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Abstract— A reliable estimation of heart surface motion is
an important prerequisite for the synchronization of surgical
instruments in robotic beating heart surgery. In general, only an
imprecise description of the heart dynamics and measurement
systems is available. This means that the estimation of heart
motion is corrupted by stochastic and systematic uncertainties.
Without consideration of these uncertainties, the obtained
results will be inaccurate and a safe robotic operation cannot be
guaranteed. Until now, existing approaches for estimating the
motion of the heart surface are either deterministic or treat
only stochastic uncertainties. The proposed method extends the
heart motion estimation to the simultaneous consideration of
stochastic and unknown but bounded systematic uncertainties.
It computes dynamic bounds in order to provide the surgeon
with a guidance by constraining the motion of the surgical
instruments and thereby protecting sensitive tissue.

I. INTRODUCTION

Beating heart operations are still a challenging task for
surgeons. They pose high demands on the synchronization
of surgical instruments with the heart surface motion. A
robotic surgery system can overcome the limitations of
human abilities by providing fine manipulation capabilities
and improving the reliability. However, it has to meet high re-
quirements on the robustness and accuracy of the estimation
and tracking algorithms.

According to [1], an appropriate accuracy should be about
0.1 mm in order to allow for operations on coronary arteries
of diameter 0.5 mm−2 mm. Nevertheless, existing tracking
approaches can only achieve an average accuracy of 1 mm−
1.5 mm [2]. Such a low accuracy affects the safety of robotic
operations. Since active medical robots may directly contact
the patient for penetrating, cutting, and removing heart tissue,
safety is one of the key issues.

One of the reasons for the degradation of the accuracy, and
hence the safety, is that the model used for estimating the
heart surface motion and the measurements are corrupted by
disturbances. However, in the majority of the methods for
compensating the heart surface motion, these uncertainties
are not considered [3]–[6].

In general, there are two types of uncertainties that lead to
errors in the estimation process. Stochastic uncertainties can
be described statistically and their effect can be compensated
by repeated measurements. In process dynamics, uncertain-
ties are caused by input noise. The observations, provided by
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a camera system, are affected by stochastic uncertainties aris-
ing from electronic noise, flickering, imprecision of feature
extraction, or distortion [7]. In contrast to stochastic errors,
systematic uncertainties cannot be analyzed statistically and
are difficult to detect, especially when they are not constant
over time. In process dynamics, these uncertainties arise from
an inaccurate estimation of model parameters, imprecision
in model geometry, linearization and approximation errors,
a bias of the input signal, or inadequate modeling. The
systematic uncertainties of the observations are associated
with the limited validity of the measurement system model
due to either calibration inaccuracies or nonlinearities that
this calibration could not take care of.

Some existing approaches for estimating heart surface
motion can cope with stochastic uncertainties [8]–[11]. A
common way is to apply the Bayesian inference scheme. For
linear systems affected by Gaussian noise, the Kalman filter
[12] is the optimal estimator. In nonlinear cases, nonlinear
estimation procedures, e.g., the extended Kalman filter [12],
are employed. A Bayesian inference scheme assumes that
the state is characterized by a unique probability density.
This can only be maintained if an accurate model of the
process dynamics and observations is available. When the
system is affected by unknown stochastic or systematic dis-
turbances, large estimation errors can occur due to incorrect
modeling [13]. Therefore, neglecting unknown disturbances
implies a lack of precision that greatly increases the risk
of complications during beating heart robotic surgery. Until
now, systematic uncertainties have not been considered in
the estimation of heart surface motion.

Therefore, we will extend the estimation of heart surface
motion to the simultaneous consideration of stochastic and
systematic uncertainties, in order to achieve robust and safe
robotic operations. Our approach aims at being integrated in
the two most common safety concepts for robotic surgery:
safety critical limits [14] and virtual fixtures [15].

The key idea of safety critical limits is to distinguish
between safe and unsafe operating conditions. Inside the
defined limits, the controller must be designed to prevent,
eliminate or reduce the possibility of a robot safety hazard to
an acceptable level. The other method to increase the safety
of robotic operations is to define virtual fixtures that constrain
the robot motion to a predefined region, such as the heart
surface. These fixtures still permit surgeons to retain ultimate
control, but extend their capabilities, enhance the speed of
surgery, and reduce mental stress by restricting robot motion
[16]. For cardiac surgery, the concept of virtual fixtures
has first been proposed in [15]. It is extended to beating
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(a) State estimation based on process dynamics and observations corrupted by stochastic errors with known distributions. The true state is inside the
3σ bounds.
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(b) State estimation based on process dynamics and observations corrupted by stochastic and unknown but bounded systematic errors. The true state
is outside the 3σ bounds.

Fig. 1. Appropriate state estimation is only guaranteed when accurate models for process dynamics and observations are available. If the system is affected
by systematic disturbances, a purely stochastic description of a system implies a lack of precision.

heart procedures in [17]. Commonly, safety critical limits
and fixtures are static bounds generated from preoperative
procedures. A performance of the static bounds degrades in
cases of occlusions or incorrect models.

In this paper, we propose the concept of dynamic safety
bounds that enable us to cope with the aforementioned
problems. They can be used for matching the robot motion to
the heart surface motion. The computation of these bounds
is based on the robust estimation of the heart surface motion
considering stochastic and unknown but bounded systematic
uncertainties in the process dynamics and observations. Fi-
nally, these bounds allow for the instantaneous evaluation of
estimation quality, so that soft tissue can be protected in case
of inaccuracies.

II. SAFETY IN ROBOTIC-ASSISTED APPLICATIONS

Before the mathematical background is explained, this
section will highlight the necessity for simultaneously con-
sidering stochastic and systematic errors. In this way, the
robustness and reliability of robot-assisted applications, such
as beating heart operations, can be improved significantly.
After motivating the combined treatment of stochastic and
systematic errors, we will propose the calculation of safety
bounds for constrained motion of robotic instruments.

In order to point out the impact of systematic errors, we
consider the example of estimating the x- and z-displacement
of a beating heart from noisy measurements. The heart
motion and measurements are simulated. We assume that
an accurate model of the process dynamics and observations
is available and that the measurements are only corrupted
by zero-mean white Gaussian noise with variance σ2 =
0.001 mm2. A Bayesian estimator can then compute state
estimates through recursive prediction and filtering. In the
example depicted in Fig. 1(a), the true heart displacement lies
within the 3σ confidence limits around the estimated means.

The state estimates presented in Fig. 1(b) are calculated
from measurements that are additionally affected by a sys-
tematic bias of 0.1 mm. The true state now lies outside the
3σ bounds. Since the systematic uncertainties are unknown
and cannot be estimated by conventional estimation ap-
proaches, there is no knowledge about the position of the true
state available. Thus, unconsidered systematic disturbances
can result in unreliable robotic assistance. The same pertains
to stochastic uncertainties with unknown distributions. In the
considered example, the surgical instruments might penetrate
the surface of the heart too deeply or too shallowly due to the
inconsistent estimates of its z-displacement. The coronary
arteries near an intervention area can also be injured due to
the inaccurate estimation of the x-displacement.

In order to cope with unknown systematic errors, a com-
mon way is to determine bounds for these errors. In the con-
sidered example, the bias on the measurements is assumed
to be unknown but bounded by ±0.12 mm. This bound can
now be converted into bounds for the system estimate, which
can then be propagated over time and updated by further
measurements. More precisely, these bounds characterize a
set of possible state estimates at each time step. By extending
the lower and upper boundary by the 3σ confidence limits,
we obtain certain safety bounds for the true system state,
which are represented by the shaded region in Fig. 1(b).
This ensures that the true system state is inside this region
with a probability of at least 99.73 %.

For the purpose of handling stochastic and systematic
uncertainties, two main challenges have to be addressed:

1) Stochastic and systematic uncertainties have to be iden-
tified and distinguished in the system and observation
models and have to be characterized appropriately.
Against the background of beating heart operations,
this will be explained in Section III and IV.



2) The system state has to be reconstructed from mea-
surements affected by stochastic and systematic errors.
For this, a combination of Bayesian and set-valued
state estimation will be employed by utilizing sets of
densities. Section V will explicate how to propagate
and update the error bounds for the state estimates.

The computed safety bounds can now be used for haptic
guidance, as proposed in [17]. They can represent dynamic
soft virtual fixtures, in order to prevent the robot from
accidentally harming healthy tissue. These features can help
an operator or robot to move along the heart surface, with
the operator having the option to reject the haptic guidance
by applying additional force. More precisely, the surgeon
should feel constraint forces when the surgical instrument is
just about to move inside the boundary of the desired zone.
The velocity and degree of freedom of robotic instruments
should be constrained in this area. In order to guarantee the
safety of the robotic operation when penetrating, cutting or
removing heart tissue in this zone, an additional measurement
system such as force sensor should be used. A force sensor
will increase the measurement accuracy only in z-direction.
In x- and y-direction, the motion of robotic instruments
inside the safety bounds should be strongly constrained. In
contrast to static bounds, the advantages of the proposed
dynamic error bounds are that they reflect the measurement
system’s accuracy at every time instant, make the quality of
the estimates assessable, and ensure with a certain probability
that the true heart surface is inside these bounds.

III. STATE-SPACE MODEL

Common approaches to state estimation require a system
description in state-space form. For that purpose, the heart
surface motion should be described by system and mea-
surement equations that represent the process dynamics and
observation models.

By assuming that the heart surface behaves like a linear
elastic physical body with isotropic material structure, the
heart dynamics can approximately be characterized by a
deterministic discrete-time linear system, according to [8],
[10], [18]. These assumptions are valid if a small intervention
area of the heart surface is considered and the heart motion
is constrained by a mechanical stabilizer.

The model of the process dynamics, or the system equa-
tion, relates the states of the heart movement at different
time steps. Since the model is affected by stochastic noise
wk and systematic perturbations dk ∈ Rn, the predicted state
xk+1 ∈ Rn can be described by

xk+1 = Ak xk + Bk (ûk + wk) + dk , (1)

where Ak ∈ Rn×n represents the system matrix, Bk ∈
Rn×m denotes the input matrix, and the state vector xk+1

describes the distributed heart surface displacement caused
by a known input ûk ∈ Rm. This input is determined by the
atrial pressure that can be monitored in cardiac surgery by
a central line catheter [19]. The error term wk ∼ N (0,Cw

k )

is a zero-mean white Gaussian noise with covariance matrix
Cw

k ∈ Rn×n.
Given that the heart surface position is reconstructed from

the measurements provided by a camera system, the obser-
vation model can approximately be assumed to be linear.
This model is characterized by the measurement equation
that relates the obtained observation ŷ

k
∈ Rl at time step k

to the state xk ∈ Rn. By considering the stochastic noise vk

and systematic uncertainties ek ∈ Rl, the observation model
can be written in the form

ŷ
k

= Hk xk + vk + ek , (2)

where Hk ∈ Rl×n represents the measurement matrix and
v ∼ N (0,Cv

k) is a white zero-mean Gaussian noise with
covariance matrix Cv

k ∈ Rl×l. The vector ek represents the
systematic uncertainties.

IV. STOCHASTIC AND SYSTEMATIC UNCERTAINTIES

In this section, we analyze both the process dynamics and
the observation model in order to identify the sources of
both types of uncertainties. The systematic uncertainties are
thereby described by their lower and upper bounds.

A. Uncertainties of Process Dynamics

The stochastic and systematic uncertainties of the process
model are handled in this section. In addition to the iden-
tification of the sources of both types of uncertainties, we
derive their influence on the predicted state.

There exist three sources of systematic uncertainties in
the process dynamics: initialization errors ∆g

k
, discretiza-

tion errors ∆mk, and offsets ∆uk of the input signal.
The initialization of the heart surface model can introduce
systematic errors ∆g

k
. As in [8] and [10], the position of

the approximation points is based on measurements that can
be corrupted by systematic uncertainties. These uncertainties
then influence the calculation of Ak and Bk. A derivation
of lower and upper bounds for these errors will be given
in Section IV-B. Furthermore, the process dynamics suffers
from systematic disturbances ∆mk, due to either unknown
dynamics of the heart surface or discretization of its continu-
ous behavior. In this paper, we define the errors in the process
dynamics without taking the discontinuities and irregularities
of the heart activity, e.g., extrasystoles, into account. The
errors resulting from an insufficient description of the heart
dynamics are hard to estimate and they strongly depend
on the underlying model. For example, the physical models
[8], [10] assume that uniformly distributed arterial pressure
initiates the heart motion. Since the heart motion is caused by
internal forces generated in a distributed fashion within the
muscles, every point of the heart surface should be excited
by a different force. This error appears linearly in the process
model (1) and can be estimated by considering the error term
Bk∆uk in the state-space model. The accuracy of a spatial
and temporal discretization can, e.g., be estimated by means
of Taylor series expansions. The error bounds of the spatial
discretization given by a finite number of approximation



functions, like radial basis or moving least square functions,
are given in [20]. For temporal discretization, implicit or
explicit methods can be applied with the error bounds
estimated in [21]. Finally, a bias and drift of the input signal
can lead to systematic errors in the state prediction. These
errors are summarized by ∆uk. Since the input signal is
measured by a central line catheter, lower and upper bounds
of the systematic errors should be defined in the data sheet
of the catheter.

The stochastic uncertainties of the process dynamics are
mainly determined by the noise of the input signal uk and
the uncertainty of the previous state.

In summary, the process dynamics model is affected by
both stochastic and systematic uncertainties. The system
equation that considers both types of uncertainties is de-
scribed by

xk+1 =Ak xk + Bk

(
ûk + wk

)
+

Bk∆uk + ∆xk+1(∆g
k
) + ∆mk︸ ︷︷ ︸

dk

. (3)

B. Uncertainties of Observations

In this section, we identify the sources of uncertainties in
the observation model and then propagate them in order to
determine their influence on the observations. The observa-
tion model is derived for the case when measurements are
extracted from three camera views provided by a trinocular
camera system.

The systematic uncertainties in the observation model ∆ek
result from a limited validity of the measurement model or
systematic calibration inaccuracies. These disturbances stem
from initialization errors ∆sk and calibration errors ∆xp
and ∆y

p
.

At first, the observation model is initialized with mea-
surement data corrupted by systematic errors ∆sk. They
influence the calculation of the measurement matrix Hk

and thus, cause biased measurements of the system state
y
k
(∆sk). Additionally, calibration errors contribute system-

atic uncertainties to the observation model. For example,
a distortion leads to systematic correlated errors in the
image position [22] and thus, in the 3D reconstruction. Also
the uncertainties of calibration parameters lead to biased
measurements [23]. In the following, the influence of these
uncertainties on the reconstructed motion is analyzed.

The calibration accuracy is characterized by a pixel error
that cannot be filtered out by calibration. These errors are
given as reprojection errors after the calibration. Since they
are different at every image point, especially in case of an in-
correct distortion model, the accuracy of a 3D reconstruction
depends on the position of a 3D point projection in the image
frame. The reprojection errors can be estimated for every
measurement point using common estimation approaches.
However, this will lead to a high-dimensional nonlinear
estimation problem impairing the real-time operability of
the surgical system. We assume that the calibration error is
bounded by ∆xp ∈ [a, b] and ∆yp ∈ [c, d] in both directions.
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Fig. 2. Reprojection error provided by one camera after the calibration.
The bounds of this pixel error are defined as maximal and minimal values
in x and y direction. The calibration is performed by analyzing 50 images
of a planar calibration board.

The bounds are determined by the minimum and maximum
reprojection errors as shown in Fig. 2.

In general, the cameras are calibrated by using a linear
pinhole camera model. The measurement ŷ

k
described in

equation (2) contains the 3D coordinates of a point y
k

=

[x, y, z]
T in a world coordinate system. Now, a 3D point

y
k

= [x, y, z]
T would be projected to an image point

with pixel coordinates p = [xp, yp]
T if there were no

calibration errors. However, this image point shifts to the
point p+ ∆p = [xp + ∆xp, yp + ∆yp]

T on the ideal image
plane due to calibration inaccuracies, such as incomplete
eliminated distortion or uncertainties of camera parameters.
By combining these calibration errors in the vector ∆k =
[∆xp,∆yp]

T , we obtain the biased position of this point in
camera coordinate system

xc = x̃c + ∆xc = K−1p+ J∆k , (4)

where x̃c represents the true position of this point in camera
coordinate system and the Jacobian matrix J is given by

J =
∂K−1p

∂k
.

The calibration matrix K contains the intrinsic camera pa-
rameters. The true image coordinates p are represented as an
augmented vector p = [xp, yp, 1]

T . The camera coordinates
xc are normalized.

By using the matrix M containing the extrinsic camera
parameters, we can express the transformation from a camera
coordinate system into a world coordinate system in vector-
matrix form

xc = My
k
, (5)

where a 3D point y
k

= [x, y, z, 1]
T is represented as an

augmented vector in homogeneous coordinates.
For the 3D reconstruction of a measurement point, we

use the sets of correspondences p
1
, p

2
, p

3
extracted from

three camera views provided by a trinocular camera system.
In this case, the augmented matrices M and K contain



the extrinsic and intrinsic parameters of all three cameras.
The components of the augmented vector xc represent the
position of measurement points in coordinate systems of
three cameras. The vector y

k
includes the possible recon-

structions of measurement points in world coordinates. Then,
the obtained overdetermined system (5) is minimized by
using the quality criterion

G(x) =
1

2

∥∥∥xc −My
k

∥∥∥2 =
(
xc −My

k

)T (
xc −My

k

)
.

The necessary condition for a minimum

∂G(y
k
)

∂y
k

= −MTxc + MTMy
k

= 0

leads to normal equations with the analytic solution

y
k

=
(
MTM

)−1
MTxc .

Taking into account that the position of measurement points
in camera coordinate system xc is biased (4), we obtain the
biased reconstruction

y
k

=
(
MTM

)−1
MTK−1p+

(
MTM

)−1
MTJ∆k

as a result of calibration errors.
The stochastic uncertainties of the observations can be de-

termined experimentally by measuring stationary calibration
objects.

In summary, the reconstruction of a 3D point is affected
by both stochastic and systematic perturbations

y
k

=Hkxk + vk + ek

=
(
MTM

)−1
MTK−1p+ vk + ek .

(6)

The vector ek represents the systematic uncertainties

ek = y
k
(∆sk) +

(
MTM

)−1
MTJ∆k.

V. ESTIMATION CONSIDERING STOCHASTIC AND
SYSTEMATIC UNCERTAINTIES

The most common way of treating uncertainties consists of
modeling them as random quantities. Even though the char-
acteristics of the disturbances are not precisely known, it is
often attempted to impose a probability distribution on them.
This can result in inconsistent state estimates or complicated
models. For example, the considered linear models (3) and
(6) would become nonlinear, if the system state is augmented
by the unknown quantities. Besides stochastic approaches,
set-valued representations [24], [25] of uncertain quantities
have been evolved. Here, perturbations are characterized by
their membership to a certain bounded set, which implies
that they have to be amplitude-limited and that there is no
weighting among the elements of a set. Thus, one cannot
state that one element is “more probable” than another. In
the following, stochastic and set-membership concepts will
be combined.

A simultaneous treatment of stochastic and unknown but
bounded uncertainties can be achieved by generalizing clas-
sical probability theory. The key idea is to use imprecise

probabilities [26] instead of unique probabilities in order to
characterize uncertain quantities. For this purpose, sets of
densities will be employed in this paper, as it is described in
[27], [28], and [29]. In the previous section, stochastic and
systematic uncertainties have been identified. According to
equation (1), the system state

xk = x̂k + wk + dk

is affected additively by a Gaussian random noise wk ∼
N (0,Ck) with zero-mean and covariance matrix Ck ∈
Rn×n and by an unknown but bounded quantity dk ∈
Dk ⊂ Rn. In the following, it is assumed that wk and
dk are independent. For a fixed dk, the uncertain system
state xk is normally distributed with N (x̂k +dk,Ck). Since
dk is unknown, we cannot specify a unique distribution. But
rather, continuing the line of thought, we have to consider
the entire set

{N (x̂k + dk,Ck) | dk ∈ Dk }

of possible distributions for the system state. Obviously,
dk only affects the mean value, so the system state is
characterized by a set of translated Gaussian densities with
the same covariance matrix. Consequently, this set can be
parameterized by a set of means Xk = {x̂k +dk | dk ∈ Dk}
and a covariance matrix Ck. According to these preparatory
considerations, we can now use the Kalman filtering scheme
to predict and update the system state.

A. Prediction

The estimated system state given by the set X e
k of means

and the covariance matrix Ce
k can be propagated by applying

equation (1) to the expected values, i.e.,

x̂pk+1 = Ak x̂
e
k + Bk ûk + dk , ∀ x̂

e
k ∈ X e

k , dk ∈ Dk . (7)

This elementwise addition can also be written as the
Minkowski sum

X p
k+1 = Ak X p

k ⊕ Uk (8)

with

Uk =
{
Bk ûk + dk

∣∣ dk ∈ Dk

}
.

The predicted covariance matrix is computed from the well-
known Kalman filter equation

Cp
k+1 = AkC

p
kA

T
k + BkC

w
k B

T
k . (9)

Confining ourselves to linear models with Gaussian noise
provides the advantage that the stochastic and systematic
uncertainties remain distinguishable from each other. The
influence of systematic perturbations to the system state at
time step k+1 is represented by the set of possible means (8)
and the stochastic uncertainty is characterized by the covari-
ance matrix (9). In order to calculate equation (8) efficiently,
ellipsoidal sets proved to be suitable representations for the
systematic errors. An ellipsoid

E(ĉ,X) :=
{
x ∈ Rn | (x− ĉ)TX−1(x− ĉ) ≤ 1

}



is defined by a midpoint ĉ ∈ Rn and a nonnegative definite
shape matrix X ∈ Rn×n. By this, affine transformations can
easily be calculated by

AE(ĉ,X) + b = E(A ĉ+ b,AXAT) . (10)

The Minkowski sum of two ellipsoid does not in general
yield an ellipsoid, but it can easily be approximated by an
enclosing ellipsoid

E(ĉ1 + ĉ2,X(p)) ⊇ E(ĉ1,X1)⊕ E(ĉ2,X2) (11)

with

X(p) = (1 + p−1)X1 + (1 + p)X2

for any p > 0, as described in [24]. For

p =
trace(X1)

1
2

trace(X2)
1
2

, (12)

this outer approximation has a minimal sum of squares of
semiaxes, i.e., the trace of X(p) is minimal. By charac-
terizing the unknown but bounded uncertainties by Dk =
E(0,Dk) and assuming that the actual state is given by
the ellipsoid X e

k = E(ĉek,X
e
k), the elementwise addition (7)

simplifies to

X p
k+1

eq. (8)
= Ak E(ĉek,X

e
k)⊕

(
Bk ûk + E(0,Dk)

)
eq. (10)

= E(Ak ĉ
e
k,AkX

e
kA

T
k )⊕ E(Bk ûk,Dk)

eq. (11)
⊆ E(ĉpk+1,X

p
k+1) .

Finally, we have extended the Kalman prediction step to
sets of Gaussian densities, where the predicted estimate is
given by the set E(ĉpk+1,X

p
k+1) of expected values and the

covariance matrix Cp
k+1.

B. Filtering
The filtering step can be derived analogously. The un-

known, but bounded bias ek in equation (2) is affecting the
measurement value ŷ

k
, so we obtain a set

Yk =
{
ŷ
k
− ek | ek ∈ Ek

}
of possible measurements. For an ellipsoidal representation
ek ∈ Ek = E(0,Ek), this set becomes Yk = E(ŷ

k
,Ek).

Every ỹ
k
∈ Yk can then be processed elementwise with

every prior or predicted mean x̂pk ∈ E(ĉpk,X
p
k) through the

Kalman filtering equation

x̂ek = (I−KkHk) x̂pk + Kk ỹk , (13)

where

Kk = Cp
kH

T
k (Cv

k + HkC
p
kH

T
k )−1

is the Kalman gain. The set of estimated means is obtained
from the Minkowski sum and outer approximation

X e
k

eq. (13)
= (I−KkHk) E(ĉpk,X

p
k)⊕Kk E(ŷ

k
,Ek)

eq. (10)
= E

(
(I−KkHk) ĉpk, (I−KkHk)Xp

k(I−KkHk)T
)

⊕ E(ŷ
k
,KkEkK

T
k )

eq. (11)
⊆ E(ĉek,X

e
k) .

TABLE I
BOUNDS OF CALIBRATION ERRORS.

high resolution low resolution
camera x in pixel y in pixel x in pixel y in pixel
camera 1 [-1.31, 1.67] [-1.57, 1.80] [-2.24, 2.99] [-2.47, 1.87]
camera 2 [-1.43, 1.38] [-1.62, 2.14] [-1.75, 2.06] [-1.17, 1.10]
camera 3 [-1.91, 1.70] [-1.64, 2.24] [-1.04, 1.28] [-1.27, 1.12]

So, the new midpoint is computed by the well-known
Kalman filter equation

ĉek = (I−KkHk) ĉpk + Kk ŷk

and the new shape matrix is

Xe
k = (1 + p−1)(I−KkHk)Xp

k(I−KkHk)T

+ (1 + p)KkEkK
T
k ,

where an optimal p can be chosen as in equation (12).
The covariance matrix is obtained according to the standard
Kalman filter equation

Ce
k = Cp

k −KkHkC
p
k .

Thus, the estimated state is finally given by a set of Gaussian
densities with the set E(ĉek,X

e
k) of means and the covari-

ance matrix Ce
k. The influences of systematic perturbations

are characterized by the set of means and the stochastic
uncertainties are described by the covariance matrix.

A detailed derivation of the presented concept can be
found in [29], where nonlinear models and arbitrary densities
are also considered.

VI. EVALUATION

The performance of the proposed approach is evaluated
by estimating the state of a real system represented by a
pressure-regulated artificial heart. After describing the ex-
perimental setup, we analyze the influence of the calibration
accuracy and model precision on the estimates of the heart
surface motion. For this, systematic and stochastic errors are
handled by the proposed estimation approach. By comparing
the estimated results with measurements of a significantly
higher accuracy, we check the consistency of the obtained
estimation result.

A. Experimental Setup

The motion of the artificial heart is comparable to the
real heart deformations. According to the measurement
experiment performed in [30], the stabilized heart moves
0.59 mm in the lateral plane (x-y-direction) and 2.1 mm
out-of-plane (z-direction). The motion of the artificial heart
is reconstructed based on three camera views provided by
a trinocular camera system. The Pike F-210 cameras [31]
are placed at a distance of 0.5 m from the artificial heart,
their focal length is about 35 mm, and the field of view
is 12.8 cm × 17.02 cm. The 1920 ×1080 pixel resolution
allows for a highly accurate 3D reconstruction. The cameras
are calibrated with a planar calibration board by using the
camera calibration toolbox for MATLAB

TM
. The toolbox
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(a) One-step prediction considering only stochastic uncertainties. The
ground truth (darkly shaded) is outside the 3σ bounds (lightly shaded).
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(b) One-step prediction considering stochastic and systematic uncertain-
ties. The ground truth (darkly shaded) is inside the safety bounds (lightly
shaded).

Fig. 3. Prediction of the heart surface motion and filtering with a single measurement at each time step. The ground truth, provided by the cameras with
high resolution, is inside the safety bounds. Estimation without consideration of unknown uncertainties degrades the accuracy of the prediction.

provides the distribution of the reprojection error for every
camera. By extrinsic calibration, the coordinate system of
the first camera is taken as a world coordinate system. The
coordinate systems of the other two cameras are transformed
into the coordinate system of the first camera. In order to
generate the ground truth, we measure the heart surface
motion with the camera system at full resolution. This allows
for achieving accurate measurements and thus leads to an
accurate 3D reconstruction. Furthermore, the resolution is
reduced to the lowest possible resolution of the cameras
960 ×538 pixel. In doing so, we try to approach the resolu-
tion of an endoscope, which is commonly 768 ×576 pixel.
In comparison to endoscope, the proposed camera setup is
characterized by large camera baselines. The endoscope is
supposed to provide the measurements of the same accuracy
if it is arranged in a small distance from the heart surface.

For evaluation, we use the process model proposed in [10].
This model is based on a physical description of the heart sur-
face motion and employs spatial and temporal discretization
methods that lead to systematic errors. The bounds of these
errors are computed using methods proposed in [20], [21].
They are in the interval [−1.1 µm, 1.1 µm]. Additionally, we
consider systematic errors stemming from the initialization
of the process model. Since the measurements used for in-
tialization are corrupted by bounded systematic errors, these
errors influence the system state. These errors are assumed
to be in the interval of the measurement system accuracy
[−0.2 mm, 0.2 mm]. The input signal of the process dynam-
ics model is given by the pressure inside the artificial heart. It
is measured by a pressure sensor. In a clinical environment,
the central line catheter can be applied. According to the
data sheet of the sensor, it is calibrated for a measurement
range of 100 hPa. The systematic disturbances of the input
signal result from the sensor bias (about 0.375 hPa), drift,
and nonlinearity (±0.2% of full scale or about 0.2 hPa).

Then, the systematic errors of the observation model
are estimated. The systematic errors, not eliminated by
calibration of the cameras, are determined by an lower
and upper bound of the reprojection errors as described
in Section IV-B. The bounds of these errors are given in

Table I. For comparison, the calibration results of the camera
system with full and low resolution are also provided. The
reprojection errors are of the same order for both types of
calibrations. However, the reprojection errors of the camera
system with lower resolution lead to higher errors in a world
coordinate system because of the pixel size.

B. Experimental Results

To validate the proposed estimation approach, we predict
the heart surface motion considering stochastic and unknown
but bounded systematic errors of the process dynamics and
observations. For the estimation, we employ the observa-
tions obtained by the cameras with lower resolution. The
observations provided by the 3D reconstruction from full
resolution images 1920 ×1080 pixel are taken as a ground
truth. The heart surface motion in all directions is predicted.
Due to a lack of space, only the prediction results of heart
motion in z-direction are presented. As depicted in Fig. 3,
the ground truth lies inside the estimated safety bounds.
This means that when synchronizing surgical instruments
with the heart surface motion, the safety bounds can prevent
the robot from harming soft tissue. These dynamic bounds
allow for evaluating the quality of the estimation at every
time step. In particular, the actual achievable accuracy of
the used measurement system can be determined online.
If the bounds exceed the accuracy necessary for beating
heart operations, more accurate measurements should be
provided if the surgical instruments penetrate this region.
For example, a force sensor can be employed to increase the
accuracy at the intervention point. Inside the safety bounds,
the robotic motion should be constrained. We believe that
this can significantly contribute to the safety of the robotic
operation and increase the robustness and reliability of the
robotic surgery system.

VII. CONCLUSIONS

The proposed approach for estimating the heart surface
motion aims at improving the safety of robotic surgery
on the beating heart. Model imprecisions and measurement
inaccuracies lead to stochastic and systematic uncertainties.
Neglecting them degrades the accuracy of the estimation.



In this case, an operating robot can harm the soft heart
tissue. However, existing approaches for the estimation of
the heart surface motion are either deterministic or cope only
with stochastic errors. In this paper, we propose an approach
for estimating the heart surface motion that can cope with
both stochastic and systematic uncertainties in the process
dynamics and observations. It generates error bounds that
can be used as safety bounds in a robotic control or as virtual
fixtures. Inside these bounds, the robotic motion should be
restricted in order to prevent the robot from accidentally
harming the heart tissue. The main advantage of our concept
is that the dynamic bounds, computed at every time step, are
insensitive to occlusions. Furthermore, they allow for online
assessing the quality of the estimation. The generation of
these bounds should improve the safety and reliability of the
robotic operation and reduce mental stress of the surgeon by
restricting the robot motion in this area.

In future work, we plan to combine the estimated sys-
tematic error bounds with robot control mechanisms. Fur-
thermore, the performance of the proposed concept will be
evaluated in in-vivo experiments.
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