

{
N (x̂p

k+1,C
p
k+1) | x̂p

k+1 ∈ X
p
k+1

}
of translated Gaussian densities with identical covariance
matrices.

This concept of incorporating systematic bounded uncer-
tainties rests upon the derivations in [16]. Therein, ellipsoidal
sets are utilized to represent X p

k and Uk. An ellipsoid

E(ĉ,X) :=
{
x ∈ IRn | (x− ĉ)TX−1(x− ĉ) ≤ 1

}

is parameterized by a midpoint ĉ ∈ IRn and a nonnegative
definite shape matrix X ∈ IRn×n. In particular, this represen-
tation facilitates the calculation of an affine transformation

AE(ĉ,X) + b = E(A ĉ+ b,AXAT) . (8)

The Minkowski sum of two ellipsoid does not in general
result in an ellipsoid anymore. An easy way to approximate
a Minkowski sum by an enclosing ellipsoid is given by the
inclusion

E(ĉ1,X1)⊕ E(ĉ2,X2) ⊆ E(ĉ1 + ĉ2,X(p)) (9)

with

X(p) = (1 + p−1)X1 + (1 + p)X2

for any p > 0 [9]. An outer approximation with minimal
sum of squares of semiaxes, i.e., minimal trace of X(p), is
obtained for

p =
trace(X1)

1
2

trace(X2)
1
2
. (10)

This short excursion to ellipsoidal calculus provides the
groundwork for efficiently evaluating equation (7). With
X p
k = E(ĉpk,X

p
k) and Uk = E(ûk,Uk), equation (7) then

becomes

X p
k+1

eq. (7)
= Ak E(ĉpk,X

p
k)⊕Bk E(ûk,Uk)

eq. (8)
= E(Ak ĉ

p
k,AkX

p
kA

T
k )⊕ E(Bk ûk,BkUkBT

k )
eq. (9)
⊆ E(ĉpk+1,X

p
k+1)

(11)
with

ĉpk+1 = Ak ĉ
e
k + Bk ûk (12)

and

Xp
k+1 = (1 + p−1)AkXe

kA
T
k + (1 + p)BkUkBT

k , (13)

where the optimal p is calculated from equation (10). Thus,
xk+1 is characterized by the set

FFFp
k+1 =

{
N (x̂p

k+1,C
p
k+1) | x̂p

k+1 ∈ E(ĉpk+1,X
p
k+1)

}
of Gaussian densities. Obviously, this predicted set of Gaus-
sian densities is simply parameterized by the corresponding
ellipsoid E(ĉpk+1,X

p
k+1) of means and the covariance matrix

Cp
k+1, which are calculated from (6) and (11), respectively.

Compared to the purely stochastic linear state prediction,
the presented concept only differs in one additional matrix
calculation, namely equation (13).

C. Nonlinear State Prediction with Ellipsoidal Sets of Means

In order to adapt this concept to nonlinear systems, a
linearization of the system function (1) can be performed.
The typical first-order Taylor series expansion around the
predicted mean – as it is done within the EKF framework
– is inappropriate, since there is no unique mean anymore.
Therefore, a linearization over the entire set of means has to
be determined. A way to find such a linearization has been
discussed in [16] and [17]. Here, the ellipsoid of means is



approximated by a fixed number of equidistant points on the
principal axes. A linearization for the entire set of means is
then determined by employing a least-squares fit.

IV. NMPC WITH SETS OF DENSITIES

The Nonlinear Model Predictive Controller aims at maxi-
mizing an application-specific cumulative reward over a fixed
time horizon. The cumulative reward function is calculated
by predicting the impact of control inputs on the future
development of the system and rating this development at
every time instant by successively evaluating one-step reward
functions. At every time step k, an open-loop optimal control
problem is solved for a time horizon of length N .

In the deterministic case, the system state and a control
input uk are rated by the scalar output of a one-step reward
function

gdet
k (xk, uk) . (14)

If the system state is described by a random variable xk,
characterized by a probability density fk, the one-step reward
function

gstoc
k (xk, uk) (15)

is a scalar function of the random variable xk. It can be
defined, for example, as the expected value

gstoc
k (xk, uk) = Exk

(gdet
k (xk, uk))

=
∫
gdet
k (xk, uk)fk(xk)dxk

(16)

of a deterministic one-step reward function as in (14) over
the random variable xk.

From such a one-step reward function, the cumulative
reward over a certain time horizon N is given by

V (xk:k+N , uk:k+N−1)

= max
uk:k+N−1

{
gstoc
k+N (xk+N ) +

k+N−1∑
i=k

gstoc
i (xi, ui)

}
,

(17)
which maximizes rewards over N time steps with terminal
reward gstoc

k+N (xk+N ).
We now generalize this concept to random variables

xk characterized by sets FFFk of probability densities. The
extension of the stochastic reward function in (15) is defined
as

Gk(xk, uk) :=
{
gstoc
k (xk, uk) | xk ∼ fk with fk ∈ FFFk

}
.

in a straightforward manner. This means that the stochastic
one-step reward function gstoc

k is evaluated for every proba-
bilistic characterization of xk, i.e., for all possible densities
in FFFk. In doing so, we obtain a set Gk of one-step rewards.
For the one-step reward function in (16), this results in the
set

Gk(xk, uk) :=
{∫

gdet
k (xk, uk)fk(xk)dxk | fk ∈ FFFk

}

set of densities

safety distance

wall

Fig. 2. Setup of the real-world experiment. The walking robot moves along
a wall in a safety distance. Future system states are judged by the distance
of the ellipsoid of means to the wall.

of expected rewards. By applying the max-min principle
known from purely set-valued approaches [2], we take the
minimal reward

gk(xk, uk) := inf
{
Gk(xk, uk)

}
received from all elements in FFFk. This combined one-step
reward function gk maps a set of densities to a well-defined
scalar value and can be used for the calculation of the
cumulative reward function (17) over a fixed time horizon.
We have thus achieved a combination of stochastic and set-
valued control.

Example System: Reward Function
The considered control objective for the miniature walking
robot is to move along a wall while keeping a safety distance
without crashing into the wall [18]. For a formulation of a
combined reward function for this specific scenario, we will
closely follow the layout presented above.

In a deterministic setup, one possible reward function would
be the distance of the robot to the wall. The stochastic reward
constructed from this deterministic one could be the distance
of the wall to the mean of the current state estimate of the posi-
tion. If we now incorporate unknown but bounded uncertainties
into the state estimation and, hence, into control, the stochastic
reward function would be calculated for every possible density
in the setFFFk. The resulting combined one-step reward function
would be the minimum of these distances. For more details, we
refer the reader to the next section.

V. EXPERIMENTS

In order to illustrate the capabilities of the novel NMPC
approach as well as the benefits resulting from considering
stochastic and systematic errors, several test runs under
real-world conditions with the walking robots introduced in
Section II were conducted. For benchmarking the results of
these experiments, we compare our approach to one based on
the widely used EKF, where the bias is estimated by means
of a disturbance observer and is supposed to be piecewise
constant.

A. Description of the Test Environment

The walking robots are part of a test environment built to
evaluate control and localization methods [12]. For control
purposes, an overhead camera overlooks a confined area, in
which the robots move, and determines the true postions of



the robots. Both the experiments with real robots as well as
simulations can be controlled and monitored by a graphical
user interface (GUI). The GUI shows the true positions of
the robots as well as their estimated positions.

B. Scenario

In the selected scenario, the task of the walking robot
was to move as accurately as possible along a wall in a
straight line with a safety distance of 5 cm as depicted
in Fig. 2. Since the system state (2) of the robot is not
directly accessible, its current state has to be estimated by
means of dead reckoning and noisy distance measurements to
three landmarks. In order to incorporate the systematic errors
acting on the robots, we employed the approach described
in [16] for state estimation. In contrast to [16], we assume
only stochastic noise for the emulated distance measurements
modeled by the nonlinear equation

zk =
√

(xk − x̌ik)2 + (yk − y̌ik)2 + vk ,

where [x̌ik, y̌
i
k]T is the two-dimensional position of landmark

i = 1, 2, 3 and vk white Gaussian measurement noise.
At each time instant, a myopic open-loop control problem

is solved and the optimal control input is applied to the sys-
tem. Due to the linearized system and measurement equation,
the considered sets of densities consist of Gaussians with
identical covariance matrices. Since the systematic distur-
bances affecting the system are modeled as an ellipsoid, each
set of Gaussians can be parameterized by the corresponding
ellipsoid E(ĉk,Xk) of means (see Section III-C). The chosen
combined reward function is

gk(xk, uk) = −
(
d(E(ĉk,Xk),W)2 + α · |φ̂k|

)
, (18)

where W is the set of all points of the wall and d( · , · ) is
defined as

d(E(ĉk,Xk),W)

=


min

xk∈E(ĉk,Xk),

y∈W

‖xk − y‖ if ‖xk − y‖ ≥ 5 cm

C otherwise

with C an arbitrarily large number and ‖ · ‖ the Euclidean
norm. So d(E(ĉk,Xk),W) is the minimal distance between
the ellipsoid E(ĉk,Xk) and the wall, if this distance is larger
than the safety distance as depicted in Fig. 2. If the distance
of at least one point of the ellipsoid to the wall is less than
the safety distance, we penalize this by specifying a high
negative reward C. The parameter φ̂k in the above equation
is the expectation of the orientation of the robot over the
Gaussian with mean ĉk. This Gaussian corresponds to the
center of the ellipsoid E(ĉk,Xk). To adjust the smoothness
of the trajectory, the factor α allows a weighting of the
orientation of the robot.

C. Experimental Setup

For all test runs, we selected the following parameters.
The step size of the robot is constant T = 10 mm. The
probabilistic noise influences on the system wxk , wyk , and

wφk are assumed to be zero-mean white Gaussian noises
with standard deviations σxw = 0.2 mm, σyw = 0.2 mm, and
σφw = 0.2 rad. The initial probabilistic uncertainties in both
dimensions of the position are σx,0w = σy,0w = 20 mm and the
uncertainty in its orientation σφ,0w = 0.02 rad. The initial set-
valued bounds are 10 mm in both dimensions of the position.
Furthermore, measurements are taken to the three landmarks
after each seventh step. In order to guarantee comparability,
we position the robot at the same coordinate of the arena for
every test run. Also the positions of the landmarks remain
the same.

D. Results

The results of the experiments applying the proposed
approach are compared with an EKF-based NMPC method,
where the state is augmented by the unknown bias. The
dynamic behavior of this bias is modeled by a piecewise
constant function. The EKF-based controller employs the
same reward function as in (18) but instead of using
d
(
E(ĉ,X),W

)
, we take the distance of the expected value to

the wall. Two exemplary trajectories are depicted in Fig. 3.
The experiments clearly show that the proposed controller

is more robust. The robot always stays in a safety distance to
the wall while the EKF-based controller leads to very close
distances to the wall or even crashes. This poor behavior
results from the slow convergence rate of the estimate of
the bias, especially when it changes abruptly. Furthermore,
the path of the combined controller is smoother than the
path of the EKF-based controller. Although being a little
bit more conservative, the combined controller leads to a
safer and smoother trajectory. The same results cannot be
achieved with the EKF-based controller by simply selecting
a larger safety distance, because the influence of drift on state
estimation cannot be evaluated in advance and hence one
does not know how large the safety distance has to be chosen.
The results also show that the used localization method is
adequate for systems affected by systematic and stochastic
noise. Fig. 3 (a) demonstrates that the true position of the
robot always lies in the estimated set of densities. The set
does not diverge over time, as it gets smaller with every
measurement step.

VI. CONCLUSIONS AND FUTURE WORK

We introduced a new combined stochastic and set-valued
approach for Model Predictive Control by defining a reward
function that does not only regard stochastic disturbances but
also systematic errors. This novel reward function is obtained
by the formal generalization of stochastic reward functions
to sets of densities. By employing this technique, a more
robust and reliable control is achievable as we demonstrated
in real-world experiments.

Future work will be concerned with the extension of
this method by additionally incorporating properties of the
measurement process in the planning procedure as in [19].
This allows to consider systematic errors not only in the
system model but also systematic measurement errors as they
often occur in real-world applications. It is also of interest



Fig. 3. Experimental runs with a) the proposed approach and b) the EKF-based NMPC method. The green solid line represents the true trajectory of the
robot as determined with a high-resolution overhead camera system. The dots in subfigure a) represent the centers of the ellipsoids at each time step and
the dots in subfigure b) the means. The ellipsoids in a) depict the set-valued uncertainties and the ones in b) the covariances of the estimation. In both
subfigures, the dashed ellipsoids are the predicted uncertainties and the solid ellipsoids represent the uncertainties after distance measurements. For clarity,
only every seventh filtering step is depicted. The figures clearly demonstrate that control employing our novel approach manages to keep the robot in a
safety distance at all times, while the EKF-based control leads to close distances to the wall or even crashes.

to search for closed-form solutions of the novel combined
reward function or simple parametrizations of the set of
reward functions for specific scenarios.
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