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Abstract—In data fusion theory, multiple estimates are com-
bined to yield an optimal result. In this paper, the set of
all possible results is investigated, when two random variables
with unknown correlations are fused. As a first step, recursive
processing of the set of estimates is examined. Besides set-
theoretic considerations, the lack of knowledge about the un-
known correlation coefficient is modeled as a stochastic quantity.
Especially, a uniform model is analyzed, which provides a new
optimization criterion for the covariance intersection algorithm
in scalar state spaces. This approach is also generalized to
multi-dimensional state spaces in an approximative, but fast and
scalable way, so that consistent estimates are obtained.
Keywords: filtering, estimation, fusion, Bayesian, correla-
tion coefficient.

I. INTRODUCTION

In many practical applications, distributed sensor systems
are utilized in order to take advantage of different angles,
distances etc. By means of a Bayesian state estimator, the
measurement information can be fused with the current esti-
mate, uncertainties can be modeled and taken into account,
and for further processing the obtained estimates can be
predicted. From a central architecture, where all estimates
and correlations between them are managed centrally, to fully
distributed approaches, where data is processed and collected
on different nodes and no information on cross-correlations is
available, different distributed fusion architectures have been
developed [1].

In this paper, we focus on linear estimation problems
in distributed fusion architectures [1]–[4]. Distributed fusion
algorithms have the advantage of lower infrastructure costs,
such as communication or data storage expenses, and are
robust to failures. The main challenge is to handle cross-
correlations between the estimates, since ignoring correlations
and applying standard Kalman filter equations for the fusion
in general lead to inconsistent results. Suppose for example
a distributed sensor network, where node B gets information
from node A and the data of both nodes should be fused
in node A. If we assume independence, the uncertainty is
erroneously reduced due to the fusion although both nodes
share the same information.

Different approaches to cope with the problem of unknown
correlations have been developed. In particular, the covariance
intersection algorithm (CI), which has been proposed by Julier
and Uhlmann [5], [6], is often used as a baseline. Minimizing

the determinant of the fusion result is the most commonly used
optimization criterion for the CI algorithm. Especially in scalar
state spaces, this implies that CI does not update an estimate
as long as no information with smaller variance is available.
Since this is not desirable in most applications, we start
our discussions with the impacts of the cross-correlation on
the fusion result particularly in one-dimensional state spaces.
We present closed-form equations for the interval of possible
means and variances and show that the set of possible fusion
results may diverge, when cross-correlations are not restricted.
In a next step, we model the lack of knowledge about the
correlation coefficient by a uniform distribution, i.e., as a
uniform random variable on the interval [−1, 1]. In order
to provide a practical estimator, we also derive closed-form
solutions for mean and variance by marginalizing out the
correlation variable. Based on these solutions, we derive a
new optimization criterion for CI and generalize it to multi-
dimensional state spaces.

II. PROBLEM FORMULATION

In data fusion theory, estimates are combined to yield an
optimal fused estimate. The estimates characterize uncertain
quantities, which are modeled by random variables.

This paper concentrates on the fusion of two estimates x
and y to a resulting estimate z, when the correlation between
x and y is unknown. We denote the mean vectors by x̂, ŷ,
and ẑ. The joint covariance matrix is

C =

(
Cx Cxy

Cyx Cy

)
, (1)

whereas the fused covariance matrix is Cz . Let ξ̄ denote the
true statistics, then the estimation errors are x̃ = ξ̄ − x̂ and
ỹ = ξ̄ − ŷ. Let Cx∗ = E

{
x̃x̃T

}
and Cy∗ = E

{
ỹỹT

}
denote

the unknown actual mean squared error (MSE) matrices. The
input data are consistent estimates, if

Cx −Cx∗ ≥ 0 and
Cy −Cy∗ ≥ 0 ,

i.e., if the difference between the matrices is a positive semi-
definite matrix.

A central problem in distributed data fusion is to find an
optimal estimate of the true statistics, if the cross-correlation
matrices Cxy = CyxT are unknown. Ignoring the cross-
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correlations and applying a Kalman filter leads to inconsistent
and possibly biased results. The standard CI algorithm, which
minimizes the determinant or the trace of the fused covariance
matrix, does not provide an intuitive procedure in scalar state
spaces. Therefore, we investigate the optimal fusion results
for different correlation coefficients to obtain approaches, that
comprise all possible fusion results.

III. STATE OF THE ART

Especially in distributed fusion architectures, strong correla-
tions between estimates can arise. For example, in distributed
tracking algorithms for the same target, common process
noise has to be dealt with [7], the sensors on different nodes
may suffer from correlated noise, and, due to communication,
network nodes may share common information. By employing
hierarchical network topologies [1], [3], [4], the correlations
between two estimates can be stored and exploited, when they
are fused in a node. For the linear fusion of two estimates,
there exists an optimal solution in the sense of a minimum
mean squared error combination, which equals the best linear
unbiased estimator (BLUE). This solution is given by the Bar-
Shalom/Campo (BC) formulas [7]

ẑ = (Cy −Cyx) (Cx + Cy −Cxy −Cyx)
−1
x̂+ (2)

(Cx −Cxy) (Cx + Cy −Cxy −Cyx)
−1
ŷ

and

Cz =Cx − (Cx −Cxy) (3)

(Cx + Cy −Cxy −Cyx)−1 · (Cx −Cxy)T .

A generalization to multiple input estimates is given by
Millman’s formulas, which are derived in [8].

In fully distributed networks, where the underlying network
topology may remain unknown to the nodes and communica-
tion can lead to cycles, correlations between estimates can,
in general, not be maintained and exploited. In this case,
suboptimal fusion results can be computed by means of the
CI algorithm [5], [6], [9], which yields a fused estimate with
mean vector

ẑω = Cz
ω

(
ω Cx−1x̂+ (1− ω)Cy−1ŷ

)
(4)

and covariance matrix

Cz
ω =

(
ω Cx−1 + (1− ω)Cy−1

)−1
, (5)

where ω ∈ [0, 1] is a weighting parameter. It can be shown that
CI provides a conservative bound on the actual MSE matrix
irrespective of the true cross-covariance matrix Cxy and the
choice of ω [5]. CI can also be derived in the joint state space
of x and y [10], [11].

In general, ω is determined numerically in such a way
that the determinant or trace of Cz

ω is minimized. In [12]
it has been shown, that CI with trace optimization criterion
yields the covariance matrix with minimum trace in the set
of all conservative covariance matrices, although only a scalar
parameter is optimized. In order to avoid numerical optimiza-
tion, approximate closed-form solutions have been proposed
in [13], [14]. How CI works becomes apparent when multi-

dimensional estimates are fused, since CI can be considered
as an outer ellipsoidal approximation of the intersection of
the covariance ellipsoids that correspond to the estimates
(x̂,Cx) and (ŷ,Cy) centered at the origin 0. Minimizing the
determinant of (5) then implies that the ellipsoidal approxi-
mation with minimum volume is chosen. In situations where
one covariance ellipsoid is contained in the other covariance
ellipsoid, i.e., Cx − Cy or vice versa is positive definite, ω
becomes 0 or 1. This means that the fusion of (x̂,Cx) and
(ŷ,Cy) yields the estimate with the smaller covariance matrix.
Especially in one-dimensional setups, this happens in every
fusion step, which is undesirable, because, for instance, a node
would place greater trust in a single possible outlier with small
variance than in many sources that report estimates with high
variances. In this regard, information-theoretic [15], [16] and
set-theoretic [17], [18] optimization criteria for ω have been
proposed, where the choice of ω also depends on the means
x̂ and ŷ.

In this paper, we aim at modeling and analyzing the lack
of knowledge about the correlation between two estimates.
At first, we model the ignorance by the set of all possible
correlations and set up a recursive estimator. Since we cal-
culate an estimate for every possible correlation, we obtain
a set of estimates, which corresponds to a set of Gaussian
densities [19]. The second approach is to model the correlation
coefficient as a uniform distribution, which is the way in which
Bayesians often model ignorance. This is a special case of
extending the density of the system state as it is described in
[20].

IV. SET-THEORETIC APPROACH

In the following, the BC formulas for scalar valued random
variables are investigated to determine the influence of the
correlation coefficient, which leads to closed-form equations
for the extrema of mean and variance of the fused estimates.
By means of these extrema, it can be shown that further
restrictions or assumptions on the correlation coefficient are
necessary to constrain the solution sets.

A. Analysis of the Correlation Coefficient in Scalar State
Space

The influence of the cross-correlation on the fusion result
is investigated in one-dimensional state space on the basis of
the equations for the fused mean (2) and variance (3).

In one-dimensional state space, the cross-correlation can be
described by a single scalar correlation coefficient r, where

Cxy
r = r

√
CxCy . (6)

We use (6) to obtain

det (C) = CxCy − r2CxCy

= (1− r2)CxCy

and finally |r| ≤ 1 holds, since the covariance matrix is defined
to be positive semi-definite. Using this restriction, it is possible
to constrain the set of fusion results.



The fusion equations (2) and (3) can be simplified in one-
dimensional state space to

ẑr =
Cyx̂+ Cxŷ − r

√
CxCy(x̂+ ŷ)

Cx + Cy − 2r
√
CyCx

(7)

and

Cz
r =

CxCy(1− r2)

Cx + Cy − 2r
√
CxCy

. (8)

LEMMA 1
The fused variance Cz for interval-valued r = [−1, 1] and

prior variances Cx and Cy is an interval with lower bound
0 and upper bound min {Cx, Cy}.
PROOF.

Taking the derivative of (8) with respect to r leads to

∂Cz
r

∂r
=
−2CxCy(Cxr + Cyr −

√
CxCy(1 + r2))

(Cx + Cy − 2
√
CxCy · r)2

.

The necessary condition
∂Cz

r

∂r

!
= 0

gives

r1 =

√
Cx

Cy
and r2 =

√
Cy

Cx

as candidates for extrema. The second derivative validates
the variance with r = min {r1, r2} as true maximum and
the variance with r = max {r1, r2} as true minimum. The
maximum variance is obtained for the coefficient

rext =

√
min {Cx, Cy}
max {Cx, Cy}

.

Inserting rext into (8) leads to min {Cx, Cy}. �

It follows from Lemma 1 that in scalar state space, CI
provides a tight bound on the set of fused variances with trace
or determinant optimization criterion. This result confirms the
upper bound for the fused covariance matrix, which has been
derived in [12].

LEMMA 2
The posterior mean ẑ for interval-valued r = [−1, 1], prior

means x̂, ŷ, and variances Cx, Cy is an interval given by

ẑ =


[x̂, x̂] for x̂ = ŷ,
[ẑ1, ẑ−1] for x̂ > ŷ, Cx > Cy or x̂ < ŷ, Cx < Cy ,
[ẑ−1, ẑ1] elsewhere .

PROOF.
Taking the derivative of (7) with respect to the correlation

coefficient leads to
∂ẑr
∂r

=
(Cy − Cx)

√
CxCy(x̂− ŷ)

(Cx + Cy − 2r
√
CxCy)2

. (9)

From (9), it directly follows that for the three different cases ẑr
is 1. equal, 2. strictly monotonically decreasing, or 3. strictly
monotonically non-decreasing. �

For further investigation of the influence of the correlation
coefficient, the means and variances of the fused random
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Figure 1. Fusion results Cz for different ratios of Cx and Cy .

variable are analyzed. The effects of the cross-correlation on
the variance of the fused estimate can be seen in Fig. 1. For
correlation coefficients r = 1 and r = −1, Cz

r equals 0.
For input estimates with the same variance, Cz

r is linear with
respect to the correlation coefficient on the interval [−1, 1). In
all other cases, Cz

r is a concave function with maximum at

r =

√
Cx

Cy
.

In Fig. 2, the mean ẑr is plotted for a varying variance
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Figure 2. Fusion result ẑr depending on correlation coefficient r ∈ [−1, 1]
for different input variances Cx with Cy = 10, x̂ = 10 and ŷ = 20.

Cx and for all valid correlation coefficients r ∈ [−1, 1]. For
Cx = 0, the resulting mean equals x̂ for all correlations, as
there is no uncertainty in estimate x. The mean of the fused
estimate increases with the correlation coefficient to values
considerably larger than x̂ for

r >

√
Cx

Cy
.

For input estimates with the same variance, ẑr is 1
2 (x̂+ ŷ),

since both estimates have the same uncertainty and thus, they
are equally weighted. If Cx < Cy , all possible results of ẑr
are larger than 1

2 (x̂+ ŷ) and visa versa. For r = 1, the mean
of the fused estimate converges for Cx → Cy to infinity or
minus infinity.

B. Recursive Fusion

With the given Lemmata, it is not possible to recursively
formulate the mean extrema of the fused estimates. To al-
low for such a description, the input parameters need to
be extended to mean and variance intervals or a set of all
possible estimates needs to be considered. In case of an
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Figure 3. Minimum and maximum mean values, the average mean interval
size, and the covariance extrema in 25 Monte Carlo runs for the given example.

extension to interval analysis, it is inevitable to investigate the
impact of treating the means and variances independently of
each other. Simulation results indicate that the interval-based
approach provides similar mean and variance extrema as the
set-theoretic approach, in which we consider the combined
means and variances. However, as we do not present closed-
form equations for the recursive case and the extrema of the
interval-valued approach are a conservative estimate of the true
extrema, we demonstrate the divergence of the minimum and
maximum means by a simple static example.

Assume an estimate x0 ∼ N (x̂0, C
x
0 ), which is fused with

measurements y
k
∼ N (ŷk, C

y
k ) at time steps k ∈ {1, . . . , T}.

The correlation coefficient is symmetrically bounded by rb,
so that only correlation coefficients in the interval [−rb, rb]
are allowed. We discretize [−rb, rb] at each time step at
equidistant ri and for each correlation coefficient, we simulate
an estimator. With the number of discretization points H , we
obtain

ri =
2rb · i
H − 1

− rb for i ∈ {0, . . . ,H − 1} .

Thus, the number of estimators at time step k is Hk. Let
x̂simk denote the interval with the minimum and maximum
mean of the simulation at time step k as boundaries, x̂rbk the
corresponding interval for continuous correlation coefficients,
and x̂allk the corresponding entire interval with continuous r =
[−1, 1]. It is easy to see that

x̂simk ⊆ x̂rbk ⊆ x̂
all
k .

We set rb = 0.8, H = 15, T = 7, x0 = N (20, 20), y
k
∼

N (20, 12) and perform 25 Monte Carlo runs with the BC
combination algorithm (7) and (8). The results are given in
Fig. 3. The variances at each time instant are the same for
all Monte Carlo runs since their calculation does not depend
on the measurements. While the minimum variance decreases

to zero, it can be shown that for Cy < Cx, the maximum
variance for continuous correlation coefficients converges to
r2b C

y = 0.82 · 12 = 7.68. As can be seen, the interval of
means x̂simk is increasing at each time instant.

It follows that besides the calculation and memory efforts,
the naı̈ve recursive fusion with reasonably bounded correlation
coefficients is not applicable over multiple time steps. Thus,
it is necessary to make further assumptions or restrictions on
the cross-correlation between the input estimates to provide a
practical estimator.

V. STOCHASTIC CORRELATION COEFFICIENT MODEL

The idea behind the Stochastic Correlation Coefficient
Model is to generalize the correlation coefficient from a
deterministic value to a density. In the case of ignorance, it is
reasonable to assume a uniform distribution for the correlation
coefficient. Other densities may also be meaningful but will
not be investigated here. We will assume that the correlation
coefficient is uniformly distributed and give a closed-form
equation for the scalar-valued fusion and an approximate
solution for the vector-valued fusion. The presented procedure
will be called uniform distribution (UD) approach in this
section.

A. Optimal Fusion of Scalar-Valued Random Variables for
Uniformly Distributed Correlation Coefficients

The interval of correlation coefficients is again discretized
into the set {r1, . . . , rn}. For each ri the BC combination
is computed, and finally the average of the fused densities
is calculated. The resulting density is a Gaussian Mixture
with uniform weights, which is approximated with a Gaussian
density by moment matching.

For max (|ri−1 − ri|)→ 0, ∀i, the resulting density can be
written as the integral

f(z) =

∫ 1

−1
f(z, r)dr =

∫ 1

−1
f(z|r)f(r)dr ,

which can be simplified in the case of a uniformly distributed
correlation coefficient to

f(z) =
1

2

∫ 1

−1
f(z|r)dr =

1

2

∫ 1

−1
N (ẑr, C

z
r ) dr . (10)

Marginalization of (10) finally leads to

EGM =
x̂+ ŷ

2
−

(Cx − Cy)(x̂− ŷ) ln
(

Cx+Cy

|Cx−Cy|

)
4
√
CxCy

(11)

and

CGM =
1

4

(
Cx + Cy + (x̂− ŷ)2

)
− (12)

(Cx − Cy)2 ln
(

Cx+Cy

|Cx−Cy|

)
16CxCy

·(
(x̂− ŷ)2 ln

(
Cx + Cy

|Cx − Cy|

)
+ 2
√
CxCy

)
.

A derivation for symmetrically bounded correlation coeffi-
cients can be found in appendix A.

It can be seen in (11), that the fused mean is the average of
the two input means plus a correction term, which depends on



the difference of the input means as well as the difference
and the absolute values of the input covariance matrices.
Furthermore, the fused mean is corrected by the difference
term in direction of the input mean with the smaller covariance
matrix.

The formula for the fused covariance matrix (12) describes
the uncertainty of the fusion. Unlike, e.g., in CI, the means
are also involved in the calculation of the covariance matrix.
This allows an estimate of the uncertainty of the fusion step
and gives a crude measurement of the bandwidth of the BC
fusion results.

A non-recursive example proposed in [17] demonstrates the
performance of the algorithm in calculating the best mean.

B. Non-recursive Example

We fuse two scalar-valued Gaussian estimates xi ∼
N (x̂i, C

x
i ) , i ∈ {1, 2} of the same true underlying statistics

x̄ ∼ N
(
x̄, C̄x

)
. Assume two measurements

zi =x̄+ vi, i ∈ {1, 2}

with
(
v1
v2

)
∼N

((
0
0

)
,

(
Cv

1 Cv
12

Cv
12 Cv

2

))
.

The estimates xi can be obtained by

x̂i = x̄+ C̄x
(
C̄x + Cv

i

)−1
(zi − x̄)

and Cx
i =

((
C̄x
)−1

+ (Cz
i )
−1
)−1

.

The cross-correlation between x1 and x2 is

Cx
12 = Cx

1 C̄
xCx

2
T +K1C

v
12K

T
2

with Ki = C̄x(C̄x + Cv
i )−1 .

The underlying density is simulated for different cross-
correlations Cv

12 = r
√
Cv

1C
v
2 in 1000 Monte Carlo runs

each. If Cx
12 is known, the best possible results are given

by the BC formulas (2) and (3), which serve as a baseline.
For unknown correlation coefficients, the UD approach is
compared to CI with determinant optimization criterion. In
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Figure 4. The results of the non-recursive example depending on a varying
correlation coefficient.

Fig. 4, the Root Mean Squared Error (RMSE) for varying
correlation coefficient and the input variables

x̄ ∼ N (1, 20) and Cv
1 = 2.22, Cv

2 = 5

is shown. As can be seen, the algorithm performs well espe-
cially for low correlations.

C. Application as Optimization Criterion for CI

For multistep fusion and practical applications, it is essential
to obtain a consistent estimate. Let ẑud be the mean calculated
in (11). The derived variance (12) is an approximation of the

uncertainty of the fusion step and is, in general, not consistent,
because it is derived from an average over all densities.
Therefore, we use CI to find an estimate that corresponds
to ẑud. Or the other way round: we use UD as optimization
criterion for CI.

The CI equations are given by (4) and (5). We set ẑud equal
to the parametrized mean, which is derived by CI equations

ẑud = ẑωud
= Cz

ωud

(
ωudx̂

Cx
+

(1− ωud) ŷ

Cy

)
=
Cxŷ + ωud (Cyx̂+ Cxŷ)

Cx + ωud (Cy − Cx)
,

and obtain the closed-form solution

ωud =

(
1− Cy (ẑud − x̂)

Cx (ẑud − ŷ)

)−1
. (13)

We need to show that ωud (13) is a valid CI optimization
parameter for all combinations of input information. Replacing
ẑud by (11) and simplifying leads to

Cy (ẑud − x̂)

Cx (ẑud − ŷ)
=
Cy

Cx

 ln
(

Cx+Cy

|Cx−Cy|

)
− 2

√
CxCy

Cx−Cy

ln
(

Cx+Cy

|Cx−Cy|

)
+ 2

√
CxCy

Cx−Cy

 .

It can be shown that this term is always negative or zero for
positive Cx and Cy . If we insert this result in (13), it follows
that ωud ∈ [0, 1]. Therefore, in scalar state space, a valid CI
solution can be calculated for all ẑud in closed-form without
the need for optimization algorithms.

D. Extension to Multi-Dimensional State Space

The generalization of UD to multi-dimensional state space
is difficult to derive in closed-form because not only the
number of correlation coefficients increases quadratically with
the dimension of the data, but also the correlation coefficients
depend on each other in more than two-dimensional joint co-
variance matrices. More precisely, the joint covariance matrix
of dimension n can be written as in (1) with completely known
Cx and Cy . The cross-correlation matrices can be described
by correlation coefficients rij ∈ [−1, 1] with

Cxy =

 r11
√

Cx
11C

y
11 . . . r1n

√
Cx

nnC
y
nn

...
. . .

...
rn1
√
Cx

nnC
y
11 . . . rnn

√
Cx

nnC
y
nn

 ,

where Cxy = CyxT . Because covariance matrices are defined
to be positive semi-definite, not all combinations of correla-
tions coefficients are valid. There exist several algorithms to
find out whether a matrix is positive semi-definite or not. Well
known in literature is for example Sylvester’s criterion [21].
According to Sylvester’s criterion, all leading principal minors
have to be non-negative. This is especially applicable when
working with correlation coefficients, as the variances Cx

ii and
Cy

jj can be factorized out of the determinant so that it is only
necessary to check the correlation coefficient combinations.

For example in the three-dimensional case, the one- and
two-dimensional leading principal minors are positive semi-
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Figure 5. Structure of valid correlation coefficients in 3D space.

definite. The determinant of a covariance matrix is

det (C) =

∣∣∣∣∣∣
Cx

1 r12
√
Cx

1C
x
2 r13

√
Cx

1C
x
3

r12
√
Cx

1C
x
2 Cx

2 r23
√
Cx

2C
x
3

r13
√
Cx

1C
x
3 r23

√
Cx

2C
x
3 Cx

3

∣∣∣∣∣∣
= Cx

1C
x
2C

x
3 (1 + 2r12r13r23 − r12 − r13 − r23) .

Thus, all correlation coefficient combinations with |r12| ≤ 1,
|r13| ≤ 1, |r23| ≤ 1 that fulfill the inequality

1 + 2r12r13r23 − r12 − r13 − r23 ≥ 0

are valid. In Fig. 5, these correlation coefficient combinations
are plotted. As can be seen, the structure of valid correlation
coefficients in three-dimensional space is convex, but cannot
be easily described by a simple shape. To obtain a closed-
form solution, it is possible to find out the multi-dimensional
intervals of valid correlation coefficients and solve the multi-
dimensional extension of the integral (10). Although this
procedure is possible for small dimensions, the equations are
complicated even in three dimensions.

Since an integral approximation by Monte Carlo methods is
computationally demanding due to the curse of dimensionality,
another approximate approach is presented. The idea is to fuse
the multi-dimensional densities component-wise with equation
(11) and find a consistent covariance matrix afterwards. For-
mally, we assume rij = 0, i 6= j for correlation coefficients
in the joint covariance matrix and a component-wise uniform
distribution of the correlation coefficients rii.

Let n denote the dimension of the state space and ẑud =
(ẑud1

, . . . , ẑudn
)
T be the vector of the means, which have been

derived component-wise by scalar UD. From ẑud, we obtain
the gain

K = diag

(
ẑud1

− ŷ
1

x̂1 − ŷ1
, . . . ,

ẑudn
− ŷ

n

x̂n − ŷn

)
,

which can be applied to the linear fusion equation

z = Kx+ (I−K)y . (14)

In [12] it has been shown, that for linear fusion in the form
(14), a family of consistent estimates can be derived. This
family is given by

Cz = (1 + γ)KCxKT +

(
1 +

1

γ

)
(I−K)Cy (I−K)

T

for a scalar parameter γ > 0. The covariance matrix Cz with

minimum trace in this family is given for the parameter

γ =

√√√√ trace
(

(I−K)Cy (I−K)
T
)

trace (KCxKT )
.

It is also possible to optimize the determinant of Cz . Since
this procedure provides similar results but requires numerical
optimization, we will not consider it here.

Therefore, by using the scalar UD approach to derive the
mean and the procedure presented in [12] to estimate the
covariance matrix, we provide a fast and scalable, suboptimal
procedure with low memory requirements and low computa-
tional costs. In the following, this approach is optimized, since
we do not consider all available information in naı̈ve UD.

E. Joint Diagonalization of Covariance Matrices

The presented generalization of the UD approach to multi-
dimensional state spaces has its main drawback in the negli-
gence of the cross-correlations between different parts of the
state variables. In particular, we do not use the off-diagonal
elements of the known input matrices Cx and Cy . Hence,
we present a procedure to factor the known cross-correlations
within the input covariances into the calculation of the mean.

Let the joint covariance matrix be as in (1) with unknown
matrices Cxy and Cyx. Before the fusion algorithm is applied,
it is possible to jointly rotate and scale the covariance matrices
Cx and Cy to a diagonal form. This corresponds to a rotation
of the covariance ellipsoids as it is described in [22] and
allows an inclusion of the off-diagonal elements of the known
matrices Cx and Cy .

The diagonal form can be obtained by the following pro-
cedure: First, an eigenvalue decomposition is performed for
matrix Cx. Let Bx be the matrix of eigenvectors of matrix
Cx. With diagonal eigenvalue matrix Dx and BxBxT = I it
follows

Cx = BxDxBxT = Bx
√
DxBxTBx

√
DxBxT . (15)

The decomposition (15) can be used to obtain

Tx =
(
Bx
√
DxBxT

)−1
= Bx

√
Dx
−1

BxT , (16)

while TxCxTxT = I.
In a second step, an eigenvalue decomposition for trans-

formed Cy is performed. Let Cy ′ = TxCyTxT be the
rotated and scaled covariance matrix of input data y. With
an eigenvalue decomposition of Cy ′, we obtain the matrix of
eigenvectors By and the diagonal matrix of eigenvalues

Dy = ByCy ′ByT . (17)

Finally, we combine (16) and (17) to get a transformation
matrix

T = ByTx (18)

and diagonal covariance matrices I for x and Dy for y. The
back-transformation matrix is given by

T−1 = Tx−1By−1 = Bx
√
DxBxTByT .

We use the transformation (18) to obtain transformed input



variables

x̄ = Tx̂, ȳ = Tŷ

and

C̄x = I, C̄y = Dy , C̄xy = TCxyTT .

In order to show that the transformation does not distort the
results, we proof that for given correlations, the BC equations
yield the same result, when they are applied to the original
data as when they are applied to the transformed data and are
back-transformed afterwards:

ẑ =T−1Tẑ

=T−1Tx̂+ T−1T (Cx −Cxy)TTT−T ·
(Cx + Cy −Cxy −Cyx)

−1
T−1T

(
ŷ − x̂

)
=T−1

(
x̄+

(
C̄x − C̄xy

)
·

(
C̄x + C̄y − C̄xy − C̄yx

)−1 (
ȳ − x̄

))
,

Cz =T−1TCzTTT−T

=T−1
(
TCxTT −T(Cx −Cxy)TTTT−T ·

(Cx + Cy −Cxy −Cyx)−1 ·
T−1T(Cx −Cxy)TT

)
T−T

=T−1
(
C̄x − (C̄x − C̄xy)T ·

(C̄x + C̄y − C̄xy − C̄yx)−1(C̄x − C̄xy)
)
T−T .

Thus, even if we determine the mean component-wise, we
include the information of the off-diagonal elements without
distorting the fusion results, when the input variables are
intermediately transformed. This allows an improvement of
UD, which will be denoted by OPT UD in the following.

The two proposed approaches provide good estimation
results, when two estimates are fused under unknown correla-
tions, as it will be shown in the next example.

F. Dynamic Example
The performance of both approaches is demonstrated by an

example that has been proposed by Wang in [18]. We assume
a dynamic system model

xk+1 = Axk + Buk

characterizing a moving target with constant velocity. Let A
and B be given as

A =

(
1 T
0 1

)
and B =

(
T 2/2
T

)
.

The input uk is a zero-mean white Gaussian noise with covari-
ance W in all time steps. The measurement system consists
of two sensors. One sensor is measuring the position with
variance Cv1 , the other one observes the velocity with variance
Cv2 . In each time step, both sensors use a Kalman filter to
predict the state and fuse it with their own measurements.
Subsequently, their estimates are exchanged and combined
with different data fusion algorithms in each node. For the
compared algorithms, the results will be the same in both
nodes.

The measurements are assumed to be correlated with a
varying correlation coefficient r. The quality of the algorithms
is measured by the RMSE with respect to the underlying
state x after 20 time steps. Let the measurement noises be
Cv1 = 10 and Cv2 = 6. The system noise is uk ∼ N (0, 4).
The initial position is a Gaussian estimate with x0 ∼
N
(

(10, 5)
T
,diag (100, 25)

)
. The average results of 1000
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Figure 6. The results of the dynamic example for a varying correlation
coefficient.

Monte Carlo runs for each correlation coefficient are plotted in
Fig. 6. We compare the different optimization criteria for CI
with the optimal BC combination. The optimization criteria
are the minimization of the determinant (CI), UD without
transformation (UD) and with transformation (OPT UD). In
the given example, estimates that have been calculated by
OPT UD have a lower RMSE than those calculated by CI.
Especially for negative correlation, the RMSE of OPT UD
decreases similarly to the RMSE of BC, while CI estimates
are not improving in the same way.

For a detailed analysis of the relative performance between
the different approaches, it would be necessary to run the
given example with different uncertainties in system and
measurement model. Tests have shown, that for low measure-
ment uncertainties compared to the the system noise, CI with
determinant minimization criterion performs better than (OPT)
UD for low correlation coefficients. Indeed, the computational
effort especially for untransformed UD is lower since no
numerical optimization is necessary.

VI. CONCLUSIONS

When cross-correlations are unknown, the fusion of two es-
timates can only yield suboptimal results. We have investigated
the idea of calculating the entire set of possible fusion results.
Considering every possibility, of course, constitutes the most
careful and conservative approach to deal with an unknown
parameter, which is the usual way in set-theoretic estimation.
However, we have demonstrated by virtue of a simple example
that the set of estimated means diverges with an increasing



number of fusion steps. As an alternative, we have modeled the
uncertainty about the correlation coefficient by a probability
density. In particular, we have assumed a uniform distribution
for the correlation coefficient and marginalized the joint den-
sity over the correlation parameter. The resulting density has
then been approximated by a Gaussian density, whose mean
and variance can be computed analytically. This approach can
be regarded as a weighted average over all possible fusion
results. We have shown that the closed-form solution for the
mean can also be employed to calculate a weight for the
CI algorithm in scalar state space. As an extension to multi-
dimensional state spaces, we have proposed to apply the pre-
sented concept component-wise, after rotating the covariance
matrices to diagonal matrices, and to estimate the covariance
afterwards. This approach guarantees conservative estimates,
and yields promising fusion results.

APPENDIX A
UNIFORM DISTRIBUTED CORRELATION COEFFICIENT WITH

SYMMETRIC BOUNDS

A solution for uniform distributed correlation coefficients
in scalar state space with symmetric bounds rb for mean and
variance can be obtained by solving of the two integrals

EGM =
1

2rb

∫ rb

−rb

ẑ(r)dr

=
1

2rb

∫ rb

−rb

Cyx̂+ Cxŷ − r
√
CxCy(x̂+ ŷ)

Cx + Cy − 2r
√
CxCy

dr

=
x̂+ ŷ

2
−(Cx−Cy)(x̂−ŷ)

ln
(

2rb
√

CxCy+Cx+Cy

−2rb
√
CxCy+Cx+Cy

)
8rb
√
CxCy

,

CGM =
1

2rb

∫ rb

−rb

(
Cz

k + ẑ(r)2
)
dr − EGM 2

=
Cx3 + CxCy

(
Cy
(
3− 4r2b

)
− 2(x̂− ŷ)2

)
4 ((Cx + Cy)2 − 4CxCyr2b )

+

Cx2
(
Cy
(
3− 4r2b

)
+ (x̂− ŷ)2

)
4 ((Cx + Cy)2 − 4CxCyr2b )

+

Cy2
(
Cy + (x̂− ŷ)2

)
4 ((Cx + Cy)2 − 4CxCyr2b )

−

(Cx − Cy)2 ln
(

2rb
√
CxCy+Cx+Cy

−2rb
√
CxCy+Cx+Cy

)
64CxCyr2b

(
(x̂− ŷ)2

ln

(
2rb
√
CxCy + Cx + Cy

−2rb
√
CxCy + Cx + Cy

)
+ 4rb

√
CxCy

)
.
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