
Generation of adaptive coordinates and
their use in the Fourier Modal Method

Sabine Essig and Kurt Busch
Institut für Theoretische Festkörperphysik and DFG-Center for Functional Nanostructures
(CFN), Karlsruher Institut für Technologie (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe,

Germany

kurt.busch@kit.edu

Abstract: We present an improvement of the standard Fourier Modal
Method (FMM) for the analysis of lamellar gratings that is based on
the use of automatically generated adaptive coordinates for arbitrarily
shaped material profiles in the lateral plane of periodicity. This allows for
an accurate resolution of small geometric features and/or large material
contrasts within the unit. For dielectric gratings, we obtain considerable
convergence accelerations. Similarly, for metallic gratings, our approach
allows efficient and accurate computations of transmittance and reflectance
coefficients into various Bragg orders, the spectral positions of Rayleigh
anomalies, and field enhancement values within the grating structures.
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1. Introduction

Periodic photonic nanostructures, such as photonic crystals and metamaterials [1] as well as
periodically structured surfaces [2, 3], may exhibit interesting optical responses that can be
exploited for numerous applications. Both, a sufficient understanding of the underlying physics
as well as the engineering of certain desired optical properties require efficient computational
tools. In this context, the Fourier Modal Method (FMM), also known as the Rigorous Coupled-
Wave Analysis (RCWA), has proven to be an adequate and commonly used method for the
numerical analysis of the resulting grating or grating-like structures [4–8]. Thus, FMM has
been used to characterize a good many of structured optical materials as well as to develop
numerous optimized designs.

The FMM treats three-dimensional systems with a strict periodicity in the lateral plane by
decomposing the structure in the third direction (the propagation direction) into a sequence of
two-dimensional subsystems – the so-called slices. Within each slice, the material parameters
in the propagation direction are assumed to be constant, thus admitting propagating or evanes-
cent plane wave solutions. Consequently, in each slice Maxwell’s equations are solved via an
eigenvalue equation for the (generally complex-valued) wave vectors and associated eigen-
modes in propagation direction. The lateral periodicity is accounted for via the Bloch-Floquet
theorem for the real-valued lateral wave vector. Finally, in each slice the field is expanded into
the corresponding eigenmodes and the slices are recombined to represent the complete system
by applying appropriate boundary conditions across the interfaces between adjacent slices via
a scattering matrix formalism [9].

In view of the nature of the available fabrication techniques, many systems can be represented
by spatially discontinuous permittivity functions. Since FMM solves Maxwell’s equations in
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Fourier space, such discontinuities can quickly lead to unsatisfactory convergence character-
istics. Nevertheless, by carefully performing the transformation from real-space permittivity
profiles into Fourier series representations, the convergence of one-dimensional lamellar grat-
ings could be dramatically improved [6, 7]. In Ref. [8], Li has formulated two rules, the so-
called Fourier factorization rules, that provide a rigorous mathematical foundation for the cor-
rect Fourier expansion of such permittivity profiles. As a result, improved convergence charac-
teristics could also be realized for crossed gratings [10]. However, for complex material profiles
within the unit cell the material boundaries are generally not aligned to the coordinate axes. In
this case, the Fourier factorization rules cannot be applied to the actual contour of the material
boundaries but to a stair-cased, i.e., zigzag-shaped approximate contour. This leads to particular
serious convergence problems for non-grid aligned metallic structures (see section 4.2 below).

In response to this, different approaches have been developed to further improve conver-
gence. For instance, in order to avoid Li’s zig-zag method, the use of normal vectors similar
to the differential method has been suggested [11, 12]. Then, the Fourier factorization rules
can be applied more effectively to the actual structural contours. In a separate developement,
Granet has introduced adaptive coordinates that aim at improving the sampling of material
boundaries [13]. In contrast to the Chandezon method [14] where a coordinate transformation
along the propagation direction maps the grating surface profile onto a (flat) plane, the Granet
method introduces a coordinate transformation in the lateral plane that increases the spatial res-
olution at the material boundaries. This procedure considerably speeds up the convergence of
the Fourier-transform representation of discontinuous permittivity profiles. In case of several
slices with different profiles in different layers, the transformations may also differ from slice
to slice [15]. The idea of adaptive spatial resolution (ASR) has also been extended to crossed
gratings [16,17]. Ideally, the coordinate lines of the emerging curvilinear coordinates should be
aligned along the structural contours. These curvilinear meshes are incooperated into Maxwell’s
equations via the same formalism that is commonly used in transformation optics [18,19]. Con-
versely, one may regard the use of ASR as another application of transformation optics (see
section 2 below).

Since the formulation of ASR within FMM is straightforward, the primary problem is to
find a coordinate transformation that is adapted to a given structure (e.g., as shown in Figs.
3, 5, and 8). As stated above, this coordinate transformation shall increase the point density
at material interfaces and shall guide the coordinate lines along the interfaces such that the
structure is locally aligned relative to the new local coordinate system. Obviously, it is highly
desirable that this coordinate transformation can be automatically generated and can thus be
applied to arbitrary material profiles. This has not yet been fully accomplished in the early
pioneering works [15–17]. More precisely, Refs. [15, 16] have been restricted to factorizable
coordinate transformations, i.e., to cases where the two-dimensional coordinate transform can
be represented as the product of two one-dimensional transformations. For the latter, analytical
expressions can be found [13]. More general is the approach reported in Ref. [17]. Here, the
coordinate transformation is explicitly constructed by manually subdividing the unit cell into
patches that (i) can isomorphically be mapped onto rectangles and (ii) have their corners either
on the outer boundary of the unit cell or on a material interface. While this significantly im-
proves the range of applicability of ASR within FMM, it has not yet been demonstrated how
this subdivision can be automatized and whether such a subdivision always exists for more
complex material distributions and/or structural contours within the unit cell.

In the case of photonic [20] and electronic [21] bandstructure calculations it has already
been shown how adaptive curvilinear coordinates can be generated automatically. Additionally,
in Ref. [22] it is shown how a vector field which is normal to the material interfaces can be
generated in order to avoid Li’s zig-zag method.
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Fig. 1. Illustration of a crossed-grating in the Cartesian coordinate system Ox̄ 1x̄ 2x̄ 3 ≡
Oxyz. The system is periodic in the x̄ 1- and x̄ 2-directions with periodicities d1 and d2, re-
spectively. The grating is illuminated by a plane wave with wave vector kin whose direction
defines the polar angle φ and the azimuthal angle θ .

This is the starting point of our work. In particular, similar to [20, 21], we set up a fictitious
energy funtional that allows us to derive adaptive curvilinear coordinates through a standard
minimization procedure. This fictitious energy functional is characterized by certain terms that
implement the above-mentioned desired properties whose relative weights can be flexibly ad-
justed. In addition, we augment the energy functional of Refs. [20,21] by a term that is inspired
by the results of Ref. [22] in that it helps to locally align one of the coordinate lines relative to
material interfaces. Consequently, we will first review the FMM in general coordinate systems
in section 2. Then, in section 3 we provide the details of our approach for the generation of
coordinate transformations by minimizing a fictitious energy functional. This automated coor-
dinate generation will subsequently be applied to different systems with dielectric and metallic
constituent materials. More precisely, simple test structures are investigated in section 4. For
these systems, we provide convergence analyses and compare our results with those that are
obtained via analytically available adaptive coordinates [16, 17]. In section 5, a more complex
structure is analyzed. Finally, we conclude our findings in section 6.

2. Fourier Modal Method in general coordinates

We consider systems within a Cartesian coordinate system Ox̄ 1x̄ 2x̄ 3 that are periodic in the
(lateral) x̄ 1x̄ 2-plane and finite in the x̄ 3-direction, the propagation direction (see Fig. 1). A
plane wave with wave vector kin is incident on this structure and the direction of the wave vector
defines the polar angle and azimuthal angles, φ and θ . For concreteness and since this is a rather
often occuring setup [2, 3], we examine in this work only systems that consist of three regions
each of which is homogeneous in propagation direction: (i) a semi-infinite superstrate region in
which the incoming radiation is specified and the radiation that is reflected into certain Bragg
orders has to be determined, (ii) a lateral, periodically structured lamellar grating of height h,
and (iii) a semi-infinite substrate region in which the radiation that is transmitted into certain
Bragg orders has to be determined.

For simplicity, we assume that the grating region is composed of rectangular unit cells with
side lengths d1 and d2 that contain a distribution of isotropic and nonmagnetic dielectric ma-
terials whose profile is described by ε̄(x̄ 1, x̄ 2). The corresponding constituent materials are
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thus described via frequency-dependent complex dielectric constants and this includes many
dispersive materials, notably metals. However, we would like to note that the subsequent de-
velopments can easily be extended to optically anisotropic materials such as liquid crystals and
non-rectangular systems such as hexagonal arrays.

In the following, we choose to work with the covariant formulation of Maxwell’s equations
which allows for a straightforward incorporation of curvilinear coordinates within the FMM.
Thus, we follow the notation in [23] and define a curvilinear coordinate system Ox1x2x3 that is
connected to the original Cartesian system (Ox̄ 1x̄ 2x̄ 3 ≡ Oxyz) via

x̄ 1 = x̄ 1(x1,x2), (1)

x̄ 2 = x̄ 2(x1,x2), (2)

x̄ 3 = x3. (3)

Since our goal is to develop adaptive spatial resolution (ASR) within the lateral grating plane,
we have restricted the coordinate transformation (1)-(3) accordingly and further require that
the transformation retains the periodicity in the lateral plane with periodicities d1 and d2 in x̄ 1-
and x̄ 2-direction, respectively. The contravariant metric tensor associated with these curvilinear
coordinates is defined as

gkl =
3

∑
n=1

∂xk

∂ x̄ n

∂xl

∂ x̄ n . (4)

As a consequence, we obtain the covariant form of Maxwell’s curl equations for our material
distribution as

ξ klm∂lEm = ik0
√

ggklHl , (5)

ξ klm∂lHm = −ik0ε̄
√

ggklEl . (6)

Here, Em and Hm denote, respectively, the covariant electric and magnetic field components
and we have introduced the vacuum wave number k0 = ω/c. Furthermore, g represents the
reciprocal of the determinant of the metric tensor (4), ξ is the (totally antisymmetric) Levi-
Civita tensor, and ∂l is an abbreviation for ∂/∂xl .

In the above equations, (5) and (6), we can identify effective anisotropic permittivity and
permeability tensors

εkl = ε̄
√

ggkl , (7)

μkl =
√

ggkl , (8)

that have been induced by the curvilinear coordinates. This permits us to utilize Maxwell’s
equations for anisotropic materials with principal axis along the x̄ 3-direction for which the
application of FMM (including the use of Fourier factorization rules) has been described by
Li [23].

Since we apply the coordinate transformation throughout the entire system, we can in all
three regions expand each of the electric or magnetic field components in the x1x2-plane into a
Floquet-Fourier series

Fσ (x
1,x2,x3) = ∑

m,n
fσmn(x

3)exp
(
iαmx1 + iβnx2) . (9)

Here, Fσ (F =E,H and σ = 1,2,3) stands for any field component with corresponding Floquet-
Fourier coefficients fσmn and we have introduced the abbreviation αm = kin sinθ cosφ +
m2π/d1 and βn = kin sinθ sinφ + n2π/d2. In an actual computation the sum over reciprocal
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lattice vectors in (9) has to be truncated m,n = 0,±1,±2, .. so that in total N Floquet-Fourier
coefficients have to be determined by solving Maxwell’s equations in Fourier space. In general,
we select those N reciprocal lattice vectors (m2π/d1,n2π/d2) that lie closest to the origin in
reciprocal space. This allows for the most flexible representation of an arbitrary material dis-
tribution inside the unit cell. Different choices would be possible for special geometries in the
unit cell. However, our (rather extensive) experience indicates that this leads to only marginal
improvements in the convergence rates.

When transforming the permittivity and permeability tensor into Fourier space, special care
has to be exerted so as to respect the correct Fourier factorization rules. As a matter of fact,
several choices are possible and we apply the symmetrized form defined in section 5 of Ref.
[23]. Explicitly, this reads

ε̂ = (L1L2(ε)+L2L1(ε))/2. (10)

Using this formula (see Ref. [23]), we can compute the Toeplitz matrices for εkl and μkl for
the general case of general curvilinear coordinate transformations. Although we consider only
isotropic materials, a general coordinate transformation will, in the transformed space, induce
effective anisotropic material properties (transformation optics).

Owing to the homogeneity along the propagation direction in each region, we employ a plane
wave Ansatz for x3-dependence

fσmn(x
3) = fσmn exp

(
ik3x3) . (11)

As a result, we are able to set up an eigenvalue problem for the propagation constant q in each
region. The resulting eigenvectors are the eigenmodes in the respective region and are used as
an expansion basis for the field components. The expansions in the different regions are con-
nected in curvilinear space by a scattering matrix formalism [24] that essentially ensures the
continuity of the tangential fields when moving from one region to the next. As a result, we
obtain a scattering matrix for the complete system. What remains is a back-transformation to
the original Cartesian coordinate system in order to determine reflectance and transmittance
coefficients into the appropriate Bragg orders. In the Cartesian system, the incoming and out-
going regions can be solved by a simple Rayleigh expansion as described in Ref. [10]. In order
to determine properly the reflectance and transmittance in degenerate diffraction orders, we re-
place the numerically calculated propagating eigenmodes by the exact Rayleigh solution in the
Cartesian system which are then transformed into curvilinear space [25].

3. Generation of adaptive coordinates

As discussed in section 1, the perhaps most important point in the FMM with ASR is to find
a suitable coordinate transformation which significantly increases the convergence. Good re-
sults are expected for coordinate transformations that increase the point density at the material
interfaces and lead to coordinate lines that are well aligned so as to faithfully represent the
structural details by way of the Fourier factorisation rules. Significant progress in this direction
has been achieved [15, 17], however an automated generation of such coordinates has yet to be
demonstrated.

In order to automatically generate appropriate coordinate transformations we follow Ref.
[20] where a method to generate coordinate transformations for two-dimensional photonic
bandstructure calculations has been presented and adopt this approach to our situation.

The fact that any suitable coordinate transformation has to respect the periodicity within the
lateral plane suggests a representation of the transformation via a Fourier series

x̄ 1(x1,x2) = x1 +∑
m,n

x1
mn exp

(
im2π/d1x1 + in2π/d2x2) , (12)
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x̄ 2(x1,x2) = x2 +∑
m,n

x2
mn exp

(
im2π/d1x1 + in2π/d2x2) . (13)

For actual computations, the summation over the reciprocal lattice vectors has to be truncated
to a total number of M plane waves, giving a total number of 2M expansion coefficients, i.e., M
coefficients x1

mn and M coefficients x2
mn where m, n = 0,±1,±2, .... We aim at the most flexible,

i.e., the most symmetric representation of the transformation since this can be adapted best
to general material distributions within the unit cell. Therefore, we construct this plane-wave
representation by selecting the M reciprocal lattice vectors

(
m2π/d1x1,n2π/d2x2

)
to be those

that lie within a circle around the origin in reciprocal space. In general, the coefficients x1
mn and

x2
mn are complex numbers but we require purely real coordinate transformations. As a result,

we have to determine 2M free parameters.
The natural procedure for determining the expansion coefficients is to setup a fictitious en-

ergy functional that, upon minimization with respect to these coefficients, implements certain
desirable features of the transformation [20, 21]. We employ a specific form of the fictitious
energy functional

E =

∫
dx1dx2 (Ec(x

1,x2)+Es(x
1,x2)+Eg(x

1,x2)+Et(x
1,x2)

)
, (14)

which is determined by integrating several contributions over the unit cell of the system. Here,
Ec and Es represent, respectively, compression and shear energy [21]. These two energy terms
depend on the covariant metric tensor via principle invariants such as the determinant (det) and
trace (tr). They exhibit a restoring character and try to pull back the coordinates to their original
form within the Cartesian frame.

Explicitly, compression and shear energy read as

Ec(x
1,x2) = ηc det(gmn) , (15)

Es(x
1,x2) = ηs tr(gmn) . (16)

In these expressions, the adjustable constants ηc and ηs control the relative strength of these
two energy terms within the functional. Similar to the work of Pearce et al. [20], we find that
our results do not depend on using either one of the terms or both simultaneously. Thus, we do
not use the shear energy and set ηs = 0.

The second set of energy terms, Eg and Et, are responsible for adapting the coordinates to
the geometry of the material profile contained in the unit cell as described by the permittiv-
ity distribution ε(x1,x2). For the subsequent discussion, we assume that we are dealing with
a binary grating, i.e., that we have two constituent materials within the unit cell, a host mate-
rial matrix in which certain patches of a guest material are embedded. Since our curvilinear
coordinates should faithfully represent the structural details without reference to the actual per-
mittivity values of the host and guest material, we characterize the structural information via
the function S(x1,x2). This functions takes the values 0 or 1 for points (x1,x2) that, respec-
tively, lie in the host or guest material regions. Since the gradient of S(x1,x2) is ill-defined at
step-like material interfaces, we apply a Gaussian smoothing to the structure function S(x1,x2).
This smoothing is performed in Fourier space by multiplying the Fourier coefficients of the
permittivity distribution with a Gaussian (filter) function. As a result, the smoothed structure
function Ssm(x̄ 1, x̄ 2) in real space is

Ssm(x̄
1, x̄ 2) = ∑

p,q
Ssm,pqeip2π/d1x̄ 1+iq2π/d2x̄ 2

, (17)

where we have introduced the smoothing width ws and the smoothed Fourier coefficients

Ssm,pq = exp
(−((2π/d1 p)2 +(2π/d2q)2)/2w2

s

)
Spq (18)
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0

max

Fig. 2. Illustration of the gradient of a smoothed structure function (ws = 25) for a circular-
shaped patch (radius r) of guest material in the center of a quadratic unit cell (r/d1 = r/d2 =
0.25): Panel (a) displays the gradient field and panel (b) shows the relative magnitude of
the gradient vectors with better spatial resolution.

that are obtained from the Fourier coefficients Spq of the structure function S(x1,x2). As a result,
the gradient of the smoothed structure function yields a vector field whose vectors are locally
normal to the material interfaces in a vicinity of the interface and accept their largest magnitude
directly at the interface. In Fig. 2, we display this vector field for a single circular patch of a
guest material that lies at the center of a quadratic unit cell.

After this preprocessing step (which would be absent for a continuously varying material
distribution), we can now define an energy term Eg that tends to distort coordinate lines in such
a way that their density is increased in regions with large gradients of the structure function.
This term has been discussed in Ref. [20] and reads

Eg(x
1,x2) =−|�∇εs

[
x̄ 1(x1,x2), x̄ 2(x1,x2)

] |. (19)

We would like to emphasize that this contribution to the ficticious energy functional does not
carry a weighting factor. As a result, the weighting factors for the compression and shear con-
tributions, ηc and ηs, as introduced above (see (15) and (16)) as well as the weighting factor
ηt of the tangential contribution to be introduced below (see (20)) weight these contributions
relative to the gradient contribution (19).

Furthermore and as discussed above, we also want to exploit the fact that the gradient vec-
tors in the vicinity of material interfaces are (locally) oriented normal to material interfaces.
These normal vectors have been utilized in Ref. [22] in order to improve the application of
the appropriate Fourier factorization rules for field components that are tangential resp. normal
to the material interfaces. In our formulation, we can take this into account via an additional
contribution Et that lowers the fictitious energy (see Eq. 14) when one of the coordinate lines
of the transformation (locally) runs parallel to the material interfaces. Explicitly, the tangent
vectors along the coordinate lines are given by the covariant basis vectors b1 = ( ∂ x̄ 1

∂x1 ,
∂ x̄ 2

∂x1 ) and

b2 = ( ∂ x̄ 1

∂x2 ,
∂ x̄ 2

∂x2 ), so that the scalar product between these covariant basis vectors and the gra-
dient vector of the structure function is a direct measure of (local) parallelism of the coordinate
lines relative to the material interface. Consequently, we have augmented the fictitious energy
functional of Ref. [20] by

Et(x
1,x2) = ηt

(
|�∇εs ·b1|2 + |�∇εs ·b2|2

)
. (20)
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To perform the minimization of this fictitious energy functional (see Eq. 14) we employ a
conjugate gradient algorithm (Fletcher-Reeves), which is implemented in the gnu scientific li-
brary (gsl) [26]. The integral in the energy functional is solved by summing over a sufficiently
fine discretized equidistant grid in (x̄ 1, x̄ 2)-space. Specifically, we choose the number of grid
points within the unit cell such that (i) sufficient oversampling relative to the Fourier repre-
sentation of the coordinate transformation is achieved and (ii) that the structural features are
adequately resolved. For the results shown in this paper, we typically use a grid of 200× 200
points and have checked that a finer discretization in transformed space does not change the
numerical results. In order to reduce the computational complexity, we enforce the symmetry
of the system onto the coordinate transformation Eq. 12 and Eq. 13 whenever possible.

4. Performance characteristics

To demonstrate the improved performance of the FMM with the automatically generated ASR,
we analyze certain test systems for which reference solutions can be constructed via the ASR
methods described in Refs. [15, 17]. All test systems consist of a glass substrate with permit-
tivity ε = 2.25 and an air superstrate (ε = 1) that both occupy a half space. On the substrate,
we deposit a single layer of periodically placed cylinders with height h and a certain cross-
section which we call the motif. These patches are arranged into a square lattice such that the
quadratic unit cell exhibits side lengths d1 = d2 = 1000 nm (see Fig. 1 (a)). The description of
these patches of guest material is completed by specificying the material’s dielectric constant
ε . Further, we assume that host material is air so that we describe a typical monolayer of meta-
materials [1] and other periodically structured surfaces [2, 3]. In our subsequent computations,
we restrict ourselves to the case where these systems are normally illuminated from the air side
by an incident plane wave with frequency ω and polarization ê. Oblique illumination is equally
possible but the corresponding results do not provide any further insight to the workings of
ASR within FMM.

Loosely speaking, there are two limiting cases of motifs which have been analyzed with the
earlier ASR approaches: For completely grid-aligned motifs analytical coordinate transforma-
tions that consist of products of two one-dimensional transformations can be utilized [16, 17].
As a representative case for this class, we chose a simple square-shaped motif (corresponding to
a square-disk-shaped patch of guest material with square cross-section) that is centered within
the unit cell. The second, in some sense complementary case, is that of a perfectly round motif
and we use a circle that is centered within the unit cell as a representative case (correspond-
ing to a circular-disk-shaped patch of guest material). For this case, too, analytical coordinate
transforms are available [17]. Furthermore, these two limiting cases also allow to test the char-
acteristics of standard FMM: In the grid aligned case, full use of the Fourier factorization rules
can be made whereas in the round case, the Fourier factorization rules will be of limited use
since the Cartesian coordinate lines are, in general, not normal to the material interface and an
effective stair-cased representation of the circular motif is realized (see discussion in section
1). Finally, we will carry out these test calculations for dielectric (ε = 12) and metallic objects.
In the latter case, we use a Drude model with parameters that reasonably well describe gold
within the relevant frequency range (plasma frequency ωp = 1.3544× 1016 1/s and collision
frequency ωcol = 1.1536×1014 1/s; see Ref. [27] for details).

4.1. Square disk

As a first test system, we consider an array of square disks (height h = 50 nm, square motif
with side length w = 500 nm; see Fig. 3) so that the disks are perfectly aligned to the Cartesian
coordinate lines. As a result, this system exhibits rather good convergence within standard
FMM [10]. An analytical coordinate transformation is easily found by using a factorization of
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Fig. 3. (a) Schematic top view of the square-disk test structure and (b) automatically gen-
erated ASR via Eq. 14. See text for details.

the coordinate transformation into two one-dimensional transformations as described in Ref.
[16]. In particular, we apply as one-dimensional transformation the same as used in Ref. [15]
with parameter G = 0.001.

Our automatically generated ASR mesh for this structure is depicted in Fig. 3. This mesh has
been generated with M = 97 plane wave coefficients, a smoothing width ws = 400, and relative
weights of the energy terms ηc = 0.1, ηs = 0, and ηt = 0.1. The C4v symmetry of the structure
has been enforced in the minimization process. For further comparison, we have also generated
a mesh with the tangential energy term switched off, i.e., with ηc = 0.1, ηs = 0, and ηt = 0 (not
shown). This structure is normally illuminated by a plane wave with vacuum wavelength λ and
linear polarization along the system’s y-axis.

First, we check the convergence of the propagation constants (wave vectors in propagation
direction) for a dielectric guest material with dielectric constant ε = 12. The total resolution
of the structure in real space is given on a 1024× 1024 point grid. Table 1 shows our results
on the convergence of the largest real-valued propagation constant q for standard FMM [10]
and the three different ASR approaches (one analytical and two numerical transformations as
described above) combined with FMM. More precisely, the analytical ASR and the numerical
ASR with tangential energy term are identical up to the sixth significant digit, whereas the
numerical ASR without tangential energy term exhibits a slightly worse convergence behavior.
Even for this dielectric system, the calculation with standard FMM, i.e., without ASR, is not
converged for the numbers N of plane waves that we have considered in this example.

Since we expect worse convergence characteristics for metallic structures, we have calcu-
lated the transmittance spectra of the same structure and have replaced the square dielectric
disks by square metallic disks of the same dimension that are made from gold. In Fig. 4 (a),
we display the corresponding transmittance spectra into the zeroth diffraction order for the four
different approaches described above. All spectra have been calculated with N = 317 Fourier
coefficients and, at first sight, rather good agreement between the different approaches is ob-
tained. Nevertheless, we have examined the convergence characteristics of the system more
carefully at the particle plasmon resonance of the square disk near λ = 1600 nm. In Fig. 4 (b),
we display the convergence of the transmittance values into the zeroth diffraction order as a
function of the number of plane waves N. The best convergence is reached for the analytical
ASR, closely followed by the numerical ASR with tangential energy term. Based on this, we
can draw the conclusion that grid-aligned structures can be treated rather satisfactorily within
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Table 1. Convergence of first propagation constant k3d1 (see Eq. (11) for a square array of
square dielectric disks (ε = 12) as a function of the number of plane waves (modes). The
results for the largest purely real eigenvalue at λ = 1600nm are shown. The eigenvalues,
which are normalized to the lattice constant d1, have been calculated with standard FMM
(Li), with analytical ASR (analytical), and numerically determined ASR via (i) minimiza-
tion with tangential energy term (minT, Fig. 3 (b)) and (ii) without this (min). See the text
for details about the system setup

Modes N Li analytical minT min

81 11.10136637 11.13011854 10.94312509 10.92452339
149 11.12409750 11.14779821 11.11683144 11.11483733
253 11.13158052 11.14818684 11.14632990 11.14585998
377 11.13469796 11.14817728 11.14808488 11.14784958
529 11.13621747 11.14817722 11.14813399 11.14797708
709 11.13704113 11.14817476 11.14813736 11.14800343
901 11.13752691 11.14817457 11.14814216 11.14803617
1129 11.13783207 11.14817429 11.14814738 11.14805258

Fig. 4. Transmittance spectra (a) and convergence characteristics (b) for a square array of
square gold disks. The computations have been carried out within standard FMM and three
different ASR approaches within FMM: (a) Transmittance into the zeroth diffraction order
within standard FMM (blue solid line), analytical ASR (green dashed line), numerical ASR
with tangential term (red dash-dotted line), and numerical ASR without tangential term
(dotted, cyan) using N = 317 plane waves; (b) Convergence characteristics for the trans-
mittance into the zeroth diffraction order with ε = -122.03+12.85i (gold at λ = 1600nm)
for standard FMM (blue open circles), analytical ASR (green open square), numerical ASR
with tangential energy term (red open triangles), and numerical ASR without tangential
term (cyan open diamonds).

standard FMM, i.e., without ASR. Even in this case, the use of ASR – be it analytical or nu-
merical – within FMM provides a rather welcome convergence acceleration relative to standard
FMM. Based on the inner workings of standard FMM (see section 1), we expect a significantly
different behavior for the case of structures that are not grid aligned, so that in the next section,
we turn to the analysis of such structures.
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4.2. Circular disk

As second example, we consider a square array of circular metallic disks with height h = 50
nm and radius r = 500 nm (see Fig. 5 (a)). In order to generate the numerical ASR, we employ
a reduced smoothing width ws = 200 that accounts for the fact that the circular motif within
the lateral plane does, in contrast to the square motif discussed in section 4.1, not exhibit any
sharp corners. The corresponding parameters for the energy functional are kept the same, i.e.,
we use ηc = 0.1, ηs = 0, ηt = 0.1, employ M = 97 coefficients to describe the coordinate
transformation, and enforce the C4v-symmetry of the structure. We depict the resulting ASR
in Fig. 5 (b). This numerically generated ASR exhibits a certain degree of similarity with the
analytical ASR that has been described in Ref. [17]. For convergence studies we have applied
the approach of Ref. [17] in order to align the coordinate lines with the circular structure and
map the circle onto a square. In a second step, we use the coordinate transformation described
in Ref. [15] (with parameter G = 0.01) in order to increase the spatial resolution near material
interfaces. The resulting meshes look similar to those shown in Ref. [17].

In Fig. 6, we depict the spectra for transmittance into the zeroth diffraction order of such a

Fig. 5. (a) Schematic top view of the circular disk structure and (b) automatically generated
ASR via Eq. 14. See text for details.

Fig. 6. Transmittance spectra into the zeroth diffraction order for a square array of circular
disks disks. The computations have been carried out within standard FMM (blue solid line)
with N = 1257 plane waves, analytical ASR within FMM (green dashed line) with N = 317
plane waves, and numerical ASR within FMM (red dash-dotted line) with N = 317 plane
waves.
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square array of circular metallic disks (ε = -110.9 + 11.24i; corresponding to gold at λ = 1530
nm) that have been obtained within standard FMM (N = 1257 plane wave), analytical ASR
within FMM (N = 317 plane waves), and numerical ASR within FMM with tangential energy
term (see Fig. 5 (b); N = 317 plane waves). The spectra of both ASR approaches agree well
and – as we will demonstrate below – are essentially converged to within 5 significant digits
even for as few as N = 317 plane waves. In contrast, standard FMM is far from convergence
even if as many as N = 1257 plane waves are employed.

In analogy to the square-disk case, we have examined the details of the convergence char-
acteristics at the particle plasmon resonance, λ = 1530nm. In Fig. 7 (a), we display the con-
vergence behavior for the transmittance into the zeroth diffraction order as a function of the
number N of plane waves. Clearly, both the analytical and the numerical ASR converge to the
same value and N = 317 is sufficient to obtain convergence to within 5 significant digits. The
results for standard FMM show a rather poor convergence. To further illustrate this, we have
implemented the symmetry reduction technique for standard FMM described in Ref. [28] that
– for given computational resources and normal incidence – allows us to push the number of
plane waves significantly higher.

We display the corresponding results in Fig. 7 (b). Clearly, while the results for standard
FMM start to approach the results for the ASR-based computations, there still are rather signif-
icant deviations even for the outrageously large number of N = 23993 plane waves.

Fig. 7. Convergence characteristics of the transmittance into the zeroth transmittance order
for a square array of cicular metallic disks (ε = -110.9 + 11.24i; gold at λ = 1530 nm). The
computations have been carried out using standard FMM (blue open circles), analytical
ASR (green open squares), and numerical ASR within FMM (red open triangles). The
results depicted in panel (b) represent a close up of the results shown in panel (a). See text
for details.

These results suggest that ASR, either in analytical or numerical form, is an absolute must
for the accurate determination of the optical properties of non-grid-aligned metallic structures.
In the subsequent section, we will, therefore, apply our numerical ASR technique to analyze a
realistic system that consists of a square array of crescent-shaped metallic nano-particles. These
and similar systems can been fabricated via shadow lithography and are thus of considerable
interest [29–31]. To the best of our knowledge, analytic ASR results for these systems have not
been published to date.

5. Realistic system

As a final illustration of our numerical ASR within FMM, we apply the approach to a square
array of crescent-shaped optical antennas [29–31]. These structures lend themselves to a micro-
fabrication approach based on colloidal templating and exhibit multiple plasmon resonances
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Fig. 8. (a) Schematic top view of the crescent-shape nano-antennas and (b) automatically
generated ASR via Eq. 14. See text for details.

at visible and near infrared frequencies that may be exploited for applications ranging from
surface enhanced Raman scattering (SERS) all the way to metamaterials. In Fig. 8 we provide
a schematic of the lateral cross section and our numerical ASR for the specific value of the
lateral width w = 500 nm and lateral thickness of t = 200 nm. In order to faithfully reproduce
the actual experimental realizations we have added corner roundings, each with radius of 10nm,
at the two tips. As for the previous structures, the height of the crescents is h = 50 nm and they
are situated on a glass substrate.

For such situations with geometric features of different length scales and orientations, both
the compression energy and tangential energy terms in Eq. 14 become more important. More
precisely, the strong gradients near the tips tend to produce too high concentrations of points
there relative to other areas of the crescent. This has to be counteracted by increasing the rela-
tive strength of the compression term. In addition, the large curvature near the almost semi-
circularly shaped tips suggests that the coordinate lines should be very well adapted to the local

Fig. 9. Transmittance spectrum into the zeroth diffraction order for a square array of gold
crescents that have been computed within standard FMM (blue solid line), numerical ASR
with tangential term (red dash-dotted line) and numerical ASR without tangential term
(cyan dashed line). The calculations have been carried out for y-polarized excitation (curves
with pronounced resonances near λ ≈ 1900 nm) as well as for x-polarized excitations
(curves with pronounced resonances near λ ≈ 1100 nm).

#132335 - $15.00 USD Received 27 Jul 2010; revised 10 Sep 2010; accepted 13 Sep 2010; published 20 Oct 2010
(C) 2010 OSA 25 October 2010 / Vol. 18,  No. 22 / OPTICS EXPRESS  23271



Fig. 10. Convergence characteristics of the transmittance into the zeroth transmittance or-
der for a square array of metallic crescents made from gold. The computations have been
carried out using standard FMM (blue open circles), numerical ASR with tangential en-
ergy term (red open triangles), and numerical ASR without tangential term (cyan open
diamond) within FMM. Panel (a) depicts the case of y-polarized excitation at λ = 1900
nm with ε = −175.08+ 21.43i (gold at λ = 1900 nm) and panel (b) depicts the case of
x-polarized excitation at λ = 1100 nm with ε =−53.21+4.20i (gold at λ = 1100 nm).

geometry, thus calling for an increased relative weight of the tangential energy term. Conse-
quently, we have generated the ASR depicted in Fig. 8 (b) with the same smoothing width
ws = 200 and the same number M = 97 of Fourier coefficients as before but have used different
relative weights of the energy terms according to ηc = 0.2, ηs = 0, and ηt = 0.2 and enforce
the mirror symmetry of the structure. Here, we choose different weights as in section 4 since
the crescent shape has smaller features and thus the weights have to be larger as otherwise the
gradient contribution would become too large at these points. In turn, this would lead to an
absurdly large point density at that same grid position.

Since we have no analytical meshes for comparing our results, we generate a second nu-
merical mesh for comparison, this time without tangential energy term using the parameters
ws = 200, ηc = 0.2, ηs = 0, and ηt = 0 (not shown).

In Fig. 9, we depict the transmittance spectra into the zeroth diffraction order for x- and
y-polarized illumination by normally incident plane waves. Similar to the case of the circular
disk array, standard FMM with N = 1257 reciprocal lattice vectors is not converged while the
computations that utilize numerical ASR within FMM require only N = 317 reciprocal lattice
vectors to achieve well converged results (see also Fig. 10). A comparison of these spectra
with the corresponding spectra of U-shape nano-particles (see Ref. [1]) reveals that there exists
a close similarity between the two systems. Specifically, for the crescent array the so-called
electric resonance under x-polarized excitation is located at λ = 1100 nm (see also Fig. 11 (b))
while the so-called magnetic resonance under y-polarized excitation is located at λ = 1900 nm
(see also Fig. 11 (a)). These resonances as well as Rayleigh anomalies due to the periodicity of
the array are clearly observed in the numerical ASR within FMM results.

As before, we carefully check the convergence of the different methods for wavelengths near
these resonances and display the corresponding results in Fig. 10. Loosely speaking, we obtain
essentially the same convergence characteristics of standard FMM and numerical ASR within
FMM as in the case of the circular disk array.

One of the major advantages of ASR is the increased resolution near the two tips of the
crescent. This becomes particularly useful when the field distributions in the structure have to be
determined, for instance, in order to assess the structure’s usefulness regarding applications as a
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Fig. 11. Magnitude of the electric field enhancement for a square array of gold crescent-
shaped nano-particles. Panel (a) depicts the field enhancement at the magnetic resonance
at λ = 1900nm (y-polarized excitation) and panel (b) depicts the field enhancement at the
electric resonance at λ = 1100nm (x-polarized excitation).

SERS substrate or other nonlinear optical phenomena. The electromagnetic fields can be directy
computed in the curvilinear coordinate system provided by ASR so that the resulting high
spatial resolution near material interfaces in the Cartesian coordinate frame directly translates
into well-resolved fields. We have calculated the electric fields at the so-called magnetic and
electric resonances using the numerical ASR within FMM with N = 1257 reciprocal lattice
vectors. A comparison with results for different numbers of plane waves yields that these field
values are within 5% of the converged results. The corresponding enhancement of the electric
field in a plane 25 nm above the glas substrate, i.e., halfway through the metal film that is 50 nm
high, are shown in Fig. 11 (a) and (b), respectively. The field enhancement at the tips is clearly
visible and the field distributions of these modes are rather similar those of their counterparts
at the electric and magnetic resonances of U-shaped nanoparticles [1].

6. Conclusion

In summary, we have applied Li’s anisotropic formulation of the standard FMM to Maxwell’s
equations in curvilinear coordinates for the realization of ASR. For a given periodic structure,
i.e., lattice type and shape of the object within the unit cell), the curvilinear coordinates are
automatically generated through the minimization of an appropriate fictitious energy functional
in such a way that (i) the point density near material interfaces is increased and (ii) one of the
coordinate lines is (locally) aligned parallel relative to the material boundary that is provided by
the local shape of the object. While an energy functional that incorporates the former aspect has
been used in the context of bandstructure computations before [20], our additional tangential
energy term incorporates the latter aspect and this becomes particularly important for complex
geometric features such as the array of metallic crescents which we have considered in this
work.

For simple test structures where analytical meshes are available, we have compared our nu-
merical ASR approach with corresponding computations for analytical ASR and have found
very good agreement. In essence, standard FMM (without ASR) works reasonably well for
grid-aligned dielectric and metallic structures but even in these cases ASR provides consider-
able convergence acceleration. For non-grid-aligned structures, standard FMM can still be used
for dielectric systems (albeit with significantly increased computational effort), but for metallic
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structures ASR either in analytical or numerical form becomes an absolute must.
In order to demonstrate the versatility of our approach, we have computed the optical prop-

erties of a rather complex structure, i.e., a square array of gold crescents [29, 30], for which no
analytical ASR exists to date and which exhibits complex geometric features on different scales
without grid alignment. Our numerical ASR approach within FMM provides highly accurate
results for transmittance spectra and field enhancements with rather modest computational re-
sources. Our automatized mesh generation can be applied to arbitrarily shaped objects and,
therefore, our approach results in a flexible and efficient tool for the investigation of arrays of
metallic nanoparticles using numerical ASR within FMM.
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