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Abstract 

A thermohydrolysis of titanium compounds solutions is a widely used method for 

titania-based nanomaterials preparation. The relationship between properties and 

synthetic conditions of such materials is derived from the nature of processes 

occurring in solution during the material formation. In the present paper, new insights 

on titania nanoparticles formation by thermohydrolysis of TiCl4 water solution are 

given based on a joint study by SAXS, DLS and TEM techniques. The key stage was 

supposed to rely on a bonding rearrangement process inside an inorganic polymer 

causing a crystalline phase formation characterized by 3-4 nm gyration radii 

according to SAXS. The model of TiCl4 thermohydrolysis describing the whole 

process of the TiO2 nanoparticles formation was supposed. The presence of several 
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distinct steps allows one to control phase composition and morphology of the final 

nanoparticles of titania opening up the possibility to vary their functional properties. 

 

Keywords 

Nanomaterials, TiO2, TiCl4, thermohydrolysis, Small-Angle X-Ray Scattering 

Introduction 

Nowadays titania seems to be one of the most industrially demanded materials 

widely used as a white pigment, photocatalyst for water and air purification, 

photosplitting and a semiconductor for solar cells1,2,3,4. Titania crystalline structure, 

morphology and size are known to be crucial for its practical applications. Therefore 

formation mechanism studies and new preparation methods development become 

drastically important5. Among the known approaches of TiO2
-based material 

preparation, hydrolysis of different titanium derivatives like titanium complexes, 

halogenides or alkoxides compounds allows to obtain unique materials with various 

morphologies and phase compositions predetermining demanded physical 

characteristics. Nearly single-sized titania microspheres with a given mean diameter 

could be synthesized via hydrolysis of titanium alkoxides in different organic 

solvents6,7, hydrothermal treatment of TiCl3 water solution in the presence of FeCl2
8 

or aging tetrabutyl titanate in an ethylene glycol-acetone mixture. Also a uniform 

rodlike rutile TiO2 nanocrystals9, mesoporous titania spheres with chamber-like 

structure10, nanocrystalline TiO2 powders11, monodispersed titania microspheres, 

composed of densely packed radially aligned rutile nanorods12 were synthesized via 

Ti-derivatives hydrolysis under different preparation conditions.  

Titanium tetrachloride remains the most important Ti precursor for TiO2 production by 

gas-phase oxidation13 or liquid-phase hydrolysis14,15,16,17,18,19,20,21. At the same time, a 

few possible hydrolysis mechanisms were suggested only on the ground of 
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 3

correlation between products properties and preparative routes20,21,22,23, computer 

simulation24 and by using dynamic light scattering (DLS) and transmission electron 

microscopy (TEM) 25 or small angle X-ray scattering (SAXS)26.  

In this article we present an in-depth investigation of major stages of 

thermohydrolysis of acid aqueous TiCl4 solutions by a combined study of small angle 

X-ray scattering (SAXS), dynamic light scattering (DLS) and transmission electron 

microscopy (TEM) techniques, assisted by the pH-measurements in situ. The results 

demonstrate several new features and suggest a possible mechanism for formation 

of titanium dioxide that can help to understand the difference in morphology and 

functional properties of related materials depending on synthesis route. 

 

Theory 

The X-ray scattering intensity was experimentally determined as a function of the 

scattering vector q whose modulus is given by )
2

sin(
4 ϕ
λ
π







=q , where λ is the 

wavelength of the incident radiation and φ is the scattering angle. 

The scattering intensity I(q) of aggregates is defined by 

)()(
)0(

)( qSqP
IV

N
qI

op

p=      (1) 

where Np and Vp are number of particles and particle volume, respectively27,28. P(q) is 

the form - factor normalized by I0(0) 

 

)0(/)()( oIqIqP = .      (2) 

 

The structure factor S(q) describes the interactions between particles. Typical 

structure factors for fractal aggregates with a mass fractal dimension Dmf can be 
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 4

estimated as S(q) ~ (qRG)-Dmf, where RG is the radius of gyration28. The mass fractal 

dimension Dmf, the primary particles' radius of gyration RG and the particle surface 

are the most important characteristics of agglomerates.  

The scattering curves of aggregates in a dual logarithmic scale consist of three linear 

segments. The first one is the Guinier regime omitted for our camera due to the 

limited scattering vector range. Two experimentally detected linear segments are the 

Power law and the Porod law regime intersecting in a transition point. The slope in 

the Power Law segment has been related to the mass fractal dimension of the 

aggregate Dmf 28. For the second observed linear segment the slope, P, in the Porod 

Law region has been related to the surface fractal dimension Dsf: P = 6-Dsf 29. The 

position of the transition between the Power and Porod Law regimes reflects the 

mean particle size: the radius of gyration of primary particles can be estimated from 

the transition point using the Guinier relation30: 

)
3

exp()0()(

22

GRqIqI −=      (3) 

 

Experimental 

TiCl4 solutions were prepared by dropwise addition of pure TiCl4 (Fluka, >99.0%, 

(AT)) to a hydrochloric acid (0.6 mol/L) at ~0°C under constant stirring. The final [Ti4+] 

concentration in the prepared solution was about 0.3 mol/L. A solution with [Ti] = 

0.012 mol/L was prepared by diluting the concentrated acidic TiCl4 solution with 

distilled water.  

Thermohydrolysis was performed in a 500 mL three-neck-flask at two different 

temperatures, 80oC and 90oC. Reaction was carried out under reflux condition and 

air atmosphere. The solution was heated in a water bath under constant stirring for 

six hours. The measurement of the reaction time was started when the flask was 
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 5

immersed into the water bath. The temperature and pH values of the hydrolyzing 

solution were measured by a pH-meter (pH/Cond 340i, WTW GmbH, Germany) 

using a glass electrode equipped with a thermocouple. After the beginning of 

thermohydrolysis, 5 mL volume samples were taken by a pipette within a time period 

between 5 and 300 min. The samples were placed in 10 mL glass vials and quickly 

cooled down to ambient temperature under running water.  

To perform an XRD analysis, the solution obtained after thermohydrolysis was 

sprayed into liquid nitrogen and then freeze-dried in aluminium pan at p=0.15 mbar 

and Tsh=-30÷20oC for 48 h. Sample powders were examined using Rigaku D/MAX 

2500 (Japan) with a rotating copper anode (CuKα irradiation, 5 – 90o 2θ range, 0.02o 

step). Diffraction maxima were indexed using the PDF-2 database. 

Dynamic Light Scattering experiments were performed with a Zetasizer Nano ZS 

(Malvern Instruments) setup equipped with a helium-neon laser (λ = 632.8 nm, 4 mW 

power) and a thermoelectric temperature controller. Measurements were taken at the 

90° scattering angle in a 3×3-mm quartz cuvette. Each sample was measured three 

times and the particle size (hydrodynamic diameter) was averaged.  

SAXS experiments were conducted with a modified Kratky camera in the range of 0.1 

≤ q ≤ 1.2 nm–1. The camera was equipped with a copper anode (X-ray tube KFL Cu, 

line focus 0.4 × 12 mm, Siemens, X-ray generator Kristalloflex 760 Bruker AXS), a 

Göbel mirror, a slit collimator and an image plate detector. Due to the finite dimension 

of the primary beam, the scattering data had to be slit length and slit width 

desmeared. The samples were placed in a quartz capillary of 1 mm diameter and 

wall thickness of < 30 µm. The software IgorPro version 4.00 (WaveMetrics, Lake 

Oswego, OR, USA) containing the Irena 1 SAS macro was used for the evaluation of 

the radius of gyration and the slopes of the different scattering regimes.  
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 6

TEM images were acquired using a Philips CM 12 microscope operating at 120 kV. 

For these measurements, carbon-coated grids were briefly dipped into the sample 

and dried under atmospheric pressure. 

 

Results  

The final phase composition of the obtained nanoparticles was investigated by XRD 

(Figure 1) using the powder originated from freeze-dried solution. All the peaks were 

found to correspond to anatase (A) except some impurity of aluminum chloride 

hexahydrate (*) ([21-1272] and [73-301] cards of PDF-2 data base, respectively), 

formed occasionally from the material of aluminium pan. This conventional finding is 

the result of multiple stages of transformation of the system under thermal hydrolysis 

conditions as described below. 

 

Fig. 1 

The hydrolysis of TiCl4 has been monitored through the measurement of solution pH 

values during the process. In Figure 2 the temperature dependence of the solution 

pH is shown for two experiments performed at 80oC and 90oC. In both the cases the 

pH value remains approximately constant (~1.4) until the temperature reaches 

~52°C. From that time the pH value starts to decrease gradually due to subsequent 

heating.  
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 7

 

Fig. 2 

The DLS measurements data (Figure 3) show the same qualitative behavior of the 

particle diameters at 80 and 90°C e.a. the diameter increases almost linearly during 

the first hour up to its maximal value and then it decreases gradually in time.  

 

Fig. 3 

TEM images of the samples taken after different reaction time at 90°C are shown in 

Figure 4. The nature of the intermediate products is not a priori known and thus 

morphology evolution would be associated, first of all, to composition changes. In 

these terms, different characteristic morphologies of the particles observed by TEM 

are characteristic of the steps of final crystalline phase formation. After 5 min of 

thermohydrolysis, TEM image shows unshaped structures which amount increases in 

the 10 minutes sample. Elongated structures with a net-like morphology appear in the 
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 8

samples taken after 15 min. After 60 minutes, particle aggregates are seen for the 

first time. The sample taken after 180 minutes shows aggregates of well-shaped 

nanoparticles of about 10 nm in size.  

 

Fig. 4 

The scattering curves of the samples taken at different time of thermohydrolysis are 

plotted in Figure 5a and 5b. Figure 5a shows the scattering curves measured after 

5 min (squares), 10 min (circles) and 15 min (triangles). The scattering curve 

measured after 5 min has one well-shaped transition point at q=0.3 nm-1. The 

intensity of the scattering curve after 10 min is higher than the intensity measured 

after 5 min in the whole q-vector range and has already two transition points (see 

inset in Figure 5a). The first transition point can be found at a smaller scattering 

vector q = 0.27 nm-1 than the curve measured after 5 min of thermohydrolysis. The 

scattering curve after 15 min has also two transitional points. The intensity of the 

scattering curve is the same as after 10 min. The first transitional point is placed at 

the scattering vector q = 0.25 nm-1. The second transition point is more noticeable 

and is located at the same q-vector as after 10 minutes. Scattering curves from the 

samples collected after 30, 45, 60, 120, 180 and 240 minutes are shown in Figure 

5b. The curves have an offset of y = 0.15. After 240 min the scattering curves don’t 

change anymore. Due to the limitation of the scattering vector range, only the second 
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 9

transitional point can be seen in Figure 5b. The mass fractal dimensions Dmf of the 

aggregates and the surface fractal dimensions Dsf of the primary particles in 

dependence on the reaction time are plotted in Figure 5c and 5d. The radii of 

gyration for the second transitional points were estimated with Guinier exponentional 

equation (chapter 3) and are plotted in Figure 6. 

 

Fig.5a 

 

 

Fig. 5b 
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Fig. 5c 

 

Fig. 5d 

 

Fig. 6 
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 11

Discussion 

The anatase formation under the applied preparation conditions (low TiCl4 

concentration and relatively high pH) agrees with the Pottier’s scheme20. TiCl4 exists 

in acid aqueous solutions at ambient temperature and low concentration as 

octahedral hydroxochlorocomplexes like [Ti(OH)aClb(OH2)c]
(4−a−b)+ where a + b + c = 

6, as shown elsewhere31. The values a and b depend on the acidity and the 

concentration of Cl− in the solution31. Consequently, it is very plausible that the 

thermohydrolysis of the complex [Ti(OH)aClb(OH2)6-a-b]
(4-a-b)+ could lead to a 

progressive increase of hydroxylation ratio OH/Ti, from a=1 up to a=4-b (a value 

corresponding to the non-electrically charged complex), and Cl- ligands exchange 

with OH-. Thus the formed octahedral hydroxyl-aqua complex molecules react 

through olation and oxolation processes and form titanium dioxide20. Accordingly, a 

decrease of the solution pH value observed in the beginning of the thermohydrolysis 

is expected during the first stage of process. In our case, the decrease of the pH 

value at ~50oC would mean that the complex [Ti(OH)aClb(OH2)6-a-b]
(4-a-b)+ becomes 

unstable after a certain critical temperature of the solution and Cl- ligands exchange 

with OH-
 of water which leads to octahedral hydroxyl-aqua complex formation and to 

pH decreasing.  

In order to investigate the features of solid matter formed from titanium octahedral 

hydroxyl-aqua complex, DLS measurements were performed to determine the 

hydrodynamic diameter of the particles in solution as described above (Figure 3). 

Such behavior might be explained by a change of particle internal structure during 

the hydrolysis namely the density of the particles aggregates should vary. 

Unfortunately the DLS technique provides information only about an average 

(overestimated) hydrodynamic diameter of the particles and gives no information 

about its internal features. TEM and SAXS were used to clarify the details. 
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 12

The evolution of the particles structure during the process of 90oC - thermohydrolysis 

can be divided into two different stages. The first stage is characterized by the 

formation of nanoparticles with a gyration radius of 6.5 nm in SAXS and 

hydrodynamic diameter 25 nm in DLS. The difference in particle sizes expressed as 

the hydrodynamic diameter from DLS and the diameter calculated from radius of 

gyration obtained by SAXS should be attributed to the distinction between these two 

parameters in application to particle aggregates such as porous unshaped bodies. In 

agreement with TEM data, these nanoparticles were interpreted as clots of inorganic 

polymer, generated in solution by thermohydrolysis of the complex [Ti(OH)aClb(OH2)6-

a-b]
(4-a-b)+. As stated before, the scattering intensity obtained after 10 minutes is higher 

than that after 5 minutes. This was attributed to an increase of the total amount of 

scattering centers in solution and polymeric clots. After 10 minutes of reaction the clot 

radius of gyration determined by SAXS reaches 7 nm. The hydrodynamic diameter in 

the DLS measurements gives 26 nm. The intensity of the scattering curve obtained 

after 15 minutes is the same than the one after 10 min. The clot radius of gyration 

determined from the first transitional point is increased up to 7.5 nm. The second 

transitional point of this curve could be attributed to the pores filled with water inside 

the inorganic polymer. In these terms, the first stage of the process seems to take 

place between 3 and 10 minutes and can be shortly defined as “inorganic polymer” 

formation.  

In the sample taken after 30 min the clot size is too large for the available q-vector 

range but remains detectable by the DLS technique. The hydrodynamic diameter of 

the particles in solution measured with DLS increased up to 87 nm (Figure 3). The 

shape of the scattering curve seems to be typical for nanoparticle aggregates. This 

might be explained by the transformation of the inorganic clots into aggregates of the 

primary nanoparticles. The mass fractal dimension Dmf changes significantly between 
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 13

10 and 60 minutes. After 10 minutes of the synthesis Dmf is ~2.6, which means 

porous solid “particles” while after 60 minutes it is already ~1.6 for 90oC synthesis 

and ~2 for 80oC and corresponds to the aggregates of the particles. At the same time 

the surface fractal dimension of the primary particles Dsf
 increases up to ~2.8 which 

characterizes a very rough diffusion surface. The gyration radius of the primary 

particles increases with the rate ~ 0.04 nm/min and 0.018 nm/min for 90oC and 80oC 

syntheses respectively. Such a behavior can be explained either by the changing in 

the solid matter’s density or by the disintegration of the already formed aggregates. 

After 60 minutes the trend drastically changes since the surface fractal dimension of 

the primary particles Dsf decreases down to 2.2 while the mass fractal dimension Dmf 

remains approximately constant. The growth rate of the primary particles becomes 

slower, ~0.003 nm/min for 90oC synthesis and ~0.001 nm/min for 80oC. This could be 

attributed to the smoothing the primary particles surface within already formed 

aggregates probably due to their faceting.  

 

 

Fig. 7 

All the above mentioned findings are summarized in the following possible 

mechanism of the process shown in Figure 7. By achieving the critical temperature, 

the complex [Ti(OH)aClb(OH2)6-a-b]
(4-a-b)+ becomes unstable and Cl- ligands exchange 

with OH-
,
 which leads to octahedral hydroxyl-aqua complex formation. This stage is 

characterized by the changing of the pH value of the reaction solution. The formed 
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[Ti(OH)x(OH2)y] units start to be interlinked by OH groups via the olation reaction and 

create large inorganic polymers clots detectable by the DLS technique. At a high 

temperature, the oxolation starts and nuclei of an ordered, crystalline, phase appear 

and grow inside the inorganic clots. The appearance of the crystalline nuclei is clearly 

seen by TEM and defines the character of SAXS curves. Water released in the 

condensation reaction accumulates in the pores inside the inorganic polymer and 

forms a porous matter. After certain time, initial necks between the particles collapse 

and aggregates of small primary particles form. This can be clearly seen by the 

decrease of Dmf. A higher temperature of the thermohydrolysis influences the extent 

of inorganic polymers disintegration and leads to the formation of more branched 

aggregates with a lower Dmf
 value. Upon the high temperature the particles crystallize 

and become faceted. Thus the processes of nucleation and growth of titania as a 

final, well – defined crystalline phase are of complex nature being associated with 

consequent transformation of inorganic polymers clots and assemblage of an ordered 

crystalline phase in the course of chemical transformation of the precursors. As a 

consequence, such composition evolution is likely to be associated with the observed 

morphological evolution. 

The model of TiCl4 thermohydrolysis supposed in the present paper describes the 

whole process of the TiO2 nanoparticles formation. In the articles22,32 some parts of 

this process were studied separately, nevertheless the whole process wasn’t clarified 

so far. In particular, an interpretation of DLS measurements for initial stages of the 

process is given by Zhang et al25. They have found the formation and growth of 

nanoparticles in solution during the heating and interpreted them in terms of a 

homogeneous nucleation theory. However the final stages of the process as well as 

changes of the internal structure of the nanoparticles during the reaction have not 

been investigated and discussed properly, because of DLS technique limitations. At 
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the same time, our DLS measurements are in a good agreement with the data from 

Zhang’s group for final stages of the hydrolysis. SAXS technique is one of the most 

powerful methods for an investigation of condensed and solid matter as well as for 

the processes in colloidal systems32,33,34,35,36,37. Jalava et al. have studied using 

SAXS the long-time aging and aggregation of titania colloidal nanoparticles at 

elevated temperature in terms of mass and surface fractal aggregates formation and 

these data are also not contradicting with our results. Thus, our data are in good 

agreement with the published results and it makes us to believe that 

thermohydrolysis of homogeneous TiCl4 aqueous solution is a powerful tool to reach 

desired morphology and properties of titania nanoparticles in the frame of the model 

described above.  

 

Conclusions 

Titania nanoparticles formation during thermohydrolysis of TiCl4 water solution was 

studied with SAXS technique and supported by TEM, DLS and pH-value 

measurements. The formation of TiO2 nanoparticles were supposed to go through 

the bonding rearrangement process inside the inorganic Ti-based polymer toward a 

crystalline phase formation and the process is divided in several distinct steps. 
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Figures captures 

Figure 1. XRD patterns of the powder obtained after the freeze drying of final solution (900C 

hydrolysis temperature). 

Figure 2. pH data versus reaction temperatures measured for 20 minute periods of time in 

the course of two experiments conducted under different temperatures of a water 

bath.  

Figure 3. The hydrodynamic radius of the particles in reaction solution during the syntheses 

at different temperatures, measured by DLS technique. 

Figure 4. TEM images of the samples taken after different reaction time at 900C. Scale bar 

is 50 nm. 

Figure 5. SAXS data for samples obtained at different times during thermohydrolysis 

process. a,b) scattering curves for different time samples of the 90oC synthesis. Inset 

in 5a shows the two transitional areas at the scattering curve taken after 10 minutes; 

c) mass fractal dimension Dmf in dependence on the reaction time and d) surface 

fractal dimension Dsf for primary particles in dependence on the reaction time for 

80oC and 90oC syntheses, calculated as 6-P, where P is the slope of the Porod 

regime.  

Figure 6. Primary particles radius of gyration estimated from SAXS data depending on the 

reaction time.  

Figure 7. A possible mechanism of TiO2·xH2O nanoparticles formation during the 

thermohydrolysis. 
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