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Abstract – Multilateration systems operate by deter-
mining distances between a signal transmitter and a
number of receivers. In aerial surveillance, radio sig-
nals are emitted as Secondary Surveillance Radar (SSR)
by the aircraft, representing the signal transmitter. A
number of base stations (sensors) receive the signals at
different times. Most common approaches use time dif-
ference of arrival (TDOA) measurements, calculated by
subtracting receiving times of one receiver from another.
As TDOAs require intersecting hyperboloids, which is
considered a hard task, this paper follows a different ap-
proach, using raw receiving times. Thus, estimating the
signal’s emission time is required, captured as a com-
mon offset within an augmented version of the system
state. This way, the multilateration problem is reduced
to intersecting cones. Estimation of the aircraft’s posi-
tion based on a nonlinear measurement model and an
underlying linear system model is achieved using a lin-
ear regression Kalman filter [1, 2]. A decomposed com-
putation of the filter step is introduced, allowing a more
efficient calculation.

Keywords: Tracking, Multilateration, Nonlinear Fil-
tering, Estimation, Aerial surveillance.

1 Introduction
Multilateration techniques are chosen as a means to
locate aircraft by determining distances to several re-
ceivers. If the sending time is known, the distance be-
tween transmitter and receiver can be calculated by
measuring the time of arrival (TOA) and subtracting
the emission time. However, the sending time is not
known. The problem formulation can vary in several
ways, depending of the type of measurements. Know-
ing the signal allows to measure receiving times at the
sensors, whereas ignorance of the signal takes up cor-
relating the signals received in order to detect similar
signals, resulting in time difference of arrival (TDOA)
measurements. Further distinctions can be made by
defining whether the aircraft to be located is coopera-
tive or uncooperative. In the former case, the source

supports the location system by emitting signals, e.g.,
answering a request or autonomously emitting a sig-
nal. Uncooperative objects can be located by measur-
ing signals reflected from their surface. The location
procedure can be classified as active or passive. Ac-
tive denotes that the location system interrogates the
aircraft transponder, whereas passive systems listen to
transmissions solicited by other equipment. Solutions
can be further distinguished as being deterministic or
stochastic.

In this paper, a method is presented for passively
locating cooperative objects that autonomously emit
signals. Furthermore, it is assumed that signals are
known, allowing to measure receiving times at the sen-
sors, and all receivers are synchronized. Common ap-
proaches use TDOAs given by subtracting the receiving
times of one receiver from another, which cancels the
common emission time. Each TDOA value refers to a
hyperboloid in space on which the transmitter (i.e., the
aircraft) must lie. Intersecting three of those yields (in
the absence of any error) the aircraft’s position. A new
approach is to directly operate on the receiving times,
as they can be interpreted geometrically as cones where
the range is not perfectly known. Therefore, an addi-
tional parameter corresponding to the unknown emis-
sion time of the signal is supplied, limiting the range of
the cone. Position and emission time can be retrieved
by intersecting the cones. The task of intersecting hy-
perboloids is not as good-natured as intersecting cones
and therefore, this paper concentrates on using receiv-
ing time measurements. The Gaussian estimator [1, 2]
is used to simultaneously estimate the aircraft position
and the emission time.

1.1 State of the art

In literature, the multilateration problem is widely ad-
dressed. Mainly, the publications are concerned with
TDOA measurements. In the late 1980s, Smith and
Abel proposed a closed-form solution based on a two-
step least-squares procedure in [3, 4], which they called
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the spherical interpolation method. There, the TDOA
equation is converted into equations that depend on
the object’s range to the origin and the position of the
object. In a first step, Smith and Abel solve a lin-
ear least-squares problem assuming the position to be
known, resulting in an estimation of the range. The
estimated range is inserted into the equation which re-
sults in a linear least-squares problem depending on the
position.

In [5], Chan and Ho propose a similar procedure
which additionally takes the dependence of the range
and the position of the object into account. Simi-
lar to Smith and Abel, a two-step procedure is used,
where the first step corresponds to the solution that
is produced by the spherical interpolation method by
solving a weighted least-squares problem. The second
step corrects the estimated position by inserting the
dependency between range and position into a second
weighted least-squares problem. The inverse of the
measurement covariance matrix is used as weighting
matrix.

Stoica et. al. summarize the different least-squares
methods in [6] into unconstrained and constrained
least-squares methods. They also introduce a new ap-
proximate least-squares method based on the use of a
Taylor series expansion.

In 2006, Savage et. al. [7] proposed a stochastic so-
lution to the multilateration problem using TDOAs in
the measurement equation. They estimated the sys-
tem state comprising the aircraft position, using the
Unscented Kalman Filter. The benefit over the closed-
form solutions was the possibility of tracking a target
over time as an effect of the recursive structure of the
given filter.

1.2 Paper Outline

In Sec. 2, the abstract problem formulation is given.
The measurement and system models for the consid-
ered problem are the matter of Sec. 3. The estimator
equations are derived in Sec. 4 using the models derived
in Sec. 3. Next, Sec. 5 compares the proposed solution
to the state of the art. Finally, Sec. 6 concludes the
paper.

2 Problem Formulation
Given receiving time measurements

tk(i) =
‖si − xk‖

c
+ t0k , (1)

which result from adding the emission time t0k and the
signal runtime (‖si − xk‖) /c, where si is the position
of the i-th sensor and xk denotes the target position at
time k, with c being the signal propagation speed. The
current position xk and the emission time t0k are consid-
ered to be unknown and have to be determined. Fig. 1
illustrates the origin of receiving time measurements.
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Figure 1: Illustration of a receiving time measurement.
tx denotes local time of aircraft which emits its signal
at time t0. It takes (‖s− xk‖)/c seconds for the signal
to reach the sensor at tk relative to the local sensor
time ts. The dotted red line denotes the assumed time
offset.

The emission time t0k represents an offset in the local
sensor time, which sums up with the signal runtime to
form the receiving time tk.

When the signal propagation speed c is known, the
receiving time measurement (1) can be converted into
pseudo-range measurements

yk(i) = ‖si − xk‖+ c · t0k︸︷︷︸
rk

, (2)

where the term rk can be interpreted as a range offset.
Given pseudo-range measurements (2), the position xk
and the range offset c · t0k can be estimated.

Here, a stochastic estimator is used, requiring a mea-
surement model adapted to the given measurements,
and an adequate system model, which can be derived
from the physical behavior of an aircraft.

3 Modeling
The measurements in (2) are assumed to be corrupted
by additive and multiplicative noise. Besides the range
measurements, the sensor positions are also considered
to be uncertain. They are afflicted with additive noise,
resulting in the following measurement equation,

y
k

= h(ξ
k
, vmk ) + vak =‖(Ŝ1 + ρ

k
)− xk‖

...

‖(Ŝn + ρ
k
)− xk‖

 · vmk + rk + vak , (3)

with ξ
k

=
[
xT
k , rk

]T
being the system state at time k

comprising the current position xk and the range offset
rk. The random vector vmk denotes a multiplicative
noise process considered to be non-zero mean, white,
and Gaussian distributed

vmk ∼ N (1, Cvm

k ) .



The Ŝi denote the true sensor positions, which are cor-
rupted by a measurement noise process ρ

k
which is

assumed to be zero-mean, white, and Gaussian dis-
tributed

ρ
k
∼ N (0,Cρ

k) .

The additive noise process vak denotes measurement
disturbances characterized by a zero-mean, white, and
Gaussian noise process

vak ∼ N
(

0,Cva

k

)
.

The considered noise sources are thoroughly discussed
in the following subsection.

3.1 Measurement Uncertainties

Equation (3) shows three assumed noise sources vmk ,
vak, and ρ

k
. They are due to different kinds of distor-

tions introduced by the signal propagation as well as
the sensor’s properties.

3.1.1 Sensor Uncertainty

The sensor positions are uncertain, resulting in an error
variance given by

σ2
ρ =

1

n2
· σ2

ρ0 ,

where n denotes the number of measurements taken
and ρ0 describes the positional uncertainty of one mea-
surement. The noise is assumed to be uncorrelated,
with

Cρ
k = diag{σ2

ρ, σ
2
ρ, σ

2
ρ}

being the noise covariance matrix. Sensor position mea-
surements can be performed using GNSS techniques.

Moreover, the measurements can suffer from impre-
cise clocks used in the sensors. Inaccuracies in syn-
chronization of the sensors due to offset and drift are
inevitable, and must therefore be considered. As the
noise affects the clock devices, the measured times can
be considered uncertain, which is directly influencing
the ranges, resulting in an error variance σ2

t .

3.1.2 Signal Uncertainties

One possible cause of uncertainty is the signal propaga-
tion, which can be influenced by reflection, diffraction,
or scattering [8]. Reflection and diffraction occur if ob-
stacles lie in the line-of-sight between the emitter and
the receiver, while scattering occurs when small obsta-
cles, in comparison with the wavelength, lie in the way
of the signal. Those distortions result in errors on the
measured ranges, caused by the fact that the signal
propagation is no longer straight, and the range cannot
be assumed to be Euclidean anymore. The resulting
ranges could be longer or shorter than the true range
really is. Concluding, the resulting uncertainties can be
subsumed in one error component and characterized by
the common error variance σ2

s .

Both signal and sensor uncertainties are assumed
to impinge directly and additively upon the measured
ranges, which allows to sum up the error variances
according to

Cva

k = diag{(σ2
s + σ2

t ), . . . , (σ2
s + σ2

t )} ,

forming the covariance matrix of the measurement noise
vak.

3.1.3 Model uncertainty

Due to the idealistic assumption of the signal propaga-
tion speed c0 to be the speed of light in vacuum, a range
dependent error is introduced. This range-dependent
error is modeled as the multiplicative noise term vmk .
This error can be motivated by the deviation of the
true signal propagation speed and the assumed signal
propagation speed. The multiplicative noise is modeled
as a non-zero-mean, white Gaussian noise process

vmk ∼ N (1,Cvm

k ) .

The random vector vmk can be decomposed into its
mean and a zero-mean random vector, according to

vmk = µv
m

k
+ vm0

k with vm0

k ∼ N (0, Cvm

k ) .

3.2 System Model

The system model for the position part of the state
vector xk can directly be derived from the physical
behavior of the object, e.g., the aircraft, in case of
aerial surveillance. Depending on the system model
chosen, the noise could be correlated, resulting in a full
covariance matrix Cw

k .

Adequate aircraft motion models can be chosen de-
pending on the expected motion to be performed. In
a straight motion flight scenario, a constant veloc-
ity model [9] would be sufficient, whereas in the case
of curvy flight maneuvers, a coordinated turn model
[10, 11] is preferably used. In a realistic scenario, an
aircraft never exclusively flies according to one sim-
ple model, which calls for a combination of different
models, namely the interacting multiple model (IMM)
[12].

Within the constant position model, no assump-
tion is made about systematic behavior of the range
offset rk,

rk+1 = rk +wr ,

where wr is assigned as white Gaussian noise with zero
mean.

The constant velocity model is a linear motion
model, where the system state contains the object’s
position and velocity

xk =
[
(xpk)T (xvk)T

]T
,



and the system matrix is given by

Ax =

[
I T · I
0 I

]
,

where I denotes the identity matrix and T is the dis-
cretization time step, 0 denotes the zero matrix. Using
the system matrix, the system equation is given by

xk+1 = Ax · xk +wx
k ,

with wx
k being a zero-mean, Gaussian noise process

with correlated covariance matrix

Cw
x =

T 3

3 ·Q
T 2

2 ·Q

T 2

2 ·Q T ·Q

 .

The submatrix Q contains the positional uncertainty
for each dimension on its diagonal [9]

Q = diag{σ2
x, σ

2
y, σ

2
z} .

For the whole system state, the system matrix is aug-
mented with the constant position model for the range
offset, resulting in the system matrix

A =

[
Ax 0
0T 1

]
, (4)

where the noise affecting the range offset is assumed
to be uncorrelated with the noise on the position and
velocity, with

Cw
k =

[
Cw
x 0

0T σ2
r

]
being the common covariance matrix. The system
model presented is used within the experiments follow-
ing in the simulations section.

4 Estimator Design
In this paper, a linear regression Kalman Filter, the
Gaussian Estimator [1, 2], is applied. It belongs to a
class of sample-based estimators, such as the Particle
Filter [13] and the Unscented Kalman Filter [14, 15].
Those estimators use samples to approximate the prior
density. While the Particle Filter uses random sam-
pling, the Unscented Kalman Filter and the Gaussian
Estimator use deterministic sampling methods based
on the first two moments of the prior density.

In the next two sections, prediction step and filter
step are derived for the given problem.

4.1 Prediction Step

Given the linear motion model (4), the standard
Kalman prediction step can be used,

ξp
k+1

= A · ξe
k
,

where ξ is the system state as introduced in Sec. 3,
superscript p denotes statistics of the predicted density
and e is the estimated density. The covariance matrix
of the predicted density can be computed using

Cp
k+1 = A ·Ce

k ·AT + Cw
k ,

where the uncertainty of the predicted density is in-
creased by adding the covariance matrix of the system
noise Cw

k .
When using a nonlinear system model, the prior den-

sity has to be sampled and the prediction step is per-
formed using the samples, according to the paradigm
of the Gaussian Estimator [1].

4.2 Filter Step

Assuming the nonlinear measurement model (3), the
predicted density needs to be approximated. Under
the Gaussian assumption the first two moments of the
densities represent sufficient statistics. The samples are
computed deterministically using the mean and the co-
variance matrix of the given predicted density. The
filter step will be performed in terms of the mean

ξe
k

= ξp
k

+ Cξ,y
k · (C

y
k)−1 ·

(
y − µ

y

)
. (5)

and covariance matrix

Ce
k = Cp

k−

Cξ,y
k · (C

y
k)−1 ·Cy

k · (C
ξ,y
k · (C

y
k)−1)T , (6)

of the posterior density. To solve equations (5), and (6)
the measurement covariance matrix Cy

k and the cross

covariance matrix Cξ,y
k are to be known.

4.2.1 State Decomposition

The system state is decomposed according to the fact
that the measurements only depend partly on the sys-
tem state. Using the constant velocity model from the
example the two state parts result in

xak =
[
(xpk)T rk

]T
,

xbk = xvk ,

where the state density can be decomposed according
to Bayes’ law, resulting in

f(xbk|xak) · f(xak) .

The prior density f(ξ
k
) is assumed to be Gaussian with

covariance matrix

Cξ
k =

[
Ca
k Ca,b

k

Cb,a
k Cb

k

]
.

The Gaussian assumption leads to a Gaussian dis-
tributed state part xak, given by

N
(
xak − µak,C

a
k

)
,



corresponding to f(xak). Out of f(xbk|xak), the density
of xbk can be given as Gaussian density [2] with

N

(
xbk −

[
µb
k

+ Cb,a
k · (C

a
k)−1 ·

(
xak − µbk

)]
,

Cb
k −Cb,a

k · (C
a
k)−1 ·Ca,b

k

)
.

4.2.2 Measurement Covariance Matrix

The predicted state density is approximated in accor-
dance with the Gaussian Estimator. Caused by the
fact, that the measurement model only depends on the
part xak of the system state, merely the density f(xak)
needs to be sampled. The approximation is carried out
using a Dirac Mixture density [1]

f(xa) ≈ 1

L
·
L∑
i=1

δ(xa − µa
i
) , (7)

with the positions µa
i

of the Dirac components being the
samples of the approximated density. By propagating
the samples through the measurement model (3), the
samples

µy
i

= h(µa
i
) (8)

corresponding to the measurement density f(y
k
) are

computed. According to [1] the first and second mo-
ment of the approximated density are preserved and
can be retrieved using the sample mean and the sample
covariance, resulting in the mean

µy
k

=
1

L
·
L∑
i=1

µy
i
,

where L denotes the total number of components used
to approximate the density, and the measurement co-
variance

Cy
k =

1

d
·
L∑
i=1

(
µy
i
− µy

k

)
·
(
µy
i
− µy

k

)T
+ Cv

k ,

where the samples are weighted with respect to the
number of components used to approximate one dimen-
sion of the density.

4.2.3 Cross Covariance Matrix

Finally the cross covariance has to be computed using

Cξ,y
k =

∫ ∫ (
ξ
k
− µξ

k

)
·
(
y
k
− µy

k

)T
·

f(y
k
|ξ
k
)f(ξ

k
) dξ

k
dy

k
,

according to the decomposition into observable and un-
observable parts of the system state [2]. Under the
decomposition the cross covariance matrix is given by

Cξ,y
k =

[
Ca,y
k

Cb,y
k

]
. (9)

The computation of Ca,y
k is performed using the sam-

ples from (7) and the prior mean, as well as the sam-
ples from the measurement density (8) and the resulting
mean. By inserting the samples and the means into the
sample covariance equation the cross covariance matrix
depending on the state xak resolves to

Ca,y
k =

1

d
·
L∑
i=1

(
µa
i
− µa

x

)
·
(
µy
i
− µy

k

)T
.

The cross covariance matrix Cb,y
k corresponding to xbk

is evaluated analytically, using

Cb,y
k =∫ ∫

xbk · h(xak)T · f(xbk|xak) · f(xak) dxak dxbk−

µb
k
· (µy

k
)T .

By marginalizing xbk, rearranging the integrals, and an-
alytically evaluating the integrals, the cross covariance
matrix is given by

Cb,y
k = µb

k
· (µy

k
)T+

Cb,a
k · (C

a
k)−1 ·

[
Ca,y
k + µa

k
· (µy

k
)T
]
−[

Cb,a
k · (C

a
k)−1 · µa

k
· (µy

k
)T
]
− µb

k
· (µy

k
)T ,

which simplifies to

Cb,y
k = Cb,a

k · (C
a
k)

−1 ·Ca,y
k

by deliberately adding the components.
The full cross covariance can be computed by insert-

ing the results into (9), which simplifies the computa-
tion of the filter step. By using the proposed decom-
position approach, only the partial density f(xak) needs
to be sampled, conserving computation power.

5 Simulation Results
The proposed estimator for the multilateration problem
is compared to state of the art methods using three
simulations. All of them are performed using the same
trajectory over 250 time steps. The trajectory is shown
in Fig. 2 as horizontal projection. Due to the fact that
all sensors are nearly lying on a plane, the true height
cannot be accurately reconstructed. In the simulations,
only the horizontal positioning error is considered. The
sensors are placed around the sample trajectory, located
at the positions given in table 1.

The first simulation concentrates on different stan-
dard deviations for the measurement noise and shows
how state of the art methods as well as the proposed
estimator perform under these conditions. In the sec-
ond simulation, the number of sensors is varied in order
to show the estimator’s performance. In the third sim-
ulation the robustness using subspace measurements is
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Figure 2: A planar projection of the aircraft’s trajectory
is shown in red. The blue diamond denotes the sensor
that is located nearest to the trajectory.

Table 1: Sensor positions.
Sensor x/km y/km z/km
A 10 10 0.150
B 30 120 0.360
C 100 35 0.220
D 175 110 0.060
E 200 75 0.140
F 5 80 0.420
G 170 10 0.270

shown. Due to the least-squares approaches’ disability
to use subspace measurements, only the proposed es-
timator and the Unscented Kalman Filter from [7] are
used.

5.1 Simulation 1: Noise levels

The measurements of the sample trajectory are cor-
rupted by noise with different standard deviations. The
values used for the standard deviation are 0.3 m, 3 m,
7.5 m, and 15 m. Among different noise levels, the pro-
posed Gaussian Estimator using receiving time mea-
surements is compared to the state of the art repre-
sented by the Unscented Kalman Filter using TDOA
measurements [7], the Spherical Interpolation method
[3], and the hyperbolic location algorithm by Chan and
Ho [5].

The RMSE and the standard deviation of the error is
evaluated over 1000 Monte Carlo simulations. The re-
sults concerning the RMSE are given in Table 2, and the
standard deviations of the resulting errors are shown
in Table 3. Fig. 3 shows the RMSE values given the
different noise standard deviations.
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Figure 3: The mean RMSEs under changing measure-
ment noise standard deviations is shown. The GF
(green, dotted) shows the best results, while the UKF
(blue, dashed) shows almost as good results as the GF.
The SI (red, dot-dashed) and the CH (magenta, dotted)
show minor noise immunity.

Table 2: RMS errors from noisy measurements.
Noise 0.3 m 3 m 7.5 m 15 m
GF 0.3491 2.6538 5.6383 10.0773
UKF 0.3488 2.8907 6.5087 11.9764
SI 0.7040 7.0403 17.6004 35.1999
CH 0.4247 5.8743 22.6892 35.7477

As a result, the Gaussian Estimator using receiving
time measurements outperforms the examined state of
the art methods with increasing noise levels.

5.2 Simulation 2: Different Sensor
Count

In this simulation, a constant standard deviation of 7.5
m for the noise corrupting the measurements is used.
Here, only the number of available sensors is changed.
For each number of sensors, 1000 Monte Carlo runs
are performed, where the specific sensors are chosen
randomly. Five different numbers of sensors are used,
namely 3, 4, 5, 6, and 7.

Here, the proposed estimator is compared to all of
the state of the art methods. In Fig. 4, the resulting

Table 3: Standard deviation from noisy measurements.
Noise 0.3 m 3 m 7.5 m 15 m
GF 0.2638 1.7754 3.6941 6.2075
UKF 0.2561 2.0726 4.6832 8.4309
SI 0.4731 4.7306 11.8250 23.6454
CH 0.3213 11.5373 43.6226 48.9083



horizontal RMSE is shown given the different numbers
of sensors. Tables 4 and 5 show the RMSE values and
the resulting standard deviation of the RMSEs for the
given estimators.
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Figure 4: The RMSE with respect to the number of
sensors used is shown. Logarithmic scale is used for the
RMSE caused by the poor results of the least-squares
approaches using too few sensors. The proposed Gaus-
sian Estimator (green, solid) achieves best results, while
the UKF (blue, dashed) is working almost as good as
the GF. The SI (red, dot-dashed) shows poor results,
as well as the CH (magenta, dotted).

Table 4: RMS errors from different numbers of sensors.
# 3 # 4 # 5 # 6 # 7

GF 9.4469 7.3130 5.9102 4.9533 4.6424
UKF 19.208 10.494 8.5928 5.9561 5.4407
SI 1.68e5 1.02e5 223.45 22.831 10.552
CH 4.77e5 4.74e4 6.48e3 854.73 14.873

While the least-squares methods perform poorly us-
ing less than 5 sensors, the Gaussian Estimator as well
as the Unscented Kalman Filter maintain robustness
using a smaller number of sensors. Again, the proposed
estimator performs better than the Unscented Kalman
Filter.

5.3 Simulation 3: Sensor Failure

The last simulation concentrates on the robustness of
the estimators under the influence of sensor failures.
Here, only the stochastic estimators are used due to the
fact that the least-squares approaches fail using fewer
than four measurements. A standard deviation of 7.5 m
for the measurement noise is assumed.

Two Monte Carlo runs with 1000 trials are per-
formed, in which a sensor failure probability of 10 %

Table 5: Standard deviation from different sensor num-
bers.

# 3 # 4 # 5 # 6 # 7

GF 6.3591 4.2699 3.3263 2.7136 2.6194
UKF 17.080 7.9058 6.3253 3.7703 3.2189
SI 8.24e5 4.42e5 1.41e3 28.262 6.8524
CH 4.28e6 1.17e5 2.23e4 4.12e3 38.915

in the first run and a probability of 20 % in the second
run is assigned for each sensor. The results are shown
as means of the RMSE of the estimates and the cor-
responding standard deviations in Fig. 5. The explicit
values are given in Tables 6 and 7.
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Figure 5: Error bar plots showing the mean RMSE over
1000 runs under a failing sensor scenario. The first
values denote the mean RMSE and the corresponding
standard deviation under a failing probability of 10%,
while the second values are based on a failing probabil-
ity of 20%. The GF (green, solid) using receiving time
measurements performs slightly better than the UKF
(blue, dashed) using TDOA measurements.

Table 6: RMS errors from sensor failures.
10 % 20 %

GF 4.3533 4.7563
UKF 5.4419 6.2111

The results show superior robustness of the proposed
estimator in the presence of subspace measurements.

6 Conclusions
Most efforts to perform multilateration tracking are

focused on the use of TDOA measurements. In this con-
tribution, however, a system is introduced to directly



Table 7: Standard deviations from sensor failures.
10 % 20 %

GF 2.0765 2.0600
UKF 2.6125 2.6013

operate on the receiving times, allowing for simulta-
neous estimation of aircraft position and range to the
sensors. Therefore, the aircraft’s emission time is esti-
mated as an offset that is common to all sensors. Using
just receiving times, the multilateration process is sim-
plified, as cones are intersected instead of hyperboloids.
The prediction takes a linear system model as a basis,
while the filter step makes use of a decomposition into a
directly observed part and an unobserved part. The de-
composed computation of the cross-covariance matrix
is shown, using an analytic and an approximate com-
putation depending on the part of the system state.
As experiments show, greater robustness towards noise
and sensor failures is achieved compared to state of the
art methods. Decomposition techniques are applied
to increase efficiency within the filter step, while the
use of the Gaussian filter [1, 2] significantly improves
performance.
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