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Abstract. For the model of a linearly driven quantum anharmonic oscillator, the role of
damping is investigated. We compare the position of the stable points in phase space obtained
from a classical analysis to the result of a quantum mechanical analysis. The solution of the full
master equation shows that the stable points behave qualitatively similar to the classical solution
but with small modifications. Both the quantum effects and additional effects of temperature
can be described by renormalizing the damping.

In recent years, driven anharmonic oscillators have generated a large amount of interest
because of their use as qubit readout devices (i.e., the Josephson bifurcation amplifier) [1, 2].
All these devices operate close to or in the quantum regime. There are two possible stable
states in phase space, which can be distinguished by their respective amplitude and phase.
Many studies have been performed on the transition between the stable states [3, 4, 5, 6, 7] and
further effects like multiphoton resonances [8, 9] and dynamical tunneling [10, 11] make driven
anharmonic oscillators an ideal model to study thermo-dynamics and quantum effects in a non-
equilibrium system. Most bifurcation amplifiers are operated in the limit of strong damping to
speed up the classical read-out process of the amplifier. In this paper, we define an equivalent
to the classical stable state derived from a quantum master equation and discuss its position in
phase space as a function of damping.

The driven anharmonic oscillator is described by

HS(t) =
p2

2m
+

mΩ2x2

2
− γx4 + F (t)x, (1)

where F (t) = 2F0 cos(νt) stands for the external driving force. In the rotating frame and after
a rotating wave approximation (RWA) the Hamiltonian reads

H = ∆a†a + χa†a(a†a + 1) + f(a† + a). (2)

Here, we have introduced the detuning between the oscillator’s natural frequency and the driving
frequency ∆ = Ω − ν , χ = −3γh̄/(2m2Ω3), f = F0/(h̄Ω)

√
h̄/(2mΩ). We then introduce the
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Figure 1. (a) A plot of the quasienergy g in phase space. The extrema correspond to the two
stable states, i.e., the high amplitude state (M ) and the low amplitude state (m). The saddle
point corresponds to an unstable state (s). The three kinds of classical orbits are also depicted
by black closed curves. (b) A cut through the quasienergy potential g for P = 0. The quantum
levels nearest to maximum (M ), minimum (m) and saddle point (s) are shown in blue, red
and green short lines respectively. Shown in long black line is the quantum level on the outer
torus, which is close to and can be generate with level m . (c) Squared amplitude of the wave
functions corresponding to quantum levels shown in Fig.1(b). We use the same colors and labels
to distinguish them. The two subfigures correspond to different parameters, i.e., wave function
on the outer torus is degenerate with the low amplitude state (top subfigure) and non-degenerate
(bottom subfigure). We used λ = 0.027 and β = 0.0341 for this plot (degeneracy can be created
by only minor changes of β).

position operator Q and momentum operator P in the rotating frame Q =
√

λ/2(a†+a), P =
i
√

λ/2(a†−a), where λ = −χ/∆ is the effective Planck constant. Finally, the scaled quasienergy
Hamiltonian is defined as H = ∆2g/χ, where

g = (Q2 + P 2 − 1)2/4 +
√

βQ. (3)

Here, we have neglected some constant terms. Now all the properties of this system are
dependent on one single quantity β = −2f2χ/∆3. The quantum properties are contained in
the commutation relation [Q,P ] = iλ. The transition to the classical regime is equivalent to
the limit λ → 0. The dissipative environment is taken into account using the Lindblad master
equation

ρ̇(τ) = − i

λ
[H, ρ] + η{(1 + n̄)D[a]ρ + n̄D[a†]ρ}, (4)

where the Lindblad operator is defined through D[A]ρ ≡ AρA† − 1
2{A†A, ρ}, n̄ is the Bose-

Einstein distribution, and η is the dimensionless damping strength [6, 12].
Let’s first discuss the classical dynamics of the driven Duffing oscillator in the weak-damping

limit. For 0 < β < 4/27, the Hamilton function exhibits three extrema in phase space, as
indicated in Fig.1(a), i.e., a maximum M, a minimum m and a saddle point s. Without friction,
there are three kinds of possible periodic orbits. They correspond to different isoenergetic
sections of the Hamilton function. The orbits with an ear-shape around the maximum M form
one group. Those circling the minimum m form another group. The third group consists of the
orbits on the outer torus. One can calculate the explicit expressions of these orbits based on the
classical equation of motion: ∂tQ = ∂P g, ∂tP = −∂Qg. In the vicinities of the extrema M and
m the system is equivalent to an underdamped harmonic oscillator. Therefore, if damping is
included the orbits nearby will shrink towards the extrema. As a result, they are stable points,
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Figure 2. (a) Positions of the low amplitude state (red solid line), high amplitude state (blue
solid line) and the unstable saddle point (green dashed line) from the solution of the classical
equation of motion for finite damping and from the solution of the master equation (circles)
respectively. The black empty circles represent zero temperature, while the yellow and red solid
circles correspond to temperatures T = 2.0Ω and T = 3.0Ω respectively. (b) The difference
between the effective damping ηeff and real quantum simulation damping η at zero temperature
(red solid circles) and T = 0.5Ω (black solid squares) respectively. (c) The relationship between
effective damping and temperature at fixed damping η = 0.03. Other parameters are λ = 0.027
and β = 0.12.

corresponding to the oscillations with high and low amplitudes respectively. They are separated
by a phase space barrier associated with the unstable saddle point s.

In the quantum limit, the classical orbits will be quantized into a series of discrete energy
levels. They can be calculated by diagonalizing the scaled Hamiltonian (3), which results in
a set of eigenvalues and eigenstates, i.e., g|n〉 = gn|n〉. In Fig.1(b) we show a cut through
the quasienergy potential g for P = 0. The classically stable states are the extrema of the
potential. The quantum levels corresponding to the three extrema are shown by colored short
lines and labelled by M ,m and s respectively. The black long line indicates one quantum level
on the outer torus, which is close to and can be resonant with the level m . Fig.1(c) shows the
quantum analogues (i.e., squared amplitude of the wave functions, |ϕ|2) of the classical orbits
corresponding to the quantum levels shown in Fig.1(b). We use the same colors and labels in
each figures. In principle, the small amplitude state is coupled via tunnelling to states on the
outer torus. If a state on the outer and inner torus are degenerate, the eigenstates are mixed
states and this results in a large change of the degenerate wave functions (see the red and black
curves in Fig.1(c)). However, one should note that in most of the relevant parameter regime the
dynamics of the system is dominated by intra-well transitions [3, 5].

As damping increases, the positions of the stable points in phase space will shift. We can
find the classical solution for the stable points from the classical equation of motion including
damping: Q̇ = ∂g/∂P − ηQ, Ṗ = −∂g/∂Q − ηP . For finite damping the system is classically
bistable for β(1) < β < β(2), with β(1,2) = 2(1 + 9η2 ∓ (1− 3η2)3/2)/27 [6]. In Fig.2(a), we plot
the possible positions of the low amplitude state (red solid line), high amplitude state (blue solid
line) and the unstable state (green dashed line) in phase space.

In order to describe the damping effects in the quantum regime, we turn to the master
equation (4). We can also define a stable state using our master equation. At exactly zero
temperature, it is possible to get an analytical expression for the stationary distribution in the
so called P-representation [13, 14], which is one of several quasi-probability distributions [15, 16].
With the help of the P-representation, the exact analytical solution for the stationary density
matrix for n̄ = 0 can be obtained in the photon number representation (see Eq.(15) in Ref.[14]).
We can diagonalize it and use its eigenstates as our basis. A diagonal representation will not only
give us a clear physical picture of the dynamics of the system but also simplifies any numerical
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simulation.
To understand how our solution compares to the solution of the classical equation, we

use the following procedure: (1) diagonalize the exact solution; (2) identify the eigenstates
which correspond to the two stable states and calculate the expectation value of position and
momentum (or amplitude and phase). An example for the results of such a calculation are the
black empty circles in Fig.2(a); (3) compare the expectation values of the wave function with
those expected from the classical equation of motion. Since the states are located on the same
curve as the classical state we can assign each state a value ηeff that corresponds to the damping
of the equivalent classical stable point.

Due to the finite effective Planck constant λ used in this work, our results display some
quantum effects. One is the disappearance of the small-amplitude state already for weaker
damping than classically predicted. The reason is that near the bifurcation point, the low
amplitude well is so shallow that the zero point energy exceeds the potential barrier. As a
result, there is no quantum level in the vicinity of the minimum m. The situation is similar
for the large-amplitude state if β is small. Another quantum signature is the renormalization
of damping, ηeff 6= η. We show a comparison of η, as chosen for the master equation and the
effective damping ηeff of the equivalent classical stable point in Fig.2(b). As λ becomes smaller
we find ηeff ≈ η [6, 12].

The effect of temperature can be included in an exact numerical solution of the master
equation. Then we again follow the steps outlined above and find that the eigenstates that
diagonalize the matrix have average momenta and coordinates that fall on the curve of the
classically stable states (see yellow and red solid circles in Fig.2(a)). We find that the
temperature also introduces a weak renormalization of the damping η. We plot the difference,
ηeff −η, as function of η in Fig.2(b) at a finite temperature (black solid squares in Fig.2(b)). We
also show the renormalized damping as a function of T for fixed η in Fig.2(c). As one can see,
there is a small quantum correction for T = 0, and temperature has, as expected, no effect as
long as T ¿ Ω. As temperature increases we get an additional small shift along the curve of the
classically stable state. Generally we find that the states that diagonalize the density matrix at
T = 0 still remain an efficient diagonal basis up to T ≈ Ω.

References
[1] Siddiqi I et al. 2004 Phys. Rev. Lett. 84 207002
[2] Mallet F et al. 2009 Nature Physics 5 791
[3] Dykman M I and Smelyansky V N 1988 Zh. Eksp. Teor. Fiz. 94 61
[4] Vogel K and Risken H 1990 Phys. Rev. A 42 627
[5] Marthaler M and Dykman M I 2006 Phys. Rev. A 73 042108
[6] Dykman M I 2007 Phys. Rev. E 75 011101
[7] Verso A and Ankerhold J 2010 Phys. Rev. E 82 05116
[8] Dykman M I and Fistul M V 2005 Phys. Rev. B 71 140508(R)
[9] Peano V and Thorwart M 2006 Chem. Phys. 322 135
[10] Serban I and Wilhelm F K 2007 Phys. Rev. Lett. 99 137001
[11] Marthaler M and Dykman M 2007 Phys. Rev. A 76 010102
[12] Serban I, Dykman M I and Wilhelm F K 2010 Phys. Rev. A 81 022305
[13] Drummond P D and Gardiner C W 1980 J. Phys. A: Math. Gen. 13 2353
[14] Kheruntsyan K V 1999 J. Opt. B: Quantum Semiclass. Opt. 1 225
[15] Carmichael H J 2001 Statistical Methods in Quantum Optics (Springer)
[16] Vogel K and Risken H 1989 Phys. Rev. A 39 4675

26th International Conference on Low Temperature Physics (LT26) IOP Publishing
Journal of Physics: Conference Series 400 (2012) 042014 doi:10.1088/1742-6596/400/4/042014

4




