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aus Świ ↪etoch lowice

Tag der mündlichen Prüfung: 26. Oktober 2012
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Abstract

In the first part of this thesis the decay of the light stop into a charm quark and the
lightest neutralino, t̃1 → cχ̃0

1, is calculated at one-loop level in the Minimal Super-
symmetric extension of the Standard Model (MSSM) in the framework of Minimal
Flavor Violation (MFV). In a previous calculation only leading logarithms of the
scale of MFV have been taken into account. The neglected terms lead to deviations
in the decay width of about 10%. Moreover, if MFV is assumed at a high scale the
large logarithms of this scale need to be resummed to all orders. These resummation
effects can decrease the stop decay width by a factor 20 and reduce the branching
ratio, which is widely assumed to be near 1, to 0.5.
The second part of this thesis covers the calculation of next-to-leading order (NLO)
corrections in the strong coupling constant αs to the pair production of squarks of
the first two generations in the MSSM. In contrast to previous works no assumptions
regarding the squark masses have been made and the different subchannels have been
treated independently. The results have been implemented in a Monte-Carlo pro-
gram which allows to calculate the QCD corrections for arbitrary distributions. It is
investigated whether the assumption made so far that K-factors are flat in distribu-
tions is correct. Since it turns out that the differential K-factor can vary in a range
of 35% the full NLO corrections should be taken into account in phenomenological
studies.

Zusammenfassung

Im ersten Teil der Arbeit wird der Zerfall des leichten Stops in ein Charm-Quark
und das leichteste Neutralino, t̃1 → cχ̃0

1, auf Ein-Schleifen-Niveau in der Minimalen
Supersymmetrischen Erweiterung des Standardmodells (MSSM) unter der Annahme
von Minimaler Flavorverletzung (MFV) berechnet. Zum ersten Mal werden nicht nur
führende Logarithmen der MFV-Skala berücksichtigt. Die bisher vernachlässigten
Terme wirken sich in der Größenordnung von 10% auf die Zerfallsbreite aus. Wird
MFV an einer hohen Skala angenommen, so müssen die großen Logarithmen dieser
Skala resummiert werden. Diese Resummationseffekte können die Zerfallsbreite um
einen Faktor 20 reduzieren und dazu führen, dass sich das Verzweigungsverhältnis,
das bisher immer als nahezu 1 angenommen wurde, auf 0.5 verringert.
Im zweiten Teil werden Korrekturen nächst-führender Ordnung in der starken Kop-
plungskonstante αs der QCD zur Paarproduktion von Squarks der ersten beiden
Generationen im MSSM berechnet. Im Gegensatz zu älteren Arbeiten werden die
einzelnen Squark-Massen nicht als entartet angenommen und die verschiedenen Sub-
kanäle einzeln betrachtet. Die Ergebnisse sind in einem Monte-Carlo-Programm im-
plementiert, so dass QCD Korrekturen für beliebige Verteilungen berechnet werden
können. In einer ersten Anwendung wird überprüft, ob die verbreitete Annahme,
dass der K-Faktor in den Verteilungen flach ist, gerechtfertigt ist. Es stellt sich
heraus, dass der differentielle K-Faktor in einem Bereich von 35% variieren kann
und deshalb die vollständigen Verteilungen für phänomenologische Studien berück-
sichtigt werden sollten.
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Chapter 1

Introduction

Cz lowiek nigdy nie ogl ↪ada si ↪e na to, co zrobione;
Ale na to patrzy, co ma przed sob ↪a do zrobienia.

One never notices what has already been done;
One only sees what still remains to be done.

- Marie Sk lodowska-Curie
Letter to her brother, 18 Mar 1894

The world and universe we live in is full of fascinating natural phenomena. It is
even more fascinating that in the course of the past centuries it was possible to
understand a multitude of these phenomena on the smallest scales. By uniting all
known elementary particles and the fundamental forces between them, apart from
the gravitational force, in a consistent theoretical framework, the Standard Model
(SM) of particle physics is a remarkable achievement in modern physics. The SM
comprises Quantum Chromodynamics (QCD), the theory of strong interactions, and
the unified theory of electromagnetism and the weak interactions in a renormalizable
quantum field theory, which accounts for a wide variety of experimental data over an
energy range of more than twelve orders of magnitude. However, in contrast to this
incredible accuracy in the confirmation of SM predictions there are experimental as
well as the theoretical arguments suggesting that it cannot be the ultimate theory:
Not only is the gravitational force not incorporated in the theory but the experi-
mental evidence for Dark Matter and Dark Energy clearly reveals the limitations
of the SM, since it does not offer a satisfactory explanation for these observations -
just to mention two of the existing problems.

Among the many propositions for physics beyond the Standard Model (BSM), so-
called supersymmetric (SUSY) theories provide a very elegant way to solve part of
the problems of the SM. In their simplest realization, the Minimal Supersymmetric
extension of the SM (MSSM) [1–7], each SM particle is paired with a SUSY part-
ner with identical quantum numbers except for a difference of half a unit in spin.
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Since none of the SUSY particles have been observed so far they are assumed to be
heavier than their SM partners which means that SUSY is not an exact symmetry.
Theoretical considerations imply that these new particles should have masses no
larger than a few TeV otherwise SUSY would not provide a solution to the so-called
fine-tuning problem of the SM ([8] and references therein). Roughly speaking, the
fine-tuning problem refers to the circumstance that the parameters of the SM must
be adjusted very precisely in order to agree with experimental observations. Due
to the conservation of a symmetry called R-parity SUSY particles can only be pro-
duced pairwise and the lightest supersymmetric particle (LSP) is stable. In many
MSSM scenarios the LSP is neutral and can be identified as a suitable Dark Matter
candidate. This leads to typical experimental signatures consisting of multiple jets
or leptons originating from the final state particles of SUSY decay cascades and
missing transverse energy as a consequence of the LSP being weakly interacting and
neutral and therefore escaping the detector.

A lot of effort has been put in phenomenological investigations of SUSY in the past
30 years, which has influenced the detector design of the Large Hadron Collider
(LHC) located at CERN near Geneva. This proton-proton accelerator currently
operates at a center-of-mass energy of 8 TeV and is a perfect experimental tool
to test predictions of theories beyond the SM. With the discovery of a new boson
[9, 10], potentially a Higgs boson originating from the mechanism of electroweak
symmetry breaking [11–15], the LHC has already attained one of its major goals.
The recorded data has also been used to search for SUSY particles. No excesses over
the SM expectations have been reported so far in these searches and these results
have been translated into exclusion limits on the masses of the potential SUSY
particles [16, 17].

For the interpretation of the experimental data precise theoretical predictions are
needed. This thesis contributes to this effort by calculating higher order corrections
in perturbation theory to supersymmetric production and decay processes.
In the first part of this thesis the flavor changing neutral current (FCNC) decay of
one of the SUSY partners of the top quark, the light stop t̃1, to a charm quark c
and the lightest neutralino χ̃0

1, which is the LSP in most MSSM scenarios, is cal-
culated at one-loop level. In the MSSM the scalar partners of the right-handed
and left-handed quarks, called squarks and denoted by q̃L and q̃R, mix to form two
mass eigenstates, q̃1 and q̃2, with q̃1 defined to be the lighter one. In the case of
the SUSY partners to the top quark large mixing effects can lead to one stop mass
eigenstate, t̃1, being significantly lighter than all other squarks and also lighter than
the top quark. If additionally the mass difference of the lighter stop t̃1 to the lightest
neutralino χ̃0

1 is small, the decay considered here t̃1 → c + χ̃0
1 can be the dominant

decay channel. So far, only an approximate formula for the decay width at one-loop
level has been available [18]. Apart from calculating the exact one-loop decay, the
impact of resummation effects which take into account certain terms to all orders of
perturbation theory is analyzed.
In the second part of this thesis the pair production of squarks of the first two
generations is calculated at next-to-leading order (NLO) in SUSY QCD perturba-
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tion theory. Squark pair production is the dominant production channel for colored
SUSY particles in the rather high mass regions [19], which are still allowed by the
LHC exclusion limits for squarks and gluinos. In contrast to the existing calcula-
tion in [20] the squark masses are not assumed to be degenerate and all contributing
subchannels, characterized by different flavor and chirality combinations, are treated
independently. In order to provide not only inclusive cross sections but also distri-
butions for arbitrary observables the calculation has been implemented in a fully
flexible parton-level Monte-Carlo program. With this set-up it is possible to study
the effects of the NLO corrections in the various subchannels as well as their impact
on the shapes of distributions. Since the NLO corrections are known to be large
on the one hand and the shapes of distributions are widely used for phenomeno-
logy on the other hand the recalculation of this process and its implementation in
a Monte-Carlo framework provides a useful tool for a variety of phenomenological
studies.

This thesis is organized as follows: The following chapter introduces the relevant
theoretical aspects of SUSY and summarizes the status of the experimental searches
for squarks of the first two generations and for the top squarks. Since the third
generation squarks are subject to large mixing effects the strategies of the searches
for the first two generations cannot be straightforwardly adopted. In Chapter 3
concepts in theoretical particle physics necessary for the calculations in this thesis
are presented. Chapter 4 contains the detailed discussion of the first part of the
thesis, the calculation and the results of the numerical evaluation of the FCNC decay
t̃1 → c + χ̃0

1 at one-loop level. The second part of this thesis, the calculation of the
NLO SUSY QCD corrections to squark pair production, is described in Chapter 5.
Both calculations as well as their results and implications are summarized at the
end of Chapter 4 and Chapter 5, respectively.
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Chapter 2

Supersymmetry

2.1 Introduction
Before first supersymmetric theories were developed, the list of potential space-time
symmetry transformations was considered complete since the formulation of Ein-
steins theory of relativity, which was accomplished in 1905. In 1967 the Coleman-
Mandula theorem [21] seemed to confirm this point of view. This theorem states
that the space-time symmetries of the Poincaré algebra and internal symmetries
cannot be combined in any but a trivial way and implies that apart from the known
generators - the generator of space-time translations Pµ and the generator of homo-
geneous Lorentz transformations Mµν - no other generators with non-trivial Lorentz
transformation properties exist. However, the argumentation of the theorem does
not exclude generators which transform as spinors under Lorentz transformations.
For generators Qa, with a being the spinor index, the Coleman-Mandula theorem
cannot be applied and non-trivial combinations of space-time and other continuous
symmetries can be constructed. In 1971 Golfand and Likhtman have shown [22] that
it is possible to combine such a generator, which will be the generator of the new
SUSY transformations, together with the known generators Pµ and Mµν consistently
in an algebra. The most general form of such a SUSY algebra in a consistent inter-
acting quantum field theory was constituted 1975 by the Haag-Lopuszański-Sohnius
theorem [23]. The non-trivial commutation relations between the operators Qa, Pµ
and Mµν of such an algebra will be specified in Section 2.2.
Although originally not developed nor designed for, SUSY theories can solve some
of the problems of the SM in an elegant way. The SM is a consistent, renormalizable
quantum field theory, based on the gauge group SU(3)C × SU(2)L × U(1)Y , that
accounts for a plethora of experimental data over an energy range of over twelve
orders of magnitude. Nevertheless the SM is incomplete. There are experimental
as well as theoretical arguments which suggest that the SM cannot be the ultimate
theory [24]. On the experimental side studies of the fluctuations in the spectrum of
the relic microwave background from the Big Bang have established the existence of
Cold Dark Matter in the Universe, for which there is no candidate in the SM. Ob-
servations of type Ia supernovae at large red shifts as well as the cosmic microwave
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background radiation both suggest that the bulk of energy in the Universe must re-
side in the so-called Dark Energy, a novel form of energy which cannot be explained
so far. Although gravitational effects are tiny and can be safely neglected at the level
of elementary particle interactions, it is unsatisfactory from the theoretical point of
view that gravity is not incorporated in the SM. Furthermore, a unification of the
strong and electroweak interactions has not been achieved yet. Extrapolating the
corresponding couplings to a high energy scale by using the renormalization group
equations of the SM suggests that the couplings should unify but this unification is
not realized completely within the SM. Another problem is related to the electroweak
sector of the SM. Although the spontaneous breaking of the electroweak symmetry
can be incorporated by introducing new scalar fields, this has to be done “by hand”
via an arbitrary scalar potential. That means that there is no understanding of why
the squared mass parameter for the Higgs field is negative.
Most of these arguments point to new physics but do not point decisively to the
scale for this new physics. The so-called fine-tuning problem, which has already
been mentioned in the introduction, not only suggests that there should be new
physics, but also that the scale of the new physics has to be close to the electroweak
scale. This fine-tuning problem is not a difficulty of the SM itself but rather an
unnatural sensitivity of the Higgs potential to new physics in almost any potential
extension of the SM. The electrically neutral part of the SM Higgs field is a complex
scalar H with a classical potential

V = m2
H |H|2 + λ|H|4 . (2.1)

The SM requires a non-vanishing vacuum expectation value for H at the minimum
of the potential. This will occur if λ > 0 and m2

H < 0. It is known experimentally
that the the mass parameter m2

H is very roughly of order −(100 GeV)2. The problem
resides in m2

H receiving large virtual corrections from every particle that couples to
the Higgs field. For example, the correction to m2

H from a loop based on the 4-boson
self interaction yields

∆m2
H =

λ

16π2
Λ2 + ... . (2.2)

Here Λ is an ultraviolet momentum cutoff used to regularize the loop integral. It
should be interpreted as at least the energy scale at which new physics enters to alter
the high-energy behavior of the theory. Terms which grow at most logarithmically
with Λ are neglected in this discussion. Assuming that the SM is valid up to the scale
where electroweak and strong forces unify, then Λ is of the order ∼ 1016 GeV. The
problem is then that the correction to m2

H is some 30 orders of magnitude larger than
the required value of m2

H ∼ −(100 GeV)2 and an enormous amount of fine-tuning
is necessary. Since quarks, leptons and the electroweak gauge bosons of the SM all
obtain masses from the vacuum expectation value of the Higgs field, the entire mass
spectrum of the SM is indirectly sensitive to the cutoff Λ. Not accepting this high
sensitivity to new physics entering at Λ� 1 TeV, a potential solution would be to
assume the existence of new degrees of freedom already at the TeV scale. These
new degrees of freedom must then serve to cancel the quadratic divergence. In this
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context it is useful to examine the correction to m2
H from a loop containing a Dirac

fermion f . If the Higgs field couples to f with a term in the Lagrangian λfHf̄f ,
the virtual correction yields

∆m2
H = −

λ2
f

8π2
Λ2 + ... , (2.3)

where the minus sign is due to the closed fermion loop. Comparing this equation
with Eq. (2.2) suggests that the opposite signs in the fermionic and bosonic cor-
rections could lead to the cancellation of the quadratic divergencies. However, the
particle content of the SM is not sufficient and a total cancellation can only be
achieved by introducing new degrees of freedom. Moreover, it is desirable to have
this cancellation occur to all orders, not just at the one-loop level. In general, one
would not expect this cancellation to be complete unless a relation between the
couplings of fermions and bosons exits, which guarantees that

λ2
f = λ . (2.4)

Such relations occur only due to symmetries. A symmetry which relates properties
of bosons and fermions is referred to as a supersymmetry. As it will become clear
later on, SUSY requires that for every boson, a fermion partner should exist, and
vice versa. Apart from providing a solution to the fine-tuning problem, there are
several more motivations for examining SUSY. For example by using SUSY evolu-
tion equations the extrapolation of the electroweak and strong couplings to a high
energy scale can lead to a common unification point, in contrast to the SM. Further-
more, in SUSY models with conservation of a symmetry called R-parity the LSP
is stable. In many scenarios this LSP is a massive, neutral and weakly interacting
particle representing a suitable Dark Matter candidate. The last point which should
be mentioned here, is that most SUSY models provide a dynamical electroweak sym-
metry breaking mechanism. Renormalization effects drive the Higgs boson squared
mass parameter to negative values, while those for other scalars are left positive,
resulting in the observed electroweak symmetry breaking pattern. The wide array
of issues addressed by SUSY theories can be seen as hint for SUSY being realized
in nature.

2.2 The Minimal Supersymmetric Extension of

the SM

The MSSM [1–7], the Minimal Supersymmetric extension of the Standard Model, is
minimal in the sense that the particle spectrum of the SM is only extended by the
necessarily required amount of SUSY particles. Comparing Eqs. (2.2) and (2.3) in
detail visualizes that each fermion of the SM needs to be paired with two complex
scalars with λ2

f = λ in order to cancel the quadratic divergencies completely. There-
fore, SUSY transformations generated by the operator Q have to turn a bosonic
state into a fermionic state, and vice versa:

Q|Boson〉 = |Fermion〉 Q|Fermion〉 = |Boson〉 . (2.5)
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Since spinors are complex the hermitian conjugate of Q, Q†, is also a symmetry
generator. The possible forms for such symmetries in an interacting quantum field
theory are restricted by the Haag-Lopuszański-Sohnius theorem mentioned in the
introduction. For theories like the SM, which have fermions whose left- and right-
handed pieces transform differently under the gauge group, this theorem implies that
the generators Q and Q† must satisfy an algebra of anticommuting and commuting
relations of the following form:

{Qa, Q
†
b} = 2 (σµ)ab Pµ (2.6)

{Qa, Qb} = {Q†a, Q†b} = 0 (2.7)

[Qa, Pµ] =
[
Q†a, Pµ

]
= 0 (2.8)

[Qa,Mµν ] = i (σµν)ab Qb . (2.9)

Here, the Qa are two-component Weyl spinors, so that a, b = 1, 2. The expressions
σµ = (1, σi), σ̄µ = (1,−σi) and σµν = i

4
(σµσ̄ν−σν σ̄µ) are based on the Pauli matri-

ces σi (i = 1, 2, 3). The operator Pµ is the four-momentum generator of space-time
translations and the operator Mµν is the generator of homogeneous Lorentz trans-
formations. Together with the Poincaré algebra the Eqs. (2.6)-(2.9) constitute the
Super-Poincaré algebra.
The single-particle states of a SUSY theory fall into irreducible representations of
the Super-Poincaré algebra, which are called supermultiplets. Each supermultiplet
contains fermions and bosons, which are the superpartners of each other. Equa-
tion (2.6) implies that the squared mass operator P 2 commutes with Q and Q† and
thus, that particles inhabiting the same supermultiplet must have equal eigenvalues
of P 2 and therefore equal mass. The generators Q and Q† commute also with the
generators of the gauge transformations. As a consequence, particles in one super-
multiplet must have equal internal quantum numbers, i.e. electric charges, weak
isopsin and color charges. Furthermore, it can be derived from Eqs. (2.6)-(2.9) that
each supermultiplet contains an equal number of fermionic and bosonic degrees of
freedom.
The simplest possibility to construct a supermultiplet with an equal number of
fermionic and bosonic degrees of freedom is to combine a Weyl fermion and two real
scalars. The Weyl fermion has two spin helicity states, and therefore two fermionic
degrees of freedom, whereas each real scalar has one bosonic degree of freedom.
These two real scalar degrees of freedom can be assembled into one complex scalar
field. This combination of a two-component Weyl fermion and a complex scalar field
is called a chiral supermultiplet.
The next possibility for a supermultiplet contains a spin-1 vector boson. In order
to guarantee the renormalizability of the theory, this must be a massless gauge bo-
son, at least before the gauge symmetry is spontaneously broken. A massless spin-1
boson has two helicity states and therefore two bosonic degrees of freedom. Its
superpartner is a massless spin-1/2 Weyl fermion with two fermionic degrees of free-
dom. Gauge bosons must transform as the adjoint representation of the gauge group
and so must their fermionic partners, which are called gauginos. Since the adjoint
representation of the gauge group is its own conjugate, the left- and right-handed
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components of the gauginos must have same gauge transformation properties. Such
a combination of a spin-1/2 gaugino and spin-1 gauge boson is called a gauge su-
permultiplet.
In the MSSM each particle is therefore part of a chiral or a gauge supermultiplet and
is paired with a superpartner which differs in spin by half a unit. Only the chiral
supermultiplet can contain fermions with left- and right-handed parts transforming
differently under gauge group transformations. All known fermions, the quarks and
leptons of the SM, have this property and have to be assembled in chiral supermul-
tiplets. The left- and right-handed components of quarks and leptons are separate
two-component Weyl fermions, so each of them must have its own complex scalar
partner. The names for these spin-0 partners are constructed by prepending an “s”.
So they are called “squarks” and “sleptons”. The symbols are the same as for quarks
and leptons but a tilde (˜) denotes the superpartners. The superpartners of the left-
and right-handed parts of the squarks are thus the left- and right-handed squarks,
q̃L and q̃R. Since squarks are spin-0 particles, the indices L and R do not refer to
their helicity but to the helicity of their superpartners.
The Higgs boson as a spin-0 particle must also reside in a chiral supermultiplet.
However, one supermultiplet is not enough. With only one Higgs chiral supermulti-
plet the electroweak gauge symmetry would suffer from a gauge anomaly. This can
be avoided by introducing two Higgs supermultiplets, one with weak hypercharge
Y = +1/2 and another one with Y = −1/2. Furthermore, only a Y = +1/2 Higgs
supermultiplet can give masses to up-type quarks and only a Y = −1/2 Higgs super-
multiplet can give masses to down-type quarks. The SU(2)L doublet with Y = +1/2
is denoted Hu = (H+

u , H
0
u) and the one with Y = −1/2 with Hd = (H0

d , H
−
d ). For

spin-1/2 superpartners the ending “-ino” is added to the name of the correspond-
ing SM particle. The fermionic partners of the scalar Higgs particles are called the
higgsinos and are denoted by a tilde. All chiral supermultiplets of the MSSM are
summarized in Table 2.1 and classified according to their transformation properties
under the SM gauge group SU(3)c × SU(2)L × U(1)Y .
Table 2.2 summarizes the gauge supermultiplet of the MSSM which contain the vec-
tor bosons of the SM. The SU(3)C color gauge interaction is mediated by the gluon
g whose spin-1/2 superpartner is the gluino g̃. The gauge bosons W+,W 0,W− and
B0 of the electroweak gauge symmetry SU(2)L×U(1)Y are paired with the spin-1/2
partners called winos W̃+, W̃ 0, W̃− and bino B̃0.

Supersymmetry breaking and mass eigenstates

The chiral and gauge supermultiplets listed in Tables 2.1 and 2.2 illustrate the par-
ticle content of the MSSM. If SUSY was an unbroken symmetry, then all SUSY
particles would have the same masses as their SM partners. Such particles could
not have evaded experimental detection. The fact that none of the predicted SUSY
particles have been observed so far suggests that they must be heavier than the
known SM particles and that SUSY must be a broken symmetry. Thus a realis-
tic phenomenological model must contain SUSY breaking. Fortunately, it can be
shown that the breaking of SUSY does not destroy the cancellation of quadratic di-
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Name Spin 0 Spin 1/2 SU(3)C , SU(2)L, U(1)Y

Squarks, Quarks (ũL d̃L) (uL dL) (3, 2, 1
6
)

ũ∗R uR (3̄, 1, −2
3
)

d̃∗R dR (3̄, 1, 1
3
)

Sleptons, Leptons (ν̃ ẽL) (ν eL) (1, 2, −1
2
)

ẽ∗R eR (1, 1, 1)

Higgs, Higgsinos (H+
u H0

u) (H̃+
u H̃0

u) (1, 2, +1
2
)

(H0
d H

−
d ) (H̃0

d H̃
−
d ) (1, 2, −1

2
)

Table 2.1: Chiral supermultiplets in the MSSM. There are three families for each of
the quark and lepton supermultiplets, but only the first-family representatives are
presented.

Name Spin 1/2 Spin 1 SU(3)C , SU(2)L, U(1)Y

Gluino, Gluon g̃ g (8, 1, 0)

Winos, W-Bosons W̃± W̃ 0 W± W 0 (1, 3, 0)

Bino, B-Bosons B̃0 B0 (1, 1, 0)

Table 2.2: Gauge supermultiplets in the MSSM.

vergences mentioned in the introduction of this chapter. If SUSY is explicitly broken
due to scalar masses differing from their fermion counter parts, no new quadratic
divergences occur [24]. From a theoretical point of view it is appealing to con-
sider that, like electroweak gauge symmetry, SUSY is broken spontaneously. Many
models of spontaneous SUSY breaking have been proposed [25–33]. However, the
exact mechanism of spontaneous SUSY breaking is unknown, therefore it is useful to
parametrize this ignorance by introducing so-called soft SUSY breaking terms in the
effective MSSM Lagrangian [34]. The denotation “soft” refers to terms of positive
mass dimension. Based on the fine-tuning problem, it has been illustrated in the
introduction of this chapter that by introducing two complex scalar fields for every
SM fermion quadratic divergencies can be canceled. In particular, this cancellation
can only be done when the relation λ2

f = λ between the coupling constants holds.
SUSY breaking terms with positive mass dimension ensure that this relation is ful-
filled and a broken SUSY still provides a solution to the fine-tuning problem. This
means, that the effective MSSM Lagrangian can be written as

L = LSUSY + Lsoft . (2.10)
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Name Spin Gauge Eigenstates Mass Eigenstates

ũL ũR d̃L d̃R ũL ũR d̃L d̃R

Squarks 0 s̃L s̃R c̃L c̃R s̃L s̃R c̃L c̃R

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

Higgs bosons 0 H0
u H

0
d H

+
u H

−
d h0 H0 A0 H±

Neutralinos 1/2 B̃0 W̃ 0 H̃0
u H̃

0
d χ̃0

1 χ̃
0
2 χ̃

0
3 χ̃

0
4

Charginos 1/2 W̃+ W̃− H̃+
u H̃−d χ̃+

1 χ̃−1 χ̃+
2 χ̃−2

Gluino 1/2 g̃ g̃

Table 2.3: Gauge and mass eigenstates of SUSY particles relevant for this thesis.

All gauge and Yukawa interactions are contained in LSUSY which is invariant under
SUSY transformations, whereas Lsoft breaks SUSY but includes only terms with
positive mass dimension.
The superpartners listed in Tables 2.1 and 2.2 are not necessarily the mass eigen-
states of the theory. Due to the effects of electroweak symmetry breaking the higgs-
inos and electroweak gauginos with same electric charges mix with each other, and
so do the scalar Higgs particles. Furthermore, the squarks and sleptons, respectively,
with same electric charge and color quantum number can mix with each other. Just
the gluino, being the only color octet fermion, cannot mix with any other particle
of the MSSM.
In the first part of this thesis the decay of a top squark into a charm quark and
the so-called neutralino is calculated at one-loop level with charged particles in the
loops. The second part contains the calculation of NLO corrections in SUSY QCD
for squark pair production. Table 2.3 gives an overview of the gauge eigenstates and
the corresponding mass eigenstates relevant for these calculations.
With arbitrary soft terms the mass eigenstates of the squarks should be obtained
by diagonalizing two 6 × 6 matrices, one for the up-type squarks and one for the
down-type squarks. However, most of the SUSY breaking models assume flavor-
blind soft terms and predict that most of the mixing angles are small. In particular,
mixing angles between squarks of different generations are suppressed. Furthermore
Yukawa interactions of the first two generations can be neglected, since they are
proportional to the fermion masses. With these assumptions left-right mixing is
only taken into account in the third generation of the squarks. Therefore, the mass
eigenstates of the first two generations of squarks are assumed to be identical with
the gauge eigenstates, but the mass eigenstates of the third generation squarks differ
from the gauge eigenstates and are therefore denoted t̃1, t̃2 and b̃1, b̃2.
Within the SM with just one complex Higgs doublet a single neutral spin zero par-
ticle, the Higgs boson, is left in the spectrum as a relic of the spontaneous breakdown
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of the electroweak symmetry. This is because the charged component of the doublet
and one of the neutral components are the three would-be Goldstone bosons which
become the longitudinal components of the W± and Z0 bosons after electroweak
symmetry breaking. Since the symmetry breaking pattern of the MSSM is the same
as the one of the SM, the same set of would-be Goldstone bosons is expected. How-
ever, since now two sets of complex doublets are available, two charged, H+ and H−,
and three neutral spin zero bosons, h0, H0 and A0, remain in the physical spectrum
of the MSSM.
Mass eigenstates due to the mixing of the neutral higgsinos and gauginos are called
neutralinos. The diagonalization of the corresponding 4 × 4 mass matrix for the
four fields (B̃0, W̃ 0, H̃0

u, H̃
0
d) yields the four neutralino mass eigenstates denoted by

χ̃0
i (i = 1, 2, 3, 4). By convention, they are labeled in ascending order, so that
mχ̃0

1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
.

Finally, charginos are the mass eigenstates based on the mixing of the charged higgs-
inos and winos. In the basis of these four eigenstates (W̃+, H̃+

u , W̃
−, H̃−d ), the 4× 4

mass matrix can be diagonalized by means of two unitary 2 × 2 matrices leading
to two negatively charged mass eigenstates χ̃−1,2 and two positively charged mass
eigenstates χ̃+

1,2 with mass conventions mχ̃±
1
< mχ̃±

2
.

This concludes the general presentation of theoretical aspects of SUSY relevant for
this thesis. Detailed expressions for the MSSM Lagrangian and the soft SUSY
breaking terms can be found in [35]. Specific details needed for the discussion of the
calculation of the stop decay and the squark pair production process will be given
in the corresponding Chapters 4 and 5.

2.3 Experimental Searches

Experimental searches for SUSY particles have been performed in the past in a va-
riety of different channels at various accelerators, such as the Large Electron Positron
collider located at CERN near Geneva, and the Tevatron proton-antiproton collider
at Fermilab, without finding any of these particles. The LHC, which is currently
running at a center-of-mass energy of 8 TeV, allows for searches at higher energies
and therefore in a wider range of the SUSY parameter space than has been possible
so far.
In most of these searches SUSY models with conserved R-parity are assumed. This
symmetry is introduced in order to prevent the occurrence of baryon and lepton
number violating processes which are severely constrained experimentally, in parti-
cular by the non-observation of the proton decay. All SM particles have R-parity of
1, while SUSY partners have R-parity −1. R-parity conservation thus implies that
SUSY particles are produced in pairs and that the LSP is stable. In a large fraction
of the SUSY parameter space, the LSP is the weakly interacting lightest neutralino,
χ̃0

1. This gives rise to the typical SUSY signature of missing transverse momentum
with a magnitude denoted by Emiss

T . Since no excess above the SM expectation is
observed, limits on the SUSY particle masses are derived. As it is impossible to
cover the entire SUSY parameter space the sensitivity of the searches is estimated
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Figure 2.1: Exclusion limits from the ATLAS experiment derived from an analysis
of final states with jets and missing transverse momentum for mSUGRA models
with tan β = 10, A0 = 0 and µh > 0 presented in the m0 −m1/2 plane [16].

in the framework of a specific SUSY theory or in simplified models. The model used
throughout the thesis is the so-called “Minimal Supergravity” (mSUGRA) model
[27–30]. It is defined in terms of a small number of parameters which can be in-
terpreted as boundary conditions on all parameters at a high energy scale. These
parameters are given by common soft SUSY breaking scalar and gaugino masses,
m0 and m1/2, a common SUSY breaking trilinear coupling A0, the ratio of the two
vacuum expectation values tan β of the two Higgs doublets and the sign of the Higgs-
ino parameter µh.
In the following two sections the current status of searches for squarks of the first
two generations and for the top squark, the SUSY particles most relevant for this
thesis, is briefly summarized.

2.3.1 Searches for the First Two Generations of Squarks

Heavy colored particles like squarks and gluinos have the largest SUSY production
cross sections at the LHC and are thus candidates for the most inclusive searches for
SUSY. The production of gluinos and squarks of the first two generations proceeds
via pp→ q̃q̃, q̃q̃∗, q̃g̃, g̃g̃. These squarks and gluinos decay in cascades to the lightest
neutralino χ̃0

1. Therefore, event topologies with multiple jets are expected. When
gauginos are produced in the decay chain, leptons can be present via the decays
into virtual W and Z bosons. The most inclusive searches for SUSY are therefore
based on the presence of multiple jets, one or more leptons, and missing transverse
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Figure 2.2: Exclusion limits from the CDF and D0 experiments derived from analyses
of final states with two charm jets and missing transverse momentum presented in
the mt̃1 −mχ̃0

1
plane [36, 37].

momentum. At the moment, the most stringent limits for squark and gluino masses
come from an analysis of final states containing jets, missing transverse momentum
and no leptons [16]. Limits derived in the mSUGRA model are presented in Fig. 2.1
in the m0 −m1/2 plane. The observed limits are indicated by the dark red curves,
where the solid contour represents the nominal limit, and the dotted lines are ob-
tained by including theoretical and PDF uncertainties and imply that squarks and
gluinos of roughly equal mass are excluded for masses below 1500 GeV.

2.3.2 Searches for the Top Squark

The large mixing effects in the third generation of squarks, already mentioned in
Section 2.2, necessitate dedicated search strategies. In this thesis the decay t̃1 → cχ̃0

1

is calculated, which is only dominant for very light stops t̃1 and for small mass
differences mt̃1 − mχ̃0

1
. The cross section for producing a pair of third generation

squarks is much smaller than that for producing first generation squarks, since no
“flavor excitation” contributions exist for third generation squarks. Additionally,
in t̃1 pair production followed by the decay t̃1 → cχ̃0

1 the charm jets only become
energetic enough to look for a di-jet plus Emiss

T signature for a sufficiently large mass
splitting between the stop and the lightest neutralino. At the LHC no analysis
investigating this decay channel has been published so far. LHC searches for light
stops consider the mass hierarchy mt̃1 > mχ̃±

1
+mb and a t̃1 decaying exclusively via

b + χ̃±1 [17]. In these searches t̃1 masses in the range 112 − 140 GeV for χ̃0
1 masses
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up to 80 GeV are excluded. However, the Tevatron experiments, CDF and D0, were
sensitive to mass splittings mt̃1 − mχ̃0

1
above 40 GeV in the channel with t̃1 pair

production with subsequent decay into t̃1 → c+ χ̃0
1 [36, 37]. Figure 2.2 presents the

results of the CDF and D0 experiments in terms of exclusion limits in the mt̃1−mχ̃0
1

plane assuming BR(t̃1 → c + χ̃0
1) = 1. Stop masses up to 180 GeV for a neutralino

mass of 90 GeV are excluded, however for χ̃0
1 masses above 90 GeV light stops t̃1 at

least in the mass range 100− 130 GeV are still allowed.
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Chapter 3

Calculational Concepts

3.1 Hadronic Collisions

At the LHC two beams of protons1 travel in opposite directions inside the circular
accelerator. By colliding the two beams head-on scattering processes and the par-
ticles created in the collisions can be investigated. The hadronic cross section for a
process in which two protons with momenta P1 and P2 collide, leading to m particles
in the final state with momenta k1, ..., km, is given in the so-called parton model [38]
by

σhad(P (P1) P (P2)→ k1, ..., km) = (3.1)
∑

a,b

∫ 1

0

∫ 1

0

dxadxb f
P
a (xa)f

P
b (xb) σ

(
a(p1 = xaP1) b(p2 = xbP2)→ k1, ..., km

)
.

Here fPa , the parton distribution function (PDF) of parton a, denotes the probability
of finding a parton a with momentum fraction xa inside the proton P . The sum
runs over all partons, which contribute to the partonic cross section σ, i.e. the
gluon and (anti-)quarks in this thesis. The partonic cross section can be calculated
in perturbation theory up to a given order by evaluating matrix elements squared,
which have a diagrammatic representation in terms of Feynman graphs, multiply
them with the flux factor of the incoming partons and integrate over the whole
phase space of the final state particles:

σ =

∫
1

4 p1p2

|M(p1 + p2 → k1, ..., km)|2 (3.2)

(2π)4δ(4)

(
p1 + p2 −

m∑

i=1

ki

)
d3k1

(2π)32E1

. . .
d3km

(2π)32Em
. (3.3)

1or lead ions, however lead ion collisions are not subject of this thesis
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In this thesis the squark pair production cross section in the perturbative series in
the strong coupling constant αs up to next-to-leading order in the framework of
SUSY QCD is calculated, i.e.

σ = σLO + σNLO . (3.4)

The NLO corrections suffer from ultraviolet (UV) and infrared (IR) divergencies.
The former are due to large momentum contributions to loop diagrams and the lat-
ter arise either in loop diagrams with virtual massless particles or in soft and collinear
emissions of additional partons. The UV divergencies are canceled in the so-called
renormalization procedure, which will be introduced in Section 3.2. According to
the Kinoshita-Lee-Nauenberg (KLN) theorem [39, 40] IR divergencies cancel in the
total result when sufficiently inclusive observables are taken into account. However,
the IR singularities associated with initial state collinear radiation spoil the KLN
cancellations since the initial state in Eq. (3.1) is fully determined. Fortunately, it
has been shown that the factorization of these singularities is universal [41]. There-
fore, they can be absorbed into a process-independent redefinition of the PDFs at
the price of introducing an unphysical factorization scale µF in the partonic cross
section and in the PDFs. In principle, the hadronic cross section should be indepen-
dent of µF . However, the values of the PDFs cannot be calculated perturbatively
but are extracted from experimental data via fits to fixed-order perturbative predic-
tions. As a consequence, a dependence on an a priori arbitrary scale remains. The
dynamical evolution of the PDFs with respect to this scale is yet again governed by
perturbation theory in form of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evo-
lution equations [42–44]. When applying these equations to determine fPa (xa, Q

2),
the PDF at a scale Q, for a given initial distribution fPa (xa, µ

2
F ), the leading log-

arithms αns logn(Q2/µ2
F ) are resummed to all orders of perturbation theory. These

logarithms can be sizable if the factorization scale µF is considerably different from
the characteristic scale Q of the process under investigation. Therefore, if µF is set
to the characteristic scale Q, the effect of these logarithms on the NLO prediction
is not artificially enhanced.

3.2 Renormalization

The Lagrangian of the MSSM involves several free parameters like masses, couplings,
mixing angles etc., which have to be determined experimentally. These are chosen
such that they have an intuitive physical meaning at tree level which means that
they are directly related to experimental quantities. Unfortunately, higher order
corrections destroy this direct relation. The parameters of the original Lagrangian,
the so-called bare parameters, differ from the corresponding physical quantities by
UV divergent contributions. However, in renormalizable theories these divergencies
cancel in physical quantities, thus allowing meaningful predictions. The renormali-
zability of non-abelian gauge theories with spontaneous symmetry breaking, like the
MSSM, was proven by ’t Hooft [45, 46].
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In the counterterm approach the UV divergent bare parameters are expressed by
finite renormalized parameters and divergent renormalization constants, the coun-
terterms. In addition, the bare fields are replaced by renormalized fields. The coun-
terterms are fixed by renormalization conditions which can be chosen arbitrarily but
determine the relation between renormalized and physical parameters. The split-
ting of bare parameters into renormalized parameters and renormalization constants
induces a splitting of the bare Lagrangian into a renormalized and a counterterm
Lagrangian:

L0 = L+ δL . (3.5)

The renormalized Lagrangian L has the same form as L0 but depends on renorma-
lized parameters and fields instead of unrenormalized ones. The counterterm La-
grangian δL contains the counterterms and gives rise to counterterm diagrams which
have to be added to the loop diagrams. Including the counterterm diagrams the
renormalized one-particle irreducible two-point functions Γ̂ can be obtained. For
squarks, quarks and gluinos these are defined as

Γ̂q̃ij(k
2) = i (k2 −m2

q̃i
) δij + iΣ̂q̃

ij (k2) (3.6)

Γ̂qij(k
2) = i (6k −mqi) δij (3.7)

+ i
[
6k Σ̂q,L

ij (k2)PL+ 6k Σ̂q,R
ij (k2)PR +mqi Σ̂q,Ls

ij (k2)PL +mqj Σ̂q,Rs
ij (k2)PR

]

Γ̂g̃g̃(k
2) = i (6k −mg̃) (3.8)

+ i
[
6k ΣL

g̃g̃(k
2) PL+ 6k ΣR

g̃g̃(k
2) PR +mg̃ ΣLs

g̃g̃ (k2) PL +mg̃ ΣRs
g̃g̃ (k2) PR

]

= i (6k −mg̃) + i
[
6k Σ̂g̃g̃(k

2) +mg̃Σ̂
S
g̃g̃(k

2)
]
,

where PL and PR are chirality projectors. In the two-point function of the gluino,
Γ̂g̃g̃(k

2), it has been exploited that in the case of Majorana fermions the vector and
scalar parts of the self energy can be combined. The counterterms can be chosen
such that the finite renormalized parameters keep their intuitive physical meaning.
This is the case in the so-called on-shell renormalization scheme [47, 48], which is
used in this thesis for the renormalization of masses and fields. The renormalization
conditions in this scheme are given by [49]

R̃e Γ̂q̃ij(m
2
q̃i

) = 0 (3.9)

lim
k2→m2

q̃i

1

k2 −m2
q̃i

R̃e Γ̂q̃ii(k
2) = i (3.10)

R̃e Γ̂qij(k
2) uj(k)|k2=m2

qJ
= 0 (3.11)

lim
k2→m2

qi

6k +mqi

k2 −m2
qi

R̃e Γ̂qii(k
2) ui(k) = i ui(k) (3.12)

R̃e Γ̂g̃g̃(k
2) u(k)|k2=m2

g̃
= 0 (3.13)

lim
k2→m2

g̃

6k +mg̃

k2 −m2
g̃

R̃e Γ̂g̃g̃(k
2) u(k) = i u(k) . (3.14)
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Here, the u(k) are the spinors of the external particles and R̃e takes the real part
of the loop integrals appearing in the self energies but not of potential complex
parameters. These conditions ensure that the real parts of the poles of the propa-
gators are given by the mass parameters of the Lagrangian, which are therefore the
physical particle masses. Furthermore, they state that the renormalized one-particle
irreducible two-point functions are diagonal if the external lines are on their mass
shell and that the renormalized fields are properly normalized, i.e. that the residues
of the renormalized propagators are equal to one.
For the remaining renormalization of the strong coupling constant as well as the
quark and squark mixing matrices the MS-scheme [50] is used. In this scheme only
the UV divergent terms together with some accompanying constants are included in
the renormalization constants. Details concerning the renormalization of the mixing
matrices are given in Chapter 4.3.1, whereas the procedure for the strong coupling
constant is described in Chapter 5.3.

3.3 The Catani-Seymour Subtraction Formalism

The full NLO cross section for hadronic collisions receives contributions from real
emissions of one additional parton as well as from virtual corrections. The former
have to be evaluated in an (m + 1)-particle phase space the latter in an m-particle
phase space

σNLO =

∫
dΦm+1 dσ

R +

∫
dΦm dσV , (3.15)

where dσR denotes the differential cross section for the real emissions and dσV

the one for the virtual corrections. Both integrals are separately IR divergent,
although their sum is finite in inclusive physical observables due to the Kinoshita-
Lee-Nauenberg theorem [39, 40]. Technically this causes difficulties for a numerical
evaluation as the cancellation happens between phase spaces of different multipli-
cities. A standard algorithm in numerical calculations to keep track and deal with
IR divergencies, which are regularized by dimensional regularization [51] (i.e. in
D = 4− 2ε dimensions), is the Catani-Seymour dipole formalism [52, 53]. The idea
is to subtract a counterterm in one part of the calculation and add it back in another
which leaves the total result unchanged:

σNLO =

∫
dΦm+1

[(
dσR

)
ε=0
−
(
dσA

)
ε=0

]
+

∫
dΦm

[
dσV +

∫
dΦ1 dσ

A

]

ε=0

.

(3.16)
This differential counterterm dσA is an approximation of the differential real emission
cross section dσR in the sense that it has the same singular behavior. This means
that dσA acts as a local counterterm for dσR and the difference of these two terms
can be integrated numerically in four dimensions over the whole phase space. The
subtracted term has to be added again and needs to be integrated together with the
virtual contributions over the m-particle phase space. This is only possible if the
integration of this term over the one-particle subspace can be performed analytically.
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Then the poles can be extracted and canceled analytically against the poles from
the virtual contributions. The remaining integration over the m-particle phase space
can be carried out numerically.

The explicit form of dσA is constructed from the knowledge about the soft and
collinear structure of QCD amplitudes. They exhibit a simple factorization for
collinear singularities. As a consequence, the counterterm is obtained as a sum
over potentially collinear partons, the so-called emitter pairs. For soft singularities,
however, only color-ordered amplitudes exhibit a simple factorization, which implies
in general non-trivial color correlations. These color correlations are reflected by the
reference to an additional, so-called spectator parton. The subtraction term is thus
written schematically as a sum of individual dipoles, in the following form:

dσA =
∑

dipoles

dVdipole ⊗ dσB . (3.17)

Here, dVdipole stands for the dipole factors which match the singular behaviour of
dσR, whereas dσB denotes the corresponding color projection of the Born-level cross
section based on the so-called color linked Born amplitude squared (CLBS)

dσB ∼
∣∣∣MI,J

m;a,b

∣∣∣
2

. (3.18)

This reduced Born amplitude is obtained by eliminating the additionally emitted
parton from the real emission process. The color correlation between the emitter (I)
and the spectator (J) parton is incorporated by inserting the color charge operators
TI and TJ associated with the emission of a gluon (with color index c). These color
charges act on the color space of the reduced amplitude:

∣∣∣MI,J
m;a,b

∣∣∣
2

≡ m;a,b〈 1, . . . ,m; a, b | TI ·TJ | 1, . . . ,m; a, b 〉m;a,b

=
1

nc(a)nc(b)

[
Ma1...bI ...bJ ...

m;a,b (p1, . . . , pm; pa, pb)
]∗

T cbIaIT
c
bJaJ

Ma1...aI ...aJ ...
m;a,b (p1, . . . , pm; pa, pb) . (3.19)

Here, ai and bi are color indices, p1, . . . , pm denote the momenta of the final and
pa, pb the momenta of the initial state particles. Averaging over initial state colors
introduces a factor of 1/nc(a)nc(b) for the initial state partons a and b carrying nc(a)
and nc(b) colors. After the action of the color charge operators on the color space,
the color charge matrices read

• for final state partons

T cba = ifbca if the emitting parton is a gluon or gluino

T cβα =

{
tcβα if the emitting parton is a (s)quark

−tcαβ if the emitting parton is an anti-(s)quark
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• for initial state partons

T cba = ifbca if the emitting parton is a gluon or gluino

T cβα =

{
−tcαβ if the emitting parton is a quark

tcβα if the emitting parton is an anti-quark
. (3.20)

Here, α, β = 1, 2, 3 are the indices of the fundamental and a, b, c = 1, ..., 8 the indices
of the adjoint representation. The color algebra relations needed in order to evaluate
the products of these matrices in the color linked Born squared amplitudes are listed
in Appendix A.

With an appropriate choice of dipoles the counterterm dσA can be integrated ana-
lytically over the one-parton phase space

∫
dΦm+1 dσ

A =

∫
dΦm

[
dσB ⊗ I

]
+

∫ 1

0

dx

∫
dΦm

[
dσB ⊗ (P + K) (x)

]
. (3.21)

This integration yields the factor I, which contains all the ε poles that are necessary
to cancel the poles in the virtual contributions dσV , and additional singular terms,
which are reabsorbed into the non-perturbative PDFs mentioned in Section 3.1. The
last term in Eq. (3.21) is thus the (in four dimensions) finite collinear remainder
which is left after initial state collinear singularities have been factorized into the
PDFs. The functions P and K are finite in the limit ε → 0 and depend on the
longitudinal momentum fraction x. The convolution of the Born-type cross section
dσB with the x-dependent functions P and K leads to an additional integration
over x in the calculation of the finite collinear remainder. The final result of the
subtraction procedure for the NLO cross section is hence given in terms of

σNLO =

∫
dΦm+1


(dσR

)
ε=0
−
( ∑

dipoles

dVdipole ⊗ dσB
)

ε=0


 (3.22)

+

∫
dΦm

[
dσV + dσB ⊗ I

]
ε=0

+

∫ 1

0

dx

∫
dΦm

[
dσB ⊗ (P + K) (x)

]
ε=0

.

This formalism has been applied to the calculation of squark pair production in
hadronic collisions pp→ q̃iq̃j. Details concerning the expressions for the dipoles, the
integrated dipoles and the finite collinear remainder are presented in Chapters 5.4
and 5.5.



Chapter 4

Light Stop Decay in the MSSM
with Minimal Flavor Violation

4.1 Introduction

The predictions made by the SM are not only in excellent agreement with electroweak
precision data but also show remarkable consistency with precision measurements
in the quark flavor sector. These limits and constraints from K, D and B meson
studies on flavor changing neutral currents (FCNC) have very strong implications
[54–56]: The observed amount of flavor violation can be perfectly described by the
Cabibbo-Kobayashi-Maskawa (CKM) mechanism of the SM. In that sense, possible
New Physics beyond the SM cannot contain much more flavor violation than the
SM. Contributions to flavor violation from New Physics at the TeV scale must be
strongly suppressed and thus models with a generic flavor structure are forbidden.
One of the best studied examples in this context is given by SUSY. However, the
MSSM has in general many new flavor violating sources. This so-called New Physics
Flavor Problem is solved if the model is subject to the principle of Minimal Flavor
Violation (MFV) [57–60]. The MFV framework provides a solution, which leads to
agreement with the precision measurements, by requiring that all flavor changing
transitions are governed by the CKM matrix of the SM. Flavor mixing is then always
proportional to the off-diagonal elements of the CKM matrix. As a consequence,
no flavor changing neutral currents occur at tree level at the scale where this MFV
condition is imposed.

In supergravity models MFV arises naturally, as these models provide flavor in-
dependent scalar mass terms at a high scale like the Planck scale MP . In most
of these models the lighter stop mass eigenstate t̃1 is significantly lighter than the
other squarks. If SUSY breaking is transmitted to the visible sector at some high
scale, contributions from the large top Yukawa coupling to the renormalization group
equations (RGE) tend to reduce the stop mass relative to the masses of the first ge-
neration squarks [24, 35]. This is even the case when all squarks have a common
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mass at the SUSY breaking scale. Furthermore, the mixing between the weak eigen-
states t̃L and t̃R is proportional to the mass of the top quark, and leads therefore to
a large mass splitting between the stop mass eigenstates. This mixing will further
reduce the mass of the lighter eigenstate. In scenarios with a very light stop and a
small mass difference between this stop and the lightest neutralino χ̃0

1, which is as-
sumed to be the LSP, the decay channels t̃1 → bχ̃0

1W and t̃1 → tχ̃0
1 are kinematically

closed. Since the four-body decay t̃1 → `ν`bχ̃
0
1 is strongly suppressed due to phase

space, the two-body decay t̃1 → cχ̃0
1 is the dominant decay mode. With its t̃1 → c

transition, this FCNC decay is forbidden at tree level in the MFV framework. It is
therefore mediated via one-loop diagrams with charged particles in the loops.

From the phenomenological point of view there are several reasons to be interested
in light stops. In the context of the MSSM light stops are a necessary condition for
successful electroweak baryogenesis, which requires a stop mass with about the top
mass value or less [61–63]. One of the main motivations, as presented in Chapter 2.1,
for postulating the existence of superparticles, has been to stabilize the electroweak
hierarchy against radiative corrections. Since no signal of strongly interacting su-
perparticles has been found yet at the LHC [16, 17], quite stringent bounds on their
masses have been derived, leading to some tension with the fine-tuning argument.
However, to one-loop order essentially only third generation (s)quarks contribute to
the loop corrections to Higgs mass parameters. Thus with a light stop SUSY would
still provide a solution to the fine-tuning problem. Recent studies, discussing the
consequences of the potential discovery of the Higgs boson for the MSSM, point out
that light stop scenarios are among the few regimes of the MSSM which are still
allowed by all present experimental constraints [64] and that the hints for deviations
from a SM-like Higgs boson can be explained best by an extremely mixed stop sector
[65, 66] .
Moreover, it has been shown that assuming t̃1 → cχ̃0

1 being the dominant decay
mode, light stops can be discovered at the LHC, either based on the associate
production of a t̃1t̃

∗
1 pair with a bb̄ pair [67] or based on stop pair production in

association with one hard jet [68, 69]. Finally, long stop lifetimes induced by the
CKM-suppressed decay t̃1 → cχ̃0

1 can be exploited to test MFV. The flavor suppres-
sion needed for secondary vertices is unique to MFV models. By measuring the stop
lifetime information on the size of the flavor changing coupling can be extracted
under certain circumstances [70, 71].

Some time ago an approximate calculation of the FCNC decay t̃1 → cχ̃0
1 was provided

[18]. The authors have assumed a vanishing tree level t̃1 − c − χ̃0
1 coupling at the

Planck scale and hence calculated the loop-induced decay. The UV divergencies
have been subtracted by a soft counterterm at the Planck scale leading to a large
logarithm log(M2

P/M
2
W ) at the weak scale, which has been set to the W mass MW

in their calculation. It has been argued that in view of this large logarithm the
remaining non-logarithmic part of the one-loop diagrams can be neglected. As a
consequence, their result for the decay width takes a rather simple form.
In the following the complete one-loop calculation of the FCNC decay t̃1 → cχ̃0

1

in the framework of MFV is presented [72]. The full renormalization program is
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performed and the“finite”, i.e. non-logarithmic, terms arising from the loop integrals
are kept. This procedure allows for the study of the importance of the neglected
non-logarithmic pieces in the previous work.

To get a reliable result, the appearing large logarithms should be resummed. This
corresponds to solving RGEs for the scalar soft SUSY breaking squark masses. How-
ever, the hypothesis of MFV is not renormalization group invariant [59]. Even
though MFV is imposed at one scale, at any other scale FCNC couplings will be
generated through renormalization group (RG) evolution. Since the weak interac-
tions affect the squark and quark mass matrices differently, these matrices cannot be
diagonalized simultaneously anymore and the stop state receives an admixture from
the charm squark [73]. This induces a FCNC tree level coupling between t̃1− c− χ̃0

1

at any other scale than the scale µMFV of the MFV hypothesis. The RGE solution
can be expanded in powers of the coupling constant α and written symbolically as

α (A1 log +A0) + α2
(
B2 log2 +B1 log +B0

)
+ α3

(
C3 log3 +...

)
+O(α4) . (4.1)

From this point of view, the logarithmic piece of our one-loop result is equivalent to
the first term proportional to α in the line above, whereas the tree level decay with
the FCNC coupling generated by the RG evolution includes the resummation of the
large logarithms. The comparison of the exact one-loop result and the resummed
tree level decay provides an estimate of the importance of the resummation of the
large logarithms.

The outline of this part of the thesis is as follows: Section 4.2 is devoted to highlight
flavor mixing aspects of the quark and squark sector in the SM and MSSM. The stop
decay t̃1 → cχ̃0

1 at one-loop level is discussed in Section 4.3 including a detailed de-
scription of the renormalization procedure and a short presentation of the analytical
results. Section 4.4 contains the numerical analysis of decay widths and branching
ratios and the investigation of the scale dependence. Finally, in Section 4.5 the work
is summarized.

4.2 Flavor Mixing in the SM and MSSM

As just mentioned in the introduction assuming MFV the FCNC decay t̃1 → cχ̃0
1 is

forbidden at tree level at µMFV, the scale at which the principles of MFV hold. In
order to understand which expressions enter the calculation of this decay and why it
vanishes at tree level, a closer look on the flavor structure of the MSSM, especially
in the context of MFV, is inevitable. Since in MFV all flavor changing transitions
are governed by the CKM matrix of the SM a brief review of the SM quark flavor
sector is useful.

In the SM the 3 × 3 unitary matrices UuL,R and UdL,R are defined as the matri-
ces which rotate the left- and right-handed up- and down-type quark interaction
eigenstates, uL,R and dL,R, to their corresponding mass eigenstates, umL,R and dmL,R:

umL = UuLuL, umR = UuRuR, dmL = UdLdL, dmR = UdRdR . (4.2)
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In other words, these matrices diagonalize the quark mass matrix. The CKM matrix
is given by the combination

V CKM = UuLUdL† . (4.3)

The CKM matrix is a 3× 3 unitary matrix and describes the probability of a tran-
sition from one quark i to another quark j. These transitions are proportional to
|Vij|2:

V CKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 . (4.4)

Unitarity implies
∑

i

Vij V
∗
ik = δjk and

∑

j

Vij V
∗
kj = δik . (4.5)

The second equation gives rise to the following combination

Vcd V
∗
td + Vcs V

∗
ts + Vcb V

∗
tb = 0 , (4.6)

which will be used in order to simplify the one-loop result of the decay t̃1 → cχ̃0
1.

Only transitions from down-type quarks to up-type quarks, or vice versa, are allowed
and thus no FCNC originating from transitions between up-type quarks of different
generations (or down-type quarks of different generations) occur. Currently, the
best determination of the magnitudes of the CKM matrix elements is [74]

V CKM =




0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046


 . (4.7)

While the diagonal matrix elements are close to 1, the off-diagonal elements lead
to a strong suppression of processes involving the corresponding transitions. Apart
from the flavor mixing defined by these matrices, no further flavor transitions are
possible in the SM.

For the squark interaction eigenstate a six component vector

q̃ =


 q̃L

q̃R


 (4.8)

is defined, where q̃L and q̃R are three component column vectors in generation space.
The squared squark mass matrix can be written as a 2×2 Hermitian matrix of 3×3
blocks

M2
q̃ =


 M

2
q̃LL

M2
q̃LR

M2
q̃RL

M2
q̃RR


 . (4.9)
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In general, M2
q̃ contains a lot of new flavor violating sources. It is diagonalized by

a 6 × 6 unitary matrix W̃ which rotates the squark interaction eigenstates to their
mass eigenstates q̃m,

q̃m = W̃ q̃ . (4.10)

The six component column vector q̃m is defined to be ordered in mass, with q̃m1 being
the lightest squark. Equation (4.10) can then be rewritten as

q̃ms = W̃si q̃iL + W̃s i+3 q̃iR (s = 1, .., 6, i = 1, 2, 3)

≡ (W̃L q̃L + W̃R q̃R)s , (4.11)

where i denotes the generation index. Thus, the mass eigenstate squark field has
been decomposed into left- and right-chiral interaction eigenstate squark fields.
The rotation of squarks by the same unitary matrices U qL,R as the quarks defines
the super-CKM basis. In models with non-minimal flavor violation the squark mass
matrix is flavor-mixed in this basis, in contrast to the quark mass matrix. In models
with MFV at the scale µMFV, however, the squarks can be rotated by U qL,R to their
flavor eigenstates in parallel to the quarks, and the super-CKM basis is at the same
time the flavor eigenstate basis. This implies that any further rotation to the mass
eigenstates does not mix squarks of different flavors, but only left- and right-chiral
flavor eigenstates. Thus, suppressing generation indices, the flavor eigenstates in
MFV are defined by

q̃′L = U qL q̃L, q̃′R = U qR q̃R . (4.12)

The squared mass matrix in the flavor eigenstate basis (q̃′L, q̃
′
R)T then reads

M2
q̃ =


 (M̃2

q̃L
+m2

q)13 mq(Aq − µhrq)13

mq(Aq − µhrq)13 (M̃2
q̃R

+m2
q)13


 , (4.13)

where rd = 1/ru = tan β for down- and up-type squarks. With tan β we denote
the ratio of the vacuum expectation values of the two complex Higgs doublets. The
parameter Aq denotes the trilinear coupling of the soft SUSY breaking part of the
Lagrangian, µh the higgsino mass parameter and mq the mass of the quark partner.
Here, 13 is a 3 × 3 unit matrix in generation space. The parameters M̃q̃L,R

are
given by the left- and right-handed scalar soft SUSY breaking masses Mq̃L,R

and the
D-terms,

M̃2
q̃L,R

= M2
q̃L,R

+Dq̃L,R

Dq̃L = M2
Z cos 2β(I3

q −Qq sin2 θW )

Dq̃R = M2
Z cos 2β Qq sin2 θW , (4.14)

where I3
q denotes the third component of the weak isospin, Qq the electric charge,

MZ the Z boson mass and θW the Weinberg angle. The squared mass matrix M2
q̃
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can be diagonalized by a 6×6 unitary matrix W which rotates the flavor eigenstates
to their mass eigenstates,

q̃ms = Wst


 q̃′L

q̃′R



t

= Wsi q̃
′
iL +Ws i+3 q̃

′
iR ≡ (WL q̃

′
L +WR q̃

′
R)s (4.15)

(s, t = 1, .., 6, i = 1, 2, 3) .

By comparing Eqs. (4.15) and (4.12) with Eq. (4.11), it is evident that the 6 × 3
matrices W̃L,R, which rotate the interaction eigenstates to the mass eigenstates, can
be factorized into the 3× 3 quark rotation matrices U qR and U qL , which rotate from
the interaction to the flavor eigenstate basis, and the 6× 3 flavor-diagonal matrices
WL,R, which transform flavor eigenstates into mass eigenstates,

W̃L = WLU
qL and W̃R = WRU

qR , (4.16)

with q = u, d. The flavor-diagonal matrix W can be expressed in terms of mixing
angles by

(WL)ii = (WR)i+3 i = cos θqi , (WR)ii = −(WL)i+3 i = sin θqi . (4.17)

For the three quark generations i the relation between the flavor eigenstates q̃′iL, q̃
′
iR

and the squark mass eigenstates q̃ms = (q̃mi , q̃
m
i+3) hence reads

q̃mi = q̃′iL cos θqi + q̃′iR sin θqi
q̃mi+3 = −q̃′iL sin θqi + q̃′iR cos θqi . (4.18)

For better legibility, the generation indices will be suppressed from now on wherever
possible, and the lighter and heavier squark mass eigenstates are generically called
q̃1 and q̃2. The mixing angles are then given by

sin 2θq =
2mq(Aq − µhrq)
M2

q̃1
−M2

q̃2

, cos 2θq =
M̃2

q̃L
− M̃2

q̃R

M2
q̃1
−M2

q̃2

, (4.19)

and the masses of the squark mass eigenstates read

M2
q̃1,2

= m2
q +

1

2

[
M̃2

q̃L
+ M̃2

q̃R
∓
√

(M̃2
q̃L
− M̃2

q̃R
)2 + 4m2

q(Aq − µhrq)2

]
. (4.20)

Since the mixing angles are proportional to the quark masses, the mixing is impor-
tant in the stop sector and thus, as already mentioned in the introduction, can drive
the lightest stop mass even lighter than the top quark mass.

The amplitude of the FCNC decay t̃1 → cχ̃0
1 at tree level is proportional to an

off-diagonal matrix element of the flavor-diagonal matrix W . For that reason this
process vanishes at tree level at the scale µMFV . At any other scale the squark mass
matrix cannot be rotated to the flavor eigenstate basis by the matrices UuL,R and
UdL,R any more. Therefore, the matrix W has to have flavor off-diagonal contribu-
tions inducing flavor violating tree level decays.
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4.3 Light Stop Decay t̃1 → c+χ̃0
1 at One-Loop Level

Since the FCNC decay t̃1 → cχ̃0
1 is forbidden at tree level in the framework of the

MSSM with MFV at the scale µMFV, it is mediated via loop diagrams. At one-loop
level three types of diagrams contribute: Squark self energies, quark self energies
and vertex diagrams. Generic diagrams illustrating these three contributions are
depicted in Fig. 4.1. In MFV all flavor changing effects are governed by the CKM
matrix of the SM. Consequently, all contributions to the decay at one-loop level are
mediated by charged current loops, as can be inferred from the various diagrams
listed in Fig. 4.2. Note that, in the calculation presented here the charm quark mass
is set to1

mc = 0 . (4.21)

Therefore, the t̃1 self energies have only non-vanishing contributions for transitions
into the left-handed charm squark c̃L. The transitions into the right-handed charm
squark, c̃R, are zero for mc = 0. This decay channel, though suppressed by small
CKM matrix elements, is dominant for very light stops with a small mass difference
to the lightest neutralino. Hence, for this calculation, scenarios where the light stop
t̃1 is the next-to-lightest supersymmetric particle (NLSP) and the lightest neutralino
χ̃0

1 is the LSP, are considered.

The self energies and vertex corrections are divergent and have to be renormalized.
The counterterms for the squark and quark self energies and for the vertex renor-
malization are shown in Fig. 4.3. The FCNC vertex does not arise at tree level.
Its occurrence as counterterm at one-loop level is due to the fact that MFV is not
RGE-invariant, since the weak interactions affect the squark and quark mass ma-
trices differently [73]. Their simultaneous diagonalization cannot be maintained at
higher orders and can only be consistently imposed at the scale µMFV .

For the calculation of the stop decay process an effective interaction vertex T is
defined,

T ≡ g ūc(k2) (FLPL + FRPR) vχ̃0
1
(k1) , (4.22)

where ūc, vχ̃0
1

denote the charm and neutralino spinors and k1, k2 are the four-
momenta of the outgoing neutralino and charm quark. Here, FL and FR are form
factors associated with the chirality projectors PL and PR, respectively. They receive

1In view of the smallness of the charm quark mass, mc = 1.28 GeV, the numerical results are
hardly affected by this choice.

t̃1
c̃L

c

χ̃0
1

t̃1
t

c

χ̃0
1

t̃1

c

χ̃0
1

Figure 4.1: Generic diagrams contributing to the loop-decay t̃1 → cχ̃0
1.
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t̃1 c̃L = t̃1 c̃L

G±,H±

+ t̃1 c̃L

d̃k

+
t̃1 c̃L

W

d̃k

+ t̃1 c̃L

χ̃+
j

dk

+ t̃1 c̃L

G±,H±

d̃k

t c = t c

W

dk

+ t c

G±,H±

dk

+ t c

χ̃+
j

d̃k

t̃1

c

χ̃0
1

= t̃1

c

χ̃0
1

χ̃+
j

dk

d̃k + t̃1

c

χ̃0
1

d

χ̃+
j

G±,H±

+

t̃1

c

χ̃0
1

d

χ̃+
j

W + t̃1

c

χ̃0
1

G±,H±

d̃k

d + t̃1

c

χ̃0
1

d̃k

G±,H±

χ̃+
j

+

t̃1

c

χ̃0
1

W

d̃k

d + t̃1

c

χ̃0
1

d̃k

W

χ̃+
j

Figure 4.2: Generic diagrams contributing to the squark and quark self energy and
the proper vertex correction.
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Figure 4.3: Counterterm diagrams.
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contributions F v from the vertex diagrams, F tc, F t̃1c̃L from the quark and squark self
energies and δF v, δF tc, δF t̃1c̃L from the vertex, the quark and squark wave function
renormalization counterterms:

FL,R = [F t̃1c̃L + δF t̃1c̃L + F tc + δF tc + F v + δF v]L,R . (4.23)

These contributions are specified in the following discussion of the counterterms
which are needed for the renormalization procedure and in the presentation of the
analytical results.

4.3.1 Counterterms and Renormalization

The loop diagrams in the self energies and vertex corrections contain momentum
integrals which diverge due to contributions from large momenta. In order to be
able to handle these UV divergencies, it is necessary to introduce a regularization
scheme. In dimensional regularization [51] the number of space-time dimensions is
lowered to D = 4−2ε and the UV singularities appear as poles in ε. In general SUSY
is broken by dimensional regularization because it introduces a mismatch between
fermionic and bosonic degrees of freedom. An alternative regularization scheme is
dimensional reduction [75, 76], where no mismatch of fermionic and bosonic degrees
of freedom is introduced. It has been verified explicitly in this calculation that
the results obtained with both regularization schemes agree. Thus, the calculation
performed in dimensional regularization does not need to be supplemented by a
SUSY restoring counterterm.

The quark and squark fields are renormalized in the on-shell scheme introduced in
Chapter 3.2. The bare quark q(0) and squark q̃(0) fields are related to the renorma-
lized quark q and squark q̃ fields by the renormalization constants δZ q̃ and δZL,R

q̃(0) =

(
1 +

1

2
δZ q̃

)
q̃ and q

(0)
L,R =

(
1 +

1

2
δZL,R

)
qL,R . (4.24)

Inserting the renormalized self energies into the on-shell renormalization conditions
of Chapter 3.2, the field renormalization constants can be calculated from the un-
renormalized quark and squark self energies. The off-diagonal part of the squark
field renormalization constant in terms of the squark self energy reads

δZ q̃
st =

2

m2
q̃s
−m2

q̃t

ReΣq̃
st(m

2
q̃t) s, t = 1, .., 6, s 6= t . (4.25)

Recalling the following structure of the quark self energy

Σij(p
2) ≡6p ΣL

ij(p
2)PL+ 6p ΣR

ij(p
2)PR +miΣ

Ls
ij (p2)PL +mjΣ

Rs
ij (p2)PR , (4.26)
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the corrections to the off-diagonal chiral components of the quark field can be written
as

δZL
ij =

2

m2
qi
−m2

qj

[
m2
qi

R̃eΣLs
ij (m2

qj
) +m2

qj
R̃eΣRs

ij (m2
qj

)

+m2
qj

R̃eΣL
ij(m

2
qj

) +mqimqj R̃eΣR
ij(m

2
qj

)
]

δZR
ij =

2

m2
qi
−m2

qj

[
mqimqj R̃eΣLs

ij (m2
qj

) +mqimqj R̃eΣRs
ij (m2

qj
)

+mqimqj R̃eΣL
ij(m

2
qj

) +m2
qj

R̃eΣR
ij(m

2
qj

)
]

(4.27)

i, j = 1, 2, 3, i 6= j .

After the renormalization of the quark and squark fields in the on-shell scheme, the
contributions to the form factors of the effective interaction vertex in Eq. (4.22) from
the self energies of the quarks and squarks and from their counterterms vanish:

F t̃1c̃L + δF t̃1c̃L = 0

F tc + δF tc = 0 . (4.28)

The divergencies in the one-loop vertex correction diagrams are left and need to
be absorbed by the FCNC vertex counterterm. The general form of the vertex
counterterm, depicted in Fig. 4.3, is derived in Appendix B. It arises from the flavor
non-diagonal part of the field renormalization constants, from the renormalization
of the quark and squark mixing matrices [77] and from the renormalization of the
quark masses. Adjusted to the process of interest, the contributions of the vertex
counterterm to the form factors are

g δF v
R = −ig eZ

[
1

2
δZL†

ct cos θt +
1

2
δZ q̃

c̃L t̃1
+ δuuLct cos θt + δw̃†

c̃L t̃1

]
(4.29)

g δF v
L = 0 (4.30)

The constant eZ summarizes the coupling factors

eZ =
√

2

[
Z11

6
tan θW +

1

2
Z12

]
, (4.31)

where Z11 and Z12 are matrix elements of the 4×4 Z matrix, which diagonalizes the
neutralino mass matrix. The mixing matrix counterterms δuuL,R and δw̃ relate the
bare quark and squark mixing matrices U (0), W̃ (0) to the renormalized ones U r, W̃ r:

W̃ (0)
su = (δst + δw̃st)W̃

r
tu , s, t, u = 1, .., 6, (4.32)

U
uL,R (0)
ik = (δij + δu

uL,R

ij )U
uL,R r
jk , i, j, k = 1, 2, 3, (4.33)

The indices s, t, u denote the six squark mass eigenstates, and i, j, k are generation
indices. Following the approach of [78], the MFV condition is imposed on the re-
normalized mixing matrices and hence they are demanded to be flavor-diagonal.
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This leads to flavor non-diagonal counterterms δuuL,R and δw̃. Furthermore, as the
bare and renormalized mixing matrices are unitary, the counterterms must be anti-
hermitian. The UV divergent part of both mixing matrix counterterms is determined
such that it cancels the divergencies of the anti-hermitian part of the corresponding
field renormalization constants [79, 80]

δw̃ =
1

4
(δZ q̃ − δZ q̃†) (4.34)

δuuL,R =
1

4
(δZL,R − δZL,R†) . (4.35)

The finite parts of these counterterms depend on the renormalization conditions.
Absorbing also the finite part of the anti-hermitian field renormalization constants
in general leads to a gauge-dependent on-shell renormalization scheme [81, 82]. Ab-
sorbing only the UV divergent part, proportional to

1/ε+ log 4π − γ + log
µ2

Q2
≡ ∆ + log

µ2

Q2
, (4.36)

with γ being the Euler-Mascheroni constant, Q the renormalization and µ the
’t Hooft scale, defines the MS renormalization scheme [50]. In the following this
scheme is adopted and the MFV condition is imposed on the MS parameters at
the scale Q2 = µ2

MFV . Consequently, the result will depend on this scale [78]. The
squark mixing matrix counterterm then reads

δw̃†
c̃L t̃1

=
1

2

(
Σq̃

c̃L t̃1
(m2

c̃L
) + Σq̃

c̃L t̃1
(m2

t̃1
)

m2
t̃1
−m2

c̃L

)

MS

. (4.37)

A gauge invariant prescription for the quark mixing matrix counterterm is given by
[81]

δuUL
ct = −1

2

[
ΣL
tc(0) + 2ΣLs

tc (0)
]

MS
= −1

2
ΣL
tc(0)MS . (4.38)

The scalar part of the quark self energy vanishes for zero momentum transfer and so
does the quark field renormalization constant contributing to the vertex counterterm
in Eq. (4.29)

δZL†
ct = 2ΣLs

tc (m2
c = 0) = 0 . (4.39)

Finally, the last renormalization constant needed for the vertex counterterm is the
squark field renormalization constant, which according to Eq. (4.25) yields:

δZ q̃

c̃L t̃1
=

2Σq̃

c̃L t̃1
(m2

t̃1
)

m2
c̃L
−m2

t̃1

. (4.40)
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4.3.2 Analytical Results

By exploiting the unitarity relation of the CKM matrix in Eq. (4.6) as well as those
of the chargino mixing matrices U and V , the contribution of the vertex diagrams
to the form factors can be written as

g F v
R = −igF

[
∆ + log

µ2

m2
loop

+ finite terms

]
(4.41)

g F v
L = 0 , (4.42)

where the short-hand notation

F ≡ 1

16π2
g2eZ

(
Vcb V

∗
tbm

2
b cos θt

2M2
W cos2 β

)
, (4.43)

comprises common coupling factors, including the coupling constant g and the CKM
matrix elements Vcb and V ∗tb. The left-handed form factor FL is zero due to the
choice of vanishing charm quark mass. The expression ”finite terms“ in Eq. (4.41)
summarizes all terms in the result of the calculation, which are neither UV divergent
nor depend on the logarithm of the ’t Hooft scale, log µ2. For reasons of legibility
and in order to compare with the result derived in [18] a generic mass mloop for all
massive particles in the loops has been introduced. In the numerical analysis the
exact result with different loop particle masses will be used. The contribution of the
quark mixing matrix counterterm, defined in Eq. (4.38), to the vertex counterterm
explicitly reads

−g eZ cos θt
(
δuUL

ct

)
MS

= g
F
2

[
∆ + log

µ2

µ2
MFV

]
. (4.44)

The counterterm of the squark mixing matrix yields

−g eZ
(
δw̃†

c̃L t̃1

)
MS

= g
F
2

(
−m2

t̃1
−m2

c̃L
− 2A

m2
t̃1
−m2

c̃L

)[
∆ + log

µ2

µ2
MFV

]
, (4.45)

with

A = −µ2
h +A2

b + M̃2
b̃R

+ cos2 β(M2
W (tan2 β − 1) +M2

A tan2 β) +mtAb tan θt . (4.46)

It depends on the higgsino parameter µh, the soft SUSY breaking mass parameter
M̃b̃R

including D term contributions, the trilinear coupling Ab, the mixing angle β,
the W boson mass and the pseudoscalar Higgs mass MA. The contribution from the
squark field renormalization constant δZ q̃

c̃L t̃1
is given by

−g eZ
1

2

(
δZ q̃

c̃L t̃1

)
= g
F
2

(
2m2

t̃1
+ 2A

m2
t̃1
−m2

c̃L

)[
∆ + log

µ2

m2
loop

+ finite terms

]
. (4.47)

Since the latter has been renormalized in the on-shell scheme, it includes, as the
vertex corrections before, ’finite terms’, which do not depend on log µ2. Inserting
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Eqs. (4.39),(4.44),(4.45) and (4.47) in Eq. (4.29), the right-chiral part of the FCNC
counterterm is then given by

g δF v
R = igF

[
∆− m2

c̃L
+A

m2
t̃1
−m2

c̃L

log
µ2

µ2
MFV

+
m2
t̃1

+A
m2
t̃1
−m2

c̃L

log
µ2

m2
loop

+ finite terms

]
.

(4.48)
Adding Eq. (4.41) to Eq. (4.48) we arrive at the following final result for the form
factors, that contribute to Eq. (4.23):

g FR =
i

16π2
g3
√

2

[
Z11

6
tan θW +

Z12

2

](
Vcb V

∗
tbm

2
b cos θt

2M2
W cos2 β

)
×

(
m2
c̃L
−A

m2
t̃1
−m2

c̃L

)
log

(
µ2

MFV

m2
loop

)
+ finite terms (4.49)

g FL = 0 . (4.50)

Finally, the stop decay width in terms of the form factor in Eq. (4.49) is given by

Γ(t̃1 → cχ̃0
1) =

g2mt̃1

16π

(
1−

m2
χ̃0
1

m2
t̃1

)2

|FR|2 . (4.51)

On the one hand the form factor introduces a suppression by the CKM matrix
elements Vcb V

∗
tb, but on the other hand the logarithm, depending on the scale of

MFV, can become very large. The finite terms, which do not depend on log µ2
MFV,

are then only subleading. Furthermore, as will be shown in the next section, the
decay can gain importance in certain regions of parameter space.
If the finite terms in Eq. (4.49) are dropped, the approximate result given by Hikasa
and Kobayashi in Ref. [18] should be reproduced. In fact, for mc = 0 we can rewrite
parts of the numerator in the second line of the form factor of Eq. (4.49)

m2
c̃L
−µ2

h+c2
β(M2

W (tan2 β−1)+M2
A tan2

β) = M2
Hd

+M2
q̃L

+
1

3
M2

Z sin2 θW cos 2β , (4.52)

where MHd
denotes the mass parameter of the Higgs doublet Hd, which couples

to down-type fermions. With this relation and by setting the MFV scale equal
to the Planck scale, µMFV = MP , choosing MW as generic loop particle mass and
neglecting the finite terms, the form factor in Eq. (4.49) reproduces the approximate

result F
H/K
R of Ref. [18]:

gF
H/K
R =

i

16π2
g3
√

2

[
Z11

6
tan θW +

Z12

2

](
Vcb V

∗
tbm

2
b cos θt

2M2
W cos2 β

)(
1

m2
t̃1
−m2

c̃L

)
×

[M2
Hd

+M2
q̃L

+ A2
b +M2

b̃R
+mtAb tan θt] log

(
M2

P

M2
W

)
. (4.53)
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In the full one-loop calculation of the decay width in Eq. (4.51) the finite terms are
included. Thus, the relevance of these contributions can be checked by comparison
with the approximate decay width ΓH/K , calculated with the form factor F

H/K
R :

ΓH/K(t̃1 → cχ̃0
1) =

g2mt̃1

16π

(
1−

m2
χ̃0
1

m2
t̃1

)2

|FH/K
R |2 . (4.54)

This comparison will be discussed in detail in the following section.

4.4 Numerical Analysis

For the numerical analysis of the t̃1 → cχ̃0
1 decay the framework has to be chosen

such, that MFV is ensured at a scale µ = µMFV . This is the case, when all soft
SUSY breaking parameters are flavor-diagonal at this single scale. In particular,
a common mass parameter Mq̃L for the soft SUSY breaking masses of the SU(2)
doublet has to be introduced, in order to make sure that the mass matrices for the
up- and down-type squarks can be flavor diagonalized simultaneously. A framework
which guarantees this is the mSUGRA model [27–30], where a hidden sector of
spontaneous SUSY breaking terms is coupled to the MSSM only through flavor-
blind gravitational-strength interactions. It is defined in terms of a small number of
parameters at the GUT scale MGUT , which is identified with the MFV scale in the
following: µMFV = MGUT .
The scenarios have been chosen such, that they lead to a t̃1 NLSP and a χ̃0

1 LSP.
Then the decay channels t̃1 → bχ̃0

1W and t̃1 → tχ̃0
1 are kinematically forbidden.

When the mass difference between the t̃1 and χ̃0
1 is small enough, the FCNC decay

t̃1 → cχ̃0
1 ∼ |Vcb|2 ≈ |0.04|2 (4.55)

is dominating since the other possible decay modes are either suppressed by even
smaller CKM matrix elements

t̃1 → uχ̃0
1 ∼ |Vub|2 ≈ |0.004|2 (4.56)

or due to limited phase space for the four-body decay

t̃1 → χ̃0
1bf̄f . (4.57)

The mass spectra and mixing angles have been calculated with the spectrum calcu-
lator SPheno [83, 84] and compared to SOFTSUSY [85]. Both codes include the option
to perform two-loop RGE running with and without the inclusion of flavor violation
and both support the SUSY Les Houches accord [86, 87]. Within this accord the
gauge and Yukawa couplings as well as the soft SUSY breaking mass parameters and
trilinear couplings are returned as running parameters in dimensional reduction at
a scale Q, which has been chosen to be the scale of electroweak symmetry breaking
(EWSB). As mentioned before, it has been verified that the calculation of the decay
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width leads to the same result if dimensional reduction instead of dimensional regu-
larization is applied. Consequently, the running parameters in dimensional reduction
can be used. The mixing matrix elements and the SUSY particle pole masses have
been taken at the scale of EWSB as well. The SM parameters have been chosen as

MZ = 91.187 GeV

α−1MS
em (MZ) = 127.934

αMS
s (MZ) = 0.118

mMS
b (mb) = 4.25 GeV

Mpole
t = 173.3 GeV

mpole
τ = 1.777 GeV

|Vtb| = 0.999

|Vcb| = 0.041 . (4.58)

Apart from checking the importance of the finite terms in the exact one-loop calcu-
lation presented in the previous section for the decay widths and branching ratios,
resummation effects due to the RG evolution from the GUT scale down to the EWSB
scale are analyzed in the following section. The latter enter this analysis since the
logarithm log µ2

MFV /m
2
loop in the result of the one-loop calculation (Eq. (4.49)) can

become very large for µMFV = MGUT . In order to get a reliable result, the large loga-
rithm must be resummed. The resummation is provided by the solution of the RGE
for the quark and squark mixing matrices. The RG evolution of the corresponding
soft-breaking terms generates small flavor off-diagonal entries in the squark mixing
matrix W̃ , which give rise to an FCNC tree level decay. In this ”flavor violating“
case, denoted by FV in the following no flavor-eigenstates exist any more. However,
the lightest up-type squark state ũ1 can be identified to correspond to t̃1. This is
possible since both are required to be the lightest up-type squark and the flavor vi-
olating effects introduced through RG evolution are small. The form factor F FV

R of
the FCNC tree level decay is given by the right-handed part of the FCNC ũ1−c− χ̃0

1

coupling2,

F FV
R = −i

√
2

(
Z11

6
tW +

Z12

2

)
(W̃L)ũ1c , (4.59)

with the squark mixing matrix W̃L defined in Eq. (4.11). This leads to the partial
decay width

ΓFV(ũ1 → cχ̃0
1) =

g2mũ1

16π

(
1−

m2
χ̃0
1

m2
ũ1

)
|FFV
R |2 , (4.60)

which will also be compared to the decay width of the exact one-loop result. Fur-
thermore, the behavior of the different form factors and decay widths is studied for
decreasing scales of MFV. All numerical results stated in the following have been ob-
tained with the program SUSY-HIT [88, 89], where the formula for the loop-induced
flavor changing stop decay has been implemented and will be available with a future

2The left-handed part is negligibly small for mc = 0.
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release. Actually, two independent implementations have been developed by the
authors of [72] in order to provide a cross check for the results.

Analysis for µMFV ≈ 1016 GeV

The analysis is accomplished for two different mSUGRA scenarios with soft-breaking
terms at the GUT scale MGUT ≈ 2.3 · 1016 GeV, which is identified with the MFV
scale. The boundary conditions at µMFV = MGUT are

(1) M0 = 200 GeV M1/2 = 230 GeV A0 = −920 GeV

tan β = 10 sign(µh) = +

(2) M0 = 200 GeV M1/2 = 230 GeV A0 = −895 GeV

tan β = 10 sign(µh) = + .

(4.61)

The masses are obtained by RGE evolution from the GUT scale down to the elec-
troweak scale. The running is performed at two-loop order without the inclusion of
explicit flavor violation in the squark sector. The most relevant masses are

(1) mt̃1 = 104 GeV mχ̃0
1

= 92 GeV mχ̃+
1

= 175 GeV

(2) mt̃1 = 130 GeV mχ̃0
1

= 92 GeV mχ̃+
1

= 175 GeV .
(4.62)

The second scenario has a larger mt̃1 − mχ̃0
1

difference compared to scenario (1),

whereas the mass difference between t̃1 and the lightest chargino χ̃+
1 is smaller.

Since the four-body decays are dominated by a chargino exchange diagram [90], in
scenario (2) the four-body decays should be more important leading to a smaller
branching ratio of the loop-induced flavor changing decay.

For these scenarios the partial stop decay width into charm and neutralino, calcu-
lated with the exact one-loop formula, is compared to the approximate result by [18].
For the latter, we take MW as generic loop particle mass, cf. Eq. (4.53). The widths
and form factors are given in Table 4.1. Note, that as anticipated the partial width
in the first scenario is ∼ 6 times smaller than in the second scenario due the smaller

t̃1 → cχ̃0
1 Γ1−loop[GeV] ΓH/K[GeV] |F 1−loop

R | |FH/K
R |

Scenario (1) 9.322 · 10−10 1.004 · 10−9 1.486 · 10−4 1.542 · 10−4

Scenario (2) 5.862 · 10−9 6.446 · 10−9 1.460 · 10−4 1.531 · 10−4

Table 4.1: The partial widths and form factors for the decay t̃1 → cχ̃0
1 in scenario

(1) and (2), calculated with the exact one-loop formula, (Γ1-loop, F 1-loop
R ), and with

the approximate formula of Ref. [18], (ΓH/K, F
H/K
R ).
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branching ratio BR(t̃1 → χ̃0
1c) BR(t̃1 → χ̃0

1u) BR(t̃1 → χ̃0
1bf f̄

′)

Scenario (1) 0.9944 0.0056 4.587 · 10−5

Scenario (2) 0.9443 0.0053 0.0504

Table 4.2: The t̃1 branching ratios for different final states for scenario (1) and (2).

mt̃1 −mχ̃0
1

difference and hence reduced phase space. The exact and approximate
decay width differ in both scenarios by O(10)%. In fact, the finite terms extracted
from the one-loop formula turn out to contribute with ∼ 3− 5% to FR, Eq. (4.49).
This difference translates into the 10% effect in the decay width.

For the calculation of the branching ratios, also the partial width for the t̃1 decay
into an u-quark and neutralino, t̃1 → uχ̃0

1, as well as the four-body decay width
are needed. The former is suppressed by two orders of magnitude compared to the
cχ̃0

1 final state due to the small CKM matrix element |Vub| ≈ 0.004 which enters
quadratically in the decay width. The branching ratios are listed in Table 4.2. As
expected, the stop four-body decay is more important in scenario (2) leading to a
change of the branching ratio of interest, BR(t̃1 → χ̃0

1c), at the few per-cent level.
The difference in the branching ratio BR(t̃1 → cχ̃0

1) calculated in the exact and
approximate approach is negligible, however.

As stated before, the large logarithms in the one-loop decay formula should be
resummed. To get an estimate of the importance of the resummation effects, the
loop-induced decay is compared to the FCNC tree level stop decay into charm and
neutralino with flavor off-diagonal elements in the squark mixing matrix. The input
parameters for the FCNC tree level decay formula in Eq. (4.60) are obtained with the
spectrum calculator SPheno [83, 84]. The scenarios in Eq. (4.61) have been chosen
such that in the case of FCNC transitions at tree level the mass of the lightest up-
type squark state ũ1 corresponds roughly to the mass of the light stop t̃1. The χ̃0

1

and χ̃+
1 masses are almost unchanged.

The form factors and partial widths are shown in Table 4.3. As can be inferred from
the table, there is a factor ∼ 4.4 between the right-handed form factor calculated

|F 1-loop
R | |FFV

R | Γ1-loop [GeV] ΓFV [GeV]

Scenario (1) 1.486 · 10−4 3.361 · 10−5 9.322 · 10−10 4.766 · 10−11

Scenario (2) 1.460 · 10−4 3.306 · 10−5 5.862 · 10−9 3.006 · 10−10

Table 4.3: The right-handed form factors and partial decay widths of the lightest
up-type squark into charm and neutralino for loop-induced (1-loop) and the FCNC
tree level decay (FV).
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Scenario (2) BR(t̃1 → χ̃0
1c) BR(t̃1 → χ̃0

1u) BR(t̃1 → χ̃0
1bf f̄

′)

Exact 1-loop 0.9443 0.0053 0.0504

BR(ũ1 → χ̃0
1c) BR(ũ1 → χ̃0

1u) BR(t̃1 → χ̃0
1bf f̄

′)

FCNC TL 0.4884 0.0032 0.5084

Table 4.4: The t̃1 branching ratios for the loop-induced (Exact 1-loop) and the
FCNC tree level decay (FCNC TL).

at the one-loop level and the one derived from RG evolution including FCNC at
tree level. As expected, resummation effects turn out to be important for a large
scale µMFV = MGUT

3. The partial widths, which depend quadratically on the right-
handed form factor, differ by a factor ∼ 20.

For comparison the calculation has been performed with the decay spectra and mix-
ing angles evaluated by SOFTSUSY. The squark mixing matrix elements agree within
10−2 accuracy with the results of SPheno. The mixing matrix element (W̃L)ũ1c,
which enters in the form factor FFV

R Eq. (4.59), is O(10−4) and differs in the two
spectrum calculators, as the two codes implement the one-loop corrections to the
squark mass matrices differently. SOFTSUSY corrects only the flavor-diagonal entries
of the squark mass matrices, while SPheno implements a full one-loop calculation,
so that differences in the flavor off-diagonal entries are to be expected [92]. For the
SOFTSUSY parameter values, this results in a ratio between loop-induced decay and
FCNC tree level decay of ∼ 2.7 for the two scenarios, compared to the ratio ∼ 4.4
found with the SPheno parameter values. All in all, the results with both spectrum
calculators show the importance of the resummation effects.

The consequences of these resummation effects on the t̃1 branching ratio into the
charm plus neutralino final state are of phenomenological interest. To quantify this,
the partial decay width for the decay into the up-quark and the lightest neutralino,
as well as the four-body stop decay width, calculated with FCNC tree level cou-
plings, are needed. The decay width into the up-quark can be determined from
the corresponding resummed flavor off-diagonal matrix element W̃ũ1uL . However,
the calculation for the competing four-body stop decay width including tree level
FCNC couplings is not available at present. But the additional FCNC contribu-
tions are expected to be small due to the suppression by CKM matrix elements,
so the existing calculation is used for the following comparison of branching ratios.
This means, that the decay width of the four-body decay is supposed to remain
unchanged for the calculation of the branching ratios with and without FCNC tree
level couplings. The results are presented in Table 4.4 for scenario (2). The resum-
mation effects, which have already been shown to reduce the partial decay width

3This result is in agreement with the discussion in Ref. [91] where resummation effects in the
coupling t̃1 − c− χ̃0

1 have been found to be large.
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of the decay t̃1 → cχ̃0
1 by a factor ∼ 20, can lead to a significant decrease of the

corresponding branching ratio by a factor of ∼ 0.5. This is the case as long as
the partial decay width of the four-body decay (Γ3) is not too small and cannot be
neglected compared to the loop-induced decay width of t̃1 → cχ̃0

1 (Γ1). This is true
for scenario (2):

BR(t̃1 → χ̃0
1c) =

Γ1

Γ1 + Γ2 + Γ3

>
Γ1

Γ1 + 20Γ2 + 20Γ3

= BR(ũ1 → χ̃0
1u) . (4.63)

Here, Γ2 is the decay-width of t̃1 → uχ̃0
1. On the contrary, in scenario (1) the four-

body decay is suppressed due to phase space and consequently the branching ratios
remain almost unchanged in the case with and without FCNC tree level couplings.
The branching ratio of the decay into the up-quark final state is always suppressed
by two orders of magnitude. The drastically reduced branching ratio of t̃1 → χ̃0

1c
or ũ1 → χ̃0

1u, respectively, is no longer in any agreement with the assumption of
the branching ratio BR(t̃1 → χ̃0

1c) = 1, which has been used in phenomenological
analyses [67–69] as well as experimental searches [36, 37] so far. In summary, in
order to get correct predictions for the flavor changing light stop decay for large
scales of MFV, resummation effects have to be included. To further improve on
this decay, the next step would be the calculation of the full one-loop corrections
to the FCNC tree level stop decay including the off-diagonal squark mixing matrix
elements from RGE evolution in the whole calculation.

Analysis for µMFV ≤MGUT

In the previous section the importance of resummation effects has been discussed.
With decreasing µMFV and hence smaller log µ2

MFV, the non-resummed one-loop
result should approach the resummed FCNC tree level result. Furthermore, the
approximate formula of Ref. [18], which is a good approximation of the exact
one-loop result for large scales, is expected to be worse with decreasing MFV
scale. In order to verify this behavior, scenarios with different µMFV varied be-
tween 103 GeV ≤ µMFV ≤ 1016 GeV have been chosen. The soft SUSY breaking
input parameters in each scenario are adjusted such, that the masses for t̃1 and χ̃0

1

remain almost unchanged. Consequently, the differences in the partial decay widths
will not be due to phase space effects. The scenarios are constrained by the require-
ment that t̃1 is the NLSP and χ̃0

1 is the LSP, so that the decay t̃1 → cχ0
1 dominates.

The relevant particle masses for the different scenarios vary within

mt̃1 = 105 ... 116 GeV and mχ̃0
1

= 92 ... 104 GeV , (4.64)

with the t̃1 − χ̃0
1 mass difference ranging between

mt̃1 −mχ̃0
1

= 9 ... 15 GeV . (4.65)
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Figure 4.4: Ratio between the right-handed form factor of the MFV loop decay
F 1−loop
R and the form factor of the FV tree level decay F FV

R (red/full) and ratio

between the MFV loop-decay form factor and the approximate form factor F
H/K
R

(green/dashed) as function of the MFV scale µMFV.

The various scenarios have not been required to fulfill Dark Matter constraints
and/or constraints from electroweak precision data. The main emphasis has been to
achieve approximately constant masses for the NLSP and LSP. In Fig. 4.4 the ratio
of the non-resummed right-handed form factor F 1-loop

R in the loop-induced decay to
FFV
R in the FCNC tree level decay as well as the ratio of F 1-loop

R to the approximate

form factor F
H/K
R as a function of the MFV scale are shown.4 The values at the

highest scale of MFV depicted in this plot coincide with the results discussed in
the previous section. In this scenario the non-resummed one-loop result and the
resummed FCNC tree level result differ by the factor ∼ 4.4. As expected, these two
results approach each other with decreasing scales of MFV, since the resummation
effects become less relevant. On the other hand, the approximate one-loop result
reproduces the exact one-loop result down to low scales. Starting from µMFV = 105

GeV the finite terms become relevant. At µMFV = 103 GeV neglecting the finite
terms in F

H/K
R leads to a factor ∼ 2 between the approximate and the exact one-

loop form factor.

Figure 4.5 shows the partial widths as functions of µMFV for the approximate, for the
exact one-loop decay and for the FCNC tree level resummed decay. In accordance
with the behavior of the right-handed form factors, at high scales the exact one-loop
and the approximate result agree up to the effect of the non-logarithmic terms on
the partial width, which is at the 10% level. The one-loop and the resummed tree

4Note that the line connecting the different points uniquely serves to guide the eye.
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Figure 4.5: Partial decay width Γ(t̃1 → cχ̃0
1) calculated assuming MFV, Γ1−loop

(red/full), calculated with the approximate formula, ΓH/K (blue/dotted), and cal-
culated at tree level including FV, ΓFV (green/dashed), as function of µMFV.

level decay agree at low scales where the resummation effects of the large logarithms
can be neglected, whereas the deviations are large for high scales. An interesting
feature is the size of the decay width. It does not only depend on the size of the
logarithm, but also on the coefficient of the logarithmic term, which is given in
terms of the soft SUSY breaking parameters, particle masses and mixing angles,
cf. Eqs. (4.46) and (4.49). As explained above, for each value of the scale µMFV

a different set of boundary conditions M0,m1/2, A0, tan β, sign(µ) has been chosen
such that the t̃1 and χ̃0

1 masses remain approximately unchanged. This leads to a
different coefficient of the logarithmic term for each µMFV. For µMFV = 1012 GeV,
for example, the parameter set and resulting masses and mixing angles are such that
the coefficient becomes rather small, so that the partial width is less than 10−12 GeV.
However, due to the large value of µMFV the logarithmic contribution still dominates
over the finite terms, so that there is good agreement between the exact one-loop
and approximate result. For small values of µMFV the partial width can be as large
as a few 10−11 GeV since the factor, which multiplies the logarithm, turns out to be
large for the chosen parameter set.
As mentioned in the introduction FV couplings can be tested by means of this stop
decay [70, 71]. Small decay widths of less than 10−12 GeV, which is the case for
certain parameter sets especially when taking resummation effects into account, lead
to stop life times in the range of picoseconds and therefore to stops which hadronize
before they decay. This raises the possibility of observing a secondary vertex. The
suppression needed for a secondary vertex is unique to MFV models. Thus, observing
such a vertex would already be a strong support to the MFV principle. After
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the decomposition of the neutralino into higgsino and gaugino and the left-right
decomposition of the stop is known, measuring the stop lifetime could even provide
information on the size of flavor changing couplings.

4.5 Conclusion and Outlook

In this part of the thesis the complete calculation of the loop-induced FCNC de-
cay t̃1 → cχ̃0

1 in the framework of MFV has been presented. The so-called finite
terms, which do not depend on the logarithm of the scale µMFV, where the MFV
principle holds, and which have been neglected in a previous work by Hikasa and
Kobayashi have been taken into account. The full renormalization program includ-
ing a gauge-independent renormalization of the quark and squark mixing matrices
has been accomplished.
The loop-induced decay has been compared to the approximate result derived earlier
by Hikasa and Kobayashi. It has been found that these finite terms contribute to the
partial width with about 10%. The approximation becomes worse with decreasing
scales of MFV, since in the calculation by Hikasa and Kobayashi the scale, at which
the FCNC tree level coupling vanishes, has been fixed to the Planck scale.
The exact one-loop result, and also the approximate formula, however, do not re-
sum the large logarithms. The resummation is done by solving the renormalization
group equations. Since MFV is not RG-invariant, flavor changing off-diagonal ele-
ments are induced in the squark mixing matrices which lead to FCNC couplings
at tree level. The resulting FCNC decay at tree level can be compared to the ef-
fective loop-induced coupling. The resummation effects turn out to be important
for large scales of MFV. The exact one-loop result and the formula by Hikasa and
Kobayashi only give an approximate value of the light stop decay width into charm
and neutralino when large scales µMFV are assumed. Depending on the scenario,
the branching ratios of the stop can be affected drastically, leading to a significant
deviation from the value BR(t̃1 → cχ̃0

1) = 1, which has been used so far in all
phenomenological studies and experimental analyses. The reason for this is that
in the corresponding scenario resummation effects have reduced the decay width of
t̃1 → cχ̃0

1 by a factor ∼ 20. The search for scalar top quark partners is currently
of great phenomenological interest. Since these results can change the assumptions
made so far, resummation effects should be taken into account in future analyses,
when models with SUSY breaking at high scales are investigated.
The next important step to further improve the prediction for the phenomenolo-
gically important light stop decay will be the full calculation of the one-loop cor-
rections to the FCNC tree level decay with resummation effects, including the full
flavor structure and the relevant QCD corrections.



Chapter 5

Squark Pair Production at NLO

5.1 Introduction

The search for SUSY particles is one of the major experimental endeavors of high-
energy physics at the moment. In the MSSM with conserved R-parity SUSY particles
can only be produced in pairs. Since the pair production of squarks and gluinos pro-
ceeds via the strong interaction, these channels have typically the largest production
cross sections of all SUSY particles. The search for SUSY particles and the determi-
nation of their properties at the LHC is based on the analysis of the cascade decay
chains in which SUSY particles are produced. On the one hand the shapes of dis-
tributions are widely used for phenomenological studies, e.g. for spin determination
of SUSY particles by using lepton charge asymmetry [93] or the discrimination of
different BSM models [94]. Experimental analyses exploit the kinematic endpoints
of mass distributions to determine masses and combinations of masses of the SUSY
particles in the decay chains. On the other hand calculations of higher-order correc-
tions have been shown to have a sizable impact on the shape of the distributions,
especially near kinematic edges [95]. In this context precise theoretical predictions
are crucial for a proper understanding of the distributions, for setting accurate ex-
clusion limits and, in case of a discovery, for the determination of the properties of
the new particles.

First LO cross section predictions for pair production of strongly interacting SUSY
particles in hadron collisions have been calculated some time ago [96–99]. The
calculation of the NLO SUSY QCD corrections has been performed in [20, 100–102]
assuming all squarks to be degenerate in mass (except for stop pair production, where
all squarks apart from the stop have been assumed to be degenerate in mass). The
NLO corrections have been found to be positive and in general large, between 5%
and 90% depending on the process and parameters. Not only the large corrections,
but also the reduction of the dependence of the total production cross section on the
unphysical factorization and renormalization scales to typically 20% to 30% makes
the inclusion of the NLO corrections inevitable in phenomenological studies. In the
past years a lot of effort has been put in calculating results beyond NLO, taking



46 5. Squark Pair Production at NLO

into account resummation and threshold effects [103–111]. These corrections can
increase the inclusive cross section by 2% to 10% and lead to a further reduction of
the scale uncertainty. Furthermore, electroweak contributions have been considered
at LO [112, 113] and at NLO [114–120]. These corrections can be sizable but strongly
depend on the model parameters and the flavor and chirality of the produced squarks.

The LO cross sections and NLO corrections in SUSY QCD can be calculated with the
publicly available computer program Prospino2 [121]. Since the program is based
on the calculations in [20] the NLO corrections can only be evaluated for degenerate
squark masses. Furthermore, these corrections are implemented such, that the var-
ious subchannels, characterized by different flavor and chirality combinations, are
always summed up. Results for individual subchannels can be returned, but these
are obtained by scaling the exactly calculated LO cross section for the subchannel
with the ratio of the total NLO cross section and the total LO cross section, the
so-called K-factor. This approach is based on the assumption that the K-factors do
not vary in the different subchannels. Along with the NLO corrections to the total
cross section also differential distributions in transverse momentum and rapidity at
NLO for the produced SUSY particles have been presented in [20]. It has been
found that in these distributions, for the scenarios considered, the NLO corrections
have hardly any other effect than scaling the LO distribution by the global K-factor.
Based on these results it has been assumed that differential K-factors are flat.

Within this part of the thesis the calculation of squark pair production for squarks
of the first two generations at NLO in SUSY QCD without any assumptions on the
squark masses is presented. All subchannels are treated individually and the results
are implemented in a parton-level Monte-Carlo program, which allows to calculate
arbitrary distributions at NLO. As first examples of possible applications of this
Monte-Carlo program two problems are addressed. First, it is investigated whether
the assumption that the K-factor is constant in the various subchannels is correct.
Moreover, it is analyzed whether the differential K-factors are flat in further scena-
rios and distributions than the ones presented in [20]. The squark pair production is
understood as the first step towards the calculation and implementation of all squark
and gluino production channels at NLO in a fully flexible partonic Monte-Carlo pro-
gram. Anticipating to include SUSY QCD corrections also in the decay stages of
the produced particles, squark-squark production constitutes an excellent channel
for setting up the framework for this project. Since squarks are scalar particles, no
spin correlations have to be taken into account when decays of the squarks are added.
Additionally, as illustrated in [19], squark pair production is the dominant channel
in the higher mass region for squarks and gluinos, which is probed in the current
and upcoming searches at LHC. Recently, a calculation of squark pair production
with a subsequent decay of each squark into a quark and the lightest neutralino
with NLO corrections in production and decay has been published [122]. However,
since the methods used to handle and cancel the soft and collinear divergencies in
the virtual and real corrections are different - the calculation presented here applies
the Catani-Seymour subtraction formalism whereas in [122] phase space slicing has
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Figure 5.1: Feynman diagrams contributing to LO squark pair production via t-
channel (a) or u-channel (b) exchange of a gluino. The latter does not contribute to
the production of differently flavored squarks.

been used - both calculations are completely independent and can be exploited for
additional cross checks of the phenomenologically important results they provide.

This chapter of the thesis is organized as follows: In Section 5.2 squark pair pro-
duction at LO is discussed, the notation is set and four different categories of sub-
channels are introduced. Section 5.3 is devoted to the presentation of the virtual
corrections and the explanation of the renormalization program. The real emission
matrix elements and the different contributions to the subtraction counterterm of
the Catani-Seymour dipole formalism introduced in Chapter 3.3 are described in de-
tail in Section 5.4. The following Section 5.5 contains the integrated dipoles which
are needed to cancel the IR divergencies in the virtual contributions. Finally, the
numerical results are presented in Section 5.6. All tests and comparisons which
have been made to validate the code are discussed in detail. The calculation and
its results are summarized in Section 5.7, where also an outlook on planned related
projects is given.

5.2 Squark Pair Production at LO

In order to set the notation and introduce the chirality and flavor structure of the
squark pair production process it is useful to discuss the LO process. The momenta
of the initial state quarks with flavor indices i and j are always denoted by pa and
pb, while the momenta of the final state squarks are k1 and k2:

qi(pa) + qj(pb)→ q̃iL,R(k1) + q̃jL,R(k2) . (5.1)

The Feynman diagrams contributing to this process are depicted in Fig. 5.1. The
set of Lorentz-invariant, kinematical variables used for the description of the process
is given by

s = (pa + pb)
2 = (k1 + k2)2 (5.2)

t = (k1 − pa)2 = (k2 − pb)2 (5.3)

u = (k1 − pb)2 = (k2 − pa)2 . (5.4)

The charge conjugated process is not listed explicitly, but will be considered in the
calculations of the hadronic cross section and distributions. Since we take only
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squarks of the first two generations (ũ, d̃, c̃, s̃) into account in the final state, the
quarks in the initial state are assumed to be massless. The amplitudes depend on
the flavors and chiralities of the particles and can be categorized into four different
subchannels.

• Same chirality, same flavor
The matrix element squared, averaged over initial state colors and spins and
summed over final state colors reads for pair produced squarks of same chirality
and same flavor

∣∣Mqiqi→q̃iq̃i
∣∣2 =

1

2
· 1

4 · 9 8g4
s m

2
g̃s

[
1

(t−m2
g̃)

2
+

1

(u−m2
g̃)

2
− 2

3

1

(t−m2
g̃)(u−m2

g̃)

]
.

(5.5)
Since in this case the squarks in the final state are identical an additional
statistical factor of 1/2 has to be added on the right side of this equation.

• Different chirality, same flavor
For squarks of different chiralities but same flavors and in the limit of vanishing
quark masses no interference term between the u- and t-channel arises in the
corresponding matrix element squared:

∣∣∣Mqiqi→q̃iLq̃iR

∣∣∣
2

=
1

4 · 9 8g4
s

[
tu−m2

q̃iL
m2
q̃iR

(t−m2
g̃)

2
+
tu−m2

q̃iL
m2
q̃iR

(u−m2
g̃)

2

]
. (5.6)

• Same chirality, different flavor
In case the two squarks in the final state have different flavors, no u-channel
exchange diagram is possible any more, since all couplings are assumed to be
flavor conserving. Therefore, for different flavors and same chiralities of the
squarks the matrix element squared is

∣∣Mqiqj→q̃iq̃j
∣∣2 =

1

4 · 9 8g4
s m

2
g̃

[
s

(t−m2
g̃)

2

]
. (5.7)

• Different chirality, different flavor
For different flavors and different chiralities the matrix element yields

∣∣∣Mqiqj→q̃iLq̃
j
R

∣∣∣
2

=
1

4 · 9 8g4
s

[
tu−m2

q̃iL
m2
q̃jR

(t−m2
g̃)

2

]
. (5.8)

In order to obtain the hadronic cross section the squared matrix element has to be
integrated over the 2-particle phase space, multiplied by a flux factor and folded
with the PDFs as described in Section 3.1.



5.3. The Virtual Corrections 49

qj

qi

q̃j

q̃i

qj

qi

q̃j

q̃i

qj

qi

q̃j

q̃i

(a) (b) (c)

qj

qi

q̃j

q̃i

qj

qi

q̃j

q̃i

(d) (e)

Figure 5.2: Generic Feynman diagrams for virtual corrections like quark (a), squark
(b), gluino (c) self energies, vertex corrections (d) and box diagrams (e).

5.3 The Virtual Corrections

The virtual SUSY QCD corrections to squark pair production include gluino, quark
and squark self energies, vertex corrections and box diagrams. Generic Feynman
diagrams for these corrections are depicted in Fig. 5.2. Of course, also the lower
quark and squark lines are affected by the self energy contributions, as well as the
lower quark-squark-gluino vertex receives vertex corrections. The individual Feyn-
man diagrams contributing to the quark, squark and gluino self energies, the vertex
correction diagrams and the box diagrams are listed in Fig. 5.3. It is important to
point out that the diagrams in the last line of this figure do not contribute when
both squarks have different flavors. Note that from now on the chirality index is
suppressed.
The loop diagrams in the self energies and vertex corrections contain momentum
integrals which diverge due to contributions from large momenta. Though these
divergencies cancel in the final result after renormalization, it is necessary to in-
troduce a regularization prescription to be able to handle those UV divergencies.
Dimensional regularization [51] is a convenient regularization scheme because it re-
spects all gauge symmetries. By lowering the number of space-time dimensions over
which one integrates to D = 4− 2ε, the UV divergencies appear as poles in ε. But
dimensional regularization breaks SUSY because it introduces a mismatch between
fermionic and bosonic degrees of freedom. In this scheme all 4-vectors including
vector fields are continued to D space time dimensions. That means that the gluon
represented by a massless gauge field has D − 2 degrees of freedom while its super-
partner, the gluino, represented by a Majorana spinor field has only 2 degrees of
freedom. Since the matching of fermionic and bosonic degrees of freedom follows
from the SUSY algebra, SUSY is broken by this mismatch. The invariance under
SUSY transformations enforces the strong gauge coupling gs and the SUSY Yukawa
coupling ĝs to be equal in all orders of perturbation theory. At one-loop level, when
calculating in dimensional regularization, this relation is violated and needs to be
restored by adding a finite counterterm. This counterterm can be determined by
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Figure 5.3: Feynman diagrams contributing to quark (a), squark (b) and gluino (c)
self energies, vertex corrections (d) and box diagrams (e). The box diagrams in the
last line don not contribute when both squarks have different flavors.
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comparing the effective vertices in the SUSY limit at small momentum transfer.
SUSY can be restored by adding this counterterm to the Yukawa coupling [20]

ĝs = gs(1 +
αs
3π

). (5.9)

An alternative renormalization scheme is dimensional reduction [75, 76]. In this
scheme no mismatch between bosonic and fermionic degrees of freedom is introduced
and SUSY is preserved. As a result both couplings are identical order by order. The
transition between these two schemes is well known and involves a finite shift [123].
In the following we use the dimensional regularization scheme supplemented by the
finite shift of the Yukawa coupling in Eq. (5.9). On the one hand SUSY is preserved
by this procedure and the definition of the strong gauge coupling corresponds to the
usual SM measurements [74] on the other hand.

In squark pair production the UV divergencies in the virtual corrections can be
absorbed by introducing renormalization constants for the non-vanishing squark
and gluino masses

m
2 (0)
q̃ = m2

q̃ + δm2
q̃ (5.10)

m
(0)
g̃ = mg̃ + δmg̃ , (5.11)

the quark, squark and gluino fields

q
(0)
L,R =

(
1 +

1

2
δZq;L,R

)
qL,R (5.12)

q̃(0) =

(
1 +

1

2
δZ q̃

)
q̃ (5.13)

g̃(0) =

(
1 +

1

2
δZ g̃

)
g̃ (5.14)

and the coupling constant
g(0)
s = gs + δgs . (5.15)

The renormalization constants are fixed by renormalization conditions. For the mass
and the field renormalization constants we choose on-shell renormalization conditions
as introduced explicitly in Chapter 3.2. By inserting the renormalized self energies
into these conditions it is possible to calculate the renormalization constants from
the unrenormalized quark, squark and gluino self energies. The self energy of the
squarks is denoted by Σq̃

ij(p
2), the structure of the quark self energy reads here

Σq
ij(p

2) = 6p Σq,L
ij (p2) PL+ 6p Σq,R

ij (p2) PR +mqi Σq,Ls
ij (p2) PL +mqj Σq,Rs

ij (p2) PR
= 6p Σq,L

ij (p2) PL+ 6p Σq,R
ij (p2) PR . (5.16)

The last two terms in the first line of Eq. (5.16) vanish since we take only the quarks
of the first two generations into account and treat them as massless. The gluino self
energy is according to Eq. (3.9) decomposed to

Σg̃g̃(p
2) = 6p Σg̃g̃(p

2) +mg̃ Σs
g̃g̃(p

2) . (5.17)
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With these definitions the renormalization constants introduced in Eqs. (5.10)-(5.14)
can be expressed as

δm2
q̃ = R̃e Σq̃

ii(m
2
q̃i

) (5.18)

δmg̃ = mg̃R̃e
[
Σg̃g̃(m

2
g̃) + Σs

g̃g̃(m
2
g̃)
]

(5.19)

δZq;L,R
ii = −R̃e Σq;L,R

ii (mqi) (5.20)

δZ q̃
ii = −R̃e ∂Σq̃

ii(m
2
q̃i

) (5.21)

δZ g̃ = −R̃e Σg̃g̃(m
2
g̃)− 2m2

g̃R̃e
[
∂Σg̃g̃(m

2
g̃) + ∂Σs

g̃g̃(m
2
g̃)
]
, (5.22)

where ∂Σ is an abbreviation for the partial derivative of the respective self energy

∂Σ(m2) =
∂Σ(p2)

∂p2
|p2=m2

. (5.23)

The non-diagonal quark and squark field renormalization constants vanish for quark
masses equal to zero and mixing matrices of the first two generations equal to the
unity matrix.

For the strong coupling renormalization constant we work in the MS-scheme [50],
where only the 1/ε-UV poles along with some universal constants are absorbed. It
is determined via the transverse part of the gluon self energy

δgs =
1

2
δZg gs =

1

2

(
−R̃e ∂Σgg(0)

)
gs . (5.24)

The longitudinal part of the gluon self energy vanishes due to a Ward identity. The
renormalization constant of the strong coupling is in this scheme

δgMS
s = −αs

8π
β0∆ gs , (5.25)

with
∆ = 1/ε− γ + log 4π (5.26)

denoting the pole and constants that have been absorbed. Here, γ is the Euler-
Mascheroni constant. The one-loop beta function coefficient β0 in this counterterm
contains contributions from SM as well as SUSY particles. These contribute to the
gluon self energy diagrams and thus to the running of the strong coupling. The
strong coupling depends on the renormalization scale and this scale dependence is
governed to one-loop level by

Q2dgs(Q
2)

dQ2
= −gs(Q2)

αs(Q
2)

8π
β0 . (5.27)

The contributions of the different particles to the one-loop beta function coefficient
are in detail

β0 =

[
11− 2

3
· 5
]

+

[
−2− 2

3
− 1

6
· 12

]

= βL0 + βH0 . (5.28)



5.3. The Virtual Corrections 53

The first term in the line above stands for the contribution of the gluon and the
five light quarks, the second one for the contributions of the heavy particles, the
gluino, the top quark and the twelve squarks. However, the experimental value of
αs is given within non-SUSY QCD with only five active quark flavors [74]. In order
to match the experimental value of αs the heavy particles are decoupled from the
running of αs. The relation between these two schemes involves the subtraction of
the logarithms of the masses of the heavy particles1

δgMS5
s = δgMS

s gs −
αs
8π

[
2 log

m2
g̃

Q2
+

2

3
log

m2
t

Q2
+
∑

i=1,12

1

6
log

m2
q̃i

Q2

]
gs . (5.29)

This technique assures that only the gluon and the five light quarks contribute to
the running of αs:

Q2dg
MS5
s (Q2)

dQ2
= −gs(Q2)

αs(Q
2)

8π

[
β0 + 2 +

2

3
+

1

6
· 12

]

= −gs(Q2)
αs(Q

2)

8π
βL0 . (5.30)

This decoupling is not strictly necessary but then the contributions from the heavy
particles have to be taken into account as a relation between the experimental value
and the coupling constant used in the calculation. In order to avoid this the calcu-
lation was worked out including this decoupling.
The code for the LO amplitude and the virtual corrections has been generated with
the Mathematica packages FeynArts [128, 129] and FormCalc [130, 131]. The for-
mer generates and visualizes Feynman diagrams and amplitudes, the latter reads
diagrams generated with FeynArts and calculates tree-level and one-loop Feynman
diagrams. FormCalc writes out a Fortran subroutine to compute the squared matrix
element for a given process. The one-loop integrals in the calculation are evaluated
by the program package LoopTools [130] which is based on an interface to the scalar
one-loop functions of the program FF [132].
FeynArts provides a model file with the Feynman rules of the MSSM. In contrast
to the model file of the SM, in the MSSM model file no counterterms are specified.
These have been added according to the renormalization procedure described above.
It has been checked explicitly that this procedure renders the calculation UV finite
by adding up all contributions proportional to the 1/ε poles.

After canceling all UV divergencies by renormalization the IR divergencies are still
left. They will be canceled against the IR divergencies from the real emission dia-
grams by applying the Catani-Seymour subtraction formalism as described in Sec-
tion 3.3.

1Decoupling relations for the strong coupling αs are known to two-loop order for a degenerate
supersymmetric mass spectrum [124–126] and to three-loop order for several different assumptions
on the masses of the MSSM [127].
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Figure 5.4: Feynman diagrams contributing to real emission matrix elements with
qq initial states and an emitted gluon. Diagrams which lead to soft and collinear
divergencies are depicted in (a) and (b), the diagram in (c) is IR finite.

5.4 The Real Emission and Subtraction Dipoles

The matrix elements of the real emission of one additional parton can be classified
in two different topologies. The first topology contains diagrams with two quarks in
the initial state and the additionally emitted particle being a gluon:

qi(pa) qj(pb)→ q̃i(k1) q̃j(k2) g(k3) . (5.31)

These diagrams are shown in Fig. 5.4. The second topology comprises diagrams
with a quark and a gluon in the initial state and an emitted, massless antiquark.
These diagrams are depicted in Fig. 5.5. Apart from implementing

g(pa) qi(pb)→ q̃i(k1) q̃j(k2) q̄j(k3) (5.32)

it is important to include for i 6= j also

g(pa) qj(pb)→ q̃i(k1) q̃j(k2) q̄i(k3) (5.33)

in order to account for all possible initial state configurations.
Both topologies for real emission of an antiquark or a gluon comprise diagrams which
lead to IR divergencies. In the diagrams with qq initial states the gluon, being a
massless particle, can be emitted from on-shell external particles, either as being
attached to one of the squarks in the final or to one of the quarks in the initial
state. This configuration is called softly divergent when the energy of the emitted
gluon is too small to be identified experimentally as an isolated jet, i.e. when the
gluon is soft. Additionally, the gluon attached to the two massless propagators of
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Figure 5.5: Feynman diagrams contributing to real emission matrix elements with qg
initial states. The diagram in (a) gives rise to collinear singularities. The diagrams in
(b) and (c) are IR finite. The diagrams in (c) can contribute to resonant production
of squarks and gluinos.

the quarks in the initial state gives rise to collinear divergencies. These emerge when
the angle between the emitted parton and the emitter parton is too small to separate
these two particles from each other. Collinear divergencies appear only for massless
propagators and are screened by massive emitters. Diagrams with qq initial states,
which lead to soft and collinear divergencies, are collected in Fig. 5.4 (a) and (b).
In the diagrams with qg initial states the emitted, massless antiquark can also be
attached to the massless propagators in the initial state, resulting in further collinear
divergencies. The corresponding diagram is shown in Fig. 5.5 (a).
The diagrams in Fig. 5.5 (c) have to be handled with care in parameter regions where
the gluino is heavier than one or both squarks of the final state. In this case, these
diagrams contribute to the resonant production of a squark in association with a
gluino. This resonant production channel basically corresponds to LO squark-gluino
production and a subsequent decay of the on-shell gluino into a squark and an anti-
quark. In order to avoid double-counting these contributions have to be subtracted
consistently from squark-squark production. Although not discussed further in this
thesis, since the relevant parameter regions are not taken into account in the numer-
ical analysis, consistent subtraction procedures exist for different processes in the
literature [20, 133, 134].
Both kinds of divergencies, soft and collinear, are subtracted by the Catani-Seymour
dipoles in the counterterm dσA as already sketched in Chapter 3.3. The expressions
for the real emission matrix elements, dipoles and integrated dipoles, which will be
introduced in the next section, have been generated using the SuperAutoDipole

package [135, 136]. SuperAutoDipole itself provides an interface with the program
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MadGraph [137, 138], which automatically provides a code for the squared matrix
elements of the real emission diagrams by calling the HELAS subroutines based on
the helicity amplitude formalism [139].

The dipoles needed to render the real emission matrix elements finite are organized
in pairs of potentially collinear partons with an additional reference to a spectator
parton. For diagrams with two quarks in the initial state this gives rise to twelve
individual dipoles: The emitted gluon can be collinear to the initial state or soft to
the final state particles and in each case any of the other three particles can serve
as spectator parton. For diagrams with a quark and a gluon in the initial state only
three dipoles are necessary: The emitted antiquark can only become collinear to the
initial state gluon while the other three particles can act as the spectator parton,
again. Hence, we have

dσAqq =
12∑

i=1

Dqqi dσAqg =
3∑

i=1

Dqgi . (5.34)

In the following we discuss the individual dipoles contributing to the counterterms
in Eq. (5.34).

Initial state singularities with initial state spectators

The first category of dipoles covers initial state emitter pairs with another initial
state particle taken to be the spectator. For qq initiated processes with initial and
final momenta assigned as in Eq. (5.31) the first combination reads

Dqi(pa)g(k3),qj(pb) = − 1

2pak3

1

x3,ab

8παsCF ·
[

2

1− x3,ab

− (1 + x3,ab)

]

·
∣∣∣Ma,b(p̃a, pb, k̃1, k̃2)

∣∣∣
2

. (5.35)

The first line on the right side of Eq. (5.35) consists of the dipole factors which
match the singular behavior of the corresponding real emission matrix element. The
constant CF = 4

3
is a color factor and x3,ab a momentum fraction parameter defined

as

x3,ab =
papb − k3pa − k3pb

papb
. (5.36)

In the second line of Eq. (5.35)
∣∣Ma,b(p̃a, pb, p̃1, p̃2)

∣∣2 denotes the color linked Born
amplitude squared (see Eq. (3.19)) evaluated with a set of Born-type kinematics
which is deduced from the 3-particle real emission kinematics according to

p̃µa = x3,ab p
µ
a p̃µb = pµb (5.37)

and

k̃µi = kµi −
2ki(K + K̃)

(K + K̃)2
(K + K̃)µ +

2kiK

K2
K̃µ (5.38)
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with
Kµ = pµa + pµb − kµ3 K̃µ = p̃µa + pµb . (5.39)

This transformation to the so-called tilde kinematics is performed in such a way
that the momentum of the additional final state parton vanishes. In this special
case the momentum of the spectator pb is kept unchanged whereas apart from the
momentum of the emitter pa the momenta of the final state particles are altered in
order to correctly implement four-momentum conservation in the underlying Born
process

p̃a + pb − k̃1 − k̃2 = 0 , (5.40)

as well as the on-shell conditions

p̃2
a = p2

b = 0

k̃2
1 = m2

q̃i

k̃2
2 = m2

q̃j
. (5.41)

The expressions in Eqs. (5.35)-(5.39) can also be applied without any change to the
initial-initial dipoles Dg(pa)q̄j(k3),qi(pb) and Dg(pa)q̄i(k3),qj(pb) in the processes (5.32) and
(5.33) with a gluon in the initial state.
The gluon in the qq initiated processes can also be emitted by the second parton in
the initial state. Thus a second dipole absorbs the divergencies stemming from this
configuration. It is obtained by a trivial interchange of the initial state momenta

Dqj(pb)g(k3),qi(pa) = − 1

2pbk3

1

x3,ab

8παsCF ·
[

2

1− x3,ab

− (1 + x3,ab)

]

·
∣∣∣Mb,a(pa, p̃b, k̃1, k̃2)

∣∣∣
2

, (5.42)

just as the corresponding tilde kinematics

p̃µa = pµa p̃µb = x3,ab p
µ
b (5.43)

and
K̃µ = pµa + p̃µb . (5.44)

Initial state singularities with final state spectators

The second category of dipoles is responsible for initial state singularities with a
final state parton as spectator. The first dipole for the qq initiated processes is

Dqi(pa)g(k3)
q̃i(k1) = − 1

2pak3

1

x31,a

8παsCF ·
[

2

1− x31,a + u3

− (1 + x31,a)

]

·
∣∣∣Ma,1(p̃a, pb, k̃1, k2)

∣∣∣
2

(5.45)

with the parameters x31,a and u3 defined as

x31,a =
k1pa + k3pa − k3k1

(k1 + k3)pa
u3 =

k3pa
(k1 + k3)pa

. (5.46)
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In this case for the reduced kinematics only the momenta of the emitter and the
spectator are transformed according to

p̃µa = x31,a p
µ
a k̃µ1 = kµ1 + kµ3 − (1− x31,a) p

µ
a . (5.47)

Another possible combination for an initial-final dipole is obtained by choosing the
other squark in the final state as spectator. The expression and the kinematics for
this dipole, Dqi(pa)g(k3)

q̃j(k2) , are obtained from the above formulas by an interchange of

the final state momenta k1 and k2.
Since in the processes with two quarks in the initial state the gluon can also become
collinear to the second quark in the initial state two more dipoles arise

Dqj(pb)g(k3)

q̃i(k1) and Dqj(pb)g(k3)

q̃j(k2) .

Their expressions and kinematics follow from Eqs. (5.45)-(5.47) by interchanging pa
and pb or k1 and k2, respectively.
This category completes potential dipole combinations for the processes with qg
initial states. The dipoles

Dg(pa)q̄j(k3)

q̃i(k1) and Dg(pa)q̄i(k3)
q̃i(k1)

as well as their versions with the second squark chosen to be the spectator

Dg(pa)q̄j(k3)

q̃j(k2) and Dg(pa)q̄i(k3)
q̃j(k2)

can also be calculated from the formulas listed above by trivial interchanges of mo-
menta.

Final state singularities with initial state spectators

The third category of dipoles renders configurations with final state singularities and
initial state spectators finite. The first out of four possible dipoles is:

Dqi(pa)
g(k3)q̃i(k1) = − 1

2pak3

1

x31,a

8παsCF ·
[

2

2− x31,a − z̃1

− 2− m2
q̃i

k3k1

]

·
∣∣∣M1,a(p̃a, pb, k̃1, k2)

∣∣∣
2

. (5.48)

The parameters x31,a and z̃1 in these dipoles are composed of the momenta of the
contributing particles in the following way

x31,a =
k3pa + k1pa − k3k1

(k1 + k3)pa
z̃1 =

pak1

(k1 + k3)pa
. (5.49)

The reduced kinematics entering the color linked Born amplitude in Eq. (5.48) in-
volves transformations for the momenta of the spectator and emitter parton

p̃µa = x31,a p
µ
a k̃µ1 = kµ1 + kµ3 − (1− x31,a) p

µ
a . (5.50)

Another three dipoles of this category arise by changing the spectator from qi(pa)
to qj(pb) and/or the emitter from q̃i(k1) to q̃j(k2)

Dqj(pb)

g(k3)q̃i(k1), Dqi(pa)
g(k3)q̃j(k2) and Dqj(pb)

g(k3)q̃j(k2) . (5.51)
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Final state singularities with final state spectators

The last category of dipoles contributes to the cancellation of final state singularities
with reference to a final state spectator. Since only the two final state squarks are
taken into account in this category there are only two dipoles, the first of which
reads

Dg(k3)q̃i(k1),q̃j(k2) = − 1

2k1k3

8παsCF ·
[

2

1− z̃1 (1− y31,2)
− ṽ31,2

v31,2

(
2 +

m2
q̃i

k1k3

)]

·
∣∣∣M1,2(pa, pb, k̃1, k̃2)

∣∣∣
2

. (5.52)

The parameters which are directly defined by the momenta of the particles in the
process are

z̃1 =
k1k2

(k1 + k3)k2

and y31,2 =
k1k3

k1k3 + k2k3 + k1k2

. (5.53)

For the definition of the relative velocities ṽ31,2 and v31,2 we need to introduce the
sum of the four-momenta of the final state particles

Qµ = kµ1 + kµ2 + kµ3 (5.54)

as well as the rescaled squark masses

µ1 =
mq̃i√
Q2

and µ2 =
mq̃j√
Q2

. (5.55)

The relative velocity ṽ31,2 between k̃1 and k̃2

ṽ31,2 =

√
λ(1, µ2

1, µ
2
2)

1− µ2
1 − µ2

2

(5.56)

is expressed in terms of the triangular function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (5.57)

The relative velocity v31,2 between k1 + k3 and k2 is a function of y31,2 and reads
explicitly

v31,2 =

√
[2µ2

2 + (1− µ1
1 − µ2

2) (1− y31,2)]2 − 4µ2
2

(1− µ1
1 − µ2

2) (1− y31,2)
. (5.58)

The reduced kinematics for final-final dipoles requires transformations of the final
state momenta

k̃µ1 = kµ1 + kµ3 −
y31,2

1− y31,2

kµ2 k̃µ2 =
1

1− y31,2

kµ2 . (5.59)

The second dipole in this category

Dg(k3)q̃i(k2),q̃j(k1) (5.60)

can be straightforwardly calculated from the expressions above by replacing k1 by
k2 and vice versa.
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5.5 The Integrated Dipoles

Having subtracted the counterterm from the real emission matrix elements the can-
cellation takes place among the virtual corrections

∫
dΦ2 [dσV +

∫
dΦ1dσ

A] . (5.61)

With the choice of dipoles as published in [52, 53] and described in the previous
section, the counterterm can be integrated analytically over the one-parton phase
space. This integration yields the so-called I-terms and PK-terms:

∫
dΦ1dσ

A = [ dσB ⊗ I ] +

∫ 1

0

dx [ dσB ⊗ (P (x, µ2
F ) + K(x)) ] . (5.62)

The I operator contains all IR poles multiplying the Born-level matrix element and
the P and K operators give rise to a finite collinear remainder and involve an
integration over x, the longitudinal momentum fraction after the splitting in the
initial state. In the following subsections these two contributions to the integrated
dipoles are presented in more detail.

5.5.1 I terms

The I-terms are obtained from the LO expression by replacing the LO matrix ele-
ment squared by

m;a,b〈 1, . . . ,m; a, b | I | 1, . . . ,m; a, b 〉m;a,b . (5.63)

The insertion operator I depends on the color charges, momenta and masses of the
particles in the initial (a, b) and final (1, ...,m ; here: m = 2) state of the process. It
further depends on the ’t Hooft scale µ and on the regularization parameter ε. The
expansion of the following expressions in ε gives rise to terms with 1/ε2 and 1/ε poles,
which are necessary to cancel the corresponding terms in the virtual corrections:

Im+a+b(pa, pb, k1,m1, k2,m2) =

Im(k1,m1, k2,m2) + Ia(pa, k1,m1, k2,m2) + Ib(pb, k1,m1, k2,m2)

−αs

2π

(4π)ε

Γ(1− ε)

(
1

T 2
a

T a · T b

[(
µ2

sab

)ε(
T 2
a

ε2
+
γa
ε

)
− T 2

a

π2

3
+ γa +Ka

]
+ (a↔ b)

)
.

(5.64)

The contribution to this operator from the integrated final-final dipoles is

Im(k1,m1, k2,m2) = −αs

2π

(4π)ε

Γ(1− ε)
∑

j

1

T 2
j

∑

k 6=j
T j · T k

×
[
T 2
j

(
µ2

sjk

)ε(
Vj(sjk,mj,mk)−

π2

3

)
+ Γj(µ,mj)

+γj log
µ2

sjk
+ γj +Kj + O(ε)

]
, (5.65)
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where the sum runs over possible final state emitter partons (j) and final state
spectators (k). The contribution from final-initial and initial-final dipoles is

Ia(pa, k1,m1, k2,m2) = −αs

2π

(4π)ε

Γ(1− ε)
∑

j

{

1

T 2
j

T j · T a

[
T 2
j

(
µ2

sja

)ε(
Vj(sja,mj, 0)− π2

3

)
+ Γj(µ,mj)

+γj log
µ2

sja
+ γj +Kj

]

+
1

T 2
a

T a · T j

[
T 2
a

(
µ2

saj

)ε(
Va(saj, 0,mj)−

π2

3

)
+
γa
ε

+γa log
µ2

saj
+ γa +Ka

]}
, (5.66)

with j denoting either a final state emitter or spectator parton.
The color charge operators act on the color space of the Born amplitude and the
same rules as introduced in Eqs. (3.19) and (3.20) apply. As a consequence the
same color linked Born amplitudes squared as in the dipoles of the previous section
enter also the calculation of the I-terms. Since the initial state particles in the Born
process are two quarks, the constants γa and Ka are always equal to

γq =
3

2
CF , Kq =

(
7

2
− π2

6

)
CF . (5.67)

The constants γj and Kj refer to the final state squarks,

γq̃ = 2CF , Kq̃ =

(
4− π2

6

)
CF . (5.68)

The dependence on the momenta is hidden in the kinematical variable sxy = 2 pxpy,
where px and py are the momenta of the 2-particle phase space which are also used
to evaluate the LO production process and the virtual corrections.
The functions Γj, which are singular in four dimensions, depend on the flavor of
parton j and on the parton masses, just as the kernels Vj and Va which additionally
depend on the momenta. Both functions are listed in Appendix C.

The program SuperAutoDipole [135, 136] generates a Fortran code for the I-terms
as functions of the momenta and masses of the partons. It provides a flag in order
to separately extract the coefficients of the 1/ε2 and 1/ε poles as well as the finite
parts. In principle the program LoopTools, which has been used to evaluate the
virtual corrections, provides the same feature for the coefficients of the poles of the
loop diagrams. By combining these two tools it is basically possible to compare the
coefficients of the poles for every phase space point during the numerical evaluation
of the process and check whether the cancellation of the divergencies in the virtual
corrections works.
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However, it has to be taken into account that in the code generated by LoopTools

the term

(4π)ε

Γ(1− ε) = 1+ε [log 4π−γ]+ε2
[

1

2
(log2 4π + γ2)− π2

12
− γ · log 4π

]
+O(ε3) (5.69)

has been factored out. In order to achieve agreement between the coefficients of the
poles from the virtual corrections and the I-terms this factor has to be added back
in by hand. This changes the coefficient C−1 of the 1/ε poles and the finite part C0

of the virtual corrections calculated by the LoopTools software:

(
C−2

1

ε2
+ C−1

1

ε
+ C0

)
×

(
1 + ε [log 4π − γ] + ε2

[
1

2
(log2 4π + γ2)− π2

12
− γ · log 4π

])
=

(
C0 + C−1 [log 4π − γ] + C−2

[
1

2
(log2 4π + γ2)− π2

12
− γ · log 4π

])
+

(
C−1 + C−2 [log 4π − γ]

) 1

ε
+ C−2

1

ε2
. (5.70)

With this modification the cancellation of IR divergencies from the virtual cor-
rections by subtracting the integrated Catani-Seymour dipoles can be carried out
successfully.2 Validation and explicit tests of this subtraction procedure will be
discussed in Section 5.6.1.

5.5.2 PK terms

The remaining initial-state collinear divergencies can be reabsorbed into the non-
perturbative PDFs. The finite terms that remain after canceling all IR divergencies
can be calculated by the P and K operators. Their contribution to the partonic
cross section is:

σa,bcoll =

∫ 1

0

dx

∫
dΦm(x)

(
P a,q(x, xpa, pb, k1, k2, µ

2
F ) + Ka,q(x)

)
⊗ dσBq,b(xpa, pb, k1, k2)

+

∫ 1

0

dx

∫
dΦm(x)

(
P a,q(x, pa, xpb, k1, k2, µ

2
F ) + Ka,q(x)

)
⊗ dσBq,b(pa, xpb, k1, k2) .

(5.71)

At hadron-level the corresponding cross section is obtained by the standard convo-
lution with the PDFs

σcoll =
∑

a,b

∫ ∫
dxadxb fa(xa, µ

2
F )fb(xb, µ

2
F ) σa,bcoll , (5.72)

2Furthermore, in some scalar integrals where a UV and an IR pole cancel each other, like e.g.
in the B0(0, 0, 0) function, the pole structure had to be restored by hand in LoopTools.
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summing over possible initial state partons a and b originating from splittings in the
initial state. In the case of squark pair production where the Born matrix element
has only one initial state configuration, two quarks namely, only two splittings are
possible:

g → qq̄ and q → gq . (5.73)

Therefore the cross section of the finite collinear remainder can be written as sum
of these two contributions

σcoll =

∫ ∫
dxadxb fg(xa, µ

2
F )fq(xb, µ

2
F ) σg,qcoll

+

∫ ∫
dxadxb fq(xa, µ

2
F )fq(xb, µ

2
F ) σq,qcoll . (5.74)

It is convenient to absorb the partonic finite collinear terms into modified PDFs and
express the cross section in the compact form

σcoll =

∫ ∫
dxadxb

∫
dΦ2(pa, pb, k1, k2)

1

ŝ
×

(
f̃qi(xa, µ

2
F )fqj(xb, µ

2
F ) + fqi(xa, µ

2
F )f̃qj(xb, µ

2
F )
)
⊗ |M(pa, pb, k1, k2)|2

+ (a↔ b) . (5.75)

Here, ŝ denotes the square of the partonic center-of-mass energy and the symbol
⊗ together with |M(pa, pb, k1, k2)|2 stands for properly defined convolutions with
the corresponding color linked Born amplitudes squared, already introduced during
the discussion of the subtraction dipoles in Section 5.4 and integrated dipoles in
Section 5.5.1.
The modified PDFs f̃q are defined as an integral over the longitudinal momentum
fraction after the splitting in the initial state and a sum of contributing initial PDFs,
in this case the quark and gluon PDFs

f̃q(x̃a) =
αs
2π

∫ 1

x̃a

dx

x

{
A1(x, x̃a)

(
fq

(
x̃a
x

)
− xfq(x̃a)

)

+ A2(x, x̃a)
∑

j=1,2

(
fq

(
x̃a
x

)
log

(
1− x+

m2
j

s
(x)
ja

)
− xfq(x̃a) log

(
1− x+

m2
j

s
(1)
ja

))

+ B(x, x̃a)fq

(
x̃a
x

)

+ C(x, x̃a)fg

(
x̃a
x

)}

+
αs
2π

(D1(x̃a) +D2(x̃a)) fq(x̃a) . (5.76)

The index j in the second line denotes one of the squarks in the final state, so that
mj is the mass of this squark. The kinematical variables s

(x)
ja and s

(1)
ja involve the

initial (a) and final (j) state momenta

s
(x)
ja = 2

papj
x

and s
(1)
ja = 2 papj . (5.77)
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The derivation of the coefficients A1(x, x̃a), A2(x, x̃a), B(x, x̃a), C(x, x̃a), D1(x̃a) and
D2(x̃a) is rather lengthy and thus presented in detail in Appendix C.

Implementing the finite collinear remainder terms in the numerical evaluation as
part of the 2-particle phase space, as described above, has a drawback. The code
slows down dramatically as for every phase space point an additional integration
over the longitudinal momentum fraction x has to be carried out. To reduce the
computing time it is convenient to perform the integration over the 3-particle phase
space rather than over the 2-particle one with an additional integration over x. The
numerical evaluation can be speeded up by taking advantage of the fact that the
phase space factorizes. The following relation between the 2- and 3-particle phase
space

1

2papb
dΦ3(pa, pb, k1, k2, k3) =

∫ 1

0

dx dΦ2(xpa, pb, k̃1, k̃2)
1

16π2

∫ 1−x

0

dṽi (5.78)

maps the Born-level phase space into the real emission phase space by utilizing the
reduced kinematics which has already been introduced for the dipoles with initial
state singularities and initial state spectators in Section 5.4. The idea is to consider
the 2-particle phase space kinematics with which the finite collinear terms have been
evaluated so far in this section as the reduced kinematics of the initial-initial dipoles.
Therefore, the longitudinal momentum fraction is in this context defined as

x = x3,ab =
papb − pak3 − pbk3

papb
(5.79)

transforming the initial state momentum pa to its value in the reduced kinematics
by

p̃µa = x3,ab p
µ
a . (5.80)

Interpreting the Born kinematics in the first term of Eq. (5.75) as the initial-initial
tilde kinematics, this term reads

σcoll,1 =

∫ ∫
dx̃adxb

∫
dΦ2(p̃a, pb, k̃1, k̃2)

1

2p̃apb
·

f̃qi(x̃a, µ
2
F )fqj(xb, µ

2
F )⊗

∣∣∣M(p̃a, pb, k̃1, k̃2)
∣∣∣
2

. (5.81)

In order to transform this expression to the 3-particle phase space three steps have
to be performed. First of all, an artificial integration over x has to be introduced for
the D1 and D2 coefficients in the parametrization of the modified PDF in Eq. (5.76)

1 =
1

1− x̃a

∫ 1

x̃a

dx . (5.82)

Furthermore an integral over the variable ṽi, which is not present in the integrand,
has to be inserted

1 =

∫ 1−x

0

dṽi
1

1− x . (5.83)
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Finally, the substitution x̃a → x xa has to be done, transforming the relevant inte-
grations to ∫ 1

0

dx̃a

∫ 1

x̃a

dx

x
→

∫ 1

0

dxa

∫ 1

0

dx . (5.84)

With these modifications the transformation in Eq. (5.78) can be applied and the
modified PDF becomes

σcoll,1 =

∫ 1

0

∫ 1

0

dxadxb

∫
dΦ3(pa, pb, k1, k2, k3)

(2papb) (2xpapb)

16π2

1− x fq(xb)

{
A1(x, xxa) (fq(xa)− xfq(xxa))

+A2(x, xxa)

(
fq(xa) log

(
1− x+

m2
j

s
(1)
ja

)
− xfq(xxa) log

(
1− x+

m2
j

s
(x)
ja

))

+B(x, xxa)fq(xa) + C(x, xxa)fg(xa)

+
x

1− xxa
(D1(xxa), D2(xca)) fq(xxa)

}
⊗
∣∣∣M(p̃a, pb, k̃1, k̃2)

∣∣∣
2

. (5.85)

Apart from saving computing time, this factorization of the phase space allows for
consistency checks of the program, since the finite collinear cross section can be
determined either as part of the 2-particle or as part of the 3-particle phase space.
Details concerning this test will be presented in Section 5.6.1.

5.6 Numerical Evaluation

The complete NLO calculation, as described in the previous chapters, has been im-
plemented in a Fortran program in order to perform the phase space integration
and the convolution with the PDFs numerically by means of statistical Monte-Carlo
methods.
The integration routine used for this purpose is MONACO, which is a modified version
of the Fortran subroutine VEGAS [140]. It is part of the Monte Carlo program VBFNLO

[141–143]. The VEGAS algorithm evaluates the integrand N times by mapping ran-
dom numbers xi ∈ [0, 1] on the integration variables. The expectation value for the
result of the integral is estimated by the arithmetic average of the evaluations. In
order to reduce the variance for the result a technique called importance-sampling
is used, i.e. more points are sampled into regions where the integrand is large. This
procedure is repeated in subsequent iterations. In the first iteration the integration
domain is split up equally into a rectangular grid of hypercubes with a constant den-
sity of sample points xi. From iteration to iteration the grid subdivision is modified
in order to concentrate more hypercubes, and thus more sample points, in regions
where the integrand is large.
For the convolution with PDFs the CTEQ PDF-sets are used. The LO cross sec-
tion as well as the corresponding differential distributions are evaluated with the
CTEQ6L1 PDF-set [144]. The NLO cross section and the NLO distributions, on
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the other hand, are calculated with the latest CTEQ10 NLO PDF-sets [145].

The strong coupling constant αMS5
s (Q2) is taken from the PDF-sets. For the cal-

culation of the LO cross section the value of αMS5
s (Q2) corresponds to the running

coupling at one-loop order, while in the calculation of the NLO corrections the run-
ning coupling up to two-loop order is needed. The coupling satisfies the following
renormalization group equation

Q2dα
MS5
s (Q2)

dQ2
= −b0α

2,MS5
s (Q2)− b1α

3,MS5
s (Q2)− ... (5.86)

with the one-loop and two-loop coefficients

b0 =
33− 2 · 5

12 π
and b1 =

153− 19 · 5
24 π2

. (5.87)

A convenient approximate analytic solution to the RGE in Eq. (5.86) is given to
one-loop order by

αMS5
s (Q2) =

1

b0 log
(

Q2

Λ2
QCD

) . (5.88)

It is parametrized in terms of the constant ΛQCD, an integration constant which
corresponds to the non-perturbative scale of QCD. In Eq. (5.88) it amounts to

ΛQCD = 165 MeV . (5.89)

The approximate solution of Eq. (5.86) to two-loop order reads

αMS5
s (Q2) =

1

b0 log(Q2/Λ2
QCD)

[
1− b1

b2
0

log
(
log(Q2/Λ2

QCD)
)

log(Q2/Λ2
QCD)

]
(5.90)

with

ΛQCD = 226 MeV . (5.91)

An alternative to the use of formulas (5.88) and (5.90) is to solve the RGE in
Eq. (5.86) exactly, numerically [146]. In this case no scale ΛQCD has to be intro-
duced but an initial condition αs(µ)|µ=MZ

= αs(MZ) is used to solve the differ-
ential equation. Equation (5.88) leads to αs(MZ) = 0.130 and Eq. (5.90) yields
αs(MZ) = 0.118.
The factorization scale µF is set together with the renormalization scale Q in the
virtual corrections to a characteristic energy scale of the squark pair production pro-
cess, which has been chosen to be the average mass µF = Q = mq̃ of all light-flavor
squarks of the SUSY parameter scenario used for the evaluation.
If not stated otherwise, e.g. in comparisons to previous works, a SUSY parame-
ter scenario is investigated which is in agreement with all direct SUSY searches at
the LHC as described in Chapter 2.3.1. Within the framework of mSUGRA the
boundary conditions for the renormalization group running at the GUT scale are
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ũL c̃L t̃1 ũR c̃R t̃2

1796.4 1796.4 1283.6 1756.9 1756.9 1601.7

g̃ d̃L s̃L b̃1 d̃R s̃R b̃2

1598.7 1797.9 1797.9 1581.9 1753.1 1753.1 1742.2

Table 5.1: Masses of the squarks and gluino given in GeV within “scenario 1”
defined in Eq. (5.92).

given by five parameters. These read for the point chosen here for the analysis of
phenomenological results

Scenario 1 : M0 = 1150 GeV M1/2 = 690 GeV A0 = 0 GeV

tan β = 10 sign(µh) = + .
(5.92)

The renormalization group running and the calculation of physical on-shell particle
masses is done with the spectrum calculator SOFTSUSY [85]. The SM input parame-
ters needed are according to [74]

MZ = 91.187 GeV

α−1MS
em (MZ) = 127.934

mMS
b (mb) = 4.2 GeV

Mpole
t = 173.5 GeV

mpole
τ = 1.777 GeV .

Most relevant for the calculation of squark pair production at NLO are the masses
of the squarks as well as the mass of the gluino. These are listed in Table 5.1. With
the right-handed light-flavor squarks having masses slightly above 1750 GeV and
the left-handed light-flavor squarks of almost 1800 GeV. The renormalization and
factorization scale for this scenario are set to 1776 GeV.

5.6.1 Tests and Comparisons

In order to check the various parts of the implementation of the calculation and
in order to exclude possible error sources, numerous internal tests have been per-
formed. Among these is the check whether the Catani-Seymour dipoles cancel the
real emission contributions in the singular regions, the check whether the I terms of
the integrated dipoles render the correct coefficients of the 1/ε and 1/ε2 terms and
the check whether the cross section of the finite collinear remainder coincides in the
implementations as part of the 2-particle and as part of the 3-particle phase space.
To further validate the code these tests have been supplemented, as far as possible,
by a comparison of the results for the LO and NLO cross section to results obtained
with the program Prospino2 [20].
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To confirm the cancellation of the IR divergencies in the real emission matrix ele-
ments by the Catani-Seymour subtraction dipoles, the ratio of the squared real
emission matrix element |MR|2 over the sum of the corresponding dipoles is investi-
gated. As the dipoles act as local counterterms, they should cancel the divergencies
in the real emission matrix elements in the singular regions, which are characterized
by small energies of the emitted parton and/or by small angles between massless
partons. The ratio of the real emission matrix element over the sum of dipoles is
shown in Fig. 5.6 for processes with two quarks in the initial state and in Fig. 5.7
for processes with a quark and a gluon in the initial state for about one million
phase space points each. In both figures the ratio is plotted in dependence of the
product of one initial state momentum and the momentum of the emitted parton,
which is a gluon in the qq initiated processes and an antiquark in the qg initiated
processes. For large values far away from the singular region the contributions from
real emissions and dipoles differ, whereas in the soft and collinear regions, i.e. in the
limit pq · pg → 0 and pg · pq̄ → 0, respectively, the subtraction dipoles exactly cancel
the real emission matrix elements resulting in a ratio of one. This is precisely the
expected behavior of the subtraction dipoles.

The I-terms of the integrated dipoles can be written schematically as

C−2
1

ε2
+ C−1

1

ε
+ C0 , (5.93)

where C−2, C−1 and C0 are process and kinematics dependent coefficients. The
coefficient C−2 should obey the following simple relation [147]

C−2 =
αs
2π
|MBorn|2 · 2 CF . (5.94)

Figure 5.8 demonstrates that this relation is fulfilled in the calculation at every phase
space point: The ratio of the coefficient C−2 and the squared Born matrix element
multiplied by the factor 2π/αs always yields the constant 2 CF = 8/3, independent
of the details of the phase space point they are evaluated at. A similar but more
complicated relation [147] holds for the coefficient of the 1/ε term in Eq. (5.93).
During the evaluation of the NLO corrections it is checked explicitly that at every
phase space point the contributions to the coefficients of the poles from the virtual
corrections and I-terms cancel, therefore only the finite parts of both contribute to
the NLO cross section and distributions.

The PK-terms, the finite terms which remain after all IR divergencies have been
canceled, can be determined either as part of the 2-particle or as part of the 3-particle
phase space. In the 2-particle phase space implementation an additional integration
over x, the longitudinal momentum fraction in the initial state, has to be performed.
This slows down the code drastically but can be mended when the 2-particle phase
space with this additional integration is mapped into the 3-particle phase space.
Both implementations should yield the same result for the finite collinear cross sec-
tion. By calculating the cross sections for this part of the calculation with both
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Figure 5.6: Ratio of real emission matrix elements squared and corresponding dipoles
for qq initial states.
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methods for different parameter points it can be checked whether the finite collinear
remainders have been implemented consistently. Figure 5.9 shows the ratio of the
finite collinear remainder cross section calculated in the 2-particle phase space and
the one calculated in the 3-particle phase space including error bars. Both contri-
butions have been evaluated with input parameters based on the scenario defined
in Eq. (5.92) and with all the corresponding masses in Table 5.1 apart from the
mass of the left-handed up-type squark mũL which has been varied by hand between
1650 and 2100 GeV. Both cross sections agree within their small statistical errors,
originating from the Monte-Carlo integration, leading to a ratio which is in agree-
ment with one within the error calculated according to error propagation. Since the
implementation of the finite collinear terms as part of the 3-particle phase space is
about ∼ 1100 times faster than the 2-particle phase space implementation in the
following only the former one is used.

The program Prospino2 computes NLO cross sections efficiently for the production
of SUSY particles at hadron colliders based on the calculations accomplished in
[20]. However, some simplifications have been assumed which have to be taken
into account for a consistent comparison of results. While the LO cross section
for squark pair production is calculated correctly and separately for the various
flavor and chirality combinations, the NLO corrections are always summed over the
subchannels assuming a common mass for all squarks. The so-called K-factor, i.e.
the ratio between the NLO and LO cross section

K =
σNLO
σLO

, (5.95)
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Figure 5.9: Ratio of cross sections of the finite collinear remainders evaluated in 2-
particle and 3-particle phase space. The error bars are calculated according to error
propagation of the errors of the two cross sections in the different phase spaces.

is determined for the total cross sections, with all subchannels summed up. Results
for the NLO cross sections of different subchannels are returned but have been
obtained by scaling the LO cross sections by the K-factor obtained from the total
cross sections at LO and NLO. Thus, it is assumed that the K-factor does not change
for different flavor and chirality combinations. Since Prospino2 reads Les Houches
SUSY spectrum files but calculates an average squark mass for the evaluation of the
NLO corrections, it is most sensible to compare results for a scenario with degenerate
squark masses. For that purpose “scenario 1” of Eq. (5.92) and Table 5.1 has been
altered by setting all squark masses to

mq̃ = 1800 GeV . (5.96)

This scenario is denoted “scenario 2” in the following. Additionally, Prospino2 uses
CTEQ6 PDFs throughout, i.e. the CTEQ6L1 set for the LO and the CTEQ6M
set for the NLO cross section. Adopting these changes, results for a cross-check
against Prospino2 at a center-of-mass energy of 8 TeV can be produced. In case of
degenerate squark masses several of the 36 subchannels yield the same result. For
example ũLũL and ũRũR have the same cross section and so have ũLd̃R and ũRd̃L.
This holds for several combinations of the four squarks of the first two generations.
As a consequence, only 20 out of the 36 possible channels have cross sections that
differ from each other. The LO and NLO cross sections for these with the corre-
sponding K-factors in comparison to the ones obtained with Prospino2 are listed
in Table 5.2. As everywhere else in this work the charge conjugated processes are
included in every subchannel. In the last line of Table 5.2 the sum of all subchannels,
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channel σLO [fb] σNLO [fb] K σProspino
LO [fb] σProspino

NLO [fb] KProspino

ũLũL 6.18 · 10−2 6.82 · 10−2 1.10 6.18 · 10−2 7.18 · 10−2 1.16

ũLd̃L 3.90 · 10−2 4.72 · 10−2 1.21 3.90 · 10−2 4.53 · 10−2 1.16

ũLc̃L 2.47 · 10−4 8.39 · 10−4 3.40 2.47 · 10−4 2.87 · 10−4 1.16

ũLs̃L 6.33 · 10−4 1.12 · 10−3 1.77 6.33 · 10−4 7.35 · 10−4 1.16

d̃Ld̃L 2.90 · 10−3 3.47 · 10−3 1.19 2.90 · 10−3 3.37 · 10−3 1.16

d̃Lc̃L 4.63 · 10−5 1.80 · 10−4 3.90 4.64 · 10−5 5.38 · 10−5 1.16

d̃Ls̃L 1.15 · 10−4 2.33 · 10−4 2.02 1.15 · 10−4 1.34 · 10−4 1.16

c̃Lc̃L 1.77 · 10−7 1.98 · 10−6 1.12 1.77 · 10−7 2.05 · 10−7 1.16

c̃Ls̃L 1.17 · 10−6 7.65 · 10−7 6.52 1.17 · 10−6 1.36 · 10−6 1.16

s̃Ls̃L 9.55 · 10−7 3.19 · 10−6 3.34 9.56 · 10−7 1.11 · 10−6 1.16

ũLũR 3.27 · 10−2 3.83 · 10−2 1.17 3.27 · 10−2 3.80 · 10−2 1.16

ũLd̃R 6.79 · 10−3 8.31 · 10−3 1.22 6.79 · 10−3 7.89 · 10−3 1.16

ũLc̃R 3.84 · 10−5 1.50 · 10−4 3.89 3.84 · 10−5 4.46 · 10−5 1.16

ũLs̃R 9.56 · 10−5 1.91 · 10−4 1.99 9.55 · 10−5 1.11 · 10−4 1.16

d̃Ld̃R 1.29 · 10−3 1.68 · 10−3 1.30 1.29 · 10−3 1.50 · 10−3 1.16

d̃Lc̃R 6.79 · 10−6 2.98 · 10−5 4.39 6.79 · 10−6 7.89 · 10−6 1.16

d̃Ls̃R 1.62 · 10−5 3.69 · 10−5 2.28 1.62 · 10−5 1.88 · 10−5 1.16

c̃Lc̃R 7.10 · 10−8 1.01 · 10−6 14.28 7.10 · 10−8 8.24 · 10−8 1.16

c̃Ls̃R 1.61 · 10−7 1.25 · 10−6 7.74 1.61 · 10−7 1.87 · 10−7 1.16

s̃Ls̃R 3.54 · 10−8 1.52 · 10−6 4.28 3.54 · 10−8 4.11 · 10−8 1.16

Sum 2.57 · 10−1 3.00 · 10−1 1.16 2.57 · 10−1 2.99 · 10−1 1.16

Table 5.2: LO and NLO cross sections and K-factors for individual subchannels
and the sum of all 36 subchannels in comparison to Prospino2. Charge conjugated
processes are included. The values have been obtained for “scenario 2” of Eq. (5.96)
and a center-of-mass energy of 8 TeV.
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taking into account the ones not listed in the lines above, is stated.
As can be inferred from the table the LO cross sections for the individual subchannels
as well as the LO cross section for all subchannels are in perfect agreement. The
NLO total cross sections agree within their errors and consequently the total K-
factors are the same. While Prospino2 assumes that this total K-factor is constant
in the various subchannels, calculating the NLO cross sections for the subchannels
individually shows that this assumption is just a rough one. However, the (huge)
K-factors for subchannels involving c̃ and s̃ quarks have to be considered critically.
Evaluating the LO process, c c → c̃Lc̃R for example, with the CTEQ6L1 set and
with the CTEQ6M set yields already a difference of a factor 10 just in the LO cross
sections. In order to verify that this effect is unambiguously stemming from large
differences in the LO and NLO PDF sets for charm quarks, the ratio of these has
been plotted3 in Fig. 5.10 for a factorization scale of Q = 2 TeV in dependence of x,
the quark momentum fraction of the proton momentum. For momentum fractions
lower than x = 0.1 the LO CTEQL1 set and the NLO CTEQ6M set differ in a
range of 10 − 20%, whereas for x values about 0.6 the PDFs differ by a factor of
4. The same behavior can be observed for strange quark PDF sets, which differ
for large values of x by a factor 2.2. Since the PDFs for charm and strange quarks
are derived from the gluon PDFs by taking into account the gluon splitting into
a quark-antiquark pair, this difference can be traced back to the large gluon PDF
uncertainties for large values of x, as evident from Fig. 10 in [144]. For squark pair
production with squark masses around 2 TeV at a center-of-mass energy of 8 TeV
rather large momentum fractions are necessary for partonic center-of-mass energies
exceeding the kinematic production threshold. The last statement can be exempli-
fied by recalling the relation between the partonic center-of-mass energy ŝ and the
center-of-mass energy s in the proton-proton system

ŝ = x1 x2 s

(4 TeV)2 ≤ x1 x2 (8 TeV)2

x1 x2 ≥ 0.25 , (5.97)

with x1 and x2 being the momentum fractions of the two partons. Taking these
arguments into account it becomes clear where the large differences in the LO cross
sections evaluated with CTEQ6L1 and CTEQ6M and thus the huge K-factors in
channels with c̃ and s̃ squarks originate from. Since the values of the charm and
strange quark PDFs are at least two orders of magnitude smaller than the up and
down quark PDFs [144], the corresponding cross sections are small and hardly con-
tribute to the total cross section: The 10 subchannels which have only up and down
quark contributions make up 98.2 % of the total cross section. Disregarding there-
fore the large K-factors in subchannels with c̃ and s̃ squarks for the moment, the
remaining K-factors for subchannels with up and down quarks in the initial state
still vary in the range of 1.10 − 1.30. Therefore, an independent treatment of sub-
channels seems reasonable, as in general squarks of different chiralities and thus
different channels have different masses, decays and kinematic distributions.

3Thanks to Karol Kovař́ık for providing this plot.
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Figure 5.10: Ratio of CTEQ6M and CTEQL1 PDF sets for the charm quark at
the factorization scale of 2 GeV in dependence of the proton momentum fraction
parameter x.

Apart from the internal tests of the code and the comparison to Prospino2 all build-
ing blocks of the program as well as various results have been checked against an in-
dependent implementation of squark pair production in the POWHEG BOX [134, 148].
The only commonly used part in the implementation in the POWHEG BOX and the
parton level Monte-Carlo program described in this thesis are the FormCalc and
LoopTools routines for the calculation and evaluation of the virtual corrections.
The Born matrix elements, the color linked Born matrix elements and the real emis-
sions have been calculated and implemented independently. Furthermore, in the
POWHEG BOX a different subtraction method for dealing with the IR divergencies in
the calculation is used. In contrast to the Catani-Seymour subtraction procedure
presented in this thesis, the POWHEG BOX relies on the method proposed by Frixione,
Kunszt and Signer (FKS) [149, 150]. All matrix elements have been checked for
a multitude of phase space points yielding perfect agreement. LO and NLO cross
sections have been compared for all 36 subchannels for different parameter scenarios
with the outcome that all results agree within their statistical errors. Finally, differ-
ential distributions for several observables, which will be specified in the following
section, have been plotted and agree up to anticipated statistical fluctuations.

5.6.2 Phenomenological Results

Before investigating the effects of the NLO corrections on differential distributions,
the scale dependence of the total cross sections shall be analyzed. Since the fac-
torization and renormalization scales are unphysical, their variation in the LO and
NLO cross sections can provide a rough estimate on the remaining theoretical un-
certainties due to higher order corrections. In the ideal case, the scale dependence
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Figure 5.11: Scale dependence of the LO and NLO total cross section.

of the LO cross section is larger than the scale dependence of the next-to-leading
order cross section, which is larger than the scale dependence of the next-to-next-
to-leading order cross section and so on. In this sense, the scale dependence can be
taken as a measure of the precision of the prediction. However, this estimate merely
gives an indication and cannot be regarded as the true theoretical uncertainty on
the cross section. Nonetheless, by analyzing the scale dependence a rough picture
on the remaining uncertainty due to neglected higher order corrections can be given.
Figure 5.11 reflects the scale dependence of the LO and NLO cross sections of squark
pair production at the LHC for a center-of-mass energy of 8 TeV calculated with
input parameters according to “scenario 1” of Eq. (5.92) and Table 5.1. The re-
normalization (Q) and factorization scale (µF ) have been set to a common value,
which is varied by a factor of 10 in both directions around the central value given
by the average squark mass mq̃ = 1776 GeV. The NLO cross section exhibits clearly
a much flatter scale dependence than the LO cross section. Varying the latter by
a factor of two around 1776 GeV results in a dependence of about ±50%. In the
NLO cross section the scale dependence in the same range reduces to ±15%. The
dependence on the factorization scale is very weak and the residual scale dependence
is dominated by the renormalization scale dependence of αs. The cross sections at
the central scale amount to

σLO = 0.306 fb σNLO = 0.371 fb, (5.98)

implying a K-factor of
K = 1.21 (5.99)

and thus an enhancement of the LO cross section due to the NLO corrections by
21%.
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In the rest of this section the effects of the NLO corrections on differential distribu-
tions shall be presented. These effects are exemplified based on the two observables:

• The invariant mass of the squark pair in the final state

M inv =

√(
pq̃i + pq̃j

)2
(5.100)

• The transverse momentum of each squark in the final state

pTq̃i =
√
p2
q̃i,x

+ p2
q̃iy

. (5.101)

Differential distributions in transverse momentum pT at production level have al-
ready been shown in [20], where the NLO corrections for degenerate squark masses
have been calculated. In Fig. 5.12 (a) the pT distribution is shown for the NLO
calculation described in this thesis evaluated for “scenario 1” at a center-of-mass
energy of 8 TeV. As an example for further distributions at production level, which
have not been available at NLO so far4, the invariant mass distribution is depicted
in Fig. 5.12 (b).
The effects of the NLO corrections on the shapes of distributions can be visualized
by normalizing the distributions to unity, i.e. by dividing the LO distributions by
the LO cross section and the NLO distributions by the NLO cross section. If the
K-factor was flat, which means that the NLO distributions coincide with the LO
distribution scaled by the K-factor of the total cross section, the normalized LO and
NLO distributions would match exactly.
In [20] it was found that the normalized pT -distributions are hardly affected by
the transition from LO to NLO. These results have been obtained with a common
squark mass of mq̃ = 600 GeV, a gluino mass of mg̃ = 500 GeV and a top quark
mass of mt = 175 GeV for the factorization and renormalization scale Q = mq̃ at a
center-of-mass energy of

√
s = 14 TeV. Adopting these parameters in the present

calculation the distributions of [20] have been reproduced. For the scenario ana-
lyzed here, the normalized distributions are shown in Fig. 5.13. The pT distribution
exhibits similar and small effects as already found for this distribution in [20]. The
shape of the invariant mass distribution is affected more by the NLO corrections.
These effects can be quantified by determining the differential K-factor, defined as
the NLO differential cross section divided by the LO differential cross section. The
differential K- factor for the pT and invariant mass distributions is also depicted in
Fig. 5.13 underneath the distributions. For the pT distribution it varies in a range of
10 %, while in the case of the invariant mass distribution the variation takes place
in a range of 20 %. For comparison the figures with the differential K-factor also
include the constant K-factor from the total cross sections, depicted by the dashed
line. In both cases rescaling the LO distributions by the global K-factor would
overestimate the tail of the distributions and underestimate the threshold regions.

4Recently, in [122] several distributions for squark pair production have been published. How-
ever, full decay chains have been considered and the effects of the NLO corrections for distributions
at production level have not been shown.
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Figure 5.12: LO and NLO pTq̃ (a) and invariant mass M inv
q̃q̃ (b) distributions for a

center-of-mass energy of 8 TeV.
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Figure 5.13: Normalized pTq̃ (upper) and M inv
q̃q̃ (lower) distributions and correspond-

ing differential (full) and global (dashed) K-factors for a center-of-mass energy of
8 TeV.
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Since the 8 TeV run at the LHC will be finished by the end of this year, it is
interesting to have a look at distributions for a higher center-of-mass energy. For
the same scenario as before at a center-of-mass energy of 14 TeV the total cross
sections increase to

σLO = 14.66 fb and σNLO = 17.64 fb (5.102)

resulting in a K-factor of

K = 1.20 . (5.103)

The normalized pT and invariant mass distributions, shown in Fig. 5.14, show larger
effects due to the NLO corrections than their versions for 8 TeV. This fact is also
reflected in the differential K-factors plotted underneath. The differential K-factor
for the pT distribution varies now in a range of 25 % and the one for the invariant
mass distribution in a range of 35 %. Rescaling the invariant mass distribution by
the global K-factor would thus over- and underestimate the tail and the threshold
regions by almost 20%.

Certainly, the investigation at production level with unstable particles in the final
state is only a first step towards a realistic analysis of the effects of NLO corrections
on differential distributions. Nevertheless, they already give a first hint that for
squark pair production at the LHC the leading order distributions cannot be simply
multiplied by an overall K-factor to obtain correct NLO distributions and that fully
differential distributions should be used for phenomenological studies.

5.7 Conclusion and Outlook

Facing the era of the LHC running and recording data, which can be used to search
for supersymmetric extensions of the Standard Model, precise theoretical predictions
are needed for the interpretation of these data. In order to improve predictions for
the production of SUSY particles NLO SUSY QCD corrections need to be calculated
and included. It is most useful to cast these NLO calculations into Monte-Carlo
programs which can calculate cross sections as well as arbitrary distributions.

In this part of the thesis the NLO SUSY QCD corrections to squark pair production,
the dominant channel for colored SUSY particles in the mass region currently tested
at the LHC, have been presented. In order to deal with the IR divergencies arising
in the virtual corrections and real emission matrix elements the Catani-Seymour
subtraction formalism has been applied. The virtual contributions have been cal-
culated using the software packages FeynArts, FormCalc and LoopTools. The UV
divergencies have been canceled by renormalizing the masses and fields in the on-
shell scheme and the strong coupling constant αs in the MS scheme with decoupled
heavy particles, i.e. taking into account only the five light quarks in the running of
αs. The real matrix elements have been obtained with the matrix element genera-
tor Madgraph and the Catani-Seymour subtraction dipoles and integrated dipoles,
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including the finite collinear remainder, have been generated with the program Su-

perAutoDipole. All these building blocks of the calculation have been combined in
a parton-level Monte-Carlo program.

All parts of the code have been checked carefully. Internal tests confirm the can-
cellation of the IR divergencies between the real emission matrix elements and the
subtraction dipoles as well as between the virtual contributions and the integrated
dipoles. The finite collinear remainder has been implemented as part of the 2-particle
and as part of the 3-particle phase space allowing for a consistency check. Both im-
plementations agree within the statistical errors. The latter implementation has
been used for producing results as it is about a factor 1000 faster than the former.
Apart from internal tests, all building blocks have been checked for a multitude of
phase space points against an independent implementation of squark pair produc-
tion in the POWHEG BOX, which has been carried out for a related project. All LO
and NLO cross sections and distributions have been compared to results obtained
with this independent code for various scenarios. Perfect agreement on all stages
has been found.

Based on a previous calculation of NLO SUSY QCD corrections, where all squark
masses have been assumed to be degenerate, the LO and NLO cross sections can be
calculated with the publicly available program Prospino2. In this program apart
from setting all squark masses to a common value in the NLO corrections, results
for individual subchannels are returned by scaling the correctly calculated LO cross
section with the K-factor of the total cross sections, thus assuming that it is constant
in all subchannels. For scenarios with degenerate squark masses LO and NLO cross
sections have been compared to results obtained with Prospino2. They agree within
the small statistical errors. Since all subchannels have been treated independently
in the calculation described in this thesis, the K-factor for each channel could be
compared to the global K-factor. It has been found that these K-factors for relevant
subchannels vary in a range of 20% and therefore subchannels should be treated
independently since squarks of different chiralities can have different masses, decays
and kinematic distributions.

The scale dependence of the NLO cross section is reduced substantially from±50% to
±15% compared to the LO cross section for the scenario considered. The exemplary
analysis of differential distributions revealed that the NLO corrections have bigger
impact on the shape of the differential distributions than has been assumed so far,
based on the distributions presented in [20] 16 years ago. Differential K-factors
have been found to vary up to 35%, implying that scaling LO distributions with
the global K-factor obtained from the total cross sections over- and underestimates
certain regions of the distributions. Though based on unstable particles in the final
state, this analysis illustrated that the full differential NLO corrections should be
taken into account.

In order to further validate the phenomenological implications presented here, in the
next step decays of the produced particles will be added for a more realistic analysis
of the impact of NLO effects on the shape of distributions. The goal of a series of
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related projects is to improve predictions for all SUSY decay cascades by including
NLO corrections in production and decay stages. Furthermore parton shower effects
on squark pair production at NLO are about to be studied [134], as a first candidate,
since the virtual corrections calculated in this thesis have been implemented in the
POWHEG BOX framework. In that sense, the calculation presented here is the basis
for many more exciting studies and is a first step in paving the way towards a new
powerful tool in the field of SUSY phenomenology.



Appendix A

Color Algebra Relations

SU(3) denotes the group of 3×3 unitary matrices with determinant 1. Every matrix
U of the group can be represented through the generators ta (a = 1, ..., 8). Since the
matrix should be unitary, the generators have to be Hermitian. Since det U = 1 the
generators have to be traceless. The generators obey the algebra

[
ta, tb

]
= i fabc t

c, (A.1)

and are normalized as

tr
[
tatb
]

=
1

2
δab . (A.2)

The fabc are antisymmetric (under the interchange of any two indices) structure
constants of the group. Furthermore an anticommutator relation holds

{
ta, tb

}
=

1

3
δab 13 + dabc t

c , (A.3)

where 13 is the 3 × 3 unity matrix and the dabc are symmetric structure constants.
The following relations can be derived from the definitions above and are useful for
the calculation of the color linked Born amplitudes squared needed in the Catani-
Seymour subtraction formalism.

facd fbcd = 3 δab (A.4)

dacd dbcd =
5

3
δab (A.5)

dabc fabd = 0 (A.6)

taimt
a
mj =

4

3
δij (A.7)

tr
[
tatbtc

]
=

1

4
(dabc + ifabc) (A.8)

(
tr
[
tatbtc

])2
=

1

16

(
d2
abc − f 2

abc

)
= −2

3
(A.9)

tr
[
tatbtatb

]
= −2

3
(A.10)
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Appendix B

FCNC Vertex Counterterm

The squark-quark-neutralino part of the Lagrangian in the interaction basis [35],

expressed in terms of the bare squark and quark fields, ũ
(0)
i and u

(0)
i , and the bare

quark mass matrix m
(0)
ij , where i, j = 1, 2, 3 denote the generation indices and l =

1, .., 4 the neutralino mass eigenstates, is

Lūũχ̃0 = −ū(0)
i g euiLl ũ

(0)
iL PR χ̃0

l + ū
(0)
i

(
−

gZl4m
(0)
ij√

2MW sin β

)
ũ

(0)
jR PR χ̃0

l (B.1)

−ū(0)
i g euiRl ũ

(0)
iR PL χ̃0

l + ū
(0)
i

(
−

gZl4m
(0)
ij√

2MW sin β

)
ũ

(0)
jL PL χ̃0

l + h.c. .

The couplings euiL,R l are defined as

euiL l =
√

2

[
Zl1
6

tan θW +
1

2
Zl2

]
,

euiR l = −2
√

2

3
Zl1 tan θW , (B.2)

with Zlm being the elements of the 4 × 4 matrix which diagonalizes the neutralino
mass matrix. Rotation to the mass eigenstates by means of Eqs. (4.2) and (4.10),
exemplified for the right-chiral part of the coupling, yields

LRūũχ̃0 = −ūm(0)
k U

uL(0)
ki geuiLl W̃

(0)†
is ũm(0)

s PR χ̃0
l (B.3)

+ū
m(0)
k U

uL(0)
ki

−gZl4m(0)
ij√

2MW sin β
W̃

(0)†
j+3 sũ

m(0)
s PR χ̃0

l + h.c.

(i, j, k = 1, 2, 3, s = 1, .., 6) .
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Note, that W̃
(0)†
is ≡ W̃

(0)†
Lis , W̃

(0)†
j+3 s ≡ W̃

(0)†
Rjs , cf. Eq. (4.11). Upon renormalization the

bare quantities are replaced by [80]

ūm(0)UuL(0) → ūm
(

1 +
δZL†

2

)
(1 + δuuL)UuL (B.4)

W̃
(0)†
L,R ũ

m(0) → W̃ †
L,R(1 + δw̃†)

(
1 +

δZ ũ

2

)
ũm (B.5)

m(0) → m + δm , (B.6)

where the indices have been suppressed. The field ũm denotes a six-component
column vector. With the replacement W̃L,R = WL,R U

uL,R , cf. Eq. (4.16), the
Yukawa part of the coupling is transformed to

−gZl4√
2MW sβ

ūm
(

1 +
δZL†

2

)
(1 + δuuL)UuL(m + δm)·

UuR†(1 + δuuR†)W †
R(1 + δw†R)

(
1 +

δZ ũ

2

)
ũm .(B.7)

For the mass renormalization, the renormalization prescription is chosen such, that
the bare mass matrices and hence δm are diagonal, i.e.

(1 + δuuL)UuL(m + δm)UuR†(1 + δuuR†) = (mD + δmD) , (B.8)

where D denotes diagonal matrices. This is possible since the off-diagonal elements
can be absorbed into the off-diagonal elements of the antihermitian part of the right-
handed wave function renormalization matrices [151]. Exploiting the unitarity of the
mixing matrices, the renormalized Lagrangian in the mass eigenstate basis is

Lūũχ̃0 = ūmi (GR
isl + δGR

isl)PR ũms χ̃0
l + ūmi (GL

isl + δGL
isl)PL ũms χ̃0

l + h.c. , (B.9)

with the couplings given by

GR
isl = −geuiLl(W †

L)is −
gZl4muiδij√
2MW sin β

(W †
R)js (B.10)

GL
isl = −geuiRl(W †

R)is −
gZl4muiδij√
2MW sin β

(W †
L)js (B.11)

δGR
isl = −geuiLl

[
δZL†

ij

2
(W †

L)js + (W †
L)it

δZ ũ
ts

2
+ δuuLij (W †

L)js + (W †
L)itδw̃

†
ts

]

− gZl4√
2MW sin β

[
δZL†

ij

2
mujδjk(W

†
R)ks +muiδij(W

†
R)jt

δZ ũ
ts

2

+muiδij(W
†
R)jtδw

†
R,ts + δmuiδij(W

†
R)js

]
(B.12)
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δGL
isl = −geuiRl

[
δZR†

ij

2
(W †

R)js + (W †
R)it

δZ ũ
ts

2
+ δuuRij (W †

R)js + (W †
R)itδw̃

†
ts

]

− gZl4√
2MW sin β

[
δZR†

ij

2
mujδjk(W

†
L)ks +muiδij(W

†
L)jt

δZ ũ
ts

2

+muiδij(W
†
L)jtδw

†
R,ts + δmuiδij(W

†
L)js

]
. (B.13)

In the framework of MFV the W matrix is diagonal in flavour space at tree level at
µMFV. At one-loop level flavour off-diagonal elements are induced through mixing
matrix renormalization and the contributions from the off-diagonal field renormali-
zation constants therein (see Eqs. (4.34) and (4.35)).
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Appendix C

Catani Seymour Expressions

C.1 Singular Functions for Integrated Dipoles

The kernels Vj and Va which enter the evaluation of the I operator in the integrated
dipoles depend on the flavour of parton j or a, respectively, and on the momenta
and masses of both partons involved in the splitting. They can be decomposed into
a sum of two contributions. The first one is singular in ε, i.e. in four dimensions,
while the second one is finite in this respect:

Vj(sjk,mj,mk) = V(S)(sjk,mj,mk) + V(NS)
j (sjk,mj,mk) . (C.1)

The singular part V(S) is independent of flavour and spin of the parton and is there-
fore the same for quarks and squarks:

V(S)(sjk,mj,mk) =
1

vjk

(
Q2
jk

sjk

)ε [
1

ε2

(
1− 1

2
ρ−2ε
j − 1

2
ρ−2ε
k

)
− π2

12
(Θ(mj) + Θ(mk))

]
.

(C.2)
Here and in the following the abbreviation Q2

jk ≡ sjk +m2
j +m2

k is introduced with
sjk = 2pjpk. The quantities ρ,ρj and ρk are obtained from

ρ =

√
1− vjk
1 + vjk

ρn(µj, µk) =

√
1− vjk + 2µ2

n/(1− µ2
j − µ2

k)

1 + vjk + 2µ2
n/(1− µ2

j − µ2
k)

(n = j, k) , (C.3)

(C.4)

with the substitution µ2
n → m2

n/Q
2
jk (n = j, k) and vjk defined as

vjk =

√
1−

p2
jp

2
k

(pjpk)2
. (C.5)
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In practice the expanded expression is needed since the coefficients of the 1/ε2 and
1/ε terms are necessary. For brevity only the combinations relevant for the calcula-
tion of squark pair production are listed below. The singular part for partons j and
k being massive is

V(S)(sjk,mj,mk) =
1

vjk

[
1

ε
ln ρ− 1

4
ln2ρ2

j −
1

4
ln2ρ2

k −
π2

6

]

+
1

vjk
ln ρ ln

(
Q2
jk

sjk

)
, (C.6)

while the singular part for parton j being massless reads

V(S)(sjk, 0,mk) = =
1

2ε2
+

1

2ε
ln
m2
k

sjk
− 1

4
ln2 m

2
k

sjk
− π2

12

−1

2
ln
m2
k

sjk
ln
sjk
Q2
jk

− 1

2
ln
m2
k

Q2
jk

ln
sjk
Q2
jk

. (C.7)

The non-singular terms V(NS) depend on the flavours, masses and spins of the par-
tons. If j is a massless quark and k is a massive parton, then the corresponding
non-singular part results in

V(NS)
q (sjk, 0,mk) =

γq

T 2
q

[
ln
sjk
Q2
jk

− 2 ln
Qjk −mk

Qjk

− 2mk

Qjk +mk

]
+
π2

6
− Li2

(
sjk
Q2
jk

)
,

(C.8)
with the color charge operator T q already introduced in Eq. (3.19). The non-singular

function V(NS)
j for j being a massive squark and k being a massive parton is

V(NS)
q̃ (sjk,mj,mk) =

γq̃

T 2
q̃

ln
sjk
Q2
jk

− 2 ln
(Qjk −mk)

2 −m2
j

Q2
jk

+
4mk(mk −Qjk)

sjk
+
π2

2

+
1

vjk

[
ln ρ2 ln(1 + ρ2) + 2 Li2(ρ2)− Li2(1− ρ2

j)− Li2(1− ρ2
k)−

π2

6

]
,(C.9)

while for k being massless it simplifies to

V(NS)
q̃ (sjk,mj, 0) =

γq̃

T 2
q̃

ln
sjk
Q2
jk

+
π2

6
− Li2

(
sjk
Q2
jk

)
− 2 ln

sjk
Q2
jk

. (C.10)

Finally, the singular function Γj for the squark is

Γq̃(µ,mq̃) = T 2
q̃

(
1

ε
− ln

m2
q̃

µ2
− 2

)
+ γq̃ ln

m2
q̃

µ2
= CF

[
1

ε
+ ln

m2
q̃

µ2
− 2

]
. (C.11)
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C.2 Finite Collinear Terms

The finite collinear terms which remain after all infrared divergencies have been
canceled and reabsorbed into a redefinition of PDFs, contribute to the total cross
section with two different initial state configurations. The first one stems from an
initial state gluon splitting into a quark and antiquark. The corresponding partonic
cross section can be written as follows

σgqcoll =

∫ 1

0

dx

∫
dΦm(x)

(
P gq(x, xpa, pb, k1, k2, µ

2
F ) + Kgq(x)

)
⊗ dσBqq(xpa, pb, k1, k2)

+

∫ 1

0

dx

∫
dΦm(x)

(
P gq(x, pa, xpb, k1, k2, µ

2
F ) + Kgq(x)

)
⊗ dσBqq(pa, xpb, k1, k2) .

(C.12)

The longitudinal momentum fraction x enters the evaluation of the Born amplitude
since one of the quarks in the initial state of this amplitude carries the momentum
xpa or xpb while the original initial state parton, the gluon in this case, carries the
momentum pa. The insertion operators P gq and Kgq involve color charge operators
which act on the color space of the Born amplitude and give rise to the color linked
Born amplitudes squared already mentioned in the discussion of the subtraction
dipoles in Section 5.4 and of the integrated dipoles in Section 5.5. The contribution
from the P -operator in the first line of Eq. (C.12) is

σgqcoll,P =

∫ 1

0

dx

∫
dΦm(x) P gq(x, xpa, pb, k1, k2, µ

2
F )⊗ dσBqq(xpa, pb, k1, k2)

=

∫ 1

0

dx

∫
dΦm(x)

αs
2π

TR
[
x2 + (1− x)2

] 1

CF
· (C.13)

[
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µ2
F

xsa1

+ ln
µ2
F

xsa2

+ ln
µ2
F

xsab

]
⊗ |M(xpa, pb, k1, k2)|2 ,

while the K-operator yields

σgqcoll,K =

∫ 1

0

dx

∫
dΦm(x) Kgq(x)⊗ dσBqq(xpa, pb, k1, k2)

=

∫ 1

0

dx

∫
dΦm(x)

αs
2π

{
TR (x2 + (1− x)2) ln

1− x
x

+ 2 TR x(1− x)

−TR
CF

(x2 + (1− x)2)

(
ln

(1− x)sa1

(1− x)sa1 +m2
1

+ ln
(1− x)sa2

(1− x)sa2 +m2
2

)

−TR
CF

(x2 + (1− x)2) ln(1− x)

}
⊗ |M(xpa, pb, k1, k2)|2 . (C.14)

The contributions of both operators to the second line of Eq. (C.12) are obtained
through a transformation xpa → pa and pb → xpb. In both contributions the con-
stants TR = 1/2 and CF = 4/3 are color factors and the variables sxy = 2 ·pxpy stand
for products of initial and final state momenta. Depending on its color structure
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each term in Eqs. (C.13) and (C.14) has to be convoluted with the corresponding
color linked Born amplitude squared. This fact is expressed by the symbolic nota-
tion ⊗ |M(xpa, pb, k1, k2)|2.
The second initial state configuration stems from a quark splitting into a gluon and
a quark. The corresponding partonic cross section σqqcoll has the same pattern like
σgqcoll in Eq. (C.12). The P -operator contributes in this case

σqqcoll,P =

∫ 1

0

dx

∫
dΦm(x) P qq(x, xpa, pb, k1, k2, µ

2
F )⊗ dσBqq(xpa, pb, k1, k2)

=
αs
2π

(
1 + x2

1− x2

)

+

· (C.15)
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]
⊗ |M(xpa, pb, k1, k2)|2 .

The K-operator yields

σqqcoll,K =
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0
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∫
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=
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+
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. (C.16)

The +-distribution appearing in both contributions for qq initial states is defined as

∫ 1

0

dx g(x) f(x)+ Θ(x− z) =

∫ 1

z

dx g(x) f(x)+ (C.17)

=

∫ 1

z

dx (g(x)− g(1)) f(x)−
∫ z

0

dx g(1) f(x) .

This definition has to be applied to the four functions with +-distributions in σqqcoll,P

and σqqcoll,K and the results are listed separately in Section C.3 . Special care has to be
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taken when evaluating the +-distribution, which contains the kinematical variable
sja = 2papj. While pa is the original initial-state momentum of the incoming parton
before the splitting, the final-state momentum pj = k1 or k2 belongs to the x-boosted
frame after the splitting: xpa + pb = k1 +k2 . This fact is indicated by the label (x)

in s
(x)
ja in the following. Although appearing inside the +-distribution, sja has to be

treated as if being a function of x outside the distribution:

∫ 1

0

dx

∫
dΦ(x)

[
J(x, s

(x)
ja )
]

+
|M(Φ(x))|2 Θ(x− z)

=

∫ 1

0

dx

∫
dΦ(x)

∫ ∞

−∞
ds̄ja δ(s̄ja − s̄(x)

ja )
[
J(x, s

(x)
ja )
]

+
|M(Φ(x))|2 Θ(x− z)

=

∫ 1

z

dx

{∫
dΦ(x)J(x, s

(x)
ja ) |M(Φ(x))|2

−
∫
dΦ(1)J(x, s

(1)
ja ) |M(Φ(1))|2

}

−
∫ z

0

dx

∫
dΦ(1)J(x, s

(1)
ja ) |M(Φ(1))|2 . (C.18)

Applying these prescriptions and folding the resulting partonic cross section with
the PDFs according to Eq. (5.72) allows for expressing the finite collinear remain-
der in terms of a modified PDF parametrized as in Eq. (5.76). The coefficients
A1(x, x̃a), A2(x, x̃a), B(x, x̃a), C(x, x̃a), D1(x̃a) and D2(x̃a) follow directly from the
expressions for the P - and K-terms listed above after the substitution

x̃a = x · xa∫ 1

0

dxa

∫ 1

0

dx =

∫ x

0

dx̃a

∫ 1

0

dx

x

=

∫ 1

0

dx̃a

∫ 1

0

dx

x
Θ(x− x̃a) (C.19)

has been performed. This substitution is useful for the numerical evaluation of the
finite remainder since the initial state momentum entering the Born matrix element
|M(xpa, pb, k1, k2)|2 is changed to

xpa =
x̃a
xa

pa =
x̃a
xa

xaPProton = x̃aPProton . (C.20)

This means, that the original 2-particle phase space can be used for the numerical
evaluation of the Born amplitude.



94 C. Catani Seymour Expressions

In the following the coefficients of the modified PDFs are listed:

A1 =
2

1− xCF
(

ln
µ2
F

xsa1

+ ln
µ2
F

xsa2

+ ln
µ2
F

xsab

)

+ CF2
ln(1− x)

1− x
− CF2

(
ln(1− x)

1− x − 1

1− x

)

− CF2
ln(1− x)

1− x (C.21)

A2 =
∑

j=1,2

CF
2

1− x (C.22)

B = −CF (x+ 1)

(
ln

µ2
F

xsa1

+ ln
µ2
F

xsa2

+ ln
µ2
F

xsab

)

+ CF

(
1− x− (1 + x) ln

1− x
x
− 2

lnx

x

)

+
∑

j=1,2

CF (1 + x) ln
1− x

1− x+m2
j/s

(x)
ja

+ CF (1 + x) ln(1− x) (C.23)

C = TR(x2 + (1− x2))

(
ln

µ2
F

xsa1

+ ln
µ2
F

xsa2

+ ln
µ2
F

xsab

)

+ TR(x2 + (1− x2)) ln
1− x
x

+ 2TRx(1− x)

− TR(x2 + (1− x2))
∑

j=1,2

ln
(1− x)s

(x)
ja

(1− x)s
(x)
ja +m2

j

− TR(x2 + (1− x2)) ln(1− x) (C.24)

D1 = CF

(
2 ln(1− x̃a) +

3

2

) (
ln

µ2
F

xsa1

+ ln
µ2
F

xsa2

+ ln
µ2
F

xsab

)

+ CF

(
ln2(1− x̃a)−

π2

3
− 5 + π2

)

−
∑

j=1,2

CF


−2 +

3

2


ln

s
(1)
ja − 2mj

√
s

(1)
ja +m2

j + 2m2
j

s
(1)
ja

+
2mj√

s
(1)
ja +m2

j +mj




+ ln2(1− x̃a)
]

− CF

(
ln2(1− x̃a)−

π2

3

)
(C.25)

D2 = −
∑

j=1,2

2 CF

{
−Li2

(
s

(x)
ja

m2
j

)
+ Li2

(
s

(x)
ja (x̃a − 1)

m2
j

)

− ln(1− x̃a)(1 + ln(m2
j/s

(x)
ja ))

}
(C.26)
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C.3 Solutions to Integrals with +-Distributions

In this section non-trivial integrals which arise in the calculation of the finite collinear
remainder terms of the Catani-Seymour subtraction formalism are solved. These in-
tegrals involve the +-distribution which is resolved according to its definition in
Eq. (C.18). Only integrals needed for the calculation of the squark pair production
process are listed in the following.

The first integral needed emerges from Eq. (C.15) after convolution with the PDFs:
∫ 1

0

dx

x
f
(z
x

) (1 + x2

1− x

)

+

Θ(x− z) (C.27)

=

∫ 1

z

dx

x

(
f
(z
x

)
− xf(z)

) 1 + x2

1− x −
∫ z

0

dx f(z)
1 + x2

1− x

=

∫ 1

z

dx

x

(
f
(z
x

)
− xf(z)

) 2

1− x −
∫ 1

z

dx

x
f
(z
x

)
(1 + x) .

+f(z)

(
3

2
+ 2 ln(1− z)

)

The second line of Eq. (C.16) gives rise to the following integral:
∫ 1

0

dx

x
f
(z
x

) ( 2

1− x ln
1− x
x

)

+

Θ(x− z) (C.28)

=

∫ 1

z

dx

x

(
f
(z
x

)
− xf(z)

) 2 ln(1− x)

1− x −
∫ 1

z

dx

x
f
(z
x

) 2 lnx

1− x

+

∫ 1

0

dx f(z)
2 lnx

1− x −
∫ z

0

dx f(z)
2 ln(1− x)

1− x

=

∫ 1

z

dx

x

(
f
(z
x

)
− xf(z)

) 2 ln(1− x)

1− x −
∫ 1

z

dx

x
f
(z
x

) 2 lnx

1− x

+f(z)

(
ln2(1− z)− π2

3

)
.

The next integral needed in Eq. (C.16) reads
∫ 1

0

dx

x
f
(z
x

) ( ln(1− x)

1− x

)

+

Θ(x− z) (C.29)

=

∫ 1

z

dx

x

(
f
(z
x

)
− xf(z)

) ln(1− x)

1− x + f(z)
1

2
ln2(1− z) .

The integral in the last line of Eq. (C.16) gives
∫ 1

0

dx

x
f
(z
x

) ( 2

1− x

)

+

Θ(x− z) (C.30)

=

∫ 1

z

dx

x

(
f
(z
x

)
− xf(z)

) 2

1− x + 2 ln(1− z) .
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The last integral needed for the calculation contains the kinematical variable sja so
that Eq. (C.18) has to be applied:

∫ 1

0

dx

x
f
(z
x

) [ 2

1− x ln

(
(1− x)s

(x)
ja +m2

j

s
(x)
ja

)]

+

Θ(x− z) (C.31)

=

∫ 1

z

dx

x
f
(z
x

) 2

1− x ln ln

(
(1− x) +

m2
j

s
(x)
ja

)

−
∫ 1

z

dxf(z)
2

1− x ln ln

(
(1− x) +

m2
j

s
(1)
ja

)

−
∫ z

0

dxf(z)
2

1− x ln ln

(
(1− x) +

m2
j

s
(1)
ja

)

Here, the differently labeled kinematical variables denote

s
(x)
ja = 2 papj = 2 xa PProton pj = 2

z

x
PProton pj (C.32)

or
s

(1)
ja = 2 z PProton pj , (C.33)

respectively.
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ermöglicht hat.
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Zu guter Letzt möchte ich mich nochmal ausdrücklich bei Bastian für seine Liebe,
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