
D O M A I N D E C O M P O S I T I O N
M E T H O D S I N O P T I M A L F L O W

C O N T R O L F O R H I G H
P E R F O R M A N C E C O M P U T I N G

Zur Erlangung des akademischen Grades eines

DOKTOR DER NATURWISSENSCHAFTEN

von der Fakultät für Mathematik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von
Dipl.-Math. techn. Eva Ketelaer

aus
Emmerich am Rhein

Tag der mündlichen Prüfung: 08. Mai 2013

Referent: Prof. Dr. Vincent Heuveline
Korreferent: Prof. Dr. Götz Alefeld
Korreferent: Prof. Dr. Matthias Heinkenschloss

Für Oma Kleve und meine Eltern

A B S T R A C T

This thesis is concerned with linear and non-linear optimal flow con-
trol problems which are modeled by systems of partial differential
equations. The numerical treatment of such problems, especially in
the context of flow problems, is often very expensive and challeng-
ing. To tackle this complexity, we present parallel approaches based
on non-overlapping domain decomposition methods that exploit the
computational power provided by modern high performance comput-
ing technologies. On the algebraic level, we derive parallel solvers
and Neumann-Neumann type preconditioners which enable us to
solve these sophisticated problems in an efficient way. By means of
investigating the cost for the preconditioners and of studying both
scalability and efficiency of the domain decomposition approaches, we
analyze the developed methods in the framework of high performance
computing.

v

A C K N O W L E D G M E N T S

First, I want to thank Prof. Heuveline for supporting me as my
supervisor and for offering me the great opportunity to be part of the
EMCL-team. Especially, I want to thank him for his guidance and
encouragement in many fruitful discussions during my time at his
institute. Furthermore, I am grateful to Prof. Heinkenschloss for his
support, in particular for inviting me for a research stay of three weeks
to the Rice University in Houston. During this stay at his department,
I achieved important steps towards the completion of this thesis. I
also want to thank Prof. Alefeld for his support as one of my second
supervisors.

I am really grateful to all my great colleagues at EMCL. The working
atmosphere and team spirit have been a great backup and motivation.
Besides the insightful discussions, I especially enjoyed the coffee
breaks, having lunch together and all the great birthday cakes. I thank
all my colleagues who helped me to correct my thesis. In particular,
I want to mention Staffan and Michael. Michael is a great listener.
Many times, he helped me to find solutions for my problems, often
without saying a word but instead simply by listening to me. Staffan
always had an answer to my C++ programming issues and especially
at the end of my work, he supported me a lot.

Furthermore, I want to thank my friends Britta and Katrin from my
hometown Kleve. Even though they try their best to keep away from
math, they always listened to me, motivated me during the lows of
my PhD and shared my joys during the highs.

Particularly, I am deeply grateful to my family. My parents always
supported me and had faith in me. Without their support, patience
and love, I never would have had the motivation and ability to write
this thesis.

Finally, I would like to deeply thank Manuel. He has been and still
is the best support I can imagine. Even though lots of times many
kilometers were inbetween us, it always felt like that he was right next
to me.

vii

C O N T E N T S

1 introduction 1

2 domain decomposition method for the oseen equa-
tions 7

2.1 General Definitions 8

2.2 Inhomogeneous Dirichlet Boundary Conditions 8

2.3 Outflow Boundary Conditions 14

2.4 Continuous Domain Decomposition 17

2.4.1 Decomposition of the Domain 17

2.4.2 Decomposition of the Velocity Space 18

2.4.3 Decomposition of the Pressure Space 19

2.4.4 Decomposition of the Bilinear Forms 20

2.4.5 Weak Formulation on Subdomains 23

2.4.6 Decoupling of Weak Formulation on Subdomains 27

2.5 Discretization Based on a Finite Element Method 33

2.5.1 Definitions for the Finite Element Methods 34

2.5.2 Decoupled Finite Element Formulation 36

2.6 Algebraic Formulation 39

2.6.1 Algebraic Formulation for the Velocity 39

2.6.2 Algebraic Formulation for the Pressure 40

2.6.3 Global Linear Systems and Schur-complement
Equations 45

2.6.4 General Operator 51

3 ddm for optimal control problem constrained by

oseen 53

3.1 General Definitions 53

3.2 Distributed Optimal Control Problem 53

3.2.1 Strong Interpretation of the Optimality System 56

3.3 Optimal Boundary Control Problem 57

3.3.1 Strong Interpretation of the Optimality System 60

3.4 Continuous Domain Decomposition 60

3.4.1 Definitions for the Distributed Control Case 61

3.4.2 Weak Formulation on Subdomains for Distributed
Control 62

3.4.3 Decoupling of Weak Formulation on Subdomains
for Distributed Control 63

3.4.4 Definitions for the Boundary Control Case 66

3.4.5 Weak Formulation on Subdomains for Boundary
Control 67

3.4.6 Decoupling of Weak Formulation on Subdomains
for Boundary Control 69

3.5 Discretization Based on FEM for Distributed Control 73

3.5.1 Decoupled Finite Element Formulation 73

ix

x contents

3.6 Discretization Based on FEM for Boundary Control 75

3.6.1 Decoupled Finite Element Formulation 76

3.7 Algebraic Formulation 77

3.7.1 Definitions for the Distributed Control Case 78

3.7.2 Definitions for the Boundary Control Case 80

3.7.3 Global Linear System and Schur-complement
Equation for the Distributed Control Case 80

3.7.4 General Operator for the Distributed Control
Case 86

3.7.5 Global Linear System and Schur-complement
Equation for the Boundary Control Case 87

4 ddm for the navier-stokes equations 93

4.1 Navier-Stokes Equations with Outflow Boundary Con-
ditions 93

4.2 Continuous Domain Decomposition 95

4.2.1 Decomposition of the Bilinear Forms 96

4.2.2 Decomposition of the Residuals 98

4.2.3 Weak Formulation on Subdomains 98

4.2.4 Decoupling of Weak Formulation on Subdomains 99

4.3 Discretization Based on a Finite Element Method 101

4.3.1 Decoupled Finite Element Formulation 101

4.4 Algebraic Formulation 102

4.4.1 Global Linear System and Schur-complement
Equation 103

4.4.2 Solution Algorithm 106

4.4.3 General Operator 106

5 ddm for an optimal control problem s .t. the navier-
stokes eq 109

5.1 Distributed Optimal Control Problem 109

5.2 Continuous Domain Decomposition 112

5.2.1 Decomposition of the Residuals 112

5.2.2 Weak Formulation on Subdomains 113

5.2.3 Decoupling of Weak Formulation on Subdomains 115

5.3 Discretization Based on a Finite Element Method 118

5.3.1 Decoupled Finite Element Formulation 119

5.4 Algebraic Formulation 120

5.4.1 General Operator 127

6 preconditioned solving routines based on ddms 129

6.1 Generalization of the Schur-complement Equation 130

6.2 Preconditioners for the Schur-complement equation
132

6.2.1 Neumann-Neumann Preconditioner 133

6.2.2 Balancing Neumann-Neumann Preconditioner 135

6.3 Comparison of the Neumann-Neumann and the balanc-
ing Neumann-Neumann Preconditioner 140

contents xi

6.4 Solution Algorithm for the Schur-complement equa-
tion 142

6.5 Parallelization of Global System via Domain Decompo-
sition 144

6.6 Global Schur-complement Preconditioner 145

6.6.1 Subdomain Preconditioner PI I 146

6.6.2 Skeleton Preconditioner PΓ 147

6.7 Alg. for the Global Schur-complement Preconditioner 148

7 numerical experiments 151

7.1 HiFlow3-Software 151

7.2 Overview and Structure of the Numerical Experiments 152

7.3 Verification of both Methods and their Implementa-
tion 157

7.4 Simulation Results in Backward Facing Step Geome-
try 159

7.5 Analysis of the Preconditioners 159

7.6 Scalability Study 173

8 conclusion 179

bibliography 183

L I S T O F F I G U R E S

Figure 1 Chapter overview. 4

Figure 2 Step 1 of the derivation of the domain decom-
position method for the Oseen equations with
inhomogeneous boundary conditions. 8

Figure 3 Step 1 of the derivation of the domain decompo-
sition method for Oseen or Navier-Stokes equa-
tions with mixed outflow and Dirichlet bound-
ary conditions. 15

Figure 4 Step 2b of the derivation of the domain decompo-
sition method for the Oseen equations with inho-
mogeneous Dirichlet boundary conditions. 17

Figure 5 Step 2a of the derivation of the domain decompo-
sition method for the Oseen equations with inho-
mogeneous Dirichlet boundary conditions. 23

Figure 6 Step 2a of the derivation of the domain decom-
position method for the Oseen or Navier-Stokes
equations with mixed outflow and Dirichlet bound-
ary conditions. 26

Figure 7 Step 2b of the derivation of the domain decompo-
sition method for the Oseen equations with inho-
mogeneous Dirichlet boundary conditions. 30

Figure 8 Step 3 of the derivation of the domain decompo-
sition method for the Oseen equations with inho-
mogeneous Dirichlet boundary conditions. 34

Figure 9 Step 3 of the derivation of the domain decom-
position method for the Oseen or Navier-Stokes
equations with mixed outflow and Dirichlet bound-
ary conditions. 38

Figure 10 Step 1 of the derivation of the domain decompo-
sition method for the optimal control problem
assuming distributed control constrained by the
Oseen or Navier-Stokes equations. 54

Figure 11 Step 1 of the derivation of the domain decompo-
sition method for the optimal boundary con-
trol problem constrained by the Oseen equa-
tions. 57

Figure 12 Step 2a of the derivation of the domain decom-
position method for the optimal control problem
assuming distributed control constrained by the
Oseen or Navier-Stokes equations. 61

xii

List of Figures xiii

Figure 13 Step 2b of the derivation of the domain decom-
position method for the optimal control problem
assuming distributed control constrained by the
Oseen or Navier-Stokes equations. 64

Figure 14 Step 2a of the derivation of the domain decom-
position method for the optimal boundary con-
trol problem constrained by the Oseen equa-
tions. 66

Figure 15 Step 2b of the derivation of the domain decom-
position method for the optimal boundary con-
trol problem constrained by the Oseen equa-
tions. 69

Figure 16 Step 3 of the derivation of the domain decompo-
sition method for the optimal control problem
assuming distributed control constrained by the
Oseen or Navier-Stokes equations. 73

Figure 17 Step 3 of the derivation of the domain decompo-
sition method for the optimal boundary con-
trol problem constrained by the Oseen equa-
tions. 75

Figure 18 Structure of Chapter 6. 129

Figure 19 Schemata for Schur-operator. 133

Figure 20 Schemata for balancing Neumann-Neumann pre-
conditioner. 139

Figure 21 Overview about the program execution for both
examples. 153

Figure 22 Geometries. 153

Figure 23 Method Overview. 155

Figure 24 Values of costfunctionals for Oseen and Navier-
Stokes examples. 159

Figure 25 Results of the flow simulations for the Oseen
example. 160

Figure 26 Results of the flow simulations for Navier-Stokes
example. 161

Figure 27 Time per iterations for the Oseen example. 167

Figure 28 Time per iterations for the Navier-Stokes exam-
ple. 168

Figure 29 Ratio between total time of Schur-complement
and global solver for both examples. 169

Figure 30 Set-up times for the bNN preconditioner. 170

Figure 31 Comparing subdomain and global skeleton de-
grees of freedom. 171

Figure 32 Set-up and solving times for the Oseen exam-
ple. 171

Figure 33 The figure compares the solving time with the
set-up time for both approaches with the two
corresponding preconditioners for the Navier-
Stokes example. 172

Figure 34 Speed up. 174

Figure 35 Speed up. 175

Figure 36 Efficiency. 176

Figure 37 Efficiency. 177

L I S T O F TA B L E S

Table 1 ILU++ parameters. 152

Table 2 Number of subdomains used in the numerical
experiments for the backward facing step geom-
etry. 154

Table 3 Number of degrees of freedom for the two dif-
ferent geometries for an example with four sub-
domains. 155

Table 4 Stopping criteria for solvers. 157

Table 5 Table of errors used for verification of methods
and implementation. 158

Table 6 Number of Newton iterations of skeleton solver
for Navier-Stokes example. 162

Table 7 Number of Newton iterations of global solver
for Navier-Stokes example. 162

Table 8 Number of iterations of skeleton solver for Oseen
example. 163

Table 9 Number of iterations of global solver for Oseen
example. 164

Table 10 Number of iterations of skeleton solver for Navier-
Stokes example. 165

Table 11 Number of iterations of global solver for Navier-
Stokes example. 166

Table 12 Comparing the total time depending on precon-
ditioner type and method to solve Navier-Stokes
example without control. 166

xiv

L I S T O F A L G O R I T H M S

4.1 Newton Method . 95

4.2 Newton-Schur-complement Algorithm 106

6.1 Apply Schur-complement 132

6.2 Apply Neumann-Neumann preconditioner 135

6.3 Apply coarse operator PbNN
0 138

6.4 Apply balancing Neumann-Neumann preconditioner . 140

6.5 Compute global solution via Schur-complement equation142

6.6 Compute right hand side 142

6.7 Solve Schur-complement equation via FGMRES 143

6.8 Compute final solution 144

6.9 Subdomain preconditioner (Case 1) 146

6.10 Subdomain preconditioner (Case 2) 147

6.11 Skeleton preconditioner 147

6.12 Global Schur-complement preconditioner 148

N O M E N C L AT U R E

d dimension (d = 2, 3)

s total number of subdomains

Ω global Lipschitz-domain

Ω0 subdomain of Ω; the desired state û has support on Ω0

ΩC subdomain of Ω; the distributed control has support on ΩC

ΩCi control subdomain

Ωi subdomain i

∂Ω global boundary

∂ΩD global Dirichlet boundary

xv

xvi List of Algorithms

∂Ωout global outflow boundary

Γ Lipschitz (d− 1) dimensional manifold; global interface (con-
tinuous); global skeleton (discrete)

Γi local interface (continous); local skeleton (discrete)

ΓC global control boundary; subset of ∂ΩD

N set of outflow subdomains

CΩ set of control subdomains

1Ω0 indicator function for the subdomain Ω0

1ΩC indicator function for the subdomain ΩC

1ΩCi
indicator function for the control subdomain ΩCi

u velocity (state); vector variable of dimension d

û desired state, vector variable of dimension d

uD extension of Dirichlet data; vector variable of dimension d

d Dirichlet data; vector variable of dimension d

p pressure (state); scalar

a advection; vector variable of dimension d

µ dynamic viscosity; scalar

σ(u, p) stress tensor; tensor of dimenesion d

ε(u) strain or deformation tensor; tensor of dimenesion d

f right hand side; external force on Ω; vector variable of dimen-
sion d

h right hand side on ∂Ωout; external force on ∂Ωout; vector vari-
able of dimension d

n normal outward normal vector on ∂Ω; vector variable of di-
mension d

ni normal outward normal vector on ∂Ωi; vector variable of di-
mension d

v test function for velocity and adjoint velocity; vector variable
of dimension d

q test function for pressure and adjoint pressure; scalar

qΩ test function for globally constant pressure and adjoint pressure;
scalar

List of Algorithms xvii

H1(Ω) one dimensional Sobolev space of L2(Ω) functions with two
times integrable derivations of first order

H1
0(Ω) one dimensional Sobolev space; subpace of H1(Ω) with gen-

eralized zero boundary conditions

H1/2(Γ) one dimensional Sobolev trace space

H1(Ω) d dimensional Sobolev space of L2(Ω) functions with two
times integrable derivations of first order

H1(Ωi) d local dimensional Sobolev space of L2(Ωi) functions with
two times integrable derivations of first order

H1
0(Ω) d dimensional Sobolev space; subpace of H1(Ω) with general-

ized zero boundary conditions

H1
0(Ωi) d local dimensional Sobolev space of L2(Ωi) functions with

two times integrable derivations of first order with generalized
zero boundary conditions on ∂Ωi; local velocity space on non-
outflow subdomains

H1
D(Ω) d dimensional Sobolev space; subpace of H1(Ω) with gener-

alized zero boundary conditions on ∂ΩD

H1
D(Ωi) d dimensional Sobolev space on Ωi; subspace of H1(Ωi) with

generalized zero boundary conditions on ∂Ωi ∩ ∂ΩD

H1
N(Ωi) d local dimensional Sobolev space of L2(Ωi) functions with

two times integrable derivations of first order with generalized
zero boundary conditions on ∂Ωi \ ∂Ωout; local velocity space
on outflow subdomains

Vi local velocity space

Ṽi local velocity space on subdomain Ωi

H1/2(∂Ω) d dimensional Sobolev trace space on ∂Ω; global space of
inhomogeneous Dirichlet data d on ∂Ω in case of SWF and
AWF

H1/2(Γ) d dimensional Sobolev trace space on Γ

H1/2
00 (Γ) d dimensional Sobolev trace space on Γ with general zero

boundary conditions

H1/2
00 (Γi) d dimensional Sobolev trace space on Γi with generalized

zero boundary conditions; local velocity space on subdomains
intersecting global Dirichlet boundary ∂ΩD

VΓi local velocity space on interface Γi

L2(Ω) one dimensional Lebesgue space of two times integrable func-
tion on Ω; global pressure space (except for SWF)

xviii List of Algorithms

L2
0(Ω) one dimensional Lebesgue space; normalized subspace of

L2(Ω); global pressure space for SWF

L2(Ω) d dimensional Lebesgue space of two times integrable function
on Ω; global space of right hand side

L(ΩC) d dimensional Lebesque space; global space of distributed
control

L(ΩCi) d dimensional Lebesque space; local space of distributed con-
trol

Vh global finite element velocity space on Ω

Vh
i general local finite element velocity space on Ωi

Vh
i,N local finite element velocity space on Ωi with zero boundary

conditions on ∂Ωi \ ∂Ωout

Vh
i,0 local finite element velocity space on Ωi with zero boundary

conditions

Vh
Γ finite element velocity space on global skeleton Γ

Vh
Γi

finite element velocity space on local skeleton Γi

Qh global finite element pressure space on Ω

Qh
i,0 normalized finite element pressure space on subdomain Ωi

a(·, ·) global bilinear form; Note different definitions for Oseen and
Navier-Stokes model problems

ai(·, ·) local bilinear form

b(·, ·) global bilinear form

bi(·, ·) local bilinear form

c(·, ·) global bilinear form

ci(·, ·) local bilinear form

d(·, ·) global bilinear form

di(·, ·) local bilinear form

m(·, ·) global bilinear form

mi(·, ·) local bilinear form

f̃ (·) global linear form for SWF and AWF case

f̃i(·) local linear form

List of Algorithms xix

f (·) global linear form for all cases with outflow boundary condi-
tions

fi(·) local linear form

R global extension operator

Ri local extension operator

Rc extension operator for boundary control

γd trace operator for Dirichlet data

Th global triangulation

Th,i local triangulation

K element of triangluation

RDi restriction matrix from global Dirichlet boundary to corre-
sponding local Dirichlet boundary

RΩi restriction matrix from global pressure space to subdomain
pressure constant (all outflow cases)

R̂Ωi restriction matrix from global pressure space to subdomain
pressure constant (AWF)

R̃Ωi restriction matrix from global pressure space to subdomain
pressure constant (SWF)

RΓi restriction matrix from global skeleton to local skeleton

RΓ0,i projection matrix from local skeleton to local skeleton which
also lies in Ω0

SWF standard weak formulation

AWF alternative weak formulation

OWF outflow weak formulation

1
I N T R O D U C T I O N

Optimal flow control deals with complex problems which appear in
many areas of science and engineering, see, e.g., [5]. The physical
dynamics of flow problems are usually modeled by systems of par-
tial differential equations (PDEs). The numerical treatment of flow
problems is typically already very expensive and challenging. Beyond
that the optimization of systems constrained by PDEs increases the
cost and complexity of the numerical treatment significantly, which
turns them into substantially more challenging problems. Applying
an adequate discretization approach, such as a finite element method,
to these PDE-constraint optimization problems results mathematically
in fully coupled and large scale linear systems with up to several
millions of degrees of freedom. These systems are normally too large
and expensive to be solved even on a modern desktop workstation.
One promising approach to address this challenge of providing effi-
cient solvers is to exploit the computational power available today in
high performance computing. The nowadays underlying technology
requires intrinsically parallel approaches. In this work, we develop
parallel scalable and efficient numerical solvers and preconditioners
based on non-overlapping domain decomposition methods in the
context of optimal flow control problems. Making full use of avail-
able hardware architectures by providing parallel numerical methods
for optimal flow problems also opens up new opportunities for bet-
ter scientific insights and significant improvements in engineering
applications.

One typical configuration is a channel flow around an obstacle
behind which an eddy is formed. The aim is not only to simulate
the flow, but to optimize the flow with respect to a given objective.
The goal could be to reduce the eddy by optimally controlling the
flow. For example, considering a ferromagnetic fluid, the flow can
be controlled by applying an external distributed force in form of an
electromagnetic field. The challenge is not to find any force but a force
which controls the flow optimally regarding to the given objective.

First, we introduce the topic of optimal flow control, secondly we
present the issue of the domain decomposition method and finally we
cover the subject of high performance computing.

1

2 introduction

optimal flow control

Optimal flow control aims at influencing a flow with the subject of
minimization or maximization of a certain objective, see, e.g., [6, 16,
20, 31, 39], and references therein. In this work, we are interested in
optimally controlling the flow by matching it to a given flow profile
which is modeled by a tracking type cost functional. While different
type of controls exist [23], we assume distributed or boundary control.
For example, distributed control can be realized by electromagnetic
induction applied to a part of the domain. Boundary control means for
instance to influence the flow by injection or suction of fluid on a part
of the boundary. As constraints for the optimal control problem, we
consider both the linear Oseen equations and the non-linear Navier-
Stokes equations modeling an incompressible Newtonian fluid.

To solve an optimal control problem numerically, it is necessary
to first derive the optimality system. Here, this step is done on the
continuous level by applying a Lagrangian based adjoint approach
[33]. Secondly, we discretize the fully coupled optimality system
by using an appropriate finite element method. In addition to the
constraint equations, the optimality system includes adjoint equations
and an optimality condition. Thus, the system of PDEs for optimal
control problems includes more variables than the flow problem itself
and therefore becomes essentially larger. Additional difficulty arises
from the fact that this optimality system is fully coupled. While the
simulation of flow problems may already be challenging, the aim
of controlling the flow increases the complexity significantly. The
development of sophisticated, parallel methods is a very promising
way to tackle this complexity. We accept this challenge by proposing a
domain decomposition method as parallelization approach that can
even be adapted to the available hardware resources.

domain decomposition method

In a non-overlapping domain decomposition method, the global do-
main is split into non-overlapping subdomains. The partition into
subdomains yields smaller and locally independent problems, which
can be solved intrinsically in parallel. Furthermore, they have the same
structure as the global problem such that well established numerical
methods suitable for solving the global problems can be reused for the
local problems on the subdomains. Flow problems feature globally a
saddle point structure. To obtain this saddle point structure also for
the local problems, we establish the domain decomposition method
on the continuous level and decompose already the continuous spaces
adequately. The local subproblems are then coupled through the inter-
face. Besides, it is possible to reduce the global problem to an interface
equation that implicitly requires the solution of the local problems.

introduction 3

The interface equation, whose algebraic counterpart is known as the
Schur-complement equation, is typically much smaller than the global
problem. However, the direct computation of the Schur-complement
operator is numerically very expensive. Therefore, the equation is
usually solved by an iterative method. The main challenge in the con-
text of non-overlapping domain decomposition methods is to develop
adequate and in particular parallel preconditioners for the interface
solver. One appropriate choice is to use Neumann-Neumann type
preconditioners that were originally developed for the Poisson equa-
tion [46, 51, 56] and have been adapted to the saddle point structure
of the Stokes equation [45]. In [28, 25? , 26, 27, 44] they have been
transferred to the context of optimal control problems constraint by
scalar linear and non-linear PDEs. In this work, we extend them to the
scope of linear and non-linear optimal flow control problems. Espe-
cially, we are interested to provide parallel methods which fulfill the
requirements of high performance computing. Therefore it is crucial
that the domain decomposition methods are scalable and efficient to
exploit the available computational power. Another important aspect
in particular analyzing the preconditioners is the trade off between
the cost to apply and to build the preconditioner and the effectiveness
in terms of number of iterations.

high performance computing

In high performance computing it is essential to provide scalable and
efficient parallel numerical methods. These are crucial requirements to
fully take advantage of the computing power provided by the different
hardware technologies available, see, e.g., [11]. Another important
aspect when developing a method for high performance computing is
to take into account the trade off between the computing and memory
capacities of each processor and the bandwidth of the communication
network. The limiting factor of parallel numerical methods, solving
large scale systems resulting from the discretization with the finite
element methods, is usually the bandwidth of the network.

The parallelization of non-overlapping domain decomposition meth-
ods is realized by mapping each subdomain to one processor. There-
fore, the size of a subdomain needs to be chosen in such way that it
fits into the local memory of a processor or even better into its cache.
Otherwise a processor needs to access the storage of the disk which
usually slows down the algorithm notably. Another consideration is
the size of the interface, coupling the local independent subdomains,
that directly reflects the cost of the global communication. The smaller
the size of the subdomains is chosen the more subdomains are ob-
tained which clearly links to an increasing size of the interface. Its
size directly has an impact on the cost for the communication but
also on the difficulty to solve the corresponding interface equation.

4 introduction

Figure 1: Chapter overview.

To overcome this difficulty, the effectiveness of preconditioners in
reducing the number of iterations plays an important role.

Based on numerical experiments, we study domain decomposition
methods applied to optimal flow control problems in the context of
high performance computing. On the one hand, we investigate both
scalability and efficiency of the methods and on the other hand, the
effectiveness of the preconditioners to reduce the number of iterations.
Since we use iterative solvers, their efficiency strongly corresponds
to the performance of the preconditioner. Therefore, we study the
cost for the set-up of the preconditioner and the cost per iteration.
Analyzing the relation between the number of subdomains and the
size of the skeleton, we give insight in to how the method can be
adapted to the underlying hardware.

outline

In each of the Chapters 2-5, we derive a domain decomposition method
for a different model problem. Based on each model problem, we
focus on a distinct aspect of the method. The structure of these chap-
ters as illustrated in Fig. 1 is similar: After introducing the global
model problem, we derive the domain decomposition method on the
continuous level in two sub-steps: First, we derive a globally cou-
pled weak formulation on subdomains and secondly, we decouple
the problem into local problems on subdomains and one system of
coupling equations on the interface Γ. Then, we discretize employing
a finite element method and close up with the algebraic formulation.
In Chapter 2, we study the saddle point structure of flow problems
by means of the Oseen equations. We outline the differences between
inhomogeneous Dirichlet and mixed outflow and Dirichlet boundary
conditions. We extend the domain decomposition method in Chapter

introduction 5

3 to the context of linear optimal flow control. Therefore, we study
a linear quadratic optimal control problem assuming distributed or
boundary control constrained by the Oseen equations. In Chapter 4,
we consider a non-linear flow problem modeled by the Navier-Stokes
equations. In particular, we address the treatment of the non-linearity
in relation with the domain decomposition method. In Chapter 5,
we combine the results of the previous three chapters and derive a
domain decomposition method for a non-linear quadratic distributed
optimal flow control problem constraint by the Navier-Stokes equa-
tions. Chapter 6 is dedicated to the derivation of two different parallel
solution algorithms and appropriate preconditioners for all consid-
ered model problems. The main emphasis is the development of one-
and two-level Neumann-Neumann preconditioners. In Chapter 7, we
study the domain decomposition method for optimal flow control
problems in the context of high performance computing based on a
parallel implementation. We conclude with a summary and an outlook
in Chapter 8.

2
D O M A I N D E C O M P O S I T I O N M E T H O D F O R T H E
O S E E N E Q U AT I O N S

Our aim is this work is to derive a domain decomposition method
for a non-linear quadratic optimal control problem constrained by the
full Navier-Stokes equations. We reduce the complexity of the model
problem and first derive a non-overlapping domain decomposition
method for the Oseen equations. This approach enables us to focus
on the challenges already emerging for linear flow problems when
deriving this method.

The derivation of the non-overlapping domain decomposition method
is done in four main steps. First, we present a strong and weak formu-
lation of the global system of partial differential equations modeling
the Oseen equations. Secondly, we derive a domain decomposition
method applied on the continuous level in two sub-steps. In the first
sub-step, we replace the global weak formulation by an equivalent
weak formulation on subdomains which is still globally fully coupled.
In the second sub-step, we decouple this formulation, which leads to
locally independent weak formulations on the subdomains and one
system of coupling conditions on the interface. In the third main step,
we discretize the decoupled weak formulation applying an appropri-
ate finite element method. Last, we derive an algebraic representation
of the global linear system corresponding to the globally coupled
weak formulation on subdomains and the Schur-complement equa-
tion which is the algebraic counterpart of the coupling condition on
the interface. The following three chapters are organized in the same
way but focus on a different aspect in the derivation of the domain
decomposition method with respect to the model problem.

One of the main ideas of a non-overlapping domain decomposition
is to obtain local problems of the same structure as the global problems.
All flow problems treated in this work result on the global level
mathematically in a saddle point structure. In this chapter, one focus
lies on the treatment of this characterizing structure. The approach
to derive the domain decomposition on the continuous level directly
yields independent local problems on the subdomains which feature
the same saddle point structure. Also for the coupling conditions,
we obtain a global saddle point structure. The main ideas of the
derivation are based on [12] and [45].

7

8 domain decomposition method for the oseen equations

Figure 2: This figure refers to the first main step of the derivation of the
domain decomposition method for the case with only Dirichlet
boundary conditions applied on ∂Ω. The figures shows exemplarily
a global domain Ω.

The second focus lies on the treatment of two different type of
boundary conditions. On the one hand, we consider the Oseen equa-
tions with inhomogeneous Dirichlet boundary conditions on the global
boundary. On the other hand, we equip the Oseen equations with
mixed outflow and inhomogeneous Dirichlet boundary conditions.
For the former case, we derive two weak formulations, the standard
weak formulation (SWF) and an alternative weak formulation (AWF).
We discuss the AWF due to the fact that it is more convenient for
implementation. For the latter outflow case, we establish the domain
decomposition method based on the alternative weak formulation
(OWF).

2.1 general definitions

In this work, let Ω ∈ Rd (d = 2, 3) be a Lipschitz-domain, i.e. an
open, bounded and connected set, where ∂Ω is a piecewise Lipschitz
boundary, see Fig. 2. Furthermore, we use the L2(Ω) space, and the
Sobolev spaces H1(Ω), H1

0(Ω) and H1/2(Γ), which are defined in the
usual way [2]. Here, Γ ⊂ Ω denotes a Lipschitz (d− 1)-dimensional
manifold. We set

L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0
}

, L2(Ω) :=
[
L2(Ω)

]d
,

H1(Ω) :=
[

H1(Ω)
]d

, H1
0(Ω) =

[
H1

0(Ω)
]d

and H1/2(Γ) :=
[

H1/2(Γ)
]d

.

2.2 inhomogeneous dirichlet boundary conditions

In the first main step, we present a strong and weak formulation of
the Oseen equations on the global domain Ω equipped with inhomo-
geneous Dirichlet boundary conditions as depicted in Fig. 2.

2.2 inhomogeneous dirichlet boundary conditions 9

Therefore, we assume that the following functions and values

a ∈ H1(Ω) with ∇ · a = 0 a.e. in Ω,

f ∈ L2(Ω), d ∈ H1/2(∂Ω) and µ > 0
(2.1)

are given. ∇ · a = 0 means that the given advection a is divergence
free. The Dirichlet data d also fulfills the compatibility condition to be
divergence free, which guarantees the conservation of mass, i.e.∫

∂Ω
d · n ds = 0. (2.2)

n denotes the unit outward normal vector on ∂Ω. Under the as-
sumptions (2.1) and (2.2), we want to solve the following boundary
value problem for the Oseen equations modeling a Newtonian fluid
equipped with inhomogeneous Dirichlet boundary conditions:

(a ·∇)u−∇ · σ(u, p) = f in Ω, (2.3a)

∇ · u = 0 in Ω, (2.3b)

u = d on ∂Ω. (2.3c)

The Oseen equations model creeping flow with additional given advec-
tion. Creeping flows are characterized by Reynolds numbers tending
to zero. The viscosity of the fluid is normally very high at low ve-
locities such that the diffusion is the dominating part [38]. Since we
model Newtonian fluids, the primitive variables u and p and the other
variables are defined as, see, e.g., [38, Chapter 5]:

• u : Ω→ Rd the velocity,

• p : Ω→ R the pressure,

• σ(u, p) : Ω→ Rd×d the stress tensor with
σ(u, p) = −pI + 2µε(u),

• I ∈ Rd×d the identity tensor,

• ε(u) : Ω→ Rd×d the strain or deformation tensor
with ε(u) = 1

2 (∇u +∇uT),

• µ the dynamic viscosity,

• a : Ω→ Rd a given advection,

• f : Ω→ Rd a given external force and

• d : ∂Ω→ Rd given Dirichlet boundary conditions.

Let uD ∈ H1(Ω) be the extension of the Dirichlet data d from H1/2(∂Ω)

to H1(Ω) such that γd(uD) = d, where γd : H1(Ω) → H1/2(∂Ω) de-
notes a trace operator.

10 domain decomposition method for the oseen equations

Since we are interested in solving the Oseen equations with the
finite element method, we derive a weak formulation for (2.3). On
the one hand, for a solution of a weak formulation less regularity is
required and on the other hand the framework of the finite element
method is based on the concept of a weak formulation.

First, we introduce the following notations:

[∇u]i,j =
∂uj

∂xi
i, j = 1, . . . , d,

∇u : ∇v =
d

∑
i,j

∂uj

∂xi

∂vj

∂xi
,

((a ·∇)u)v =
d

∑
i,j=1

aj
∂ui

∂xj
vi,

(∇ · a)uv =
d

∑
i=1

(∇ · a)uivi,

((a · n)u)v =
d

∑
i=1

(a · n)uivi.

Note that the fluid is incompressible, which is modeled by (2.3b)
and µ is constant, since we only model one fluid. Under these two
assumptions, the equality

2µ
∫

Ω
ε(u) : ε(v) dx = µ

∫
Ω
∇u : ∇v dx (2.4)

holds, see, e.g., [14, Chapter 6].
Then, we define the bilinear form a(·, ·) :

a : H1(Ω)×H1(Ω)→ R,

a(u, v) = 2µ
∫

Ω
ε(u) : ε(v) dx +

∫
Ω
((a ·∇)u)v dx

(2.4)
= µ

∫
Ω
∇u : ∇v dx +

∫
Ω
((a ·∇)u)v dx.

We also introduce the bilinear forms b(·, ·), c(·, ·) and the linear form
f̃ (·) :

b : H1(Ω)× L2(Ω)→ R, b(u, q) = −
∫

Ω
q∇ · u dx, (2.5a)

c : R× L2(Ω)→ R, c(η, q) = η
∫

Ω
q dx, (2.5b)

f̃ : H1(Ω)→ R, f̃ (v) =
∫

Ω
f · v dx. (2.5c)

2.2 inhomogeneous dirichlet boundary conditions 11

Before we introduce the weak formulation, we show the consequences
of the compatibility condition (2.2) for the extension of the Dirichlet
boundary uD in the next proposition.

Proposition 1. It holds that

b(uD, q) = 0 ∀q ∈ L2(Ω).

Proof. From the divergence theorem, see, e.g., [38, Chapter 2, Lemma
4], it holds for the extension uD that

0
(2.2)
=
∫

∂Ω
d · n ds =

∫
Ω
∇ · uD dx.

Using [19, Lemma 2.2], it follows that uD with ∇ · uD = 0 in Ω and
γd(uD) = d exists. Thus, we get

b(uD, q) = −
∫

Ω
∇ · uD︸ ︷︷ ︸

=0

q dx = 0 ∀q ∈ L2(Ω).

2.2.0.1 Standard Weak Formulation (SWF)

Using these definitions, we get the standard weak formulation (SWF)
for the system of partial differential equations (2.3), see also [18, 52, 55]:
Find u ∈ H1

0(Ω) and p̃ ∈ L2
0(Ω) such that

a(u, v) + b(v, p̃) = f̃ (v)− a(uD, v), (2.6a)

b(u, q̃) = −b(uD, q̃)︸ ︷︷ ︸
=0, (Prop. 1)

(2.6b)

for all v ∈ H1
0(Ω) and q̃ ∈ L2

0(Ω). Even though the right hand side of
(2.6b) −b(uD, q̃) = 0, we keep the term, since it is not negligible in the
domain decomposition approach, as we see later on in Section 2.4.

It is well known, see, e.g., [19, Chapter I, § 5.1.], that due to the
Dirichlet conditions being imposed on the velocities everywhere on the
boundary, the pressure is only defined up to a constant. Thus, to obtain
a unique solution, we enforce the normalization condition

∫
Ω p(x)dx =

0 on the pressure. Note that we use a mixed type formulation or
velocity-pressure formulation [19, Chapter I, §5.1.], which models
the physical variables velocity and pressure in adequate but different
spaces. This is a commonly used choice when implementing a finite
element method for flow problems. The mixed type formulation
only requires finite element with local support which leads to sparse
matrices.

12 domain decomposition method for the oseen equations

Remark. We want to mention, that there also exists another “classical”
weak formulation in the divergence free space

Hdiv :=
{

v ∈ H1
0(Ω) : b(v, q) = 0 ∀q ∈ L2

0(Ω)
}

:

Find u ∈ Hdiv such that

a(u, v) = f (v)− a(uD, v) ∀v ∈ Hdiv.

This formulation is often used in numerical analysis, e.g., to proof the
existence of a unique formulation and to study the regularity of the
solutions. There also exist divergence free finite elements, see, e.g.,
[40] and references therein, which we do not apply in this work.

Next, we proof the existence and uniqueness of (2.6):

Theorem 2. If the assumptions (2.1) and (2.2) hold, then the SWF (2.6) has
a unique solution (u∗, p∗) ∈ H1

0(Ω)× L2
0(Ω).

Proof. We only have to proof that a(·, ·) is Hdiv−elliptic. Then we
can directly apply the proof of [19, Chapter I, § 5.1., Theorem 5.1.].
Applying the divergence theorem , see, e.g., [38, Chapter 2, Lemma 4],
to the term ∫

Ω
((a ·∇)v)vdx,

we can show that the bilinear form a(·, ·) is Hdiv-elliptic:

a(v, v) = µ
∫

Ω
∇v : ∇v dx +

∫
Ω
((a ·∇)v)v dx

= µ
∫

Ω
∇v : ∇v dx +

1
2

∫
∂Ω

(a · n)vv ds︸ ︷︷ ︸
=0, v∈H1

0(Ω)

−1
2

∫
Ω
((∇ · a)︸ ︷︷ ︸
=0, (2.1)

v)v dx

−1
2

∫
Ω
((a ·∇)v)v dx +

1
2

∫
Ω
((a ·∇)v)v dx︸ ︷︷ ︸

=0

= µ ‖v‖2
Hdiv

.

The existence and uniqueness of the solution uD + u ∈ uD + H1
0(Ω)

and p̃ ∈ L2
0(Ω) follows from the Lax-Milgram theorem and the fact

that the bilinear form b(·, ·) fulfills the inf-sup condition, which states

sup
v∈H1

0(Ω)

b(v, q)
‖v‖H1

0(Ω)

≥ β ‖q‖L2
0(Ω) ∀q ∈ L2

0(Ω).

For more details, see Girault and Raviart [19, Theorem 5.1].

2.2 inhomogeneous dirichlet boundary conditions 13

2.2.0.2 Alternative Weak Formulation (AWF)

Next, we discuss an alternative mixed type weak formulation (AWF),
that is equivalent to the SWF (2.6). The AWF is more convenient from
the numerical and implementational point of view, since the pressure
variable p can be discretized by “standard” piecewise linear basis
functions. The term “standard” is explained in Section 2.6.2.

Lemma 3. Assuming (2.1) and (2.2), an equivalent alternative weak for-
mulation (AWF) of the partial differential equation (2.6) is given as follows:
Find u ∈ H1

0(Ω), p ∈ L2(Ω) and η ∈ R such that

a(u, v) + b(v, p) = f̃ (v)− a(uD, v), (2.7a)

b(u, q) + c(η, q) = −b(uD, q)︸ ︷︷ ︸
=0, (Prop. 1)

, (2.7b)

c(ξ, p) =0 (2.7c)

for all v ∈ H1
0(Ω), q ∈ L2(Ω) and ξ ∈ R.

Proof. We observe that for any function v ∈ H1
0(Ω) and any constant

qΩ ∈ R, it holds that

b(v, qΩ) = −
∫

Ω
∇ · v qΩ dx (2.8)

=
∫

Ω
v∇qΩ︸︷︷︸

=0

dx−
∫

∂Ω
v︸︷︷︸
=0

·n qΩ dx = 0.

Moreover, for any real number ξ ∈ R and any q̃ ∈ L2
0(Ω),

c(ξ, q̃) =
∫

Ω
ξ q̃ dx = ξ

∫
Ω

q̃ dx︸ ︷︷ ︸
=0

= 0. (2.9)

Furthermore, we note that every q ∈ L2(Ω) can be written as

q = q̃ + qΩ with q̃ ∈ L2
0(Ω) and qΩ =

1
|Ω|

∫
Ω

q dx.

Then, we can reformulate the AWF (2.7) equivalently as:
Find u ∈ H1

0(Ω), p = p̃ + pΩ ∈ L2(Ω) with p̃ ∈ L2
0(Ω), pΩ ∈ R and

η ∈ R such that

a(u, v) + b(v, p̃) + b(v, pΩ)︸ ︷︷ ︸
=0, (2.8)

= f̃ (v)− a(uD, v), (2.10a)

b(u, q̃) + b(u, qΩ)︸ ︷︷ ︸
=0, (2.8)

+ c(η, q̃)︸ ︷︷ ︸
=0, (2.9)

+c(η, qΩ) =0, (2.10b)

14 domain decomposition method for the oseen equations

c(ξ, p̃)︸ ︷︷ ︸
=0, (2.9)

+c(ξ, pΩ) = 0 (2.10c)

for all v ∈ H1
0(Ω), q̃ ∈ L2

0(Ω), qΩ ∈ R and ξ ∈ R.
“⇒”
Let u ∈ H1

0(Ω) and p̃ ∈ L2
0(Ω) solve (2.6). Then u ∈ H1

0(Ω),
p = p̃ ∈ L2

0(Ω), pΩ = 1
|Ω|
∫

Ω pdx = 0 ∈ R and η = 0 ∈ R solve (2.10)
since:

(2.10a) trivially fulfilled;

pΩ = 0 ⇒ (2.10c) is trivially fulfilled;

(2.6b) ⇒ b(u, q̃) = 0

⇒ c(η, qΩ) = 0 ∀qΩ ∈ R

⇒ η = 0

⇒ (2.10b) is fulfilled.

“⇐” Let u ∈ H1
0(Ω), p = p̃ + pΩ ∈ L2(Ω) with p̃ ∈ L2

0(Ω) and
pΩ ∈ R and η ∈ R solve (2.10). To proof that u ∈ H1

0(Ω) and
p̃ ∈ L2

0(Ω) solve (2.6), we have to show that pΩ = 0 and η = 0:

c(ξ, pΩ) = 0 ∀ξ ∈ R ⇒ pΩ = 0.

Furthermore, (2.10b) holds for all q̃ ∈ L2
0(Ω) and qΩ ∈ R. Hence, it

also must hold for q̃ = 0 ∈ L2
0(Ω):

q̃ = 0 ⇒ c(η, qΩ) = 0 ∀qΩ ∈ R ⇒ η = 0.

Remark. Both formulations (SWF and AWF) can also be formulated in
terms of an optimization problem [19, Chapter I, §4.2] which yields the
structure of a saddle point. Therefore, the pressure can be interpreted
as a Lagrange parameter. Analogously, we can refer to the parameter
η as a Lagrange parameter. Then we interpret the requirement p ∈
L2

0(Ω) explicitly as an extra constraint for the optimization problem.
This is done in the AWF whereas in the SWF it is implicitly required
by the set-up of the pressure space.

2.3 outflow boundary conditions

Next, we discuss the Oseen equations with mixed outflow and inhomo-
geneous Dirichlet boundary conditions. In this subsection, we apply
the first main step of the derivation of the domain decomposition
method. Furthermore, we point out the differences to the case with

2.3 outflow boundary conditions 15

Figure 3: This figure corresponds to the first main step of the derivation
in case with mixed outflow and Dirichlet boundary conditions.
The figure shows a global domain Ω. On ∂ΩD we equip the Oseen
equations with inhomogeneous Dirichlet and on ∂Ωout with outflow
boundary conditions.

inhomogeneous boundary conditions, see Fig 3. Here, we assume that
the boundary ∂Ω is decomposed into

∂Ω = ∂ΩD ∪ ∂Ωout with ∂ΩD ∩ ∂Ωout = ∅.

∂ΩD and ∂Ωout are sets with nonempty relative interior, see Fig. 3.
For given functions and values

a ∈ H1(Ω) with ∇ · a = 0 a.e. in Ω and n · a = 0 on ∂Ωout,

f ∈ L2(Ω), h ∈ L2(∂Ωout), d ∈ H1/2(∂ΩD) and µ > 0,
(2.11)

we want to solve the following boundary value problem for the Os-
een equations modeling a Newtonian fluid equipped with outflow
boundary conditions on ∂Ωout and Dirichlet boundary conditions on
∂ΩD:

(a ·∇)u−∇ · σ(u, p) = f in Ω, (2.12a)

∇ · u = 0 in Ω, (2.12b)

u = d on ∂ΩD, (2.12c)

σ(u, p)n = h on ∂Ωout. (2.12d)

The right hand side h of (2.12d) models a given external force on the
outflow boundary. Again, we derive a weak formulation. Therefore,
we define

H1
D(Ω) =

{
v ∈ H1(Ω) : v = 0 on ∂ΩD

}
,

which accounts for the outflow conditions.
As in the inhomogeneous case, let uD ∈ H1(Ω) denote the extension

of the Dirichlet data d ∈ H1/2(∂ΩD) such that γd(uD) = d where
γd : H1(Ω) → H1/2(∂ΩD) denotes a trace operator. Note that the
space for the Dirichlet data is slightly different, because now we

16 domain decomposition method for the oseen equations

impose Dirichlet boundary conditions only on a part of the global
boundary ∂ΩD $ ∂Ω.

We use the bilinear forms introduced before (2.5) and define the
linear form f (·) which also accounts for the outflow boundary condi-
tions.

f : H1(Ω)→ R, f (v) =
∫

Ω
fv dx +

∫
∂Ωout

hv ds.

The weak form (OWF) of the system of partial differential equations
(2.12) is given as follows: Find u ∈ H1

D(Ω) and p ∈ L2(Ω) such that

a(u, v) + b(v, p) = f (v)− a(uD, v), (2.13a)

b(u, q) =− b(uD, q) (2.13b)

for all v ∈ H1
D(Ω) and q ∈ L2(Ω).

Remark. If a solution (u, p) ∈ H1
D(Ω)× L2(Ω) for the outflow prob-

lem exists, then the velocity is uniquely defined, because we impose
Dirichlet boundary condition on ∂ΩD. The pressure is then uniquely
defined, due to the fact that we impose outflow boundary conditions
on ∂Ωout. Therefore, in contrast to the case with only inhomogeneous
Dirichlet boundary conditions on ∂Ω, no normalization condition
must be imposed for the pressure.

Remark. In difference to the inhomogeneous case, b(uD, q) must not
be 0 because the compatibility condition (2.2) must not hold.

The next theorem states under which conditions a unique solution
of (2.13) exists.

Theorem 4. If the assumptions (2.11) hold, then the Oseen equations (2.13)
have a unique solution u ∈ H1

D(Ω) and p ∈ L2(Ω).

Proof. Due to the outflow conditions, the proof becomes very tech-
nical. Therefore, we only sketch the ideas. We need to construct a
solenoidal extension of the pre-described Dirichlet boundary data
into the domain Ω. Therefore we need to construct a flux carrier
which must carry the incoming flux from inflow boundary across the
domain to the outflow boundary. By splitting the solution into an
inhomogeneous part and the solenoidal extension, we can apply the
same arguments as in the proof of Theorem 2. For more details, see,
e.g., [30, 53].

Remark 5. At a first glance, the weak formulation of the SWF and OWF
seem to be the same. One has to closely look at the used spaces. For
the SWF, we look for a solution (u, p) ∈ H1

0(Ω)× L2
0(Ω) and for the

OWF, we seek a solution (u, p) ∈ H1
D(Ω)× L2(Ω). The right hand

side of the OWF also differs from the one of the SWF and the AWF.

2.4 continuous domain decomposition 17

2.4 continuous domain decomposition

Next, we derive a non-overlapping domain decomposition method on
the continuous level for the Oseen equations by applying the following
steps: Firstly, we partition the domain, the spaces, and the bilinear
forms. Secondly, an equivalent weak formulation on subdomains,
which is still globally coupled is derived. Finally, we decouple the
subdomain formulation into s independent subdomain problems and
one system of global coupling conditions.

2.4.1 Decomposition of the Domain

Figure 4: The figure depicts the decomposition of the global domain Ω into
non-overlapping subdomains and the interface Γ. This figure corre-
sponds to the case with inhomogeneous Dirichlet conditions on the
global boundary and refers to the second sub-step of the second
main step of the derivation of the domain decomposition method
on the continuous level.

As outlined in Fig. 4, the domain Ω is divided into s non-overlapping
subdomains Ωi ⊂ Ω, such that

Ω =
s⋃

i=1

Ωi with Ωi ∩Ωj = ∅, i 6= j, i, j ∈ {1, 2, . . . , s} .

We set the local interfaces Γi and Γij

Γi : = ∂Ωi \ ∂Ω,

Γij : = ∂Ωi ∩ ∂Ωj,

and we define the global interface Γ by

Γ : =
s⋃

i,j=1, j>i

Γij.

The splitting of Ω is done such that Γij are Lipschitz (d− 1)-dimensional
manifolds. To be able to use the same notation for the case of only
inhomogeneous Dirichlet and the case with mixed outflow and Dirich-

18 domain decomposition method for the oseen equations

let boundary conditions, we also denote the global Dirichlet boundary
∂Ω in the inhomogeneous case with ∂ΩD, see also Fig. 2.

In the case of outflow boundary conditions, we need to distinguish
between the set of non-outflow subdomains and the set of outflow
subdomains denoted by N and defined as

N := {i ∈ {1, . . . , s} : ∂Ωi ∩ ∂Ωout 6= ∅},

where the relative interior of ∂Ωi ∩ ∂Ωout must be non-empty.

2.4.2 Decomposition of the Velocity Space

Before we partition the velocity space H1
0(Ω) in case of inhomoge-

neous Dirichlet boundary conditions, and H1
D(Ω) in case of outflow

boundary conditions, we need to define several subspaces for the
velocity.

First, we define the velocity spaces on the global interface Γ:

H1/2
00 (Γ) := {v ∈ H1/2(Γ) : v|∂ΩD∩Γ = 0}.

Then, we define the following spaces for the local velocities on Ωi:

H1
N(Ωi) := {v ∈ H1(Ωi) : v|∂Ωi\∂Ωout = 0},

Vi :=

H1
N(Ωi) if i ∈ N ,

H1
0(Ωi) if i /∈ N .

(2.14)

Using these definitions, we decompose the global velocity spaces
H1

0(Ω) and H1
D(Ω) as follows:

H1
0(Ω) =

s⊕
i=1

H1
0(Ωi)⊕H1/2

00 (Γ),

H1
D(Ω) =

⊕
i/∈N

H1
0(Ωi)

⊕
i∈N

H1
N(Ωi)⊕H1/2

00 (Γ) =
s⊕

i=1

Vi ⊕H1/2
00 (Γ).

Moreover, we define velocity spaces on the local interfaces Γi:

H1/2
00 (Γi) := {vi ∈ H1/2(Γi) : vi|Γi∩∂ΩD

= 0},

VΓi :=

H1/2(Γi) if Γi ∩ ∂ΩD = ∅,

H1/2
00 (Γi) if Γi ∩ ∂ΩD 6= ∅.

We also set the following local velocity spaces:

H1
D(Ωi) := {v ∈ H1(Ω) : v|∂Ωi∩∂ΩD = 0},

2.4 continuous domain decomposition 19

Ṽi :=

H1(Ωi) if ∂Ωi ∩ ∂ΩD 6= ∅,

H1
D(Ωi) if ∂Ωi ∩ ∂ΩD = ∅.

(2.15)

Finally, we define trace operators γ, γi and extension operators R, Ri
as follows

γ : H1
D(Ω)→ H1/2

00 (Γ), (2.16)

R : H1/2
00 (Γ)→ H1

D(Ω), such that γ(R(vΓ)) = vΓ ∀vΓ ∈ H1/2
00 (Γ),

(2.17)

γi : Ṽi → VΓi ,

Ri : VΓi → Ṽi, such that γi(Ri(vΓi)) = vΓi ∀vΓi ∈ VΓi . (2.18)

The global operator R extends a function defined in the global inter-
face space H1/2

00 (Γ) onto the global space H1
D(Ω) and similarly, the

local operator Ri extends a function defined on the local interface into
the local space Ṽi. This is needed when evaluating a bilinear or linear
form for an interface variable, since these forms are defined on the
global domain or subdomains. The global or local interfaces are zero
sets with respect to the global or local domains.

2.4.3 Decomposition of the Pressure Space

We define the spaces D̃(Ω), D̂(Ω) and D(Ω). All are used for the
decomposition of the global pressure space. The first one for the SWF
(2.6), the second for the AWF (2.7) and the last one for the OWF (2.13).

D̃(Ω) := {q ∈ L2
0(Ω) : q|Ωi const. ∀i},

D̂(Ω) := {q ∈ L2(Ω) : q|Ωi const. ∀i},

D(Ω) :=

q ∈ L2(Ω) : q|Ωi =

const if i /∈ N ,

0 if i ∈ N

 .

For a more simple notation in case of outflow boundary conditions,
we define the local pressure space Qi:

Qi :=

L2
0(Ωi) if i /∈ N ,

L2(Ωi) if i ∈ N .

Based on these spaces, we decompose L2
0(Ω) and L2(Ω):

L2
0(Ω) =

s⊕
i=1

L2
0(Ωi)⊕ D̃(Ω) (SWF),

20 domain decomposition method for the oseen equations

L2(Ω) =
s⊕

i=1

L2
0(Ωi)⊕ D̂(Ω) (AWF).

For the outflow case (OWF), we decompose L2(Ω) as follows:

L2(Ω) =
⊕
i/∈N

L2
0(Ωi)

⊕
i∈N

L2(Ωi)⊕ D(Ω) =
s⊕

i=1

Qi ⊕ D(Ω).

As we see later on in Section 2.4.6, this partitioning leads to local
subdomain problems with the same saddle point structure as the
global problem. Additionally, we get a global saddle point structure
for the coupling conditions due to the global coupling spaces D̃(Ω),
D̂(Ω) or D(Ω).

2.4.4 Decomposition of the Bilinear Forms

Firstly, we define the local bilinear form ai(·, ·):

ai : H1(Ωi)×H1(Ωi)→ R

ai(ui, vi) = 2µ
∫

Ωi

ε(ui) : ε(vi) dx

+
1
2

∫
Ωi

((a ·∇)ui)vi dx− 1
2

∫
Ωi

((a ·∇)vi)ui dx

= µ
∫

Ωi

∇ui : ∇vi dx

+
1
2

∫
Ωi

((a ·∇)ui)vi dx− 1
2

∫
Ωi

((a ·∇)vi)ui dx.

Secondly, we define the local bilinear forms bi(·, ·) and ci(·, ·):

bi : H1(Ωi)× L2(Ωi)→ R bi(ui, qi) = −
∫

Ωi

∇ · ui qi dx,

ci : R× L2(Ωi)→ R c(ηi, qi) = ηi

∫
Ωi

qi dx.

Finally, we define the local linear forms f̃i(·) for the inhomogeneous
case and fi(·) for the outflow case:

f̃i : H1(Ωi)→ R f̃i(vi) =
∫

Ωi

f · vi dx,

fi : H1(Ωi)→ R fi(vi) =
∫

Ωi

f · vi dx +
∫

∂Ωout∩∂Ωi

h · vi ds.

The canonical restriction of the global bilinear form a(·, ·) is given by

ãi(ui, vi) = 2µ
∫

Ωi

ε(ui) : ε(vi) dx +
∫

Ωi

((a ·∇)ui)vi dx

2.4 continuous domain decomposition 21

= 2µ
∫

Ωi

ε(ui) : ε(vi) dx +
1
2

∫
Ωi

((a ·∇)ui)vi dx+

−1
2

∫
Ωi

(∇ · a)viui dx︸ ︷︷ ︸
=0,∇·a=0 a.e. in Ω

+

− 1
2

∫
Ωi

((a ·∇)vi)ui dx +
1
2

∫
Γi

((a · ni)ui)vi ds

= ai(ui, vi)−
1
2

∫
Γi

((a · ni)ui)vi ds,

where ni denotes the outer unit normal vector on Ωi. We do not
consider the canonical restriction ãi(·, ·), because the Vi-ellipticity
might not be guaranteed due to the boundary integral. But note that
for ui ∈ Ṽi and vi ∈ H1

0(Ωi), we get

ai(ui, vi) = ãi(ui, vi).

Proposition 6 states the Vi-ellipticity for ai(·, ·) needed to show that
the local subdomain problems on Ωi, see Section 2.4.6, have a unique
solution.

Proposition 6. The bilinear form ai(·, ·) is Vi-elliptic.

Proof.

ai(vi, vi) = µ
∫

Ωi

∇vi : ∇vidx+

+
1
2

∫
Ωi

((a ·∇)vi)vi dx− 1
2

∫
Ωi

((a ·∇)vi)vi dx︸ ︷︷ ︸
=0

≥ c ‖vi‖H1(Ωi)
∀vi ∈ Vi, c > 0,

see also [1].

To be able to decouple the global weak formulations, we need to
proof that global bilinear forms equal the sum over the corresponding
local bilinear forms which is shown in Proposition 7. This proposition
is used, e.g., in the proof of Lemma 9.

Proposition 7. For the local bilinear forms ai(·, ·) , ãi(·, ·) and bi(·, ·), it
holds that

s

∑
i=1

ai(u|Ωi , v|Ωi) =
s

∑
i=1

ãi(u|Ωi , v|Ωi) = a(u, v)

∀u ∈ H1(Ω), ∀v ∈

H1
0(Ω), (SWF, AWF)

H1
D(Ω), (OWF)

s

∑
i=1

bi(u|Ωi , q|Ωi) = b(u, q) ∀u ∈ H1(Ω), q ∈ L2(Ω).

22 domain decomposition method for the oseen equations

Proof.

s

∑
i=1

ai(u|Ωi , v|Ωi) =
s

∑
i=1

(
µ
∫

Ωi

∇ui : ∇vi dx+

+
1
2

∫
Ωi

((a ·∇)ui)vi dx− 1
2

∫
Ωi

((a ·∇)vi)ui dx
)

= µ
∫

Ω
∇u : ∇v dx +

s

∑
i=1

(∫
Ωi

((a ·∇)ui)vi dx+

− 1
2

∫
∂Ωi

((a · ni)ui)vi ds
)

=a(u, v)− 1
2

∫
∂Ω

((a · n)u)v ds︸ ︷︷ ︸
=0, (*)

+

− 1
2

s

∑
i=1
j>i

∫
Γij

((a · (ni + nj)︸ ︷︷ ︸
=0

)ui)vi ds

= a(u, v)

(*) In case of global Dirichlet boundary, the integral is 0, since v ∈
H1

0(Ω). In case of outflow boundary:

(*) = −1
2

∫
ΩD

((a · n)u)v ds︸ ︷︷ ︸
=0, v∈H1

D(Ω)

−1
2

∫
Ωout

((a · n)︸ ︷︷ ︸
=0, (2.11)

u)v ds = 0

We do not give the proof for ∑s
i=1 ãi(u|Ωi , v|Ωi), it works analogously.

s

∑
i=1

bi(u|Ωi , q|Ωi) =
s

∑
i=1
−
∫

Ωi

∇ · (u|Ωi) q|Ωi dx = −
∫

Ω
∇ · u q dx.

The next proposition states that one specific term which occurs when
decomposing the bilinear form b(·, ·) canonically, can be neglected.
The proposition is used when deriving the local weak formulation on
subdomains.

Proposition 8. It holds that

bi(vi, qΩi) = 0 ∀vi ∈ H1
0(Ωi), qΩi constant.

Proof. We use the definition of the bilinear form and apply the diver-
gence theorem, see, e.g., [38, Chapter 2, Lemma 4]:

bi(vi, qΩi) =−
∫

Ωi

∇ · vi qΩi dx

2.4 continuous domain decomposition 23

=
∫

Ωi

vi ∇ · qΩi︸ ︷︷ ︸
=0

dx−
∫

∂Ωi

vi · niqΩi dx︸ ︷︷ ︸
=0, vi∈H1

0(Ωi)

= 0

2.4.5 Weak Formulation on Subdomains

Using these definitions, we derive weak formulations on subdomains
for the SWF, the AWF and the OWF. We use these fully coupled
formulations, when we are interested in solving directly the global
linear system. In that case, we apply the domain decomposition
method only as parallelization method without decoupling the global
system. For more details, see Section 6.5 in Chapter 6.

Remark. For sake of better readability, we use the following notation:

• vΓi := vΓ|Γi ∈ VΓi denotes the restriction of vΓ ∈ H1/2
00 (Γ),

• uDi = uD|Ωi ∈ H1(Ωi) the restriction of uD ∈ H1(Ω),

• qΩi := qΩ|Ωi the restriction of qΩ ∈ D(Ω) with qΩi = const ,

• q̃Ωi := q̃|Ωi the restriction of q̃Ω ∈ D(Ω) with q̃Ωi = const ,

• q̂Ωi := q̂Ω|Ωi the restriction of q̂Ω ∈ D(Ω) with q̂Ωi = const .

Standard Weak Formulation (SWF)

Figure 5: This figure illustrates the first sub-step of the second main step
of the derivation. The global domain Ω is partitioned into subdo-
mains but still coupled analogously to the weak formulation on
subdomains.

The next lemma states an equivalent weak formulation on subdo-
mains corresponding the SWF of the global weak formulation (2.6).
This weak formulation is still globally coupled and is the result of
the first sub-step as sketched in Fig. 5. Recall that R and Ri are the
global and local extension operators defined before, see (2.17) and
(2.18), respectively.

24 domain decomposition method for the oseen equations

Lemma 9. (2.6) is equivalent to the following formulation on subdomains:
Find

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
0(Ω) with ui ∈ H1

0(Ωi), uΓ ∈ H1/2
00 (Γ),

p̃ =
s

∑
i=1

p̃i + p̃Ω ∈ L2
0(Ω) with p̃i ∈ L2

0(Ωi), p̃Ω ∈ D̃(Ω)

such that

s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi)) + bi(vi, p̃i)+

+ bi(Ri(vΓi), p̃i)
)
+ a(R(uΓ),R(vΓ)) + b(R(vΓ), p̃Ω)

=
s

∑
i=1

(
f̃i(vi)− ai(uD|Ωi , vi)

)
+ f̃ (R(vΓ))− a(uD,R(vΓ)), (2.19a)

s

∑
i=1

(
bi(ui, q̃i) + bi(Ri(uΓi), q̃i)

)
+ b(R(uΓ), q̃Ω)

= −
s

∑
i=1

(
bi(uD|Ωi , q̃i)

)
− b(uD, q̃Ω) (2.19b)

for all vi ∈ H1
0(Ωi), q̃i ∈ L2

0(Ωi), (i = 1, . . . , s), vΓ ∈ H1/2
00 (Γ) and

q̃Ω ∈ D̃(Ω).

Proof. The equivalence can be shown by using Proposition 7 to par-
tition the global bilinear forms onto the subdomains and then de-
composing the ansatz and test functions based on the splitting of the
corresponding global spaces. We exemplary show the partitioning of
the global bilinear form a(·, ·) into the local bilinear forms ai(·, ·). The
splitting of the other bilinear and linear forms works analogously.

a(u, v)
(Prop. 7)

=
s

∑
i=1

ai(u|Ωi , v|Ωi)

=
s

∑
i=1

(
ai(ui +Ri(uΓi), vi +Ri(vΓi))

)
=

s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi))

)
+

+
s

∑
i=1

(
ai(Ri(uΓi),Ri(vΓi))

)
︸ ︷︷ ︸

=a(R(uΓ),R(vΓ))

=
s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi))

)
+

+ a(R(uΓ),R(vΓ)).

2.4 continuous domain decomposition 25

For the bilinear form b(·, ·), we further apply Proposition 8.

Remark 10. We note that the global bilinear form b(·, ·) for all vΓ ∈
H1

00(Γ) and q̃Ω ∈ D(Ω) are zero:

b(R(vΓ), q̃Ω) =−
∫

Ω
∇ · R(vΓ)q̃Ω dx

=
∫

Ω
R(vΓ) ∇q̃Ω︸ ︷︷ ︸

=0,∈D̃(Ω)

dx−
∫

∂Ω
R(vΓ)|∂Ω︸ ︷︷ ︸
=0,∈H1

0(Ω)

q̃Ω · n ds = 0.

But we do not neglect this global term because when decomposing
the bilinear form onto the subdomains, the single summands must
not be zero:

0 = b(R(vΓ), q̃Ω)

=
s

∑
i=1

bi(Ri(vΓi), q̃Ωi)

=
s

∑
i=1
−
∫

Ωi

∇ · Ri(vΓi)q̃Ωi dx

=
s

∑
i=1

(∫
Ωi

Ri(vΓi) ∇q̃Ω︸ ︷︷ ︸
=0,∈D̃(Ω)

dx−
∫

∂Ωi

Ri(vΓi)|∂Ωi q̃Ωi · ni ds︸ ︷︷ ︸
=(∗)

)

= −
∫

∂Ω
R(vΓ)|∂Ω︸ ︷︷ ︸
=0,∈H1

0(Ω)

q̃Ω · n ds−
s

∑
i=1
j>i

∫
Γij

Ri(vΓi)|∂Ωi q̃Ωi · (ni + nj)︸ ︷︷ ︸
=0

ds

(*) each of this terms is not zero, but the sum over all equals zero.

Alternative Weak Formulation (AWF)

Lemma 11 presents an equivalent weak formulation on subdomains
for the global weak formulation (2.7) corresponding to the AWF. We
have the same situation as for the SWF case that this formulation is
still globally coupled, see Fig. 5.

Lemma 11. (2.7) is equivalent to the following formulation on subdomains:
Find

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
0(Ω) with ui ∈ H1

0(Ωi), uΓ ∈ H1/2
00 (Γ),

p =
s

∑
i=1

p̃i + pΩ ∈ L2(Ω) with p̃i ∈ L2
0(Ωi), pΩ ∈ D̂(Ω),

such that

26 domain decomposition method for the oseen equations

s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi)) + bi(vi, p̃i)+

+ bi(Ri(vΓi), p̃i)
)
+ a(R(uΓ),R(vΓ)) + b(R(vΓ), pΩ)

=
s

∑
i=1

(
f̃i(vi)− ai(uD|Ωi , vi)

)
+ f̃ (R(vΓ))− a(uD,R(vΓ)), (2.20a)

s

∑
i=1

(
bi(ui, q̃i) + bi(Ri(uΓi), q̃i)

)
+ b(R(uΓ), qΩ) + c(η, qΩ)

= −
s

∑
i=1

(
bi(uD|Ωi , q̃i)

)
− b(uD, qΩ) (2.20b)

c(ξ, pΩ) = 0 (2.20c)

for all vi ∈ H1
0(Ωi), vΓ ∈ H1/2

00 (Γ), q̃i ∈ L2
0(Ωi), qΩ ∈ D(Ω) and ξ ∈ R.

Proof. Use the same arguments as in proof for Lemma 9.

Outflow Weak Formulation (OWF)

Figure 6: The figure shows the global domain Ω, which is already partitioned
into subdomains but still coupled. We apply outflow boundary
conditions on ∂Ωout. It also corresponds to the first sub-step of the
second main step for the outflow case.

The next lemma introduces an equivalent weak formulations on
subdomains for the OWF (2.13). Analogously to the previous cases
the formulation is still globally coupled which is depicted in Fig 6 and
refers to the first sub-step of the second main step of the derivation
of the method. The formulation changes slightly due to the different
boundary conditions.

Lemma 12. (2.13) is equivalent to the following weak formulation on subdo-
mains:

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
D(Ω) with ui ∈ Vi, uΓ ∈ H1/2

00 (Γ),

p =
s

∑
i=1

pi + pΩ ∈ L2(Ω) with pi ∈ Qi, pΩ ∈ D(Ω)

2.4 continuous domain decomposition 27

such that

s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi)) + bi(vi, pi)+

+ bi(Ri(vΓi), pi)
)
+ a(R(uΓ),R(vΓ)) + b(R(vΓ), pΩ)

=
s

∑
i=1

(
fi(vi)− ai(uDi , vi)

)
+ f (R(vΓ))− a(uD,R(vΓ)), (2.21a)

s

∑
i=1

(
bi(ui, qi) + bi(Ri(uΓi), qi)

)
+ b(R(uΓ), qΩ)

= −
s

∑
i=1

(
bi(uDi , qi)

)
− b(uD, qΩ) (2.21b)

for all vi ∈ Vi, vΓ ∈ H1/2
00 (Γ), qi ∈ Qi and qΩ ∈ D(Ω).

Proof. Note that on non-outflow subdomains for any function vi ∈
H1

0(Ωi) and any constant qΩi , bi(vi, qΩi) = 0, see Proposition 8. On
outflow subdomains, it holds that qΩi = pΩi = 0, which directly comes
from the definition of D(Ω). Consequently, it also holds on outflow
domains that bi(vi, qΩi) = 0 ∀vi ∈ H1

N , qΩi = 0. Moreover, we use
the same arguments as in the proof of Lemma 9.

2.4.6 Decoupling of Weak Formulation on Subdomains

In the next step also referred as the second sub-step, we decouple the
weak formulations on subdomains for the SWF (2.19), the AWF (2.20)
and the OWF (2.21). In all cases, we gain s independent local subdo-
main problems, which are coupled through one system of interface
equations. Fig. 4 sketches exemplary the case of the SWF and the AWF.
In that example, we get three independent weak formulations on the
subdomains and one system of coupling equations on the interface Γ.
On the subdomains, we apply Dirichlet boundary conditions on the
local interfaces Γi and on the part of the subdomain boundary which
intersects the global boundary ∂ΩD.

Standard Weak Formulation (SWF)

For a given uΓ ∈ H1/2
00 (Γ), find ui ∈ H1

0(Ωi), p̃i ∈ L2
0(Ωi) (i = 1, . . . , s)

such that

ai(ui, vi) + bi(vi, p̃i) = f̃i(vi)− ai(uDi , vi)− ai(Ri(uΓi), vi), (2.22a)

bi(ui, q̃i) =− bi(uDi , q̃i)− bi(Ri(uΓi), q̃i) (2.22b)

for all vi ∈ H1
0(Ωi) and q̃i ∈ L2

0(Ωi). We directly see that the decou-
pled local problem on subdomain Ωi does not depend on the global

28 domain decomposition method for the oseen equations

pressure variable p̃ ∈ D̃(Ω). We also note that we obtain the same
saddle point structure on the local level as on the global level.

Remark. The existence and uniqueness can be shown by applying the
Theorem 2 on the local level. In Proposition 6, we already proofed the
Vi−ellipticity of the bilinear form ai(·, ·).

Our aim is to solve the global linear system (2.19) by solving cou-
pling conditions on the interface. Therefore, the next lemma states
under which conditions the local and the global formulations are
equivalent.

Lemma 13. It holds that

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
0(Ω) and p̃ =

s

∑
i=1

p̃i + p̃Ω ∈ L2
0(Ω)

with (ui, p̃i) ∈ H1
0(Ωi)× L2

0(Ωi) solutions of (2.22) solve (2.19) if and only
if the following coupling conditions hold for (uΓ, p̃Ω) ∈ H1/2

00 (Γ)× D̃(Ω):

s

∑
i=1

(
ai(ui,Ri(vΓi)) + bi(Ri(vΓi), p̃i)

)
+ (2.23a)

+a(R(uΓ),R(vΓ)) + b(R(vΓ), p̃Ω) = f̃ (R(vΓ))− a(uD,R(vΓ)),

b(R(uΓ), q̃Ω) = −b(uD, q̃Ω) (2.23b)

for all vΓ ∈ H1/2
00 (Γ) and q̃Ω ∈ D̃(Ω).

Proof. This can be shown by summing up the coupling conditions
(2.23) and the weak formulations (2.22) on each subdomain Ωi.

Alternative Weak Formulation (AWF)

In a first step, the decoupling of (2.20) leads to a the same local subdo-
main formulation (2.22) as for the SWF. We use the same arguments
as in the global case to give an alternative weak formulation.

Proposition 14. Assuming that

ci(ηi, q̂Ωi) = bi(uDi , q̂Ωi) + b(Ri(uΓi), q̂Ωi) (2.24)

holds, (2.22) is equivalent to the following subdomain formulation: For given
uΓ ∈ H1/2

00 (Γ), find ui ∈ H1
0(Ωi), pi ∈ L2(Ωi) and ηi ∈ R (i = 1, . . . , s)

such that

ai(ui, vi) + bi(vi, pi) = f̃i(vi)− ai(uDi , vi)− ai(Ri(uΓi), vi), (2.25a)

bi(ui, qi) + ci(ηi, qi) =− bi(uDi , qi)− bi(Ri(uΓi), qi), (2.25b)

ci(ξi, pi) =0 (2.25c)

for all vi ∈ H1
0(Ωi), qi ∈ L2(Ωi) and ξi ∈ R.

2.4 continuous domain decomposition 29

Proof. Analogously to the proof of Lemma 3, we equivalently refor-
mulate (2.25) as follows:

ai(ui, vi) + bi(vi, p̃i) + bi(vi, p̃Ωi)︸ ︷︷ ︸
=0, (2.8)

= f̃i(vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, q̃i) + bi(ui, q̃Ωi)︸ ︷︷ ︸
=0, (2.8)

+ ci(ηi, q̃i)︸ ︷︷ ︸
=0, (2.9)

+ci(ηi, q̃Ωi)

= −bi(uDi , q̃i)− bi(uDi , q̃Ωi)− bi(Ri(uΓi), q̃i)− bi(Ri(uΓi), q̃Ωi),

ci(ξi, p̃i)︸ ︷︷ ︸
=0, (2.9)

+ci(ξi, p̃Ωi) = 0

Under the assumptions (2.24), we can analogously apply the argumen-
tation of the proof of Lemma 3.

Similarly to the SWF case, the next lemma explains the conditions
under which the local and global formulations are equivalent.

Lemma 15. It holds that

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
0(Ω) and p =

s

∑
i=1

pi + p̂Ω ∈ L2(Ω)

with (ui, pi) ∈ H1
0(Ωi)× L2(Ωi) solutions of (2.25) solve (2.20) if and only

if the following coupling conditions hold for (uΓ, p̂Ω) ∈ H1/2
00 (Γ)× D̂(Ω)

and η ∈ R:

s

∑
i=1

(
ai(ui,Ri(vΓi)) + bi(Ri(vΓi), pi)

)
+ (2.26a)

+a(R(uΓ),R(vΓ)) + b(R(vΓ), p̂Ω) = f̃ (R(vΓ))− a(uD,R(vΓ)),

b(R(uΓ), q̂Ω) + c(η, q̂Ω) = −b(uD, q̂Ω), (2.26b)

c(ξ, p̂Ω) = 0 (2.26c)

for all vΓ ∈ H1/2
00 (Γ), q̂Ω ∈ D̂(Ω) and ξ ∈ R.

Proof. Use the same arguments as in proof for Lemma 13.

2.4.6.1 Outflow Weak Formulation (OWF)

In the outflow case, we have to distinguish two different local indepen-
dent subdomain problems: One for the set of outflow subdomains N
and another one for non-outflow subdomains, which is sketched in Fig.
7. For outflow subdomains, we apply Dirichlet boundary conditions
on the local skeleton and on the subdomain boundary which intersects
the global boundary ∂ΩD and outflow boundary conditions on subdo-
main boundary which intersects the outflow boundary ∂Ωout. Thus,

30 domain decomposition method for the oseen equations

Figure 7: This figure refers to the second sub-step in which we obtain decou-
pled subdomain problems and one system of coupling conditions
on the interface Γ. It shows three decoupled subdomains, the global
interface Γ and the local interfaces Γi. In this example, the subdo-
main Ω2 is an outflow subdomain while the subdomains Ω1 and
Ω3 are non-outflow subdomains.

we obtain the following weak formulation for outflow subdomains:
For given uΓ ∈ H1/2

00 (Γ), find ui ∈ H1
N(Ωi), pi ∈ L2(Ωi) (i ∈ N) such

that

ai(ui, vi) + bi(vi, pi) = fi(vi)− ai(uD|Ωi , vi)− ai(Ri(uΓi), vi), (2.27a)

bi(ui, qi) =− bi(uD|Ωi , qi)− bi(Ri(uΓi), qi) (2.27b)

for all vi ∈ Vi and qi ∈ L2(Ωi).
For non-outflow subdomains, i.e. subdomains not intersecting an

outflow boundary ∂Ωout, we apply Dirichlet boundary conditions on
the whole subdomain boundary ∂Ωi. This yields the following weak
formulation: For a given uΓ ∈ H1/2

00 (Γ), find ui ∈ H1
0(Ωi), p̃i ∈ L2

0(Ωi)

(i /∈ N) such that

ai(ui, vi) + bi(vi, p̃i) = fi(vi)− ai(uDi , vi)− ai(Ri(uΓi), vi), (2.28a)

bi(ui, q̃i) =− bi(uDi , q̃i)− bi(Ri(uΓi), q̃i) (2.28b)

for all vi ∈ H1
0(Ωi) and q̃i ∈ L2

0(Ωi).
We note that the local formulation on outflow subdomains has the

same structure as the global problem with outflow conditions whereas
the local problem on non-outflow subdomains has the same structure
as the global problems with inhomogeneous boundary conditions.
Again, we give an alternative weak formulations for the non-outflow
subdomains.

Proposition 16. Assuming (2.24), then (2.28) is equivalent to the following
weak formulation. For given uΓ ∈ H1/2

00 (Γ), find ui ∈ H1
0(Ωi), pi ∈ L2(Ωi),

ηi ∈ R (i /∈ N) such that

ai(ui, vi) + bi(vi, pi) = fi(vi)− ai(uDi , vi)− ai(Ri(uΓi), vi), (2.29a)

bi(ui, qi) + ci(ηi, qi) =− bi(uDi , qi)− bi(Ri(uΓi), qi), (2.29b)

ci(ξi, pi) = 0 (2.29c)

2.4 continuous domain decomposition 31

for all vi ∈ Vi, qi ∈ L2(Ωi) and ξi ∈ R.

Proof. The only differences between formulation (2.29) and (2.25) are
the definitions of the right hand sides. Consequently, we can use the
same proof as for Proposition 14.

In the next lemma, we state under which conditions the global and
local formulations are equivalent for the outflow case.

Lemma 17. It holds that

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
D(Ω) and p =

s

∑
i=1

pi + pΩ ∈ L2(Ω)

with (ui, pi) ∈ Vi × Qi solutions of (2.27) or (2.29) (depending on the
subdomain type) solve (2.21) if and only if the following coupling conditions
for (uΓ, pΩ) ∈ H1/2

00 (Γ)× D(Ω) hold:

s

∑
i=1

(
ai(ui,Ri(vΓi))

)
+ a(R(uΓ),R(vΓ))+ (2.30a)

+
s

∑
i=1

(
bi(Ri(vΓi), pi)

)
+ b(R(vΓ), pΩ) = f (R(vΓ))− a(uD,R(vΓ)),

b(R(uΓ), qΩ) = −b(uD, qΩ) (2.30b)

for all vΓ ∈ H1/2
00 (Γ) and qΩ ∈ D(Ω).

Proof. Use the same arguments as in proof for Lemma 13.

We note that all three systems of coupling conditions (2.23), (2.26)
and (2.30) feature a global saddle point structure analogously to the
local formulations. This structure is due to the splitting of the pressure
space.

Interpretation of the Coupling Conditions

For a better understanding of the coupling conditions (2.23, 2.26, 2.30),
we give an interpretation in strong form. Therefore, we assume that
the functions are smooth enough. The first coupling conditions can be
interpreted in the same way for all three cases (SWF, AWF and OWF).
We denote by u|Ωi := ui +Ri(uΓi) + uD|Ωi the “complete” solution
of the velocity on subdomain Ωi , by u := ∑s

i=1 ui +R(uΓ) + uD the
“complete” global solution of the velocity, and by p|Ωi := p̃i + pΩi the
“complete” solution of the pressure on subdomain Ωi. Exemplarily,
we reformulate (2.19a) to obtain an interpretation of the first coupling
conditions. Analogously it works for the AWF and OWF case.

(2.19a)⇔

32 domain decomposition method for the oseen equations

s

∑
i=1

(
µ
∫

Ωi

∇ui : ∇Ri(vΓi) dx+

+
1
2

∫
Ωi

((a ·∇)ui)Ri(vΓi) dx− 1
2

∫
Ωi

((a ·∇)Ri(vΓi))ui dx+

−
∫

Ωi

∇ · Ri(vΓi) p̃i dx
)
+

+ µ
∫

Ω
∇R(uΓ) : ∇R(vΓ) dx +

∫
Ω
((a ·∇)R(uΓ))R(vΓ) dx+

−
∫

Ω
∇ · R(vΓ) p̃Ω dx

=
∫

Ω
f · R(vΓ) dx+

− µ
∫

Ω
∇uD : ∇R(vΓ) dx−

∫
Ω
((a ·∇)uD)R(vΓ) dx

⇔
s

∑
i=1

(
−µ

∫
Ωi

∆uiRi(vΓi) dx +
∫

∂Ωi

∂

∂ni
uiRi(vΓi) ds+

+
∫

Ωi

((a ·∇)ui)Ri(vΓi) dx− 1
2

∫
∂Ωi

((a · ni)ui)Ri(vΓi) ds+

+
∫

Ωi

Ri(vΓi)∇ p̃i dx−
∫

∂Ωi

(Ri(vΓi) · ni p̃i ds
)
+

− µ
∫

Ω
∆R(uΓ)R(vΓ) dx +

∫
∂Ω

∂

∂n
R(uΓ)R(vΓ) ds︸ ︷︷ ︸

=0,R(vΓ)∈H1
0(Ω)

+

+
∫

Ω
((a ·∇)R(uΓ))R(vΓ) dx+

+
∫

Ω
R(vΓ)∇ p̃Ω dx︸ ︷︷ ︸
=0,∇ p̃Ω=0

−
∫

∂Ω
(R(vΓ) · n p̃Ω ds︸ ︷︷ ︸
=0,R(vΓ)∈H1

0(Ω)

=
∫

Ω
f · R(vΓ) dx−

∫
Ω
((a ·∇)uD)R(vΓ) dx+

+ µ
∫

Ω
∆uDR(vΓ) dx−

∫
∂Ω

∂

∂n
uDR(vΓ) ds︸ ︷︷ ︸

=0,R(vΓ)∈H1
0(Ω)

⇔

− µ
∫

Ω
∆uR(vΓ) dx +

∫
Ω
((a ·∇)u)R(vΓ) dx+

+
∫

Ω
R(vΓ)∇ p̃ dx

+
s

∑
i=1
j>i

∫
Γij

((
∂

∂ni
ui − (a · ni)ui

)
Ri(vΓi)− (Ri(vΓi) · ni) p̃i+

(
∂

∂nj
uj − (a · nj)uj

)
Rj(vΓj)− (Rj(vΓj) · nj) p̃j ds

)
+

2.5 discretization based on a finite element method 33

+
s

∑
i=1

∫
∂Ωi∩∂Ω

(
∂

∂ni
ui − (a · ni)ui

)
Ri(vΓi)− (Ri(vΓi) · ni) p̃i ds︸ ︷︷ ︸

=0,Ri(vΓi)∈H1
D(Ωi)

=
∫

Ω
f · R(vΓ) dx

Since for the solution the volume integrals over Ω vanish, we get
for the first coupling condition:

∂(u|Ωi)

∂ni
− (a · ni)u|Ωi − (pi|Ωi)I · ni

= −
∂(u|Ωj)

∂nj
+ (a · nj)u|Ωj + (pj|Ωj)I · nj on Γij.

It can be interpreted that on Γij we have outflow-outflow type coupling
conditions.

The second coupling condition for the SWF and the OWF guaranties
that the interface component of the velocity defined on the skeleton is
globally divergence free. It is given by

∇ · RuΓ + ∇ · uD︸ ︷︷ ︸
=0, (2.2)

= 0 in Ω.

The second condition of the AWF can be represented strongly by

∇ · RuΓ + ∇ · uD︸ ︷︷ ︸
=0, (2.2)

+ η︸︷︷︸
=0, (*)

= 0 in Ω.

(*) follows from the proof of Lemma 3. As for the SWF and the OWF,
it guaranties that the skeleton velocity fulfills the incompressibility
condition.

Third coupling, in case of the AWF, explicitly requires that p ∈
L2

0(Ω).

2.5 discretization based on a finite element method

We use a conforming mixed type Galerkin finite element method to
discretize our system of partial differential equations on the local
subdomains and the coupling condition on the skeleton as well as for
the globally coupled formulations on subdomains. For more details,
see, e.g., [10, 14, 19, 38].

• Conforming means that the discrete finite element spaces are
subspaces of the continuous spaces: Vh ⊂ V.

34 domain decomposition method for the oseen equations

• Galerkin describes that we use the same spaces for the ansatz
functions as well as the test functions [10, Chapter II, §4] .

• Mixed type denotes that we discretize the velocity and the pres-
sure in different adequate finite element spaces [10, Chapter
III, §4]. We carefully have to choose numerically stable finite
element spaces, which fulfill the discrete inf-sup condition (2.31)
[19, Chapter II, §4].

2.5.1 Definitions for the Finite Element Methods

Figure 8: This figure shows a triangulation of the subdomains and the global
skeleton Γ for the case of global inhomogeneous boundary condi-
tions. It corresponds to the third main step of the derivation in
which we discretize the decoupled formulation with an appropriate
finite element approach.

For simplicity, we assume that Ω is polygonal, such that an exact and
uniform triangulation Th of Ω exists. h characterizes the discretization
and describes the diameter of K, where K ∈ Th denotes one element of
Th. Depending on the dimension and shape of Ω, an element K is in
two dimensions a triangle or a quadrilateral and in three dimensions
a tetrahedron or a hexahedron. It holds, that each K̊ belongs to exactly
one subdomain Ωi. Consequently, the triangulation of a subdomain
Ωi is the restriction of the global triangulation to the subdomain:

Th,i := Th|Ωi .

The triangulation of the interface Γ is given by the degrees of freedom
which lie on the interface. The term skeleton refers to the triangulation
on the interface and is also denoted by Γ. Fig. 8 outlines a triangulation
for the case with inhomogeneous boundary conditions on ∂Ω.

On each subdomain, we use inf-sup stable Taylor-Hood finite ele-
ments to discretize the Oseen equations. The following definitions and
statements about Taylor-Hood elements, Taylor-Hood spaces, and the
inf-sup conditions can be found with more details in several standard
references, including [10, Chapter III], [19, Chapter II], [22, Part I], [15,
Part II], [29], and [54].

We define for the two dimensional case Pm(K) :=

2.5 discretization based on a finite element method 35

v ∈ C(K) : v(x1, x2) =

∑ i,j≥0,
i+j≤m,

αijxi
1xj

2 if K triangle

∑m
i,j=0 αijxi

1xj
2 if K quadrilateral

 ,

and for the three dimensional case Pm(K) :=

v ∈ C(K) : v(x1, x2, x3) =

∑ i,j,k≥0,
i+j+k≤m

αijkxi
1xj

2xk
3 if K tetraeder

∑m
i,j.k=0 αijkxi

1xj
2xk

3 if K hexaeder

 .

In general, Taylor-Hood spaces of dimension m are defined as follows:

Vh
m = {vh ∈ [C(Ω)]d ∩H1

0(Ω) : vh|K ∈ [Pm(K)]d, ∀K ∈ Th},
Qh

m−1 = {qh ∈ C(Ω) ∩ L2(Ω) : qh|K ∈ Pm−1(K), ∀K ∈ Th}.

Taylor-Hood elements fulfill the so called “inf-sup”- or LBB-condition
and are therefore numerically stable:

∃β > 0 : sup
vh∈Vh

m\{0}

b(qh, vh)

‖vh‖
≥ β

∥∥∥qh
∥∥∥ ∀qh ∈ Qh

m−1 \ {0} . (2.31)

Next, we give the definitions of the finite element spaces for the
velocity. The global velocity space is given by:

Vh = {vh ∈ [C(Ω)]d : vh|K ∈ [P2(K)]d, ∀K ∈ Th} ⊂ H1(Ω).

For the local velocity spaces on Ωi, we get:

V̂i
h
= {vh

i ∈ [C(Ωi)]
d : vh

i = vh|Ωi , vh ∈ Vh} ⊂ H1(Ωi),

Vh
i,0 = {vh ∈ V̂h

i : vh|∂Ωi = 0} ⊂ H1
0(Ωi),

Vh
i,N = {vh ∈ V̂h

i : vh|∂Ωi\∂Ωout = 0} ⊂ H1
N(Ωi),

Vh
i =

Vh
i,N if i ∈ N

Vh
i,0 if i /∈ N

.

The finite element space on the local and global skeleton for the
velocity are defined as follows:

Vh
Γ = {vh

Γ ∈ Vh : vh
Γ(xvj) = 0 ∀xvj /∈ Γ},

Vh
Γi
= {vh

Γi
∈ Vh

i : vh
Γi
(xvj) = 0 ∀xvj /∈ Γi}.

36 domain decomposition method for the oseen equations

Remark 18. By defining the global and local skeleton space as a re-
striction of the global and local discrete velocity spaces, the interface
functions are implicitly extended to the neighboring elements of the
triangulation which are directly connected to the interface. Thus, we
implicitly use the finite element functions as extension operator into
the subdomain. Therefore, we do not need to explicitly define discrete
extension operators which correspond to R and Ri.

The finite element spaces for the pressure are given by:

Qh
i = {qh

i ∈ C(Ωi) : qh
i |K ∈ P1(K), ∀K ∈ Th,i} ⊂ L2(Ωi),

Qh
i,0 = {qh

i ∈ Qh
i : qh

i ∈ L2
0(Ωi)} ⊂ L2

0(Ω),

Qh = {qh ∈ L2(Ω) : qh|Ωi ∈ Qh
i } ⊂ L2(Ω).

We use the bilinear forms ai(·, ·), bi(·, ·) and ci(·, ·) and the linear
forms f̃i(·) and fi(·) as defined before in Section 2.4.4.
Remark. As before we use the following notation for sake of better
readability,:

• vh
Γi

:= vh
Γ|Γi ∈ Vh

Γi
denotes the restriction of vh

Γ ∈ Vh
Γ,

• uh
Di

= uh
D|Ωi ∈ V̂i

h
the restriction of uh

D ∈ Vh,

• qh
Ωi

:= qh
Ω|Ωi the restriction of qh

Ω ∈ D(Ω) with qh
Ωi

= const ,

• q̃h
Ωi

:= q̃h
Ω|Ωi the restriction of q̃h

Ω ∈ D(Ω) with q̃h
Ωi

= const ,

• q̂h
Ωi

:= q̂h
Ω|Ωi the restriction of q̂h

Ω ∈ D(Ω) with q̂h
Ωi

= const .

Remark. We do not give a finite element formulation for the globally
coupled formulations (2.19), (2.20) and (2.21). They can be derived
analogously as depicted in the next subsection for the decoupled
subdomain formulations and coupling conditions.

2.5.2 Decoupled Finite Element Formulation

Using these definitions, we discretize the s decoupled subdomain weak
formulations and the system of coupling conditions on the interface
for SWF (2.22,2.23), AWF (2.25,2.26) and OWF (2.27,2.29,2.30). We refer
to this step as the third main step of the derivation of the domain
decomposition method. This step is depicted in Fig. 8 for the case in
which we only assume inhomogeneous boundary conditions.

Standard Weak Formulation (SWF)

For given uh
Γ ∈ Vh

Γ, we get the following finite element formulation
for the decoupled subdomain problems: For each subdomain Ωi
(i = 1, . . . , s), find uh

i ∈ Vh
i,0 and p̃h

i ∈ Qh
i,0 such that

ai(uh
i , vh

i) + bi(vh
i , p̃h

i) = f̃i(vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i), (2.32a)

2.5 discretization based on a finite element method 37

bi(uh
i , q̃h

i) = −bi(uh
Di

, q̃h
i)− bi(uh

Γi
, q̃h

i) (2.32b)

for all vh
i ∈ Vh

i,0 and q̃h
i ∈ Qh

i,0.
The finite element formulation of the coupling condition reads: Find

uΓ ∈ Vh
Γ and p̃h

Ω ∈ D̃(Ω) such that

s

∑
i=1

(
ai(uh

i , vh
Γi
) + bi(vh

Γi
, p̃h

i)
)
+

+a(uh
Γ, vh

Γ) + b(vh
Γ, p̃h

Ω) = f̃ (vh
Γ)− a(uh

D, vh
Γ), (2.33a)

b(uh
Γ, q̃h

Ω) = −b(uh
D, q̃h

Ω) (2.33b)

for all vh
Γ ∈ Vh

Γ and qh
Ω ∈ D̃(Ω), where uh

i ∈ Vh
i,0 and p̃h

i ∈ Qh
i,0 solve

(2.32).

Alternative Weak Formulation (AWF)

In correspondence to the local alternative weak formulation (2.25), the
local finite element formulations are given by:

For given uh
Γ ∈ Vh

Γ, find for each subdomain Ωi (i = 1, . . . , s)
uh

i ∈ Vh
i,0, ph

i ∈ Qh
i and ηh

i ∈ R such that

ai(uh
i , vh

i) + bi(vh
i , ph

i) = f̃i(vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i), (2.34a)

bi(uh
i , qh

i) + ci(η
h
i , qh

i) =− bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i), (2.34b)

ci(ξ
h
i , ph

i) = 0 (2.34c)

for all vh
i ∈ Vh

i,0, qh
i ∈ Qh

i and ξh
i ∈ R.

The finite element formulation for the coupling condition are given
as follows: Find uΓ ∈ Vh

Γ, p̂h
Ω ∈ D̂(Ω) and ηh ∈ R such that

s

∑
i=1

(
ai(uh

i , vh
Γi
) + bi(vh

Γi
, ph

i)
)
+

+a(uh
Γ, vh

Γ) + b(vh
Γ, ph

Ω) = f̃ (vh
Γ)− a(uh

D, vh
Γ), (2.35a)

b(uh
Γ, qh

Ω) + c(ηh, qh
Ω) = −b(uh

D, qh
Ω), (2.35b)

c(ξh, ph
Ω) = 0 (2.35c)

for all vh
Γ ∈ Vh

Γ, qh
Ω ∈ D(Ω) and ξh ∈ R, where uh

i ∈ Vh
i,0 and ph

i ∈ Qh
i

are solutions of (2.34).

Outflow Weak Formulation (OWF)

In the outflow case, see also Fig. 9, we get analogously two different
local finite element formulations depending on the subdomain type

38 domain decomposition method for the oseen equations

Figure 9: This figure corresponds to the third main step of the derivation.
It shows a triangulation of the subdomains and the local and
global skeleton for the case with mixed outflow and Dirichlet
boundary conditions. In difference to the case with inhomogeneous
Dirichlet boundary conditions, we also obtain degrees of freedom
on the outflow boundary whereas on the inhomogeneous Dirichlet
boundary, we fix the values on that boundary to the given data d
such that they are not treated as degrees of freedom.

for given uh
Γ ∈ Vh

Γ. For an outflow subdomain, find uh
i ∈ Vh

i , ph
i ∈ Qh

i
(i ∈ N) such that

ai(uh
i , vh

i) + bi(vh
i , ph

i) = fi(vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i), (2.36a)

bi(uh
i , qh

i) =− bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i) (2.36b)

for all vh
i ∈ Vh

i and qh
i ∈ Qh

i .
For the other non-outflow subdomains, find uh

i ∈ Vh
i , ph

i ∈ Qh
i ,

ηh
i ∈ R (i /∈ N) such that

ai(uh
i , vh

i) + bi(vh
i , ph

i) = fi(vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i), (2.37a)

bi(uh
i , qh

i) + ci(η
h
i , qh

i) =− bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i), (2.37b)

ci(ξ
h
i , ph

i) =0 (2.37c)

for all vh
i ∈ Vh

i , qh
i ∈ Qh

i and ξh
i ∈ R.

The finite element formulation of the coupling condition reads: Find
uΓ ∈ Vh

Γ, ph
Ω ∈ D(Ω) such that

s

∑
i=1

(
ai(uh

i , vh
Γi
) + bi(vh

Γi
, ph

i)
)
+

+a(uh
Γ, vh

Γ) + b(vh
Γ, ph

Ω) = f (vh
Γ)− a(uh

D, vh
Γ), (2.38a)

b(uh
Γ, qh

Ω) = −b(uh
D, qh

Ω) (2.38b)

for all vh
Γ ∈ Vh

Γ and qh
Ω ∈ D(Ω). uh

i ∈ Vh
i and ph

i ∈ Qh
i solve (2.36) and

(2.37), respectively.

2.6 algebraic formulation 39

2.6 algebraic formulation

Based on the finite element discretization, we now derive the result-
ing global linear systems as well as the Schur-complement equations
which corresponds to the last main step. The global system is the alge-
braic counterpart to the still coupled weak formulation on subdomains,
while the Schur-complement equation is the algebraic counterpart of
the coupling conditions on the skeleton Γ [46, 56].

2.6.1 Algebraic Formulation for the Velocity

In this subsection, we derive the algebraic representation for the veloc-
ity and the bilinear form ai(·, ·). First, let ψj ∈ Vh

i,0 (j = 1, . . . , nvi) and
ψj ∈ Vh

Γi
(j = 1, . . . , nvΓi

) be the piecewise quadratic basis functions
for the velocity, such that

Vh
i,0 = span

{
ψj : j = 1, . . . , nvi

}
,

Vh
Γi
= span

{
ψj : j = 1, . . . , nΓi

}
,

respectively. nvi denotes the number of degrees of freedom of the
velocity components in Ωi. nvΓ and nvΓi

denote the numbers of de-
grees of freedom of the velocity components on Γ and Γi, respectively.
Second, we define a restriction matrix RΓi ∈ {0, 1}nvΓi

×nvΓ that restricts
degrees of freedom of the velocity on the global skeleton Γ on the
local skeletons Γi and a restriction matrix RDi ∈ {0, 1}nvDi

×nvD that re-
stricts the degrees of freedom on the global Dirichlet boundary to the
corresponding subdomain boundary. nvD and nvDi

are the numbers of
degrees of freedom for the velocity on the global Dirichlet boundary
and corresponding local Dirichlet boundary.

Using the basis functions ψl , we define the following block matrices
and their entries related to the bilinear form ai(·, ·).

(A)kl = ai(ψl , ψk) = µ
∫

Ωi

∇ψl : ∇ψk dx +
∫

Ωi

((a ·∇)ψl)ψk dx :

Aii ∈ Rnvi×nvi (A)kl k, l = 1, . . . , nvi ,

AiΓi ∈ R
nvi×nvΓi (A)kl k = 1, . . . , nvi , l = 1, . . . , nvΓi

AΓii ∈ R
nvΓi
×nvi (A)kl k = 1, . . . , nvΓi

, l = 1, . . . , nvi ,

AΓiΓi ∈ R
nvΓi
×nvΓi (A)kl k, l = 1, . . . , nvΓi

,

AΓΓ ∈ RnvΓ×nvΓ AΓΓ = ∑s
i=1 RT

Γi
AΓiΓi RΓi

AiDi ∈ R
nvi×nvDi (A)kl k = 1, . . . , nvi , l = 1, . . . , nvDi

,

AΓi Di ∈ R
nvΓi
×nvDi (A)kl k = 1, . . . , nvΓi

, l = 1, . . . , nvDi
,

AΓD ∈ RnvΓ×nvD AΓD = ∑s
i=1 RT

Di
AΓi Di RDi .

40 domain decomposition method for the oseen equations

Furthermore, we define the following finite element functions for the
velocity and the coefficient vectors:

uh
i (x) =

nvi

∑
j=1

ujψj(x) ui = (u1, . . . , unvi
)T ∈ Rnvi ,

uh
Γ(x) =

nvΓ

∑
j=1

ujψj(x) uΓ = (u1, . . . , unvΓ
)T ∈ RnvΓ ,

uh
Γi
(x) =

nvΓi

∑
j=1

ujψj(x) uΓi = (u1, . . . , unvΓi
)T ∈ R

nvΓi ,

uh
Di
(x) =

nvDi

∑
j=1

ujψj(x) uDi = (u1, . . . , unvDi
)T ∈ R

nvDi .

uh
D(x) =

nvD

∑
j=1

ujψj(x) uD = (u1, . . . , unvD
)T ∈ RnvD .

2.6.2 Algebraic Formulation for the Pressure

Next, we derive the algebraic representation for the pressure. Let
nqi denote the number of degrees of freedom of the pressure. Let ϕj,
j = 1, . . . , nqi , be the standard piecewise linear basis functions for the
pressure such that

Qh
i = span

{
ϕj : j = 1, . . . , nqi

}
.

We call them “standard”, due to the fact that they fulfill the two
following characteristics:

First, these linear basis functions satisfy

nqi

∑
j=1

ϕj = 1. (2.39)

Second, it holds

ϕj(xk) = δjk =

1 if j = k,

0 if j 6= k.

δjk is known as the Kronecker delta.
We note that the space L2

0(Ω) fulfills a normalization condition
with respect to L2(Ω). We can transfer this observation to make a
statement about the dimension of the corresponding discrete finite
element spaces Qh

i and Qh
i,0: The dimension of the space Qh

i,0 is nqi − 1.

2.6 algebraic formulation 41

Let ϕ̃j, j = 1, . . . , (nqi − 1), be the piecewise linear basis functions for
the pressure such that

Qh
i,0 = span

{
ϕ̃j : j = 1, . . . , (nqi − 1)

}
.

Note that ϕ̃j are not the standard piecewise linear basis functions. For
these, it holds that ∫

Ωi

ϕ̃jdx = 0 .

Let ϕ̂Ωj , j = 1, . . . , s, be basis functions for the global pressure space
D̂(Ω) such that

D̂(Ω) = span
{

ϕ̂Ωj : j = 1, . . . , s
}

.

Note that each basis function ϕ̂Ωj can be represented by a constant per
subdomain Ωj and zero on the other subdomains. The same observa-
tion about the dimension of Qh

i and Qh
i,0 can be made for the global

spaces D̂(Ω) and D̃(Ω). The dimension of D̃(Ω) is consequently
s− 1.

Furthermore, let ϕ̃Ωj , j = 1, . . . , (s− 1), be basis functions that span
the global pressure space D̃(Ω):

D̃(Ω) = span
{

ϕ̃Ωj : j = 1, . . . , (s− 1)
}

.

Let ϕΩj be the basis functions for the global pressure space D(Ω) such
that

D(Ω) = span
{

ϕΩj : j /∈ N
}

.

The dimension of the space D(Ω) equals the number of non-outflow
subdomains. Again, note that each basis function ϕΩj can be repre-
sented by a constant on a non-outflow subdomain and zero on the
other subdomains.

We define the following matrices related to the bilinear forms bi(·, ·)
and b(·, ·), and their entries for the SWF using the basis functions ϕ̃j
and ϕ̃Ωj :

(B̃)kl = bi(ψl , ϕ̃k) = −
∫

Ωi

∇ ·ψl ϕ̃kdx,

(B̃0)kl = b(ψl , ϕ̃Ωk) = −
∫

Ω
∇ ·ψl ϕ̃Ωk dx :

42 domain decomposition method for the oseen equations

B̃ii ∈ R(nqi−1)×nvi (B̃)kl k = 1, . . . , (nqi − 1), l = 1, . . . , nvi ,

B̃iΓi ∈ R
(nqi−1)×nvΓi (B̃)kl k = 1, . . . , (nqi − 1), l = 1, . . . , nvΓi

,

B̃iDi ∈ R
(nqi−1)×nvDi (B̃)kl k = 1, . . . , (nqi − 1), l = 1, . . . , nvDi

,

B̃0 ∈ R(s−1)×nvΓ (B̃0)kl k = 1, . . . , (s− 1), l = 1, . . . , nΓi ,

B̃0D ∈ R(s−1)×nvD (B̃0)kl k = 1, . . . , (s− 1), l = 1, . . . , nvD .

We define the following matrices related to the bilinear forms bi(·, ·)
and b(·, ·), and their entries for the AWF and OWF using basis func-
tions ϕj, ϕΩj and ϕ̂Ωj . Let sN = s− |N | denote the number of subdo-
mains, which are non-outflow subdomains.

(B)kl = bi(ψl , ϕk) = −
∫

Ωi

∇ ·ψl ϕkdx,

(B0)kl = b(ψl , ϕΩk) = −
∫

Ω
∇ ·ψl ϕΩk dx,

(B̂0)kl = b(ψl , ϕ̂Ωk) = −
∫

Ω
∇ ·ψl ϕ̂Ωk dx :

Bii ∈ Rnqi×nvi (B)kl k = 1, . . . , nqi , l = 1, . . . , nvi ,

BiΓi ∈ R
nqi×nvΓi (B)kl k = 1, . . . , nqi , l = 1, . . . , nvΓi

,

BiDi ∈ R
nqi×nvDi (B)kl k = 1, . . . , nqi , l = 1, . . . , nvDi

,

B̂0 ∈ Rs×nvΓ (B̂0)kl k = 1, . . . , s, l = 1, . . . , nΓ,

B̂0D ∈ Rs×nvD (B̂0)kl k = 1, . . . , s, l = 1, . . . , nvD ,

B0 ∈ RsN×nvΓ (B0)kl k = 1, . . . , sN , l = 1, . . . , nΓ,

B0D ∈ RsN×nvD (B0)kl k = 1, . . . , sN , l = 1, . . . , nvD .

Furthermore, we define the following matrices related to the bilinear
forms ci(·, ·) and c(·, ·) and their entries:

ci ∈ Rnqi×1 (ci)k = ci(
1
|Ωi | , ϕk) =

1
|Ωi |
∫

Ωi
ϕkdx k = 1, . . . , nqi ,

c0 ∈ Rs×1 (c0)k = c(1, ϕΩk) =
∫

Ω ϕΩk dx k = 1, . . . , s,

where we choose ηi =
1
|Ωi | and η = 1. Then it holds

nqi

∑
k=1

(ci)k = 1. (2.40)

We define the following finite element functions for the pressure and
the coefficient vectors:

p̃h
i (x) =

nqi−1

∑
j=1

pj ϕ̃j(x) p̃i = (p1, . . . , pnqi−1)
T ∈ Rnqi−1,

2.6 algebraic formulation 43

p̃h
Ω(x) =

s−1

∑
j=1

pΩj ϕ̃Ωj(x) p̃Ω = (pΩ1 , . . . , pΩs−1)
T ∈ Rs−1,

ph
i (x) =

nqi

∑
j=1

pj ϕj(x) pi = (p1, . . . , pnqi
)T ∈ Rnqi ,

p̂h
Ω(x) =

s

∑
j=1

pΩj ϕ̂Ωj(x) p̂Ω = (pΩ1 , . . . , pΩs)
T ∈ Rs,

ph
Ω(x) = ∑

j/∈N
pΩj ϕΩj(x) pΩ = (pΩ1 , . . . , pΩsN

)T ∈ RsN .

Furthermore, we define restriction matrices R̃Ωi ∈ {0, 1}1×(s−1), R̂Ωi ∈
{0, 1}1×s and RΩi ∈ {0, 1}1×sΩi that restrict the global pressure variable
from Ω to the corresponding subdomain Ωi.

Remark. The right hand sides f h
i (x), f̃ h

i (x), f h
Γ (x) and f̃ h

Γ as well as the
coefficient vectors fi, f̃i, fΓ and f̃Γ are defined analogously.

2.6.2.1 Relationship between SWF and AWF

Now, we have a closer look on the relation between the finite element
spaces Qh

i and Qh
i,0 for each subdomain Ωi. First, we establish a

relationship between piecewise linear basis functions ϕj and ϕ̃j by
constructing ϕ̃j in the following way:

ϕ̃j :=ϕj −
1
|Ωi|

∫
Ωi

ϕj dx = ϕj − (ci)j j = 1, . . . , nqi . (2.41)

Then we can easily check that

∫
Ωi

ϕ̃jdx = 0 j = 1, . . . , nqi .

Hence, it holds that

nqi

∑
j=1

ϕ̃j =

nqi

∑
j=1

ϕj︸ ︷︷ ︸
=1,(2.39)

−
nqi

∑
j=1

(ci)j︸ ︷︷ ︸
=1,(2.40)

= 0,

which shows that the nqi functions ϕ̃j are linearly dependent. This
also demonstrates that the dimension of Qh

i,0 is less than nqi .
Next, we consider the relation based on the matrices. Using integra-

tion by parts and that ψh
k ∈ Vh

i,0, we can show that rows of the matrix
Bii are linearly dependent (k = 1, . . . , nvi):

nqi

∑
j=1

(Bii)jk = −
nqi

∑
j=1

∫
Ωi

∇ ·ψk(x) ϕjdx

44 domain decomposition method for the oseen equations

= −
∫

Ωi

∇ ·ψk(x)
nqi

∑
j=1

ϕj︸ ︷︷ ︸
=1,(2.39)

dx

= −
∫

Ωi

∇ ·ψk(x)dx

= −
∫

∂Ωi

ψk(x) · n(x)dx︸ ︷︷ ︸
=0, ψk(x)∈Vh

i,0

+
∫

Ωi

ψk(x) ·∇1dx︸ ︷︷ ︸
=0,∇1=0

= 0. (2.42)

We expected this behavior, since the pressure is not uniquely deter-
mined in L2(Ω), but in L2

0(Ω). However, the matrix Bii discretizes
the space L2(Ω). Therefore, when using the standard linear basis
functions ϕj, we introduced the Lagrange parameter ηi.

Now, we show how the matrices Bii and B̃ii are related, when
constructing ϕ̃j as shown before, see (2.41):

(B̃ii)jk = −
∫

Ωi

∇ ·ψk(x)ϕ̃jdx

= −
∫

Ωi

∇ ·ψk(x)(ϕj − (ci)j)dx

= −
∫

Ωi

∇ ·ψk(x)ϕjdx + (ci)j

∫
Ωi

∇ ·ψkdx︸ ︷︷ ︸
=0,(2.42)

= −
∫

Ωi

∇ ·ψk(x)ϕjdx

= (Bii)jk j = 1, . . . , (nqi − 1), k = 1, . . . , nvi .

Last, we study the relationship between ph
i (x) and p̃h

i (x). Using the
construction (2.41), we see that

p̃h
i (x) =

(nqi−1)

∑
j=1

p̃j ϕ̃j(x) =
(nqi−1)

∑
j=1

p̃j ϕj(x)−
(nqi−1)

∑
j=1

p̃j(ci)j (2.43)

Using ϕnqi
= 1−∑

(nqi−1)
j=1 ϕj, we can show that

ph
i (x) =

nqi

∑
j=1

pj ϕj(x) =
(nqi−1)

∑
j=1

pj ϕj(x) + pnqi
ϕnqi

=

(nqi−1)

∑
j=1

pj ϕj(x) + pnqi
(1−

(nqi−1)

∑
j=1

ϕj) (2.44)

2.6 algebraic formulation 45

=

(nqi−1)

∑
j=1

(pj − pnqi
)︸ ︷︷ ︸

=: p̃j

ϕj(x) + pnqi
.

Hence, we see that
{

ϕ1, . . . , ϕ(nqi−1), 1
}

is a basis of Qh
i . Then (2.43)

and (2.44) imply

pnqi
= −

(nqi−1)

∑
j=1

p̃j(ci)j,

pj = p̃j + pnqi
.

2.6.3 Global Linear Systems and Schur-complement Equations

Using the definitions of the Sections 2.6.1 and 2.6.2, we discuss
the global linear system for the Oseen equations and the Schur-
complement equations for the three different cases SWF, AWF and
OWF. Furthermore, we give an interpretation of the different terms
occurring in the Schur-complement equation.

Remark. For better readability, we omit the restriction matrices RΓi (R̃Ωi ,
RΩi , and R̂Ωi) needed when applying AiΓi (B̃iΓi , and BiΓi , respectively)
to uΓ (p̃Ω, pΩ, and p̂Ω) as well as the projection matrices RT

Γi
(R̃T

Ωi
,

RT
Ωi

, and R̂T
Ωi

) needed when applying AΓii (B̃T
iΓi

, and BT
iΓi

) to uΓ (p̃Ω,
pΩ, and p̂Ω).

Standard Weak Formulation (SWF)

In this subsection, we describe the global linear system and Schur-
complement equation representing the Oseen equations based on the
SWF. Even though the standard formulation is used, nonstandard
finite element basis function are needed.

For two subdomains, we get the following global linear system,
which corresponds to the finite element formulation of (2.19):

A11 B̃T
11 0 0 A1Γ1 0

B̃11 0 0 0 B̃1Γ1 0

0 0 A22 B̃T
22 A2Γ2 0

0 0 B̃22 0 B̃2Γ2 0

AΓ11 B̃T
1Γ1

AΓ22 B̃T
2Γ2

AΓΓ B̃T
0

0 0 0 0 B̃0 0





u1

p̃1

u2

p̃2

uΓ

p̃Ω


=



f̃1 −A1D1 uD1

−B̃1D1 uD1

f̃2 −A2D2 uD2

−B̃2D2 uD2

f̃Γ −AΓDuD

−B̃0DuD


.

We

can reduce the global problem to a Schur-complement equation be-
cause the local block matrices (with the subindex ·ii) are invertible.

46 domain decomposition method for the oseen equations

Firstly, we define the Schur-complement matrix S̃:

S̃ :=

(
AΓΓ B̃T

0

B̃0 0

)
−

s

∑
i=1

(
AΓii B̃T

iΓi

0 0

)(
Aii B̃T

ii

B̃ii 0

)−1(
AiΓi 0

B̃iΓi 0

)
︸ ︷︷ ︸

:=L1
(2.45)

Secondly, we define the right hand side r̃:

r̃ : =

(
f̃Γ −AΓDuD

−B̃0DuD

)
−

s

∑
i=1

 AΓi i B̃T
iΓi

0 0

(Aii B̃T
ii

B̃ii 0

)−1(
f̃i −AiDi uDi

−B̃iDi uDi

)
︸ ︷︷ ︸

:=L2
(2.46)

These definitions yield the Schur-complement equation, which alge-
braically represents the coupling on the skeleton (2.33)

S̃(uΓ, p̃Ω) = r̃.

The subproblems L1 and L2, which we introduced in the definition of
(2.45) and (2.46), can be interpreted as solving local Oseen problems
on the subdomains.

L1 solve :

(
Aii B̃T

ii

B̃ii 0

)(
ui

p̃i

)
=

(
−AiΓuΓi

−B̃iΓi uΓi

)
.

L1 solves a local Oseen problem with Dirichlet data. For inner sub-
domains, the Dirichlet data is set to uΓi on the local skeleton Γi. For
subdomains intersecting the global boundary, i.e. where ∂Ωi ∩ ∂Ω 6= ∅
holds, the Dirichlet data on the global boundary is set to zero, whereas
on the local skeleton Γi, the Dirichlet data is set to uΓi .

L2 solve :

(
Aii B̃T

ii

B̃ii 0

)(
ui

pi

)
=

(
f̃i −AiDi uDi

−B̃iDi uDi

)
.

L2 also solves a local Oseen problem with Dirichlet data. For inner
subdomains, a homogeneous Dirichlet boundary problem is solved.
For subdomains intersecting the global boundary, the Dirichlet data
on the global boundary is set to uDi , whereas on the local skeleton Γi,
the Dirichlet data is zero.

Adding up L1 and L2 leads to

L1 + L2 solve :

(
Aii B̃T

ii

B̃ii 0

)(
ui

p̃i

)
=

(
fi −AiDi uDi −AiΓuΓi

−B̃iDi uDi − B̃iΓi uΓi

)
,

which is the algebraic representation of the local decoupled subprob-
lems on the subdomain Ωi (2.32).

2.6 algebraic formulation 47

Remark. The local subdomain problem L1 is solved when computing
r̃. L2 is solved when we apply the Schur-complement operator S̃ to a
skeleton vector (uΓ, p̃Ω)

T. We see that L1 and L2 are independent of
p̃Ω.

Alternative Weak Formulation (AWF)

Analogously, we describe the global linear system and derive the
Schur-complement equation for the Oseen equations based on the
AWF. For an example with two subdomains, the global linear system
which corresponds to the finite element formulation of (2.20) yields:

A11 B̃T
11 0 0 A1Γ 0 0

B̃11 0 0 0 B̃1Γ 0 0

0 0 A22 B̃T
22 A2Γ 0 0

0 0 B̃22 0 B̃2Γ 0 0

AΓ1 B̃T
1Γ AΓ2 B̃T

2Γ AΓΓ B̂T
0 0

0 0 0 0 B̂0 0 c0

0 0 0 0 0 cT
0 0





u1

p1

u2

p2

uΓ

pΩ

η0


=



f̃1 −A1D1 uD1

−B1D1 uD1

f̃2 −A2D2 uD2

−B2D2 uD2

f̃Γ −AΓDuD

−B0DuD

0


.

Due to the fact that the local block matrices (with the subindex
·ii) of the global matrix are invertible, we can analogously reduce
the global problem to a Schur-complement equation. We define the
Schur-complement matrix Ŝ:

Ŝ :=

 AΓΓ B̂T
0 0

B̂0 0 c0

0 cT
0 0

 (2.47)

−
s

∑
i=1

 AΓii BT
iΓi

0 0

0 0


(

Aii B̃T
ii

B̃ii 0

)−1(
AiΓi 0 0

BiΓi 0 0

)
︸ ︷︷ ︸

:=L1

.

Since we know that we can equivalently reformulate the decoupled
local problems with an alternative local formulation, we define a
second variant of the Schur-complement operator. We implemented
this second variant.

Ŝ :=

 AΓΓ BT
0 0

B0 0 c0

0 cT
0 0



48 domain decomposition method for the oseen equations

−
s

∑
i=1

 AΓii BT
iΓi

0

0 0 0

0 0 0


 Aii BT

ii 0

Bii 0 ci

0 cT
i 0


−1 AiΓi 0 0

BiΓi 0 0

0 0 0


︸ ︷︷ ︸

:=L1

.

For the right hand side r̂, we directly define the variant based on the
alternative formulation:

r̂ : =

 fΓ −AΓDuD

−B0DuD

0



−
s

∑
i=1

 AΓii BT
iΓi

0

0 0 0

0 0 0


 Aii BT

ii 0

Bii 0 ci

0 cT
i 0


−1 fi −AiDi uDi

−BiDi uDi

0


︸ ︷︷ ︸

:=L2

.

Using these definition, it gives the Schur-complement equation, which
as before represents algebraically the coupling on the skeleton (2.35):

Ŝ(uΓ, pΩ) = r̂,

Analogously to the SWF, the subproblems L1 and L2 can be interpreted
as solving local Oseen problems on the subdomains and adding up
L1 and L2 is the algebraic representation of the local decoupled sub-
problems on the subdomain Ωi (2.34). Similarly, the local subdomain
problems L1 and L2, which are solved when computing the right
hand side r̃ and when applying the Schur-complement operator Ŝ
to a skeleton vector (uΓ, p̂Ω)

T, are independent of p̂Ω. Furthermore,
the skeleton vector is independent of ηi, which is only used locally to
guarantee that ph

i ∈ L2
0(Ωi).

Outflow Weak Formulation (OWF)

Now, we derive the global linear system for the Oseen equation with
outflow boundary based on the OWF. Then, we discuss the corre-
sponding Schur-complement equation. For an example with two

2.6 algebraic formulation 49

subdomains assuming that 1 /∈ N and that 2 ∈ N , we obtain the
following global system:

A11 B̃T
11 0 0 A1Γ 0

B̃11 0 0 0 B̃1Γ 0

0 0 A22 BT
22 A2Γ 0

0 0 B22 0 B2Γ 0

AΓ1 B̃T
1Γ AΓ2 BT

2Γ AΓΓ BT
0

0 0 0 0 B0 0





u1

p1

u2

p2

uΓ

pΩ


=



f1 −A1D1 uD1

−B1D1 uD1

f2 −A2D2 uD2

−B2D2 uD2

fΓ −AΓDuD

−B0DuD


.

Analogously to the case with inhomogeneous boundary conditions the
local block matrices (with subindex ·ii) are invertible. Consequently,
we can reduce the global problem to a Schur-complement equation.
We define the Schur-complement matrix S as:

S :=

(
AΓΓ BT

0

B0 0

)
− ∑

i∈N

(
AΓii BT

iΓi

0 0

)(
Aii BT

ii

Bii 0

)−1(
AiΓi 0

BiΓi 0

)

− ∑
i/∈N

(
AΓii BT

iΓi

0 0

)(
Aii B̃T

ii

B̃ii 0

)−1(
AiΓi 0

BiΓi 0

)
.

Knowing that we can reformulate the decoupled subproblems equiva-
lently with an alternative formulation, we define a second equivalent
variant of the Schur-complement operator S:

S :=

(
AΓΓ BT

0

B0 0

)
− ∑

i∈N

(
AΓii BT

iΓi

0 0

)(
Aii BT

ii

Bii 0

)−1(
AiΓi 0

BiΓi 0

)
︸ ︷︷ ︸

:=L1

(2.48)

− ∑
i/∈N

(
AΓii BT

iΓi
0

0 0 0

) Aii BT
ii 0

Bii 0 ci

0 cT
i 0


−1 AiΓi 0

BiΓi 0

0 0


︸ ︷︷ ︸

:=L2

.

We define the right hand side r, directly using the alternative formula-
tion:

50 domain decomposition method for the oseen equations

r̂ :=

(
fΓ −AΓDuD

−B0DuD

)
− ∑

i∈N

 AΓi i BT
iΓi

0 0

(Aii BT
ii

Bii 0

)−1(
fi −AiDi uDi

−BiDi uDi

)
︸ ︷︷ ︸

:=L3

(2.49)

− ∑
i/∈N

 AΓi i BT
iΓi

0

0 0 0


 Aii BT

ii 0

Bii 0 ci

0 cT
i 0


−1 fi −AiDi uDi

−BiDi uDi

0


︸ ︷︷ ︸

:=L4

.

These definitions (2.48, 2.49) yield the Schur-complement equation:

S(uΓ, pΩ) = r,

which represents algebraically the coupling on the skeleton (2.38).
Analogously to the SWF and the AWF the subproblems L2 and L4

can be interpreted as solving local Oseen problems with inhomoge-
neous boundary conditions. L1 and L3 can be interpreted as solving
local Oseen problems with mixed outflow and Dirichlet boundary
conditions.

L1 solve :

(
Aii BT

ii

Bii 0

)(
ui

pi

)
=

(
−AiΓuΓi

−BiΓi uΓi

)
.

L1 solves a local Oseen problem with Dirichlet data uΓi on the lo-
cal skeleton Γi, natural outflow conditions on ∂Ωi ∩ ∂Ωout and zero
Dirichlet boundary condition on ∂Ωi ∩ ∂ΩD.

L3 solve :

(
Aii BT

ii

Bii 0

)(
ui

pi

)
=

(
fi −AiDuD

−BiDuD

)

L3 solves a local Oseen problem with Dirichlet data and outflow
boundary conditions. On the local skeleton Γi, zero Dirichlet boundary
data is set. On ∂Ωi ∩ ∂Ωout the outflow conditions hold and on ∂Ωi ∩
∂ΩD the Dirichlet data is set to uDi . Adding up L1 and L3 leads to

L1 + L3 solve :

(
Aii BT

ii

Bii 0

)(
ui

pi

)
=

(
fi −AiDi uDi −AiΓuΓi

−BiDi uDi − BiΓi uΓi

)
,

which is the algebraic representation of the local decoupled subprob-
lems on outflow subdomains Ωi (2.36).

Similarly to the case of SWF and AWF, adding up L2 and L4 leads
to the algebraic representation of the local decoupled subproblems on
non-outflow subdomain Ωi (2.37).

Remark. The local subproblems L1 and L3 are solved when computing
the right hand side r. L2 and L4 are solved when applying the Schur-

2.6 algebraic formulation 51

complement operator. The four problems do not depend on the global
pressure variable pΩ. The coupling vector (uΓ, pΩ) does also not
depend on the local Lagrange parameter ηi.

2.6.4 General Operator

In Chapter 6, we derive a solution algorithm for the Schur-complement
equations as well as for the global linear systems, which is indepen-
dent of the model problem. Therefore, we introduce a generalized
operator, which enables us to treat all model problems with a local
and global saddle point structure at a time. The general operator
matrix corresponds to a subdomain Ωi and is based on the defined
block matrices used in the global linear system. Note that we do not
refer to the alternative formulations for the general operator matrix.

On non-outflow subdomains, the general operator matrix Ki is
defined as:

Ki =


Aii B̃T

ii AiΓi 0

B̃ii 0 B̃iΓi 0

AΓii B̃T
iΓi

AΓiΓi BT
0,i

0 0 B0,i 0

 :=


Aii BT

ii AiΓi 0

Bii 0 BiΓi 0

AΓii BT
Γii
AΓiΓi BT

Ωi

0 0 BΩi 0


The upper left block is referred to the local saddle point structure. The
lower right block is the local part of the global saddle point structure.

Remark. This definitions also holds for the SWF and AWF replacing
the block matrices B0 with the corresponding definition B̃0 or B̂0,
respectively.

For outflow subdomains, we get a similar definition. We only have
to replace all submatrices of B̃ with the corresponding submatrices of
B.

summary

In this chapter, we derived a non-overlapping domain decomposition
method for the Oseen equations. By applying the domain decom-
position approach on the continuous level, it directly yields local
problems of the same structure as the global problem. We focused
on the treatment of the saddle point structure which characterizes
all flow problems treated in this work. Furthermore, we outlined the
difference between inhomogeneous Dirichlet and mixed outflow and
Dirichlet boundary conditions. This chapter lays down the mathemat-
ical foundation for the forthcoming chapters in which more complex
model problems are considered.

3
D O M A I N D E C O M P O S I T I O N M E T H O D F O R A N
O P T I M A L C O N T R O L P R O B L E M S C O N S T R A I N E D
B Y T H E O S E E N E Q U AT I O N S

As a next step of our aim to derive a domain decomposition method
for a non-linear optimal control problem, we consider a linear optimal
control problem constrained by the Oseen equations. We use this
model problem to emphasize how to extend the non-overlapping do-
main decomposition approach to the context of optimal flow control
problems. In this chapter, we assume distributed or boundary control
for the optimal flow control model problem. The Oseen equations
are equipped with mixed outflow and Dirichlet boundary conditions.
Analogously to the previous chapter, we derive the domain decompo-
sition method based on the four main steps described in Chapter 2.
The chapter is based on ideas presented in [25? , 27, 44]. If not stated
differently, we use the same definitions, notation and assumptions as
in the previous Chapter 2.

3.1 general definitions

Let Ω0, ΩC ⊆ Ω ⊂ Rd be Lipschitz domains. For simplification in the
notation, we define the indicator functions

1ΩC : Ω→ {0, 1}, 1ΩC(x) =

1 if x ∈ ΩC

0 if x /∈ ΩC

,

1Ω0 : Ω→ {0, 1}, 1Ω0(x) =

1 if x ∈ Ω0

0 if x /∈ Ω0

.

As in the previous chapter, we decompose the boundary ∂Ω = ∂Ωout ∪
∂ΩD with ∂ΩD ∩ ∂Ωout = ∅.

3.2 distributed optimal control problem

In the first main step, we introduce the global problem in strong and
weak form analogously to Chapter 2. Since we now look at an optimal

53

54 ddm for optimal control problem constrained by oseen

Figure 10: This figure corresponds to the first main step of the derivation of
the domain decomposition method and shows exemplary a global
domain for which the boundary is split into ∂ΩD and ∂Ωout. On
∂ΩD, we apply inhomogeneous Dirichlet boundary conditions and
on ∂Ωout outflow boundary conditions. The distributed control is
applied on the subdomain ΩC ⊂ Ω. A desired state is given on
the subdomain Ω0.

control problem, we do not apply the domain decomposition directly
to the model problem but to the corresponding optimality system.
This is one main difference when deriving a domain decomposition
method in optimal control. Fig. 10 refers to this first main step.

Under the assumptions (2.11) and given û ∈ L2(Ω0), we want to
solve a linear quadratic optimal control problem. As constraints, we
apply the Oseen equations with mixed outflow and Dirichlet boundary
conditions and we assume distributed control with support on ΩC.
We consider the following optimal control problem:

min
u,c

1
2

∫
Ω0

(u + uD − û)2dx +
α

2

∫
ΩC

c2 dx (3.1a)

subject to (s.t.) (a ·∇)u−∇ · σ(u, p) = f + 1ΩC c in Ω, (3.1b)

∇ · u = 0 in Ω, (3.1c)

u = d on ∂ΩD, (3.1d)

σ(u, p)n = h on ∂Ωout. (3.1e)

In this set-up, û : Ω0 → Rd models the desired state of the velocity
variable u. We consider a tracking type cost functional, i.e. our aim is
to control the velocity u such that the difference between the optimal
solution u∗ for the velocity and the desired state û is minimal, see
also [36, 37]. For the Dirichlet boundary function d ∈ H1/2(∂ΩD),
we again assume that an extension uD ∈ H1(Ω) of d exists such that
γd(uD) = d. Fig. 10 illustrates one possible set up for the domains Ω,
Ω0 and ΩC and the splitting of the global boundary.

Since our aim is to solve the optimal control problem numerically
with a finite element method, we derive a weak formulation. Therefore,
we need some more definitions. In addition to the bilinear and linear
forms used in Chapter 2, we define the following bilinear forms:

3.2 distributed optimal control problem 55

m : L2(Ω)× L2(Ω)→ R, m(u, v) =
∫

Ω
u v dx,

d : L2(Ω)×H1(Ω)→ R, d(c, v) =
∫

Ω
c v dx.

Using these definitions, we obtain the following weak formulation
corresponding to the distributed control problem (3.1). Find u ∈
H1

D(Ω), p ∈ L2(Ω) and c ∈ L2(Ωc) that solve the following linear
quadratic distributed optimal control problem:

min
u,c

1
2

m(1Ω0(u + uD − û), 1Ω0(u + uD − û)) +
α

2
m(1Ωc c, 1Ωc c)

(3.2a)

s.t. a(u, v) + b(v, p)− d(1Ωc c, v) = f (v)− a(uD, v),
(3.2b)

b(u, q) = −b(uD, q) (3.2c)

for all v ∈ H1
D(Ω), q ∈ L2(Ω).

Remark 19. Assuming that (u, p) solve (3.2), the velocity is uniquely
defined since we impose Dirichlet boundary conditions on ∂ΩD. The
pressure is also uniquely defined due to the outflow boundary condi-
tions implied on ∂Ωout. Therefore, no normalization condition must
be imposed for the pressure p. The same arguments hold for the
adjoint velocity z and adjoint pressure r, which we introduce in the
next lemma.

Lemma 20. Under the assumptions that an optimal solution (u, p, c)∗ ∈
H1

D(Ω) × L2(Ω) × L2(Ωc) for (3.2) and Lagrange multipliers (z, r) ∈
H1

D(Ω) × L2(Ω) exist, the optimal solution is a KKT point. (u, p, c)∗

fulfills the necessary optimality conditions described by the KKT conditions
which are given by the following optimality system: Find u, z ∈ H1

D(Ω),
p, r ∈ L2(Ω) and c ∈ L2(Ωc) such that

a(v, z) + b(v, r)−m(1Ω0 u, 1Ω0 v) = −m(1Ω0(û− uD), 1Ω0 v), (3.3a)

b(z, q) = 0, (3.3b)

d(1Ωc e, z) + αm(1Ωc c, 1Ωc e) = 0, (3.3c)

a(u, v) + b(v, p)− d(1Ωc c, v) = f (v)− a(uD, v), (3.3d)

b(u, q) = −b(uD, q) (3.3e)

for all v ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ L2(Ωc).

56 ddm for optimal control problem constrained by oseen

Proof. We apply a Lagrangian based adjoint approach to derive the
optimality system (3.3) [33]. Therefore, we define the Lagrange func-
tion

L(u, p, z, r, c) =
1
2

m(1Ω0(u + uD − û), 1Ω0(u + uD − û))+

+
α

2
m(1Ωc c, 1Ωc c)− a(u, z)− b(z, p) + d(1Ωc c, z)+

+ f (z)− a(uD, z)− b(u, r)− b(uD, r),

and derive a stationary condition, which reads:

∂

∂u
L(u, p, z, r, c) · v =m(1Ω0(u + uD − û), 1Ω0 v)− a(v, z)+,

− b(v, r) = 0
∂

∂p
L(u, p, z, r, c) · q =− b(z, q) = 0,

∂

∂c
L(u, p, z, r, c) · e = αm(1Ωc c, 1Ωc e) + d(1Ωc e, z) = 0

for all v ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ L2(Ωc).

Remark 21. For example, in [23, Chapter 6] or [34, Part III] it is stated
which assumptions need to be made, to assure that an optimal solution
and Lagrange multipliers exist. This remark holds for Lemma 20, 22

and 37.

In Remark 19, we already mentioned the variable z and r and
denoted them by adjoint velocity and adjoint pressure. The name
adjoint is derived from the equations (3.3a) and (3.3b), which are called
adjoint equations. We introduced z and r as Lagrange parameters by
deriving the optimality system via the Lagrange functional. z and r
model the sensitivity with respect to perturbation of the velocity u
and the pressure p.

We derive a non-overlapping domain decomposition method for the
optimality system (3.3).

3.2.1 Strong Interpretation of the Optimality System

Since the strong formulation is easier to read, we formally give a strong
interpretation of the optimality condition and the adjoint equations.

For sufficiently smooth functions z and c, we can interpret the
optimality condition (3.3c) in strong sense as:

z + αc = 0 a.e. in Ωc.

3.3 optimal boundary control problem 57

Figure 11: This figure refers to the first main step of the derivation and de-
picts an example for a global domain where we impose boundary
control on ΓC. Analogously to the distributed control case, we
apply different boundary conditions and the desired state is given
on the subdomain Ω0.

Furthermore for sufficiently smooth functions z, r, u and û, the adjoint
equations (3.3a, 3.3b) can also be interpreted in strong form:

(a ·∇)z−∇ · σ(z, r) = 1Ω0(u + uD − û) in Ω,

∇ · z = 0 in Ω,

z = 0 on ∂ΩD,

σ(z, r)n = 0 on ∂Ωout.

We see, that the adjoint equations have the same structure as the
state equations, see constraints in (3.1b) and (3.1c). We observe, that
in contrast to the inhomogeneous Dirichlet boundary on ∂ΩD for
the velocity u of the state equation, we have homogeneous Dirichlet
boundary conditions on ∂ΩD for the adjoint velocity z. This comes
from the fact, that the adjoint equation models the sensitivity. Since
on the Dirichlet boundary the velocity is fixed, the sensitivity must be
zero. A similar observation holds for the outflow boundary conditions.
The outflow boundary conditions for the velocity and pressure are set
to the given function h on ∂Ωout. For the adjoint velocity and adjoint
pressure the outflow conditions are zero.

3.3 optimal boundary control problem

In contrast to the previous case of distributed control, we now control
the flow through the boundary. Similarly in the first main step, we
state a strong and weak formulation of the global model problem, the
domain decomposition method is then applied to the corresponding
optimality system, see also Fig 11. The control is only applied on part
of the boundary, denoted by ΓC. We restrict the control to be applied
on a part of the Dirichlet boundary and not on the part with outflow
boundary, therefore we set ΓC (∂ΩD. Under the assumptions (2.11)
and given û ∈ L2(Ω0), we want to solve an optimal boundary control
problem constrained by the Oseen equations equipped with mixed

58 ddm for optimal control problem constrained by oseen

outflow and Dirichlet boundary conditions. We consider the following
problem:

min
u,c

1
2

∫
Ω0

(u + uD +Rc(c)− û)2dx +
α

2

∫
∂Ωc

∇c : ∇cdx (3.4a)

s.t. (a ·∇)u−∇ · σ(u, p) = f in Ω, (3.4b)

∇ · u = 0 in Ω, (3.4c)

u = d on ∂ΩD \ ΓC, (3.4d)

σ(u, p)n = h on ∂Ωout, (3.4e)

u = d + c on ΓC, (3.4f)

For the Dirichlet boundary function d ∈ H1/2(∂ΩD), we again assume
that a function uD ∈ H1(Ω) exists such that the γd(uD) = d. By
restricting the boundary control to a real subset of the part of the
boundary with Dirichlet boundary conditions, we guarantee that the
velocity is uniquely defined assuming that a solution exists. The same
arguments as in Remark 19 hold.

We derive a weak formulation and therefore define additionally to
the bilinear forms defined before the bilinear form q:

q : H1(ΓC)×H1(ΓC)→ R, q(c, e) =
∫

ΓC

∇c : ∇e dx,

We also define a trace operator γc and an extension operator Rc:

γc : H1(Ω)→ H1/2
00 (ΓC),

Rc : H1/2
00 (ΓC)→ H1(Ω), such that γc(Rc(c)) = c ∀c ∈ H1/2

00 (ΓC).

Remark. The space H1
00(ΓC) is analogously defined to the space H1

0(Ω)

only that the zero corresponds to the boundary of the boundary. This
makes it easier to implement the optimal boundary control c. A higher
regularity than L2(ΓC) is needed, due to the fact, that we need the first
derivative of the control in L2(Ω) in the bilinear form q(·, ·).

These definitions lead to the following weak formulation of the
boundary control problem (3.4). Find u ∈ H1

D(Ω), p ∈ L2(Ω) and
c ∈ H1

00(ΓC) that solve the following linear quadratic optimal control
problem with boundary control:

min
u,c

1
2

m(1Ω0(u + uD +Rc(c)− û), 1Ω0(u + uD +Rc(c)− û))+

(3.5a)

+
α

2
q(c, c)

s.t. a(u, v) + b(v, p) + a(Rc(c), v) = f (v)− a(uD, v) , (3.5b)

b(u, q) + b(Rc(c), q) = −b(uD, q) (3.5c)

3.3 optimal boundary control problem 59

for all v ∈ H1
D(Ω), q ∈ L2(Ω).

Lemma 22. Under the assumption that an optimal solution (u, p, c)∗ ∈
H1

D(Ω)× L2(Ω)×H1
00(ΓC) for (3.5) and the Lagrange multipliers (z, r) ∈

H1
D × L2(Ω) exists, the optimal solution is a KKT point. It fulfills the

necessary optimality conditions described by the KKT conditions which are
given by the following optimality system: Find u, z ∈ H1

D(Ω), p, r ∈
L2(Ω) and c ∈ H1

00(ΓC) such that

a(w, z) + b(w, r)+

−m(1Ω0(u +Rc(c)), 1Ω0 w) =−m(1Ω0(û− uD), 1Ω0 w),
(3.6a)

b(z, q) =0, (3.6b)

a(Rc(e), z) + b(Rc(e), r)− αq(c, e)+ (3.6c)

−m(1Ω0(u−Rc(c)), 1Ω0(Rc(e))) =m(1Ω0(uD − û), 1Ω0(Rc(e))),
(3.6d)

a(u, v) + b(v, p) + a(Rc(c), v) = f (v)− a(uD, v), (3.6e)

b(u, q) + b(Rc(c), q) =− b(uD, q) (3.6f)

for all v, w ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ H1

0(Γc).

Proof. Analogously to the case with distributed control, the optimality
system (3.6) can be derived by applying a Lagrangian based adjoint
approach [33]. Therefore we define the Lagrange function

L(u, p, z, r, c) =
1
2

m(1Ω0(u + uD +Rc(c)− û), 1Ω0(u + uD +Rc(c)− û)) +
α

2
q(c, c)+

− a(u, z)− a(Rc(c), z)− b(z, p)+

+ f (z)− a(uD, z)+

− b(u, r)− b(Rc(c), r)− b(uD, r),

and derive a stationary condition, which reads:

∂

∂u
L(u, p, z, r, c) ·w =m(1Ω0(u + uD +Rc(c)− û), 1Ω0(w))+

− a(w, z)− b(w, r) = 0,
∂

∂p
L(u, p, z, r, c) · q =− b(z, q) = 0,

∂

∂c
L(u, p, z, r, c) · e =αq(c, e)− a(Rc(e), z)− b(Rc(e), r)+

m(1Ω0(u + uD +Rc(c)− û), 1Ω0(Rc(e))) = 0

for all w ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ H1

0(Γc).
For further details, we also refer to [17, 32].

60 ddm for optimal control problem constrained by oseen

3.3.1 Strong Interpretation of the Optimality System

For sufficiently smooth functions z and c, we can reformulate the
optimality condition (3.6d):

a(Rc(e), z) + b(Rc(e), r)− αq(c, e)+

−m(1Ω0(û− u− uD −Rc(c)), 1Ω0(Rc(e)))

= −µ
∫

Ω
∆zRc(e) dx + µ

∫
∂ΩC

∂z
∂n

e dx+

−
∫

Ω
((a ·∇)z)Rc(e) +

∫
∂ΩC

(a · n)(ze) dx+

+
∫

Ω
∇rRc(e) dx−

∫
∂ΩC

e r · n dx + α
∫

∂ΩC

∆cedx+

−
∫

Ω0

(û− u− uD −Rc(c))Rc(e)dx

This leads to the strong interpretation of the optimality condition
(3.6d):

∂z
∂n

+ (a · n)z− rIn + α∆c = 0 on ΓC

⇔
(a · n)z + σ(z, r)n + α∆c = 0 on ΓC.

For sufficiently smooth functions z, r, u and û, the adjoint equations
(3.6a, 3.6b) can also be interpreted in strong form:

(a ·∇)z−∇ · σ(z, r) = 10(u + uD +Rc(c)− û) in Ω, (3.7a)

∇ · z = 0 in Ω, (3.7b)

z = 0 on ∂ΩD,

σ(z, r)n = 0 on ∂Ωout.

Analogously to the distributed control case, we note that the adjoint
equations (3.7a) and (3.7b) have the same structure as the state equa-
tions (3.4b) and (3.4c). For the same reasons as for the distributed
control case, we have homogeneous Dirichlet boundary conditions on
∂ΩD and zero outflow boundary conditions on ∂Ωout.

3.4 continuous domain decomposition

In the second main step, we derive a non-overlapping domain decom-
position method on the continuous level for the optimality systems
with distributed and boundary control. We do not repeat definitions
made in Chapter 2. Analogously, in the first sub-step an equivalent
weak formulation on subdomains is derived. In the second sub-
step, we decouple the subdomain formulation into s independent

3.4 continuous domain decomposition 61

subdomain optimality problems and one system of global coupling
conditions.

3.4.1 Definitions for the Distributed Control Case

Figure 12: This figure illustrates the first sub-step of the derivation of the
non-overlapping domain decomposition on the continuous level
for the distributed control case. The global domain is partitioned
into subdomains but still coupled. It shows the partition of the
global domain into subdomains and the global and local interfaces
for the distributed control case. The control domain lies partly
inside of Ω1 and Ω2 which makes them both control subdomains.
The outflow subdomain Ω2 also contains the subdomain Ω0 on
which the desired state is defined.

We partition the domain as explained in Chapter 2. For the sake
of simplicity, we introduce the following notation for the control
subdomains

ΩCi := Ωi ∩ΩC,

and the indicator function

1ΩCi
: Ω→ {0, 1} 1ΩCi

(x) =

1 if x ∈ ΩCi ,

0 if x /∈ ΩCi .

In addition to the subset N , we define the subset CΩ containing the
indices of the subdomains on which the distributed control is applied:

CΩ := {i ∈ {1, . . . , s} : ΩCi 6= ∅} .

Next, we decompose the global control space L2(ΩC):

L2(ΩC) :=
⊕
i∈CΩ

L2(ΩCi).

62 ddm for optimal control problem constrained by oseen

Remark 23. By defining the splitting of the global control space like
this, the global control variable is partitioned only into local variables.
We do not get an explicit coupling space or coupling variable as for
the velocity and pressure.

Furthermore, we define the local bilinear forms mi(·, ·) and di(·, ·)
as follows:

mi : L2(Ωi)× L2(Ωi)→ R, mi(ui, vi) =
∫

Ωi

ui vi dx,

di : H1(Ωi)× L2(Ωi)→ R, di(ui, vi) =
∫

Ωi

ui vi dx.

3.4.2 Weak Formulation on Subdomains for Distributed Control

Using these definitions, the next lemma states an equivalent weak
formulation on subdomains for the optimality system with distributed
control (3.3). Similarly to the previous chapter this formulation is
still globally coupled. This first sub-step of the second main step, is
illustrated in Fig. 12.

Lemma 24. (3.3) is equivalent to the following weak formulation on subdo-
mains:

Find

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
D(Ω) with ui ∈ Vi, uΓ ∈ H1/2

00 (Γ),

z =
s

∑
i=1

zi +R(zΓ) ∈ H1
D(Ω) with zi ∈ Vi, zΓ ∈ H1/2

00 (Γ),

c =
s

∑
i=1

ci ∈ L2(ΩC) with ci ∈ L2(ΩCi),

p =
s

∑
i=1

pi + pΩ ∈ L2(Ω) with pi ∈ Qi, pΩ ∈ D(Ω)

r =
s

∑
i=1

ri + rΩ ∈ L2(Ω) with ri ∈ Qi, rΩ ∈ D(Ω)

such that

s

∑
i=1

(
ai(vi, zi) + ai(vi,Ri(zΓi)) + ai(Ri(vΓi), zi)+

+ bi(vi, ri) + bi(Ri(vΓi), ri)−mi(1Ω0 ui, 1Ω0 vi)+

−mi(1Ω0Ri(uΓi), 1Ω0 vi)−mi(1Ω0 ui, 1Ω0Ri(vΓi))
)
+

+ a(R(vΓ),R(zΓ)) + b(R(vΓ), rΩ)−m(1Ω0R(uΓ), 1Ω0R(vΓ))

3.4 continuous domain decomposition 63

=
s

∑
i=1

(
−mi((1Ω0 û|Ωi − uDi), 1Ω0 vi)

)
−m(1Ω0(û− uD), 1Ω0R(vΓ)),

(3.8a)
s

∑
i=1

(
bi(zi, qi) + bi(Ri(zΓi), qi)

)
+ b(R(zΓ), qΩ) = 0 (3.8b)

s

∑
i=1

(
di(1ΩC ei, 1ΩC zi) + di(1ΩC ei, 1ΩCRi(zΓi))+

+ αmi(1ΩC ci, 1ΩC ei)
)
= 0 (3.8c)

s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi)) + bi(vi, pi)+

+ bi(Ri(vΓi), pi)− di(1ΩC ci, 1ΩC vi)− di(1ΩC ci, 1ΩCRi(vΓi))
)
+

+ a(R(uΓ),R(vΓ)) + b(R(vΓ), pΩ)+

=
s

∑
i=1

(
f (vi)− ai(uDi , vi)

)
+ f (R(vΓ))− a(uD,R(vΓ)),

s

∑
i=1

(
bi(ui, qi) + bi(Ri(uΓi), qi)

)
+ b(R(uΓ), qΩ) (3.8d)

= −
s

∑
i=1

(
bi(uDi , qi)

)
− b(uD, qΩ) (3.8e)

for all vi ∈ Vi, vΓ ∈ H1/2
00 (Γ), ei ∈ L2(Ωi) qi ∈ Qi and qΩ ∈ D(Ω).

Proof. Note that on outflow subdomains it holds that rΩi = 0. Then
we can use the same arguments as in the proof for Lemma 12. For the
splitting of the optimality condition (3.3c), we only get a global cou-
pling for the adjoint velocity due to the definition of the decomposition
of the control space, see also Remark 23.

3.4.3 Decoupling of Weak Formulation on Subdomains for Distributed
Control

Applying the second sub-step of the derivation of the non-overlapping
domain decomposition method leads to one system of coupling equa-
tions which is defined for the velocity and adjoint velocity in the
interface space H1/2

00 (Γ) and for the pressure and adjoint pressure in
the space D(Ω), and s independent local optimality systems on each
subdomain, see also Fig. 13. For the local optimality systems, we have
to distinguish between weak formulations for the outflow subdomains
and for the non-outflow subdomains, analogously to Chapter 2 for the
outflow case.

On a non-outflow subdomain, we obtain the following local opti-
mality system:

For given uΓ, zΓ ∈ H1/2
00 (Γ), find ui, zi ∈ H1

0(Ωi), ci ∈ L2(Ωi) and
p̃i, r̃i ∈ L2

0(Ωi), such that

64 ddm for optimal control problem constrained by oseen

Figure 13: This figure sketches the second sub-step in the derivation of the
domain decomposition method in which we derive decoupled
local weak formulations on the subdomains and one system of
coupling conditions on the global interface Γ. We have to distin-
guish the different subdomain types. In this example Ω1 and Ω3
are non-outflow and at the same time control subdomains. Ω2 is
an outflow subdomain and the desired state is defined on part of
that subdomain.

ai(vi, zi) + bi(vi, r̃i)−mi(1Ω0 ui, 1Ω0 vi) + mi(1Ω0Ri(uΓi), 1Ω0 vi)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 vi)− ai(vi,Ri(zΓi)) (3.9a)

bi(zi, q̃i) = −bi(Ri(zΓi), q̃i) (3.9b)

di(1ΩC ei, 1ΩC zi) + αmi(1ΩC ci, 1ΩC ei) (3.9c)

= −di(1ΩC ei, 1ΩCRi(zΓi))

ai(ui, vi) + bi(vi, p̃i)− di(1ΩC ci, 1ΩC vi) (3.9d)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, q̃i) = −bi(uDi , q̃i)− bi(Ri(uΓi), q̃i) (3.9e)

for all vi ∈ H1
0(Ωi), ei ∈ L2(Ωi) and q̃i ∈ L2

0(Ωi). Due to imple-
mentation issues we are interested in an alternative formulation for
non-outflow subdomains, which is stated in the next proposition.

Proposition 25. Assuming (2.24) and∫
Ωi

θidx =
∫

Ωi

∇ · R(zΓi)dx, (3.10)

then (3.9) and the following local subdomain optimality system are equivalent:
For given uΓ, zΓ ∈ H1/2

00 (Γ), find ui, zi ∈ H1
0(Ωi), ci ∈ L2(Ωi), pi, ri ∈

L2(Ωi) and ηi, θi ∈ R, such that

ai(vi, zi) + bi(vi, ri)−mi(1Ω0 ui, 1Ω0 vi) (3.11a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 vi)− ai(vi,Ri(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 vi) (3.11b)

bi(zi, qi) + ci(θi, qi) = −bi(Ri(zΓi), qi) (3.11c)

ci(ξi, ri) = 0 (3.11d)

3.4 continuous domain decomposition 65

di(1ΩC ei, 1ΩC zi) + αmi(1ΩC ci, 1ΩC ei) (3.11e)

= −di(1ΩC ei, 1ΩCRi(zΓi))

ai(ui, vi) + bi(vi, pi)− di(1ΩC ci, 1ΩC vi) (3.11f)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, qi) + ci(ηi, qi) = −bi(uDi , qi)− bi(Ri(uΓi), qi) (3.11g)

ci(ξi, pi) = 0 (3.11h)

for all vi ∈ Vi, ei ∈ L2(Ωi), qi ∈ L2(Ωi) and ξi ∈ R.

Proof. Analogously to the proof of Proposition 14 in Chapter 2 .

As we can see, the local optimality systems on non-outflow subdo-
mains are independent of the global constants pΩ and rΩ and have
the same structure as the global optimality system.

On outflow subdomains, the local optimality system yields:
For given uΓ, zΓ ∈ H1/2

00 (Γ), find ui, zi ∈ H1
N(Ωi),ci ∈ L2(Ω) and

pi, ri ∈ L2(Ω) such that

ai(vi, zi) + bi(vi, ri)−mi(1Ω0 ui, 1Ω0 vi) (3.12a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 vi)− ai(vi,R(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 vi), (3.12b)

bi(zi, qi) = −bi(Ri(zΓi), qi), (3.12c)

di(1ΩC ei, 1ΩC zi) + αmi(1ΩC ci, 1ΩC ei)

= −di(1ΩC ei, 1ΩCRi(zΓi)) (3.12d)

ai(ui, vi) + bi(vi, pi)− di(1ΩC ci, 1ΩC vi)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi), (3.12e)

bi(ui, qi) = −bi(uDi , qi)− bi(Ri(uΓi), qi) (3.12f)

for all vi ∈ H1
N(Ωi), ei ∈ L2(Ωi), qi ∈ L2(Ωi). Since on outflow

subdomains, the pressure pi and adjoint pressure ri are uniquely
defined as long a solution exists, it is clear that pΩi and rΩi must be
zero.

Since we are interested in solving the global system (3.3) by solving
coupling conditions on the interface, the next lemma states, under
which conditions we get a solution of the global system by solving the
system of interface equations.

Lemma 26. It holds that

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
D(Ω) with ui ∈ Vi,

z =
s

∑
i=1

zi +R(zΓ) ∈ H1
D(Ω) with zi ∈ Vi,

c =
s

∑
i=1

ci ∈ L2(ΩC) with ci ∈ L2(ΩCi),

66 ddm for optimal control problem constrained by oseen

p =
s

∑
i=1

pi + pΩ ∈ L2(Ω) with pi ∈ Qi,

r =
s

∑
i=1

ri + rΩ ∈ L2(Ω) with ri ∈ Qi

with (ui, zi, 1Cci, pi, ri) ∈ Vi×Vi× L2(ΩCi)×Qi×Qi solutions of (3.11)
or (3.12) (depending on the subdomain type) solve (3.3) if and only if
the following coupling conditions hold for (uΓ, zΓ, pΩ, rΩ) ∈ H1/2

00 (Γ) ×
H1/2

00 (Γ)× D(Ω)× D(Ω): Find uΓ, zΓ ∈ H1/2
00 (Γ) and pΩ, rΩ ∈ D(Ω)

such that

s

∑
i=1

(
ai(Ri(vΓi), zi) + bi(Ri(vΓi), ri)−mi(1Ω0 ui, 1Ω0Ri(vΓi))

)
+

+ a(R(vΓ),R(zΓ)) + b(R(vΓ), rΩ)−m(1Ω0R(uΓ), 1Ω0R(vΓ))

= −m(1Ω0(û− uD), 1Ω0R(vΓ)), (3.13)

b(R(zΓ), qΩ) = 0, (3.14)
s

∑
i=1

(
ai(ui,Ri(vΓi)) + bi(Ri(vΓi), pi)− di(1ΩC ci, 1ΩCRi(vΓi))

)
+

+ a(R(uΓ),R(vΓ)) + b(R(vΓ), pΩ)

= f (R(vΓ))− a(uD,R(vΓ)), (3.15)

b(R(uΓ), qΩ) = −b(uD, qΩ) (3.16)

for all vΓ ∈ H1/2
00 (Γ) and qΩ ∈ D(Ω).

Proof. This can be shown by using the same arguments as in Chapter
2 in the proof of Lemma 13.

3.4.4 Definitions for the Boundary Control Case

Figure 14: This figure refers to the first sub-step of the second main step of
the derivation, in which we obtain a formulation on subdomains
which is still globally coupled. It depicts the decomposition of the
global domain into subdomains in case of boundary control. In
this example, subdomain Ω3 is the control subdomain.

3.4 continuous domain decomposition 67

We partition the domain as explained in Chapter 2 and additionally
require that the control boundary belongs to exactly one subdomain
named Ωj:

ΓC $∂Ωj \ Γj.

Due to the fact that we have a kind of outflow boundary condition
on the control boundary ΓC for the adjoint velocity and pressure,
the pressure is uniquely determined on the control subdomain Ωj.
Therefore, we need to slightly change the definition of the local and
global adjoint pressure spaces:

Qr
i :=

L2
0(Ωi) if i /∈ N ∪ j,

L2(Ω) if i ∈ N ∪ j.

Dr(Ω) :=

q ∈ L2(Ω) : qΩi =

const. if i /∈ N∪j,

0 if i ∈ N∪j

 .

These definitions lead to the following decomposition of the space
L2(Ω) for the adjoint pressure r:

L2(Ω) =
⊕

i/∈N∪j

L2
0(Ωi)

⊕
i∈N∪j

L2(Ω)⊕ Dr(Ω) =
s⊕

i=1

Qr
i ⊕ Dr(Ω).

Furthermore, we define the local bilinear form qi(·, ·) as follows:

qi : H1(ΓCi)×H1(ΓCi)→ R, qi(ci, ei) =
∫

ΓCi

∇ci : ∇ei dx.

We define the local extension operator Rci := Rc|Ωi . We assume that
Rci(e) = 0 for i 6= j with e ∈ H1

00(ΓC).

3.4.5 Weak Formulation on Subdomains for Boundary Control

Using these definitions in the next lemma, we derive an equivalent
weak formulation on subdomains for the optimality system with
boundary control. This step corresponds to the first sub-step in the
derivation of the domain decomposition method on the continuous
level and is also sketched in Fig. 14.

Lemma 27. (3.6) is equivalent to the following weak formulation on subdo-
mains: Find

68 ddm for optimal control problem constrained by oseen

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
D(Ω) with ui ∈ Vi, uΓ ∈ H1/2

00 (Γ),

z =
s

∑
i=1

zi +R(zΓ) ∈ H1
D(Ω) with zi ∈ Vi, zΓ ∈ H1/2

00,C(Γ),

p =
s

∑
i=1

pi + pΩ with pi ∈ Qi, pΩ ∈ D(Ω),

r =
s

∑
i=1

ri + rΩ with ri ∈ Qr
i , rΩ ∈ Dr(Ω),

c ∈ H1/2
00 (ΓC), such that

s

∑
i=1

(
ai(wi, zi) + ai(wi,Ri(zΓi)) + ai(Ri(wΓi), zi)+

+ bi(wi, ri) + bi(Ri(wΓi), ri)−mi(1Ω0 ui, 1Ω0 wi)+

−mi(1Ω0Ri(uΓi), 1Ω0 wi)−mi(1Ω0 ui, 1Ω0Ri(wΓi))
)
+

−mj(1Ω0Rcj(c), 1Ω0 wj)−mj(1Ω0Rcj(c), 1Ω0 wΓj)+ (3.17a)

+ a(R(wΓ),R(zΓ)) + b(R(wΓ), rΩ)−m(1Ω0R(uΓ), 1Ω0R(wΓ))

= −
s

∑
i=1

(
mi(1Ω0(û|Ωi − uDi), 1Ω0 wi)

)
−m(1Ω0(û− uD), 1Ω0R(wΓ),

(3.17b)
s

∑
i=1

(
bi(zi, qr

i) + bi(Ri(zΓi), qr
i)
)
+ b(R(zΓ), qr

Ω) = 0, (3.17c)

aj(Rcj(e), zj) + aj(Rcj(e),Rj(zΓj))+

+ bj(Rcj(e), rj)− αqj(c, e)+ (3.17d)

−mi(1Ω0(û|Ωi − ui − uDi −Rcj(c)), 1Ω0Rj(e)) = 0, (3.17e)
s

∑
i=1

(
ai(ui, vi) + ai(Ri(uΓi), vi) + ai(ui,Ri(vΓi)) + bi(vi, pi)+

+ bi(Ri(vΓi), pi)
)
+ aj(Rcj(c), vj) + aj(Rcj(c),Ri(vΓi))+

+ b(R(vΓ), pΩ) + a(R(uΓ),R(vΓ))

=
s

∑
i=1

(
f (vi)− ai(uDi , vi)

)
+ f (R(vΓ))− a(uD,R(vΓ)), (3.17f)

s

∑
i=1

(
bi(ui, qi) + bi(Ri(uΓi), qi)

)
+

+ bj(Rcj(c), qj) + bj(Rcj(c), qΩj) + b(R(uΓ), qΩ)

= −
s

∑
i=1

(
bi(uDi , qi)

)
− b(R(uD), qΩ) (3.17g)

3.4 continuous domain decomposition 69

for all vi ∈ Vi, vΓ, wΓ ∈ H1/2
00 (Γ), wi ∈ VC

i , e ∈ H1
00(ΓC),qi ∈ Qi,

qΩ ∈ D(Ω), qr
i ∈ Qr

i , qr
Ω ∈ Dr(Ω) and qj ∈ L2(Ωj).

Proof. Use the same arguments as for the proof of Lemma 24.

3.4.6 Decoupling of Weak Formulation on Subdomains for Boundary Con-
trol

Figure 15: This figure illustrates the second sub-step of the derivation of the
non-overlapping domain decomposition method in the boundary
control case which yields s locally independent subproblems and
one system of global coupling conditions. Subdomains Ω1 is of
the first type, a subdomain which only intersects global Dirichlet
boundary, whereas subdomain Ω2 is of type 2 and as before it
contains the support for the desired state. As mentioned before,
Ω3 is the control subdomain and thus of type 3.

In the second sub-step of the second main step, we decouple the
weak formulation on subdomains (3.17), which results in s indepen-
dent local optimality systems coupled by one system of interface
equations. Depending on the subdomain type, we have to distinguish
four cases, see also Fig. 15 :

1. inner subdomains (∂Ωi ∩ ∂Ω = ∅) and subdomains, which only
intersect global Dirichlet boundary (∂Ωi ∩ (ΓC ∪ ∂Ωout) = ∅ and
∂Ωi ∩ ∂Ω 6= ∅),

2. outflow subdomains (∂Ωi ∩ ∂Ωout 6= ∅), which do not share
control boundary (∂Ωi ∩ ΓC = ∅),

3. control subdomains (∂Ωi ∩ ΓC 6= ∅), which do not share outflow
boundary (∂Ωi ∩ ∂Ωout = ∅),

4. subdomains, which share control and outflow boundary (∂Ωi ∩
ΓC 6= ∅) and (∂Ωi ∩ ∂Ωout 6= ∅).

Since we made the simplification that the control boundary ΓC lies
completely on the boundary of subdomain Ωj, either case 3 or case 4

can occur. For the sake of simplicity, we assume that the subdomain
Ωj does not share outflow boundary. Thus, we can neglect case 4.

70 ddm for optimal control problem constrained by oseen

For a subdomain of type 1 (i /∈ N and i 6= j), the local optimality
system is given by: For given uΓ, zΓ ∈ H1/2

00 (Γ), find ui, vi ∈ H1
0(Ω)

and p̃i, r̃i ∈ L2
0(Ωi) such that

ai(wi, zi) + bi(wi, r̃i)−mi(1Ω0 ui, 1Ω0 wi) (3.18a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 wi)− ai(wi,Ri(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 wi) (3.18b)

bi(zi, q̃i) = −bi(Ri(zΓi), q̃i), (3.18c)

ai(ui, vi) + bi(vi, p̃i) (3.18d)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, q̃i) = −bi(uDi , qi)− bi(Ri(uΓi), qi) (3.18e)

for all vi, wi ∈ H1
0(Ωi) and q̃i ∈ L2

0(Ωi).
We can reformulate (3.18) equivalently with an alternative formula-

tion stated in the next proposition:

Proposition 28. Under the same assumptions (2.24) and (3.10) as in Propo-
sition 25 , (3.18) and the following local subdomain optimality system are
equivalent:

For given uΓ, zΓ ∈ H1/2
00 (Γ), find ui, zi ∈ H1

0(Ω), pi, ri ∈ L2(Ωi) and
ηi, θi ∈ R such that

ai(wi, zi) + bi(wi, ri)−mi(1Ω0 ui, 1Ω0 wi) (3.19a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 wi)− ai(wi,Ri(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 wi) (3.19b)

bi(zi, qi) + ci(θi, qi) = −bi(Ri(zΓi), qi), (3.19c)

ci(ξi, ri) = 0, (3.19d)

ai(ui, vi) + bi(vi, pi) (3.19e)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, qi) + ci(ηi, qi) = −bi(uDi , qi)− bi(Ri(uΓi), qi), (3.19f)

ci(ξi, pi) = 0 (3.19g)

for all vi, wi ∈ H1
0(Ωi), qi ∈ L2(Ωi) and ξi ∈ R.

For outflow subdomains (i ∈ N and i 6= j), the local optimality
systems yield: For given uΓ, zΓ ∈ H1/2

00 (Γ), find ui, zi ∈ H1
N(Ωi) and

pi, ri ∈ L2(Ωi) such that

ai(wi, zi) + bi(wi, ri)−mi(1Ω0 ui, 1Ω0 wi) (3.20a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 wi)− ai(wi,Ri(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 wi) (3.20b)

bi(zi, qi) = −bi(Ri(zΓi), qi), (3.20c)

3.4 continuous domain decomposition 71

ai(ui, vi) + bi(vi, pi) (3.20d)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, qi) = −bi(uDi , qi)− bi(Ri(uΓi), qi), (3.20e)

for all vi, wi ∈ H1
N(Ωi) and qi ∈ L2(Ωi).

On the control subdomain Ωj, we obtain the following local optimal-
ity system: For given uΓ, zΓ ∈ H1/2

00 (Γ), find ui ∈ H1
0(Ω)zi ∈ H1

C(Ωi),
c ∈ H1

00(ΓC) p̃i ∈ L2
0(Ωi) and ri ∈ L2(Ωi) such that

ai(wi, zi) + bi(wi, ri)−mi(1Ω0(ui −Rci(c)), 1Ω0 wi) (3.21a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 wi)− ai(wi,Ri(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 wi) (3.21b)

bi(zi, qi) = −bi(Ri(zΓi), qi), (3.21c)

ai(Rci(e), zi) + bi(Rci(e), ri)− αqi(c, e)+

−mi(1Ω0(ui +Rci(c)), 1Ω0Rci(e)) (3.21d)

= −ai(Rci(e),Ri(zΓi))−mi(1Ω0(û|Ωi − uDi), 1Ω0Rci(e)) (3.21e)

ai(ui, vi) + bi(vi, p̃i) + ai(Rci(c), vi) (3.21f)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, q̃i) + b(Rci(c), q̃i) = −bi(uDi , q̃i)− bi(Ri(uΓi), q̃i) (3.21g)

for all vi, wi ∈ H1
0(Ωi), e ∈ H1

00(ΓC) and q̃i ∈ L2
0(Ωi).

We can reformulate (3.21) equivalently with an alternative formula-
tion stated in the next proposition:

Proposition 29. Under the assumption (2.24), (3.21) and the following local
subdomain optimality system are equivalent: For given uΓ, zΓ ∈ H1/2

00 (Γ),
find ui, zi ∈ H1

0(Ω), c ∈ H1
00(ΓC) pi, ri ∈ L2(Ωi) and ηi ∈ R such that

ai(wi, zi) + bi(wi, ri)−mi(1Ω0(ui −Rci(c)), 1Ω0 wi) (3.22a)

= −mi(1Ω0(û|Ωi − uDi), 1Ω0 wi)− ai(wi,Ri(zΓi))+

+ mi(1Ω0Ri(uΓi), 1Ω0 wi) (3.22b)

bi(zi, qi) = −bi(Ri(zΓi), qi), (3.22c)

ai(Rci(e), zi) + bi(Rci(e), ri)− αqi(c, e)+

−mi(1Ω0(ui +Rci(c)), 1Ω0Rci(e)) (3.22d)

= −ai(Rci(e),Ri(zΓi))−mi(1Ω0(û|Ωi − uDi), 1Ω0Rci(e)) (3.22e)

ai(ui, vi) + bi(vi, pi) + ai(Rci(c), vi) (3.22f)

= f (vi)− ai(uDi , vi)− ai(Ri(uΓi), vi),

bi(ui, qi) + ci(ηi, qi) + b(Rci(ci), qi)

= −bi(uDi , qi)− bi(Ri(uΓi), qi) (3.22g)

ci(ξi, pi) = 0 (3.22h)

72 ddm for optimal control problem constrained by oseen

for all vi, wi ∈ H1
0(Ωi), e ∈ H1

00(ΓC) and q̃i ∈ L2
0(Ωi).

Analogously to the distributed control case, we are interested in
solving the global system (3.6) by solving coupling conditions on the
interface (3.23). The next lemma states, under which conditions we
get a solution of the global system by solving the interface equations.

Lemma 30. It holds that

u =
s

∑
i=1

ui +R(uΓ) ∈ H1
D(Ω) with ui ∈ Vi,

z =
s

∑
i=1

zi +R(zΓ) ∈ H1
D(Ω) with zi ∈ Vi,

p =
s

∑
i=1

pi + pΩ ∈ L2(Ω) with pi ∈ Qi,

r =
s

∑
i=1

ri + rΩ ∈ L2(Ω) with ri ∈ Qr
i

c ∈ H1
00(ΓC)

with (ui, zi, c, pi, ri) ∈ Vi ×VC
i ×H1

00(ΓC)×Qi ×Qr
i solutions of (3.19),

(3.20) or (3.22) (depending on the subdomain type) solve (3.6) if and only
if the following coupling conditions for (uΓ, zΓ, pΩ, rΩ) ∈ H1/2

00 (Γ) ×
H1/2

00 (Γ) × D(Ω) × Dr(Ω) hold: Find uΓ, zΓ ∈ H1/2
00 (Γ), rΩ ∈ Dr(Ω)

and pΩ ∈ D(Ω), such that

s

∑
i=1

(
ai(Ri(wΓi), zi) + b(Ri(wΓi), ri)−mi(1Ω0 ui, 1Ω0Ri(wΓi))

)
+

−mj(Rcj(c), 1Ω0Rj(wΓj))+ (3.23a)

+ a(R(wΓ),R(zΓ)) + b(R(wΓ), rΩ)−m(1Ω0R(uΓ), 1Ω0R(wΓ))

= −m(1Ω0(û− uD), 1Ω0R(wΓ)), (3.23b)

b(R(zΓ), qr
Ω)
)
= 0, (3.23c)

s

∑
i=1

(
ai(ui,Ri(vΓi)) + bi(Ri(vΓi), pi)

)
+ aj(Rcj(c),R(vΓj))+

+ b(R(vΓ), pΩ) + a(R(uΓ),R(vΓ))

= f (R(vΓ))− a(uD,R(vΓ)), (3.23d)

b(R(uΓ), qΩ) + bj(Rcj(c), qΩ) = −b(uD, qΩ) (3.23e)

for all vΓ, wΓ ∈ H1/2
00 (Γ), qr

Ω ∈ Dr(Ω) and qΩ ∈ D(Ω).

Proof. This can be shown by using the same arguments as in Chapter
2 in the proof of Lemma 13.

3.5 discretization based on fem for distributed control 73

3.5 discretization based on a finite element method for

distributed control

Figure 16: In this figure the third main step of the derivation of the domain
decomposition method in case of distributed control is sketched.
We discretize the decoupled weak formulations by an appropriate
finite element method. The figure also shows the restriction made
for the triangulation Th.

For the triangulation Th defined in Chapter 2, we make some further
restrictions. By K̊, we denote the interior of an element. It holds that

K ∩Ω0 6=∅ ⇒ K̊ ⊂ Ω0 ∀K ∈ Th,

K ∩ΩC 6=∅ ⇒ K̊ ⊂ ΩC ∀K ∈ Th,

see also Fig. 16 for an illustration.
Analogously to the previous chapter, we use Taylor-Hood elements

for the adjoint velocity and adjoint pressure, because the structure
of state equations and the adjoint equation is the same. Since the
continuous spaces for the distributed control and the pressure only
differ in the dimension, we use the same type of discretization for the
distributed control as for the pressure. The control is a vector variable
of dimension d and the pressure is a scalar variable. To simplify the
definition of the finite element space for the distributed control, we
denote by KC = {K ∈ Th : K ∈ ΩC} the elements in the triangulation
which lie inside the control domain. Hence, we get the following local
finite element space Qh

i for the distributed control:

Qh
i = {eh

i ∈
[

Qh
i

]d
: eh

i |K = 0 ∀K /∈ KC} ⊂ L2(Ωi).

3.5.1 Decoupled Finite Element Formulation

Using the definitions for the finite element method, we discretize the s
decoupled subdomain weak formulations and the coupling condition
on the interface. This is the third main step in the derivation of the
domain decomposition method, see also Fig. 16.

74 ddm for optimal control problem constrained by oseen

On non-outflow subdomains, we get the following finite element
discretization of the local optimality system: For given uh

Γ, zh
Γ ∈ Vh

Γ,
find uh

i , zh
i ∈ Vh

i,0, ch
i ∈ Qh

i , ph
i , rh

i ∈ Qh
i and ηh

i , θh
i ∈ R, such that

ai(vh
i , zh

i) + bi(vh
i , rh

i)−mi(1Ω0 uh
i , 1Ω0 vh

i) (3.24a)

= −mi(1Ω0(û
h|Ωi − uh

Di
), 1Ω0 vh

i)− ai(vh
i , zh

Γi
) + mi(1Ω0 uh

Γi
, 1Ω0 vh

i)

bi(zh
i , qh

i) + ci(θ
h
i , qh

i) = −bi(zh
Γi

, qh
i) (3.24b)

ci(ξ
h
i , rh

i) = 0 (3.24c)

di(1ΩC eh
i , 1ΩC zh

i) + αmi(ch
i , eh

i) = −di(1ΩC eh
i , 1ΩC zh

Γi
) (3.24d)

ai(uh
i , vh

i) + bi(vh
i , ph

i)− di(1ΩC ch
i , 1ΩC vh

i)

= f (vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i) (3.24e)

bi(uh
i , qh

i) + ci(η
h
i , qh

i) = −bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i) (3.24f)

ci(ξ
h
i , ph

i) = 0 (3.24g)

for all vh
i ∈ Vh

i,0, eh
i ∈ Qh

i , qh
i ∈ Qh

i and ξh
i ∈ R.

On outflow subdomains, the finite element discretization yields: For
given uh

Γ, zh
Γ ∈ Vh

Γ, find uh
i , zh

i ∈ Vh
i,N ,ch

i ∈ Qh
i and ph

i , rh
i ∈ Qh

i such
that

ai(vh
i , zh

i) + bi(vh
i , rh

i)−mi(1Ω0 uh
i , 1Ω0 vh

i) (3.25a)

= −mi(1Ω0(û
h|Ωi − uDi), 1Ω0 vh

i)− ai(vh
i , zh

Γi
) + mi(1Ω0 uh

Γi
, 1Ω0 vh

i)

bi(zh
i , qh

i) = −bi(zh
Γi

, qh
i) (3.25b)

di(1ΩC eh
i , 1ΩC zh

i) + αmi(ch
i , eh

i) = −di(1ΩC eh
i , 1ΩC zh

Γi
) (3.25c)

ai(uh
i , vh

i) + bi(vh
i , ph

i)− di(1ΩC ch
i , 1ΩC vh

i) (3.25d)

= f (vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i)

bi(uh
i , qh

i) = −bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i) (3.25e)

for all vh
i ∈ Vh

i , eh
i ∈ Qh

i and qh
i ∈ Qh

i .
For the finite element formulation of the coupling condition, we

obtain: Find uh
Γ, zh

Γ ∈ Vh
Γ and ph

Ω, rh
Ω ∈ D(Ω) such that

s

∑
i=1

(
ai(vh

Γi
, zh

i) + bi(vh
Γi

, rh
i)−mi(1Ω0 uh

i , 1Ω0 vh
Γi
)
)
+

+ a(vh
Γ, zh

Γ) + b(vh
Γ, rh

Ω)−m(1Ω0 uh
Γ, 1Ω0 vh

Γ)

=
s

∑
i=1
−m(1Ω0(û

h − uh
D, 1Ω0 vh

Γ), (3.26a)

b(zh
Γ, qh

Ω) = 0, (3.26b)
s

∑
i=1

(
ai(uh

i , vh
Γi
) + bi(vh

Γi
, ph

i)− di(1ΩC ch
i , 1ΩC vh

Γi
)
)
+

3.6 discretization based on fem for boundary control 75

+ a(uh
Γ, vh

Γ) + b(vh
Γ, ph

Ω) = f (vh
Γ)− a(uh

D, vh
Γ), (3.26c)

b(uh
Γ, qh

Ω) = −b(uh
D, qh

Ω) (3.26d)

for all vh
Γ ∈ Vh

Γ and qΩ ∈ D(Ω). uh
i , zh

i ∈ Vh
i , ch

i ∈ Qh
i , ph

i , rh
i ∈ Qh

i
are solutions of (3.24) and (3.25), depending on if a subdomain Ωi is a
non-outflow or an outflow subdomain, respectively.

3.6 discretization based on a finite element method for

boundary control

Figure 17: This figure illustrated the triangulation in case of boundary control.
It also refers to the third main step of the derivation of the domain
decomposition, in which we discretize the decoupled formulation
with an appropriate finite element method.

We use the same triangulation Th as defined for the distributed
control case. Analogously to the distributed control case, we use
Taylor-Hood elements for the adjoint velocity and adjoint pressure.
For the boundary control, we use the same discretization as for the
velocity on the interface, with the difference, that it is applied on the
control boundary ΓC.

Hence, we get the following finite element space for the boundary
control:

Vh
ΓC

= {eh
j ∈ V̂h

j : eh
j (x) = 0 ∀x /∈ ΓC}.

Remark 31. By defining local control space as a restriction of the
space V̂h

j , the control boundary functions are implicitly extended
to the neighboring elements of the triangulation which are directly
connected to the interface. Thus, we implicitly use the finite element
functions as extension operator into the subdomain. Therefore, we
do not need to explicitly define a discrete extension operator which
corresponds to RCi .

76 ddm for optimal control problem constrained by oseen

3.6.1 Decoupled Finite Element Formulation

Using the definitions for the finite element method, we discretize the s
decoupled subdomain weak formulations and the coupling condition
on the interface. This third main step of the derivation is also depicted
in Fig. 17.

On inner subdomains or subdomains only intersecting global Dirich-
let boundary, we obtain the following finite element discretization of
the local optimality system: For given uh

Γ, zh
Γ ∈ Vh

Γ, find uh
i , zh

i ∈ Vh
i,0,

ph
i , rh

i ∈ Qh
i , and ηh

i , θh
i ∈ R such that

ai(wh
i , zh

i) + bi(wh
i , rh

i)−mi(1Ω0 uh
i , 1Ω0 wh

i)

= −mi(1Ω0(û
h|Ωi − uh

Di
), 1Ω0 wh

i)− ai(wh
i , zh

Γi
) + mi(1Ω0 uh

Γi
, 1Ω0 wh

i)

(3.27a)

bi(zh
i , qh

i) + ci(θ
h
i , qh

i) = −bi(zh
Γi

, qh
i), (3.27b)

ci(ξ
h
i , rh

i) = 0, (3.27c)

ai(uh
i , vh

i) + bi(vh
i , ph

i) = f (vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i), (3.27d)

bi(uh
i , qh

i) + ci(η
h
i , qh

i) = −bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i) (3.27e)

ci(ξ
h
i , ph

i) = 0 (3.27f)

for all vh
i , wh

i ∈ Vh
i , qh

i ∈ Qh
i , and ξh

i ∈ R.
On outflow subdomains (i ∈ N , i 6= j), the finite element discretiza-

tion is given by: For given uh
Γ, zh

Γ ∈ Vh
Γ, find uh

i , zh
i ∈ Vh

i,N , ph
i , rh

i ∈ Qh
i ,

and ηh
i , θh

i ∈ R such that

ai(wh
i , zh

i) + bi(wh
i , rh

i)−mi(1Ω0 uh
i , 1Ω0 wh

i)

= −mi(1Ω0(û
h|Ωi − uh

Di
), 1Ω0 wh

i)− ai(wh
i , zh

Γi
) + mi(1Ω0 uh

Γi
, 1Ω0 wh

i)

(3.28a)

bi(zh
i , qh

i) = −bi(zh
Γi

, qh
i), (3.28b)

ai(uh
i , vh

i) + bi(vh
i , ph

i) = f (vh
i)− ai(uh

Di
, vh

i)− ai(uh
Γi

, vh
i), (3.28c)

bi(uh
i , qh

i) = −bi(uh
Di

, qh
i)− bi(uh

Γi
, qh

i) (3.28d)

for all vh
i , wh

i ∈ Vh
i,N , qh

i ∈ Qh
i .

On the control subdomain Ωj, the finite element discretization
of the local optimality system yields: For given uh

Γ, zh
Γ ∈ Vh

Γ, find
uh

i , zh
i ∈ Vh

i,0, ch ∈ Vh
ΓC

, ph
i , rh

i ∈ Qh
i and ηh

i ∈ R such that

ai(wh
i , zh

i) + bi(wh
i , rh

i)−mi(1Ω0(u
h
i + ch), 1Ω0 wh

i)

= −mi(1Ω0(û
h|Ωi − uh

Di
), 1Ω0 wh

i)− ai(wh
i , zh

Γi
) + mi(1Ω0 uh

Γi
, 1Ω0 wh

i)

(3.29a)

3.7 algebraic formulation 77

bi(zh
i , qh

i) = −bi(zh
Γi

, qh
i), (3.29b)

ai(eh, zh
i) + bi(eh, rh

i)− αq(ch, eh)−mi(1Ω0(u
h
i − ch), eh)

= −ai(eh, zh
Γi
)−mi(1Ω0(û

h|Ωi − uh
Di
), eh) (3.29c)

ai(uh
i , vh

i) + bi(vh
i , ph

i) + ai(ch, vh
i) = f (vh

i)− ai(uh
Di

, vh
i)− ai(uh

Γi
, vh

i),

bi(uh
i , qh

i) + ci(η
h
i , qh

i) + bi(ch, qh
i) = −bi(uh

Di
, qh

i)− bi(uh
Γi

, qh
i) (3.29d)

ci(ξ
h
i , ph

i) = 0 (3.29e)

for all vi ∈ Vh
i,0, wi ∈ Vh

i,C, e ∈ Vh
ΓC

, qh
i ∈ Qh

i and ξh
i ∈ R.

The finite element formulation of the coupling condition reads: Find
uh

Γ, zh
Γ ∈ Vh

Γ, ph
Ω ∈ D(Ω) and rh

Ω ∈ Dr(Ω) such that

s

∑
i=1

(
ai(wh

Γi
, zh

i) + bi(wh
Γi

, rh
i)−mi(1Ω0 uh

i , 1Ω0 wh
Γi
)
)
+

−mj(ch, 1Ω0 wh
Γi
)+

+ a(wh
Γ, zh

Γ) + b(wh
Γ, rh

Ω)−m(1Ω0 uh
Γ, 1Ω0 wh

Γ)

= −m(1Ω0(û
h − uh

D), 1Ω0 wh
Γ), (3.30)

b(zh
Γ), qh

Ω,r) = 0, (3.31)
s

∑
i=1

(
ai(uh

i , vh
Γi
) + bi(vh

Γi
, ph

i)
)
+ aj(ch, vh

Γj
)+

+ a(uh
Γ), vh

Γ) + b(vh
Γ, ph

Ω) = f (vh
Γ)− a(uh

D, vh
Γ), (3.32)

b(uh
Γ, qh

Ω) + bj(ch, qh
Ω) = −b(uh

D, qh
Ω) (3.33)

for all vh
Γ, wh

Γ ∈ Vh
Γ, qh

Ω ∈ D(Ω) and qh
Ω,r ∈ Dr(Ω). uh

i , zh
i ∈ Vh

i ,
c ∈ Vh

ΓC
and ph

i , rh
i ∈ Qh

i are solutions of (3.27), (3.28) and (3.29)
depending on the subdomain type.

3.7 algebraic formulation

Analogously to Chapter 2, we derive the algebraic representation for
the velocity and pressure, the adjoint velocity and adjoint pressure,
and the control. We give the algebraic representation in the form of
a global linear system and a Schur-complement formulation on the
skeleton, which is the last main step of the derivation.

First , we give an overview for the numbering of degrees of freedom:

• nui denotes the number of the inner degrees of freedom of the
velocity u in the subdomain Ωi. If Ωi is an outflow subdomain,
it also includes the degrees of freedom on the outflow boundary
∂Ωout ∩ Γi.

• nuΓ denotes the number of global skeleton degrees of freedom of
the velocity,

• nuΓi
the number of local skeleton degrees of freedom of the veloc-

ity,

78 ddm for optimal control problem constrained by oseen

• nuci
the number of inner velocity degrees of freedom in ΩCi and

• nucΓi
the number of local skeleton degrees of freedom of the

velocity on Γi.

• nzi is defined analogously to nui for the adjoint velocity. It holds
that nzi = nui .

• nqi denotes the number of degrees of freedom of the pressure
and adjoint pressure variable in Ωi.

• nu0i
denotes the inner degrees of freedom of the velocity compo-

nents in Ω0 ∩Ωi and

• nu0Γi
the local skeleton degrees of freedom of the velocity com-

ponents in Ω0 ∩ ∂Ωi.

• nci denotes the number of degrees of freedom of the control
variable in ΩC ∩Ωi and

• ncΓ the number of degrees of freedom on ΓC .

3.7.1 Definitions for the Distributed Control Case

In the case of distributed control, we use the same ansatz functions for
the velocity and adjoint velocity, and for the pressure and adjoint pres-
sure, respectively. Those were already defined in Chapter 2. Hence,
we only need the definitions for the distributed control.

Let µj ∈ Qh
i , (j = 1, . . . , nci) denote the piecewise linear basis

functions for the control such that

Qh
i = span

{
µj : j = 1, . . . , nci

}
.

Moreover, we define the projection matrix RΓ0,i ∈ {0, 1}nuoΓi
×nuΓi that

projects the local skeleton degrees of freedom of the velocity to the
local skeleton degrees of freedom which also lie in Ω0.

In addition to the matrices defined in Chapter 2, we define the
following matrices and their entries, which correspond to the bilinear
form mi(·, ·) and di(·, ·), respectively:

(M0)kl = mi(10ψl , 10ψk),

(MC)kl = mi(1Cµl , 1Cµk),

(DC)kl = mi(1Cµl , 1Cψk) :

3.7 algebraic formulation 79

(M0)ii ∈ R
nu0i
×nu0i (M0)kl k, l = 1, . . . , nu0i

,

(M0)iΓi ∈ R
nu0i
×nu0Γi (M0)kl k = 1, . . . , nu0i

, l = 1, . . . , nu0Γi

(M0)Γii ∈ R
nu0Γi

×nu0i (M0)kl k = 1, . . . , nu0Γi
, l = 1, . . . , nu0Γi

,

(M0)ΓiΓi ∈ R
nu0Γi

×nu0Γi (M0)kl k, l = 1, . . . , nu0Γi
,

(M0)ΓΓ ∈ R
nu0Γ
×nu0Γ (M0)ΓΓ = ∑s

i=1 RT
Γ0,i

(M0)ΓiΓi RΓ0,i

(MC)ii ∈ Rnci×nci (MC)kl k, l = 1, . . . , nci ,

(DC)ii ∈ R
nci×nuci (DC)kl k = 1, . . . , nci , l = 1, . . . , nuci

,

(DC)Γii ∈ R
nucΓi

×nci (DC)kl k = 1, . . . , nucΓi
, l = 1, . . . , nci .

Furthermore, we define the following finite element functions and
their coefficient vectors for the adjoint velocity

zh
i (x) =

nzi

∑
j=1

zjψj(x) zi = (z1, . . . , znzi
)T ∈ Rnzi ,

zh
Γ(x) =

nzΓ

∑
j=1

zjψj(x) zΓ = (z1, . . . , znzΓ
)T ∈ RnzΓ ,

zh
Γi
(x) =

nzΓi

∑
j=1

zjψj(x) zΓi = (z1, . . . , znzΓi
)T ∈ R

nzΓi ,

for the adjoint pressure

rh
i (x) =

nri

∑
j=1

rj ϕj(x) ri = (r1, . . . , rnqi
)T ∈ Rnqi ,

rh
Ω(x) = ∑

j/∈N
rΩj ϕΩj(x) rΩ = (rΩ1 , . . . , rΩsΩi

)T ∈ RsΩi ,

for the desired state

ûh
i (x) =

n0i

∑
j=1

ûjψj(x) ûi = (û1, . . . , ûn0i
)T ∈ Rn0i ,

ûh
Γ(x) =

n0Γ

∑
j=1

ûjψj(x) ûΓ = (û1, . . . , ûn0Γ
)T ∈ Rn0Γ ,

and for the control

ch
i (x) =

nci

∑
j=1

cjµj(x) ci = (c1, . . . , cnci
)T ∈ Rnci .

80 ddm for optimal control problem constrained by oseen

3.7.2 Definitions for the Boundary Control Case

In the case of boundary control, we also use the same ansatz functions
for the velocity and adjoint velocity, and for the pressure and adjoint
pressure, respectively. For the boundary control, we use the same
ansatz functions as for the velocity on the skeleton. Let µ̂j ∈ Vh

ΓC
,

(j = 1, . . . , ncΓ) denote the piecewise quadratic basis functions for the
control such that

Vh
ΓC

= span
{

µ̂j : j = 1, . . . , ncΓ

}
.

Moreover, we define the following matrices and their entries, which
correspond to the bilinear forms aj(·, ·), bj(·, ·) and qj(·, ·) needed for
the control subdomain Ωj:

(AC)kl = aj(Rcj µ̂l , ψk),

(BC)kl = bj(Rcj µ̂l , ϕk),

(Q)kl = qj(µ̂l |ΓC , µ̂k|ΓC) :

(AC)jj ∈ R
nuj×ncΓ (AC)kl k = 1, . . . , nuj , l = 1, . . . , ncΓ ,

(BC)jj ∈ R
nqj×ncΓ (BC)kl k = 1, . . . , nqj , l = 1, . . . , ncΓ ,

Qjj ∈ RncΓ×ncΓ (Q)kl k, l = 1, . . . , ncΓ .

Furthermore, we define the following finite element function for the
boundary control and its coefficient vector:

ch
ΓC
(x) =

ncΓ

∑
j=1

cjµj(x) ci = (c1, . . . , cΓC)
T ∈ RcΓC .

3.7.3 Global Linear System and Schur-complement Equation for the Dis-
tributed Control Case

Using the definitions for the algebraic representation, we discuss the
global linear system which corresponds to the finite element formu-
lation of (3.8), and the Schur-complement equation corresponding
to the coupling conditions (3.26). For simplicity, we assume that
Ω0 = ΩC = Ω. We write the global linear system for an example with
two subdomains, where Ω1 is a non-outflow subdomain and Ω2 an
outflow subdomain:

3.
7

a
l

g
e

b
r

a
i
c

f
o

r
m

u
l

a
t

i
o

n
8

1



A11 B̃T
11 −(DC)11 0 0 0 0 0 0 0 A1Γ1 0 0 0

B̃11 0 0 0 0 0 0 0 0 0 B̃1Γ1 0 0 0

0 0 α(MC)11 (DC)
T
11 0 0 0 0 0 0 0 0 (DC)

T
Γ11 0

−(M0)11 0 0 AT
11 B̃T

11 0 0 0 0 0 −(M0)1Γ1 0 AT
Γ11 0

0 0 0 B̃11 0 0 0 0 0 0 0 0 B̃1Γ1 0

0 0 0 0 0 A22 BT
22 −(DC)22 0 0 A2Γ2 0 0 0

0 0 0 0 0 B22 0 0 0 0 B2Γ2 0 0 0

0 0 0 0 0 0 0 α(MC)22 (DC)
T
22 0 0 0 (DC)

T
Γ22 0

0 0 0 0 0 −(M0)22 0 0 AT
22 BT

22 −(M0)2Γ2 0 AT
Γ22 0

0 0 0 0 0 0 0 0 B22 0 0 0 B2Γ2 0

AΓ11 B̃T
1Γ1

−(DC)Γ11 0 0 AΓ22 BT
2Γ2

−(DC)Γ22 0 0 AΓΓ BT
0 0 0

0 0 0 0 0 0 0 0 0 0 B0 0 0 0

−(M0)Γ11 0 0 AT
1Γ1

B̃T
1Γ1

−(M0)Γ22 0 0 AT
2Γ2

BT
2Γ2

−(M0)ΓΓ 0 AT
ΓΓ B0

0 0 0 0 0 0 0 0 0 0 0 0 B0 0





u1

p̃1

c1

z1

r1

u2

p2

c2

z2

r2

uΓ

pΩ

zΓ

qΩ



=



f1 −A1DuD

−B1DuD

0

−û1

0

f2 −A2DuD

−B2DuD

0

−û2

0

fΓ −AΓDuD

−B0DuD

−ûΓ

0



.

Due to the fact that the inner blocks (denoted with the subindex ·ii) are invertible, we can derive a Schur-complement equation. We write
directly the alternative formulation for the non-outflow subdomains. The derivation of the alternative formulation works analogously to
the outflow boundary case of the Oseen equations shown in Section 2.6.3.

8
2

d
d

m
f

o
r

o
p

t
i
m

a
l

c
o

n
t

r
o

l
p

r
o

b
l

e
m

c
o

n
s

t
r

a
i
n

e
d

b
y

o
s

e
e

n

The Schur-complement operator S is defined as:

S :=


AΓΓ BT

0 0 0

B0 0 0 0

−MΓΓ 0 AT
ΓΓ BT

0

0 0 B0 0

 (3.34)

− ∑
i∈N


AΓi i BT

iΓi
−(DC)Γi i 0 0

0 0 0 0 0

−MiΓi 0 0 AT
iΓi

BT
iΓi

0 0 0 0 0





Aii BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii BT

ii

0 0 0 Bii 0



−1

AiΓi 0 0 0

BiΓi 0 0 0

0 0 (DC)
T
Γi i 0

−MiΓi 0 AT
Γi i 0

0 0 BiΓi 0


︸ ︷︷ ︸

=:L1

− ∑
i/∈N


AΓi i BT

iΓi
0 −(DC)Γi i 0 0 0

0 0 0 0 0 0 0

−MiΓi 0 0 0 AT
iΓi

BT
iΓi

0

0 0 0 0 0 0 0





Aii BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0



−1

AiΓi 0 0 0

BiΓi 0 0 0

0 0 0 0

0 0 (DC)
T
iΓi

0

−MiΓi 0 AT
Γi i 0

0 0 BiΓi 0

0 0 0 0


︸ ︷︷ ︸

=:L2

3.
7

a
l

g
e

b
r

a
i
c

f
o

r
m

u
l

a
t

i
o

n
8

3

We define the right hand side r:

r :=


fΓ −AΓDuD

−B̂0DuD

−ûΓ

0

− ∑
i∈N


AΓii BT

iΓi
−(DC)Γii 0 0

0 0 0 0 0

−MiΓi 0 0 AT
iΓi

BT
iΓi

0 0 0 0 0





Aii BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii BT

ii

0 0 0 Bii 0



−1

fi −AiDuD

−BiDuD

0

−ûi

0


︸ ︷︷ ︸

=:L3

(3.35)

− ∑
i/∈N


AΓii BT

iΓi
0 −(DC)Γii 0 0 0

0 0 0 0 0 0 0

−MiΓi 0 0 0 AT
iΓi

BT
iΓi

0

0 0 0 0 0 0 0





Aii BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0



−1

fi −AiDuD

−BiDuD

0

0

−ûi

0

0


︸ ︷︷ ︸

=:L4

84 ddm for optimal control problem constrained by oseen

These definitions (3.34,3.35) yield the Schur-complement equation
for the model problem of distributed control applied to the Oseen
equations:

S(uΓ, pΩ, zΓ, rΩ)
T = r.

It represents algebraically the interface coupling corresponding to the
finite element formulation (3.26).

L1− L4 can be interpreted as solving local optimality systems of a
distributed control problem applied to the Oseen equations.

L1 solve:

Aii BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii BT

ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



AiΓi uΓi

BiΓi uΓi

(DC)
T
Γi izΓi

−MiΓi uΓi + AT
Γi izΓi

BiΓi zΓi


.

L1 solves a local optimality system of a distributed control problem
applied to the Oseen equations with Dirichlet data uΓi and zΓi on the
local skeleton Γi, natural outflow conditions on ∂Ωi ∩ ∂Ωout and zero
Dirichlet boundary data on ∂Ωi ∩ ∂Ω.

L2 solve:



Aii BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



AiΓi uΓi

BiΓi uΓi

0

(DC)
T
Γi i

zΓi

−MiΓi uΓi + AT
Γi i

zΓi

BiΓi zΓi

0


.

L2 solves a local optimality system of a distributed control problem
applied to the Oseen equations with Dirichlet data. On the local
skeleton Γi, the Dirichlet data is set to uΓi and zΓi . For non-outflow
subdomains intersecting global Dirichlet boundary, the Dirichlet data
on the global boundary ∂Ωi ∩ ∂ΩD is set to zero.

L3 solve:

Aii BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii BT

ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



fi −AiDi uDi

−BiDi uDi

0

−ûi

0


.

L3 solves a local optimality system of a distributed control problem
applied to the Oseen equations with zero Dirichlet data on the local
skeleton Γi and natural outflow conditions on ∂Ωi ∩ ∂Ωout. On ∂Ωi ∩

3.7 algebraic formulation 85

∂ΩD the Dirichlet data for the velocity is set to uDi and for the adjoint
velocity to zero.

L4 solve:



Aii BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



fi −AiDi uDi

−BiDi uDi

0

0

−ûi

0

0


.

L4 solves a local optimality system of a distributed control problem
applied to the Oseen equations with Dirichlet data. For inner sub-
domains a homogeneous Dirichlet boundary problem is solved. For
the non-outflow subdomains intersecting global Dirichlet boundary,
the Dirichlet data on the global boundary ∂Ωi ∩ ∂ΩD is set to uDi for
the velocity and zero for the adjoint velocity. On the local skeleton Γi,
homogeneous Dirichlet boundary data is set.

Adding up L1 and L3 leads to the algebraic representation of the
local decoupled subproblems on outflow subdomains Ωi (3.25):

L1 + L3 solve:

Aii BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii BT

ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



fi −AiDi uDi −AiΓi uΓi

−BiDi uDi − BiΓi uΓi

−(DC)
T
Γi izΓi

−ûi + MiΓi uΓi −AT
Γi izΓi

−BiΓi zΓi


,

Analogously, adding up L2 and L4 yields the algebraic representation
of the local decoupled subproblems on non-outflow subdomains Ωi
(3.24).

L2 + L4 solve:



Aii BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

0

ci

zi

ri

0


=



fi −AiDi uDi −AiΓi uΓi

−BiDi uDi − BiΓi uΓi

0

−(DC)
T
Γi i

zΓi

−ûi + MiΓi uΓi −AT
Γi i

zΓi

−BiΓi zΓi

0


.

Remark. The local subproblems L3 and L4 are solved when computing
the right hand side r, whereas L1 and L2 are solved when applying
the Schur-complement operator. The four problems do not depend
on the global pressure variable pΩ and global adjoint pressure rΩ.
The coupling vector (uΓ, pΩ, zΓ, rΩ) also does not depend on the local
Lagrange parameters ηi and θi.

8
6

d
d

m
f

o
r

o
p

t
i
m

a
l

c
o

n
t

r
o

l
p

r
o

b
l

e
m

c
o

n
s

t
r

a
i
n

e
d

b
y

o
s

e
e

n

3.7.4 General Operator for the Distributed Control Case

In Chapter 6, we derive two algorithms which are independent of the model problem: One to solve the Schur-complement equations and
another one to solve the global linear systems. Therefore, we define a generalized operator introduced in Section 2.6.4. Again, the general
operator is based on the block matrices used in the global linear system. For non-outflow subdomains, we define:

Ki =



Aii 0 −(Dc)ii B̃T
ii 0 AiΓi 0 0 0

−(M0)ii AT
ii 0 0 B̃T

ii −(M0)iΓi AT
Γii

0 0

0 (Dc)T
ii α(Mc)ii 0 0 0 (Dc)T

Γii
0 0

B̃ii 0 0 0 0 B̃iΓi 0 0 0

0 B̃ii 0 0 0 0 B̃iΓi 0 0

AΓii 0 −(Dc)Γii B̃T
iΓi

0 AΓiΓi 0 BT
0,i 0

−(M0)Γii AT
iΓi

0 0 B̃T
iΓi
−(M0)ΓiΓi AT

ΓiΓi
0 BT

0,i

0 0 0 0 0 B0,i 0 0 0

0 0 0 0 0 0 B0,i 0 0



:=


Aii BT

ii AiΓi 0

Bii 0 BiΓi 0

AΓii BT
Γii
AΓiΓi BT

Ωi

0 0 BΩi 0



For outflow subdomains, we get a similar operator. We only have to replace the submatrices of B̃ with the corresponding submatrices ofB.

3.
7

a
l

g
e

b
r

a
i
c

f
o

r
m

u
l

a
t

i
o

n
8

7

3.7.5 Global Linear System and Schur-complement Equation for the Boundary Control Case

We write the global linear system which corresponds to the finite element formulation of (3.8) for an example with two subdomains. We
assume that the boundary control is applied on Ω1 and that Ω2 is an outflow subdomain. Then we can neglect the global pressure variable
rΩ which is zero due to the boundary conditions which uniquely define the adjoint pressure on all subdomains.

A11 B̃T
11 (AC)11 0 0 0 0 0 0 A1Γ1 0 0

B̃11 0 (BC)11 0 0 0 0 0 0 B̃1Γ1 0 0

0 0 −αQ11 (AC)
T
11 (BC)

T
11 0 0 0 0 0 0 (AC)

T
Γ11

−(M0)11 0 0 AT
11 BT

11 0 0 0 0 −(M0)1Γ1 0 AT
Γ11

0 0 0 B11 0 0 0 0 0 0 0 B1Γ1

0 0 0 0 0 A22 BT
22 0 0 A2Γ2 0 0

0 0 0 0 0 B22 0 0 0 B2Γ2 0 0

0 0 0 0 0 −(M0)22 0 AT
22 BT

22 −(M0)2Γ2 0 AT
Γ22

0 0 0 0 0 0 0 B22 0 0 0 B2Γ2

AΓ11 B̃T
1Γ1

(AC)Γ11 0 0 AΓ22 BT
2Γ2

0 0 AΓΓ BT
0 0

0 0 0 0 0 0 0 0 0 B0 0 0

−(M0)Γ11 0 0 AT
1Γ1

BT
1Γ1

−(M0)Γ22 0 AT
2Γ2

BT
2Γ2

−MΓΓ 0 AT
ΓΓ





u1

p1

c

z1

r1

u2

p2

z2

r2

uΓ

pΩ

zΓ



=



f1 −A1DuD

−B1DuD

0

−û1

0

f2 −A2DuD

−B2DuD

0

−û2

0

fΓ −AΓDuD

−B0DuD

−ûΓ



.

Knowing that the inner block matrices (with the subindex ·ii) are invertible, we can derive the Schur-complement equation. Again, we
write directly the alternative formulation for the non-outflow subdomains. The derivation of the alternative formulation works analogously
to the outflow boundary case of the Oseen equations shown in Section 2.6.3.

8
8

d
d

m
f

o
r

o
p

t
i
m

a
l

c
o

n
t

r
o

l
p

r
o

b
l

e
m

c
o

n
s

t
r

a
i
n

e
d

b
y

o
s

e
e

n

The Schur-complement S is defined as:

S :=


AΓΓ BT

0 0 0

B0 0 0 0

−MΓΓ 0 AT
ΓΓ BT

0

0 0 B0 0

− ∑
i∈N
i 6=j


AΓi BT

iΓi
0 0

0 0 0 0

−(M0)Γi i 0 AT
iΓi

BT
iΓi

0 0 0 0




Aii BT
ii 0 0

Bii 0 0 0

−(M0)ii 0 AT
ii BT

ii

0 0 Bii 0


−1

AiΓi 0 0 0

BiΓi 0 0 0

−(M0)iΓi 0 AT
Γi i 0

0 0 BiΓi 0


︸ ︷︷ ︸

=:L1

− ∑
i/∈N
i 6=j


AΓi i BT

iΓi
0 0 0 0

0 0 0 0 0 0

−(M0)Γi i 0 0 AT
iΓi

BT
iΓi

0

0 0 0 0 0 0





Aii BT
ii 0 0 0 0

Bii 0 ci 0 0 0

0 cT
i 0 0 0 0

−(M0)ii 0 0 AT
ii BT

ii 0

0 0 0 Bii 0 ci

0 0 0 0 cT
i 0



−1

AiΓi 0 0 0

BiΓi 0 0 0

0 0 0 0

−(M0)iΓi 0 AT
Γi i 0

0 0 BiΓi 0

0 0 0 0


︸ ︷︷ ︸

=:L2

−


AΓj j BT

jΓj
0 (AC)Γj j 0 0

0 0 0 0 0 0

−(M0)Γj j 0 0 0 AT
jΓj

BT
jΓj

0 0 0 0 0 0





Ajj BT
jj 0 (AC)jj 0 0

Bjj 0 cj (BC)jj 0 0

0 cT
j 0 0 0 0

0 0 0 −αQjj (AC)
T
jj (BC)

T
jj

−(M0)jj 0 0 0 AT
jj BT

jj

0 0 0 0 Bjj 0



−1

AjΓj 0 0 0

BjΓj 0 0 0

0 0 0 0

0 0 (AC)
T
Γj j 0

−(M0)jΓj 0 AT
Γj j 0

0 0 BjΓj 0


︸ ︷︷ ︸

=:L3

3.
7

a
l

g
e

b
r

a
i
c

f
o

r
m

u
l

a
t

i
o

n
8

9

For the right hand side r, we obtain:

r :=


fΓ −AΓDuD

−B̂0DuD

−ûΓ

0

− ∑
i∈N
i 6=j


AΓi BT

iΓ 0 0

0 0 0 0

−(M0)Γi 0 AT
iΓ BT

iΓ

0 0 0 0




Aii BT
ii 0 0

Bii 0 0 0

−(M0)ii 0 AT
ii BT

ii

0 0 Bii 0


−1

fi −AiDi uDi

−BiDi uDi

−ûi

0


︸ ︷︷ ︸

=:L4

− ∑
i/∈N
i 6=j


AΓi BT

iΓ 0 0 0 0

0 0 0 0 0 0

−(M0)Γi 0 0 AT
iΓ BT

iΓ 0

0 0 0 0 0 0





Aii BT
ii 0 0 0 0

Bii 0 ci 0 0 0

0 cT
i 0 0 0 0

−(M0)ii 0 0 AT
ii BT

ii 0

0 0 0 Bii 0 ci

0 0 0 0 cT
i 0



−1

fi −AiDi uDi

−BiDi uDi

0

−ûi

0

0


︸ ︷︷ ︸

=:L5

−


AΓj j BT

jΓj
0 (AC)Γj j 0 0

0 0 0 0 0 0

−(M0)Γj j 0 0 0 AT
jΓj

BT
jΓj

0 0 0 0 0 0





Ajj BT
jj 0 (AC)jj 0 0

Bjj 0 cj (BC)jj 0 0

0 cT
j 0 0 0 0

0 0 0 −αQjj (AC)
T
jj (BC)

T
jj

−(M0)jj 0 0 0 AT
jj BT

jj

0 0 0 0 Bjj 0



−1

fi −AiDi uDi

−BiDi uDi

0

0

−ûi

0

0


︸ ︷︷ ︸

=:L6

90 ddm for optimal control problem constrained by oseen

Analogously, the subproblems L1− L6 can be interpreted as solving
local optimality systems of a boundary control problem applied to the
Oseen equations.

L1 solve:
Aii BT

ii 0 0

Bii 0 0 0

−(M0)ii 0 AT
ii BT

ii

0 0 Bii 0




ui

pi

zi

ri

 =


AiΓi uΓi + (AC)iΛi cΛi

BiΓi uΓi + (BC)iΛi cΛi

−(M0)iΓi uΓi + AT
Γi i

zΓi

BiΓi zΓi

 .

L1 solves a local optimality system of a boundary control problem
applied to the Oseen equations with Dirichlet data uΓi and zΓi on the
local skeleton Γi, natural outflow conditions on ∂Ωi ∩ ∂Ωout and zero
Dirichlet boundary data on ∂Ωi ∩ ∂Ω.

L2 solve:

Aii BT
ii 0 0 0 0

Bii 0 ci 0 0 0

0 cT
i 0 0 0 0

−(M0)ii 0 0 AT
ii BT

ii 0

0 0 0 Bii 0 ci

0 0 0 0 cT
i 0





ui

pi

ηi

zi

ri

θi


=



AiΓi uΓi

BiΓi uΓi

0

−(M0)iΓi uΓi + AT
Γi i

zΓi

BiΓi zΓi

0


.

L2 solves a local optimality system of a boundary control problem
applied to the Oseen equations. On the local skeleton Γi, the Dirichlet
data is set to uΓi and zΓi . For non-outflow subdomains intersecting
global Dirichlet boundary, the Dirichlet data on the global boundary
∂Ωi ∩ ∂ΩD is set to zero.

L3 solve:

Ajj BT
jj 0 (AC)jj 0 0

Bjj 0 cj (BC)jj 0 0

0 cT
j 0 0 0 0

0 0 0 −αQjj (AC)
T
jj (BC)

T
jj

−(M0)jj 0 0 0 AT
jj BT

jj

0 0 0 0 Bjj 0





uj

pj

ηi

c

zj

rj


=



AjΓj uΓj

BjΓj uΓj

0

(AC)

−(M0)jΓj uΓj + AT
Γj jzΓj

BjΓj zΓj


.

L3 solves a local optimality system of a boundary control problem
applied to the Oseen equations on the control subdomain Ωj. On the
local skeleton Γi, the Dirichlet data is set to uΓi and zΓi . The Dirichlet
data on the global boundary ∂Ωi ∩ ∂ΩD for the velocity is set to zero
for the adjoint velocity, outflow boundary conditions are applied on
ΓC.

3.7 algebraic formulation 91

L4 solve:
Aii BT

ii 0 0

Bii 0 0 0

−(M0)ii 0 AT
ii BT

ii

0 0 Bii 0




ui

pi

zi

ri

 =


fi −AiDi uDi

−BiDi uDi

−ûi

0

 .

L4 solves a local optimality system of a boundary control problem
applied to the Oseen equations with zero Dirichlet data on the local
skeleton Γi and natural outflow conditions on ∂Ωi ∩ ∂Ωout. On ∂Ωi ∩
∂Ω the Dirichlet data for the velocity is set to uDi and for the adjoint
velocity to zero.

L5 solve:



Aii BT
ii 0 0 0 0

Bii 0 ci 0 0 0

0 cT
i 0 0 0 0

−(M0)ii 0 0 AT
ii BT

ii 0

0 0 0 Bii 0 ci

0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



fi −AiDi uDi

−BiDi uDi

0

0

−ûi

0

0


.

L5 solves a local optimality system of a boundary control problem
applied to the Oseen equations with Dirichlet data. For inner sub-
domains a homogeneous Dirichlet boundary problem is solved. For
the non-outflow subdomains intersecting global Dirichlet boundary,
the Dirichlet data on the global boundary ∂Ωi ∩ ∂ΩD is set to uDi

for the velocity and zero for the adjoint velocity. On the skeleton Γi,
homogeneous Dirichlet boundary data is set.

L6 solve:

Ajj BT
jj 0 (AC)jj 0 0

Bjj 0 cj (BC)jj 0 0

0 cT
j 0 0 0 0

0 0 0 −αQjj (AC)
T
jj (BC)

T
jj

−(M0)jj 0 0 0 AT
jj BT

jj

0 0 0 0 Bjj 0





uj

pj

ηi

c

zj

rj


=



fj −AjDj uDj

−BjDj uDj

0

0

−ûj

0


.

L6 solves a local optimality system of a boundary control problem
applied to the Oseen equations on the control subdomain Ωj. On the
local skeleton Γi, homogeneous Dirichlet data is set. The Dirichlet
data on the global boundary ∂Ωi ∩ ∂ΩD for the velocity is set to uDi .
For the adjoint velocity outflow boundary conditions are applied on
ΓC.

Adding up L1 and L4, we obtain the algebraic representation of the
local decoupled subproblems on outflow subdomains Ωi (3.28).

92 ddm for optimal control problem constrained by oseen

L1 + L4 solve:

Aii BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii BT

ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



fi −AiDi uDi −AiΓi uΓi

−BiDi uDi − BiΓi uΓi

−(DC)
T
Γi izΓi

−ûi + MiΓi uΓi −AT
Γi izΓi

−BiΓi zΓi


.

Adding up L2 and L5 leads to
L2 + L5 solve:



Aii BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



fi −AiDi uDi −AiΓi uΓi

−BiDi uDi − BiΓi uΓi

0

−(DC)
T
Γi i

zΓi

−ûi + MiΓi uΓi −AT
Γi i

zΓi

−BiΓi zΓi

0


,

which is the algebraic representation of the local decoupled optimality
systems on non-outflow subdomains Ωi (3.27).

Adding up L3 and L6 yields the algebraic representation of the local
decoupled optimal control system on the control domain Ωj (3.29):

L3 + L6 solve:


Ajj BT
jj 0 (AC)jj 0 0

Bjj 0 cj (BC)jj 0 0

0 cT
j 0 0 0 0

0 0 0 −αQjj (AC)
T
jj (BC)

T
jj

−(M0)jj 0 0 0 AT
jj BT

jj

0 0 0 0 Bjj 0





uj

pj

ηi

c

zj

rj


=



fj −AjDj uDj −AjΓj uΓj

−BiDj uDj − BjΓj uΓj

0

−(AC)

−ûj + (M0)jΓj uΓj −AT
Γj jzΓj

−BjΓj zΓj


.

summary

In this chapter, we derived a non-overlapping domain decomposition
method for two linear quadratic optimal flow control problems. As
constraints, we applied the Oseen equations equipped with mixed
outflow and Dirichlet boundary conditions. For one problem, we
assumed distributed and for the other boundary control. The local
problems, we obtained have the same structure as the global problems.
This main idea of the domain decomposition is therefore transferable
to the optimal flow control case. We emphasized on the differences
between the distributed and boundary control case. This chapter
builds a foundation for Chapter 5, in which we analyze a non-linear
optimal flow control problem assuming distributed control.

4
D O M A I N D E C O M P O S I T I O N M E T H O D F O R T H E
N AV I E R - S T O K E S E Q U AT I O N S

Before we consider a non-linear optimal flow control problem in
the forthcoming chapter, we consider the Navier-Stokes equations
as a non-linear model problem. Based on this flow problem, we
concentrate on how to deal with the non-linearity in the context of
a non-overlapping domain decomposition method. We discuss how
to solve the Navier-Stokes equations combining the Newton-method
with the domain decomposition approach. Analogously to the former
chapters, we derive a domain decomposition method for the non-linear
Navier-Stokes equations equipped with mixed outflow and Dirichlet
boundary conditions. The derivation of the domain decomposition
method is based on the description given in Chapter 2.

If not stated differently, we use the same definitions, notation and
assumptions as in Chapter 2.

4.1 navier-stokes equations with outflow boundary con-
ditions

Analogously to the previous chapters, in the first main step, we present
a global problem formulation in strong and weak form. In difference to
the first chapter, the domain decomposition is applied to the linearized
weak formulation. Again, let Ω ⊂ Rd (d = 2, 3) be a Lipschitz domain.
We decompose the boundary ∂Ω = ∂ΩD ∪ ∂Ωout with ∂ΩD ∩ ∂Ωout =

∅ as before in Chapter 2 for the outflow boundary case, see also Fig.
3. For given functions and values

f ∈ L2(Ω), h ∈ L2(∂Ωout), d ∈ H1/2(∂ΩD) and µ > 0, (4.1)

we want to solve the following boundary value problem for the Navier-
Stokes equations, modeling a Newtonian fluid equipped with mixed
outflow and Dirichlet boundary conditions:

(u ·∇)u−∇ · σ(u, p) = f in Ω, (4.2a)

∇ · u = 0 in Ω, (4.2b)

u = d on ∂ΩD, (4.2c)

93

94 ddm for the navier-stokes equations

σ(u, p)n = h on ∂Ωout. (4.2d)

The Navier-Stokes equations compared to the Oseen equations model
flow at higher Reynolds numbers that means the viscosity tends to
be smaller at higher velocities. Because of this the non-linear term
(u ·∇)u is not negligible and becomes dominant.

For the Dirichlet boundary data d, we again assume that there exists
an extension uD ∈ H1(Ω) such that γd(uD) = d.

Since we want to discretize the Navier-Stokes equations with a finite
element method, we derive a weak formulation. Therefore, we use the
bilinear form b(·, ·) and the linear form f (·) as defined in Chapter 2.
Moreover, we redefine the bilinear form a(·, ·) and define the trilinear
form n(·, ·, ·):

a : H1(Ω)×H1(Ω)→ R, a(u, v) = 2µ
∫

Ω
ε(u) : ε(v) dx,

= µ
∫

Ω
∇u : ∇v dx,

n : H1(Ω)×H1(Ω)×H1(Ω)→ R, n(w, u, v) =
∫

Ω
((w ·∇)u)v dx,

Using these definitions, the weak form of the system of partial differ-
ential equation (4.2) is given as follows: Find u ∈ H1

D(Ω), p ∈ L2(Ω)

such that

a(u, v) + n(u, u, v) + b(v, p) = f (v)− a(uD, v)− n(uD, uD, v),
(4.3a)

b(u, q) = −b(uD, q) (4.3b)

for all v ∈ H1
D(Ω), q ∈ L2(Ω).

Remark 32. The existence and uniqueness of solutions for the Navier-
Stokes equations equipped with different types of boundary conditions
have been treated in many publication. See, e.g., [20, Part III, Remark
9.1] for further literature. Since the existence and uniqueness is not
the focus of this work, we assume that for our set-up a solution exists.

Due to the term n(u, u, v) this is a non-linear problem, which we
solve using the Newton method. Therefore, we write the problem as a
root problem (F(x) = 0) and approximate the solution based on the
Taylor series expansion. We assume that an appropriate start solution
x0 is given. The steps of the Newton method are given as in as in Alg.
4.1.

In step 4, we solve the linearized problem, with the residual F(·)
evaluated at the linearization point xk and get the correction ck. In step
5, also called update step, we calculate the next iteration xk+1. Since
we apply the Newton method to solve the Navier-Stokes problem, we
need to linearize its variational equations (4.3). First, we define the
residuals at the linearization point (uk, pk) ∈ H1

D(Ω)× L2(Ω) for the
test functions v ∈ H1

D(Ω) and q ∈ L2(Ω):

4.2 continuous domain decomposition 95

Algorithm 4.1 Newton Method

1: Input: Appropriate start solution x0

2: k = 0
3: repeat
4: ∇F[xk]ck = F(xk)
5: xk+1 = xk − ck

6: k = k + 1
7: until convergence

F1(uk, pk, v) = a(uk, v) + n(uk, uk, v) + b(v, pk)+

− f (v) + a(uD, v) + n(uD, uD, v),

F2(uk, q) = b(uk, q) + b(uD, q).

We set

F(uk, pk, v, q) =

(
F1(uk, pk, v)

F2(uk, q)

)
.

Our root problem then reads

F(u, p, v, q) = 0 ∀v ∈ H1
D(Ω), q ∈ L2(Ω).

Next, we linearize (4.3) at the linearization point (uk, pk) and obtain
the following weak form for the corrections for the kth Newton step:
Find the corrections cu ∈ H1

D(Ω), cp ∈ L2(Ω) such that

a(cu, v) + n(cu, uk, v) + n(uk, cu, v) + b(v, cp) = F1(uk, pk, v), (4.4a)

b(cu, q) = F2(uk, pk, q) (4.4b)

for all v ∈ H1
D(Ω), q ∈ L2(Ω).

4.2 continuous domain decomposition

In the second main step, we derive a non-overlapping domain de-
composition method on the continuous level for the linearized weak
Navier-Stokes equations (4.4). Analogously to the previous chapters,
we first derive a fully coupled equivalent formulation on subdomains
to which we refer as the first sub-step of the second main step. This
sub-step is sketched in Fig. 6. In the second sub-step, we decouple that
formulation which then leads to s independent linearized subdomain
problems and one linearized system of coupling conditions, see Fig. 7.

96 ddm for the navier-stokes equations

We partition the domain as explained in Chapter 2 and use the same
decomposition of the spaces for the velocity and pressure.

4.2.1 Decomposition of the Bilinear Forms

We define the local bilinear forms ai(·, ·) and ni(·, ·, ·). For the local
bilinear form b(·, ·), we use the definition from Chapter 2. Before
we define the local bi- and trilinear forms, we define the partitioning
of the linearization point. Recall that Vi is the local velocity space
with mixed outflow and generalized zero boundary conditions, see
definition (2.14). On the other hand, Ṽi is the local velocity space
with generalized zero boundary conditions only on the local boundary
which intersects the global Dirichlet boundary, i.e. on ∂Ωi ∩ ∂ΩD, see
also definition (2.16). We set

uk
i : = uk|Ωi , uk = (uk

1, uk
2, . . . , uk

s) ∈
s⊗

i=1

Ṽi.

For the pressure, we have to be more careful. On inner subdomains the
pressure is split into a normalized part in L2

0(Ω) and a constant. On
outflow subdomains the local pressure directly lies in L2(Ω). Hence,
it gives

pk
i = pk|Ωi ∈

L2(Ωi) if i ∈ N

L2
0(Ωi) if i /∈ N

,

which results in the definition

pk = (pk
1, pk

2, . . . , pk
s , pk

Ω) ∈
s⊕

i=1

Qi ⊕ D(Ω).

We redefine the local bilinear forms ai(·, ·):

ai : H1(Ωi)×H1(Ωi)→ R, ai(ui, vi) = 2µ
∫

Ωi

ε(ui) : ε(vi) dx

= µ
∫

Ωi

∇ui : ∇vi dx,

For a fixed uk
i , we define the local trilinear form ni:

ni : H1(Ωi)×H1(Ωi)×H1(Ωi)→ R,

ni(uk
i , ui, vi) =

1
2

∫
Ωi

((uk
i ·∇)ui)vi dx− 1

2

∫
Ωi

((uk
i ·∇)vi)ui dx+

− 1
2

∫
Ωi

((∇ · uk
i)vi)ui dx +

1
2

∫
∂Ωi∩∂Ωout

(uk
i · ni)(uivi) ds.

ni : H1(Ωi)×H1(Ωi)×H1(Ωi)→ R,

4.2 continuous domain decomposition 97

ni(ui, uk
i , vi) =

∫
Ωi

((ui ·∇)uk
i)vi dx.

For a fixed uk
i , the canonical decomposition of n(uk, u, v) denoted by

ñi(uk
i , ui, vi) leads to

ñi(uk
i , ui, vi) =

∫
Ωi

((uk
i ·∇)ui)vi dx

=
1
2

∫
Ωi

((uk
i ·∇)ui)vi dx− 1

2

∫
Ωi

((uk
i ·∇)vi)ui dx+

− 1
2

∫
Ωi

((∇ · uk
i)vi)ui dx +

1
2

∫
∂Ωi

(uk
i · ni)(uivi) ds

⇒ ni(uk
i , ui, vi) = ñi(uk

i , ui, vi)−
1
2

∫
∂Ωi

(uk
i · ni)(uivi) dx.

Remark. Note that ni(uk
i , vi, vi) = 0.

Remark. The decomposition of ni(uk
i , ui, vi) works analogously to the

decomposition of the advection part in the Oseen equations.

Proposition 33. For the local bilinear and trilinear forms a(·, ·), ni(uk
i , ·, ·),

and ni(·, uk
i , ·) it holds that

s

∑
i=1

ai(u|Ωi , v|Ωi) = a(u, v) ∀u ∈ H1(Ω), v ∈ H1
D(Ω),

s

∑
i=1

ni(uk
i , u|Ωi , v|Ωi) =

s

∑
i=1

ñi(uk
i , u|Ωi , v|Ωi)

= n(uk, u, v) ∀u ∈ H1(Ω), v ∈ H1
D(Ω),

s

∑
i=1

ni(u|Ωi , uk
i , v|Ωi) = n(u, uk, v) ∀u ∈ H1(Ω), v ∈ H1

D(Ω).

Proof. The first and third equation can be computed trivially. We show
the equality of

s

∑
i=1

ni(uk
i , u|Ωi , v|Ωi) = n(uk, u, v) ∀u ∈ H1(Ω), v ∈ H1

D(Ω).

The remaining part can be shown analogously.

s

∑
i=1

ni(uk
i , u|Ωi , v|Ωi)

=
s

∑
i=1

(1
2

∫
Ωi

((uk
i ·∇)ui)vi dx− 1

2

∫
Ωi

((uk
i ·∇)vi)ui dx+

− 1
2

∫
Ωi

((∇ · uk
i)vi)ui dx +

1
2

∫
∂Ωi∩∂Ωout

(uk
i · ni)(uivi) ds

)

98 ddm for the navier-stokes equations

=
s

∑
i=1

(∫
Ωi

((uk
i ·∇)ui)vi dx− 1

2

∫
∂Ωi

(uk
i · ni)(uivi) ds+

+
1
2

∫
∂Ωi∩∂Ωout

(uk
i · ni)(uivi) ds

)
=
∫

Ω
((uk ·∇)u)v dx− 1

2

s

∑
i=1
j>i

∫
Γij

(uk
i · (ni + nj))(uivi) ds︸ ︷︷ ︸

=0, (ni+nj)=0

+

−1
2

∫
∂Ωout

(uk · n)(uv) ds +
1
2

∫
∂Ωout

(uk · n)(uv) ds︸ ︷︷ ︸
=0

+

+
1
2

∫
∂ΩD

(uk · n)(uv) ds︸ ︷︷ ︸
=0, v∈H1

D(Ω)

= n(uk, u, v)

4.2.2 Decomposition of the Residuals

We define the local residuals

F1
i (u

k
i , pk

i , vi) : = ai(uk
i , vi) + ni(uk

i , uk
i , vi) + bi(vi, pk

i)+

+ ai(uDi , vi) + ni(uDi , uDi , vi)− fi(vi),

F2
i (u

k
i , qi) : = bi(uk

i , qi) + bi(uDi , qi),

F3
i (pk

i , ξi) : = ci(pk
i , ξi)

with vi ∈ Vi, qi ∈ Qi and ξi ∈ R.
Moreover, we define the residuals on the interface:

F1
Γ(u

k, pk, vΓ) : = a(uk,R(vΓ)) + n(uk, uk,R(vΓ)) + b(R(vΓ), pk)+

+ a(uD,R(vΓ)) + n(uD, uD,R(vΓ))− f (R(vΓ)),

F2
Γ(u

k, qΩ) : = b(uk, qΩ) + b(uD, qΩ),

with vΓ ∈ H1/2
00 (Γ) and qΩ ∈ D(Ω).

4.2.3 Weak Formulation on Subdomains

Using these definitions, we apply the first sub-step to derive an equiv-
alent weak formulation on subdomains that is still globally coupled.

4.2 continuous domain decomposition 99

Lemma 34. (4.4) is equivalent to the following weak formulation on subdo-
mains: At linearization point (uk, pk) ∈ H1

D(Ω)× L2(Ω), find the correc-
tions

cu =
s

∑
i=1

cui + cuΓ ∈ H1
D(Ω) with cui ∈ Vi, cuΓ ∈ H1/2

00 (Γ),

cp =
s

∑
i=1

cpi + cpΩ ∈ L2(Ω) with cpi ∈ Qi, cpΩ ∈ D(Ω)

such that

s

∑
i=1

(
ai(cui , vi) + ai(Ri(cuΓi

), vi) + ai(cui ,Ri(vΓi)) + ni(cui , uk
i , vi)+

+ ni(Ri(cuΓi
), uk

i , vi) + ni(cui , uk
i ,Ri(vΓi)) + ni(uk

i , cui , vi)+

+ ni(uk
i ,Ri(cuΓi

), vi) + ni(uk
i , cui ,Ri(vΓi)) + bi(vi, cpi)+

+ bi(Ri(vΓi), cpi)

)
+ a(R(cuΓ),R(vΓ)) + n(R(cuΓ), uk,R(vΓ))+

+ n(uk,R(cuΓ),R(vΓ)) + b(R(vΓ), cpΩ)

=
s

∑
i=1

(
F1

i (u
k
i , pk

i , vi)

)
+ F1

Γ(u
k, pk, vΓ), (4.5a)

s

∑
i=1

(
bi(cui , qi) + bi(Ri(cuΓi

), qi)
)
+ b(R(cuΓ), qΩ)

=
s

∑
i=1

(
F2

i (u
k
i , qi)

)
+ F2

Γ(u
k, qΩ) (4.5b)

for all vi ∈ Vi, vΓ ∈ H1/2
00 (Γ), qi ∈ Qi and qΩ ∈ D(Ω).

Proof. Use the same arguments as in the proof of Lemma 9 in Chapter
2.

4.2.4 Decoupling of Weak Formulation on Subdomains

Then in the next sub-step, we decouple (4.5) into s independent lo-
cal weak formulations on subdomains and one system of coupling
equations. For the local subproblems, we have to distinguish two
formulations, one for outflow subdomains and one for non-outflow
subdomains.

On a non-outflow subdomain, the local linearized Navier-Stokes
problem is given as follows:

For a given cuΓ ∈ H1/2
00 (Γ), find cui ∈ H1

0(Ωi) and c̃pi ∈ L2
0(Ωi) at

the linearization point (uk
i , pk

i), such that

ai(cui , vi) + ai(Ri(cuΓi
), vi) + bi(vi, c̃pi)+

100 ddm for the navier-stokes equations

+ni(cui , uk
i , vi) + ni(Ri(cuΓi

), uk
i , vi)+

+ni(uk
i , cui , vi) + ni(uk

i ,Ri(cuΓi
), vi) = F1

i (u
k
i , pk

i , vi), (4.6a)

bi(cui , q̃i) + bi(Ri(cuΓi
), q̃i) = F2

i (u
k
i , q̃i) (4.6b)

for all vi ∈ H1
0(Ω) and q̃i ∈ L2

0(Ωi).
In the next proposition, we give an equivalent alternative formula-

tion. Analogously to the previous chapters, we prefer this alternative
formulation due to the used finite element implementation.

Proposition 35. Under the assumption (2.24), (4.6) is equivalent to the
following subdomain problem.

For a given cuΓ ∈ H1/2
00 (Γ), find cui ∈ H1

0(Ωi), cpi ∈ L2(Ωi) and cηi ∈ R

at the linearization point (uk
i , pk

i), such that

ai(cui , vi) + ai(Ri(cuΓi
), vi) + bi(vi, cpi)+

+ni(cui , uk
i , vi) + ni(Ri(cuΓi

), uk
i , vi)+

+ni(uk
i , cui , vi) + ni(uk

i ,Ri(cuΓi
), vi) = F1

i (u
k
i , pk

i , vi), (4.7a)

bi(cui , qi) + bi(Ri(cuΓi
), qi) + ci(cηi , qi) = F2

i (u
k
i , qi), (4.7b)

ci(ξi, cpi) = F3(pk
i , ξi) (4.7c)

for all vi ∈ H1
0(Ωi), qi ∈ L2(Ωi) and ξi ∈ R.

Proof. Use the same arguments as in the proof of Lemma 14 in Chapter
2.

As we can see, the local Navier-Stokes problems on non-outflow
subdomains are independent of the global constants cpΩ .

Similarly on outflow subdomains, we obtain the following formula-
tion:

For a given cuΓ ∈ H1/2
00 (Γ), find cui ∈ H1

N(Ωi) and cpi ∈ L2(Ωi) at
the linearization point (uk

i , pk
i), such that

ai(cui , vi) + ai(Ri(cuΓi
), vi) + bi(vi, cpi)+

+ni(cui , uk
i , vi) + ni(Ri(cuΓi

), uk
i , vi)+ (4.8a)

+ni(uk
i , cui , vi) + ni(uk

i ,Ri(cuΓi
), vi) = F1

i (u
k
i , pk

i , vi),

bi(cui , qi) + bi(Ri(cuΓi
), qi) = F2

i (u
k
i , qi), (4.8b)

for all vi ∈ H1
N(Ωi) and qi ∈ L2(Ωi). Since on outflow subdomains,

the pressure pi is uniquely defined as long a solution exists, it is clear
that the solution is independent of the known global constant cpΩ .

Since we are interested in solving the linearized global system (4.4)
by solving coupling conditions on the interface, the next lemma states
under which conditions the local and the global formulations are
equivalent.

4.3 discretization based on a finite element method 101

Lemma 36. It holds that

cu =
s

∑
i=1

cui +R(cuΓ) ∈ H1
D(Ω),

cp =
s

∑
i=1

cpi + cpΩ ∈ L2(Ω)

with (cui , cpi) ∈ Vi × Qi solutions of (4.7) or (4.8) (depending on the
subdomain type) solve (4.4) if and only if the following coupling conditions
hold for (cuΓ , cpΩ) ∈ H1/2

00 (Γ)× D(Ω) at the linearization point (uk, pk):
Find cuΓ ∈ H1/2

00 (Γ) and cpΩ ∈ D(Ω) such that

s

∑
i=1

(
a(cui ,Ri(vΓi)) + ni(cui , uk

i ,Ri(vΓi)) + ni(uk
i , cui ,Ri(vΓi))+

+ bi(Ri(vΓi), cpi)

)
+ a(R(cuΓ),R(vΓ)) + n(R(cuΓ), uk,R(vΓ))+

+ n(uk,R(cuΓ),R(vΓ)) + b(R(vΓ), cpΩ) = F1
Γ(u

k, pk, vΓ), (4.9)

b(R(cuΓ), qΩ) = F2
Γ(u

k, qΩ) (4.10)

for all vΓ ∈ H1/2
00 (Γ) and qΩ ∈ D(Ω).

Proof. This can be shown by using the same arguments as in Chapter
2 in the proof of Lemma 13.

4.3 discretization based on a finite element method

We use the same type of finite element method as described in Chapter
2. Consequently, we use the same definitions for the triangulation,
Taylor-Hood spaces and Taylor-Hood finite elements.

For a more readable notation of the linearization point and correc-
tions, we leave out the superscript h, indicating a discrete function.
In the following, we denote by (uk

i , pk
i) ∈ Ṽh

i × Qh
i a discrete local

linearization point, and by (uk, pk) ∈ Vh × Qh a discrete global lin-
earization point.

4.3.1 Decoupled Finite Element Formulation

Using the definitions for the finite element method, we discretize the s
decoupled subdomain weak formulations and the system of coupling
conditions. That is the third main step of the derivation, which is also
illustrated in Fig. 9.

On non-outflow subdomains, we get the following finite element
discretization for the local linearized Navier-Stokes systems corre-
sponding to the alternative formulation (4.7): For a given ck

uΓ
∈ Vh

Γ,

102 ddm for the navier-stokes equations

find ck
ui
∈ Vh

i , ck
pi
∈ Qh

i and ck
ηi
∈ R at the linearization point (uk

i , pk
i),

such that

ai(ck
ui

, vh
i) + ai(ck

uΓi
, vh

i) + bi(vh
i , ck

pi
) + ni(ck

ui
, uk

i , vh
i)+ (4.11a)

+ni(ck
uΓi

, uk
i , vh

i) + ni(uk
i , ck

ui
, vh

i) + ni(uk
i , ck

uΓi
, vh

i) = F1
i (u

k
i , pk

i , vh
i),

bi(ck
ui

, qh
i) + bi(ck

uΓi
, qh

i) + ci(ck
ηi

, qh
i) = F2

i (u
k
i , qh

i),

(4.11b)

ci(ξ
h
i , ck

pi
) = F3

i (pk
i , ξh

i)

(4.11c)

for all vh
i ∈ Vh

i , qh
i ∈ Qh

i and ξh
i ∈ R.

Analogously the finite element formulation on outflow subdomains
yields:

For a given ck
uΓ
∈ Vh

Γ, find ck
ui
∈ Vh

i and ck
pi
∈ Qh

i at the linearization
point (uk

i , pk
i) such that

ai(ck
ui

, vh
i) + ai(ck

uΓi
, vh

i) + bi(vh
i , ck

pi
) + ni(ck

ui
, uk

i , vh
i)+ (4.12a)

+ni(ck
uΓi

, uk
i , vh

i) + ni(uk
i , ck

ui
, vh

i) + ni(uk
i , ck

uΓi
, vh

i) = F1
i (u

k
i , pk

i , vh
i),

bi(ck
ui

, qh
i) + bi(ck

uΓi
, qh

i) = F2
i (u

k
i , qh

i),

(4.12b)

for all vh
i ∈ Vh

i and qh
i ∈ Qh

i .
The finite element formulation of the coupling condition reads:
At the linearization point (uk, pk), find ck

uΓ
∈ Vh

Γ and ck
pΩ
∈ D(Ω)

such that

s

∑
i=1

(
ai(ck

ui
, vh

Γi
) + ni(ck

ui
, uk

i , vh
Γi
) + ni(uk

i , ck
ui

, vh
Γi
) + bi(vh

Γi
, ck

pi
)
)
+

+ a(ck
uΓ

, vh
Γ) + n(ck

uΓ
, uk, vh

Γ) + n(uk, ck
uΓ

, vh
Γ) + b(vh

Γ, ck
pΩ
)+

= F1
Γ(u

k, pk, vh
Γ), (4.13a)

b(ck
uΓ

, qh
Ω) = F2

Γ(u
k, qh

Ω) (4.13b)

for all vh
Γ ∈ Vh

Γ and qh
Ω ∈ D(Ω). ch

ui
∈ Vh

i and ch
pi
∈ Qh

i are solutions
of (4.11) and (4.12) depending on whether a subdomain Ωi is a non-
outflow or an outflow subdomain, respectively.

4.4 algebraic formulation

Based on the finite element discretization, we derive the resulting
global linear system corresponding to (4.5) and the Schur-complement
equations corresponding to (4.13). This is the last main step of the

4.4 algebraic formulation 103

derivation of the domain decomposition method. We use the same
definition as in Chapter 2. Furthermore, we define the finite element
function for the linearization point uk

i and the resulting coefficient
vector:

uk
i (x) =

nui+nuΓi

∑
j=1

uk
j ψj(x) uk

i = (u1, . . . , unui+nuΓi
)T ∈ R

nui+nuΓi .

We define the following matrices related to the bilinear form ai(·, ·)
and their entries

(A
[
uk

i

]
)tl = (A)tl = ai(ψl , ψt) + ni(uk

i , ψl , ψt) + ni(ψl , uk
i , ψt)

= µ
∫

Ωi

∇ψl : ∇ψt dx+

+
∫

Ωi

(uk
i (x) ·∇)ψl)ψtdx +

∫
Ωi

((ψl ·∇)uk
i (x))ψtdx.

The submatrices Aii
[
uk

i
]

, AiΓi

[
uk

i
]

, AΓii
[
uk

i
]

, AΓiΓi

[
uk

i
]

, AΓΓ
[
uk] ,

AiDi

[
uk

i
]

and AΓD
[
uk] are defined analogously to the definitions in

Chapter 2.
Furthermore, we define the finite element functions for the correc-

tions of the velocity and the resulting coefficient vectors:

ch
ui
(x) =

nui

∑
j=1

cuj ψj(x) cui = (cu1 , . . . , cunui
)T ∈ Rnui ,

ch
uΓ
(x) =

nuΓ

∑
j=1

cuj ψj(x) cuΓ = (cu1 , . . . , cunuΓ
)T ∈ RnuΓ ,

ch
uΓi

(x) =
nuΓi

∑
j=1

cuj ψj(x) cuΓi
= (cu1 , . . . , cnuΓi

)T ∈ R
nuΓi .

Finally, we define the finite element functions for the corrections of
the pressure and the resulting coefficient vectors:

ch
pi
(x) =

nqi

∑
j=1

cpj ϕj(x) cpi = (cp1 , . . . , cpnqi
)T ∈ Rnqi ,

ch
pΩ
(x) =

sN

∑
j=1

cpΩj
ϕΩj(x) cpΩ = (cpΩ1

, . . . , cpsN
)T ∈ RsN .

4.4.1 Global Linear System and Schur-complement Equation

Due to better readability, we write the global linear system correspond-
ing to the finite element formulation of (4.5) for an example with two

104 ddm for the navier-stokes equations

subdomains. We assume that Ω1 is a non-outflow subdomain and that
Ω2 is an outflow subdomain.



A11
[
uk

1
]

B̃T
11 0 0 A1Γ1

[
uk

1
]

0

B̃11 0 0 0 B̃1Γ1 0

0 0 A22
[
uk

2
]

BT
22 A2Γ2

[
uk

2
]

0

0 0 B22 0 B2Γ2 0

AΓ11
[
uk

1
]

B̃T
1Γ1

AΓ22
[
uk

2
]

BT
2Γ2

AΓΓ
[
uk] BT

0

0 0 0 0 B0 0





cu1

cp1

cu2

cp2

cuΓ

cpΩ


=



F1
1
[
uk

1, pk
1
]

F2
1
[
uk

1
]

F1
2
[
uk

2, pk
2
]

F2
2
[
uk

2
]

F1
Γ
[
uk , pk]

F2
Γ
[
uk]


Knowing that the local block matrices (with the subindex ·ii) are
invertible, we can reduce the global problem to a Schur-complement
equation. We write the alternative formulation directly using the
Schur-complement matrix S which is defined as follows:

S[uk] :=

 AΓΓ

[
uk
]

BT
0

B0 0

+

− ∑
i∈N

 AΓi i

[
uk

i

]
BT

iΓi

0 0

 Aii

[
uk

i

]
BT

ii

Bii 0

−1 AiΓi

[
uk

i

]
0

BiΓi 0


︸ ︷︷ ︸

:=L1

+

− ∑
i/∈N

 AΓi i

[
uk

i

]
BT

iΓi
0

0 0 0




Aii

[
uk

i

]
BT

ii 0

Bii 0 ci

0 cT
i 0


−1

AiΓi

[
uk

i

]
0

BiΓi 0

0 0


︸ ︷︷ ︸

:=L2

,

(4.14)

and the right hand side r:

r
[
uk, pk

]
:=

 F1
Γ

[
uk, pk

]
F2

Γ

[
uk
] +

+ ∑
i∈N

 AΓi i

[
uk

i

]
BT

iΓi

0 0

 Aii

[
uk

i

]
BT

ii

Bii 0

−1 F1
i

[
uk

i , pk
i

]
F2

i

[
uk

i

] 
︸ ︷︷ ︸

:=L3

+

+ ∑
i/∈N

 AΓi i

[
uk

i

]
BT

iΓi
0

0 0 0




Aii

[
uk

i

]
BT

ii 0

Bii 0 ci

0 cT
i 0


−1


F1
i

[
uk

i , pk
i

]
F2

i

[
uk

i

]
F3

i

[
pk

i

]


︸ ︷︷ ︸
:=L4

.

(4.15)

These definitions lead to the linearized Schur-complement equation,
which represents algebraically the coupling on the skeleton (4.13):

S
[
uk
]
(ck

uΓ
, ck

pΩ
) = r

[
uk, pk

]
.

4.4 algebraic formulation 105

The subproblems L1 - L4, defined in (4.14) and (4.15), can be in-
terpreted as solving local linearized Navier-Stokes problems on the
subdomains.

L1 solve :

(
Aii
[
uk

i
]

BT
ii

Bii 0

)(
cui

cpi

)
=

 −AiΓi

[
uk

i
]

cuΓi

−BiΓi cuΓi

 .

L1 solves a local linearized Navier-Stokes problem with Dirichlet data
cuΓi

on the local skeleton Γi, natural outflow conditions on ∂Ωi ∩ ∂Ωout,
and zero Dirichlet boundary condition on ∂Ωi ∩ ∂ΩD.

L2 solve :

 Aii
[
uk

i
]

BT
ii 0

Bii 0 ci

0 cT
i 0


 cui

cpi

ηi

 =


−AiΓi

[
uk

i
]

cuΓi

−BiΓi cuΓi

0

 .

L2 solves a local linearized Navier-Stokes problem with Dirichlet
data. For inner subdomains, the Dirichlet data is set to cuΓi

on Γi.
For subdomains intersecting the global Dirichlet boundary, for which
∂Ωi ∩ ∂ΩD 6= ∅, the Dirichlet data on the global boundary is set to
zero, whereas on the skeleton Γi, the Dirichlet data is set to cuΓi

.

L3 solve :

(
Aii
[
uk

i
]

BT
ii

Bii 0

)(
cui

cpi

)
=

(
F1

i
[
uk

i , pk
i
]

F2
i
[
uk

i
])

.

L3 solves a local linearized Navier-Stokes problem with Dirichlet data
and outflow conditions. On the local skeleton Γi, zero Dirichlet data is
set. On ∂Ωi ∩ ∂Ωout, the outflow conditions hold, and on ∂Ωi ∩ ∂ΩD

the Dirichlet data is set to uDi .

L4 solve :

 Aii
[
uk

i
]

BT
ii 0

Bii 0 ci

0 cT
i 0


 cui

cpi

ηi

 =

 F1
i
[
uk

i , pk
i
]

F2
i
[
uk

i
]

F3
i

[
pk

i
]

 .

L4 solves a local linearized Navier-Stokes problem with Dirichlet data.
For inner subdomains, a homogeneous Dirichlet boundary problem is
solved. For subdomains intersecting the global boundary, the Dirichlet
data on the global boundary is set to uDi , whereas on the skeleton
boundary Γi, the Dirichlet data is zero.

Adding L1 and L3 leads to

L1 + L3 solve :(
Aii
[
uk

i
]

BT
ii

Bii 0

)(
cui

cpi

)
=

 F1
i
[
uk

i , pk
i
]
−AiΓ

[
uk

i
]

cuΓi

F2
i
[
uk

i
]
− BiΓi cuΓi

 ,

106 ddm for the navier-stokes equations

which is the algebraic representation of the local decoupled subprob-
lems on subdomain Ωi (4.12).

Similarly, adding L2 and L4 leads to

L2 + L4 solve : Aii
[
uk

i
]

BT
ii 0

Bii 0 ci

0 cT
i 0


 cui

cpi

ηi

 =


F1

i
[
uk

i , pk
i
]
−AiΓ

[
uk

i
]

cuΓi

F2
i
[
uk

i
]
− BiΓi cuΓi

F3
i

[
pk

i
]

 ,

which is the algebraic representation of the local decoupled subprob-
lems on subdomain Ωi (4.11).

4.4.2 Solution Algorithm

Algorithm 4.2 Newton-Schur-complement Algorithm

1: Input: Appropriate start solution x0 ∈ Vh ×Qh

2: k = 0
3: Assemble (on each process) subdomain matrix Ki[xk]
4: Compute r[xk] (implies solving L3 or L4) . Ch. 6, Alg. 6.6
5: Solve Schur-complement equation S[xk](ck

uΓ
, ck

pΩ
) = r[xk]

(implies solving L1 or L2) . Ch. 6, Alg. 6.7
6: Compute global correction ck based on interface corrections

(ck
uΓ

, ck
pΩ
) (implies solving L1 + L3 or L2 + L4) . Ch. 6, Alg. 6.8

7: Update global iteration xk+1 = xk − ck

8: if Stopping criteria fulfilled then
9: return xk+1

10: else
11: k = k + 1
12: Go to step 3

13: end if

Algorithm 4.2 describes how the outer loop of the Newton method
is combined with the inner loop of the domain decomposition method
to solve the Schur-complement equation, see also [7, 8]. To compute a
new global iterate of the Newton method, we have to first compute
a new right hand side, then solve a Schur-complement equation and
finally compute the global correction. More detailed Algorithms for
some of the steps described here are given in Chapter 6.

4.4.3 General Operator

In Chapter 6, we derive a general solution algorithm for the global lin-
ear system and the Schur-complement equation, which is independent
of the model problem. To be able to treat all derived model problems
at a time, we derive a general subdomain operator, which is based

4.4 algebraic formulation 107

on the block matrices of the global linear system. For non-outflow
subdomains, we get:

Ki =


Aii
[
uk

i
]

B̃T
ii AiΓi

[
uk

i
]

0

B̃ii 0 B̃iΓi 0

AΓii
[
uk

i
]

B̃T
iΓi

AΓiΓi

[
uk

i
]

BT
0,i

0 0 B0,i 0



:=


Aii BT

ii AiΓi 0

Bii 0 BiΓi 0

AΓii BT
Γii
AΓiΓi BT

Ωi

0 0 BΩi 0

 .

For outflow subdomains, we get almost the same definition. We
only need to replace all submatrices of B̃ with the corresponding
submatrices of B.

summary

In this chapter, we derived a non-overlapping domain decomposition
method for the Navier-Stokes equations equipped with mixed outflow
and Dirichlet boundary conditions. The main focus of this chapter was
how to treat the non-linearity by combining the Newton-method with
the domain decomposition approach. We applied the Newton-method
to the linearization of the model problem. The Newton-method is
then applied as an outer loop.

In Chapter 3, we extended the domain decomposition method to
the context of optimal flow control problem and in this chapter, we
dealt with the non-linearity of a flow problem. In the next chapter, we
combine the methods derived in those two chapters to finally apply a
domain decomposition method to a non-linear optimal flow control
problem constrained by the full Navier-Stokes equations.

5
D O M A I N D E C O M P O S I T I O N M E T H O D F O R A N
O P T I M A L C O N T R O L P R O B L E M C O N S T R A I N E D B Y
T H E N AV I E R - S T O K E S E Q U AT I O N S

In this chapter, we finally treat a non-linear quadratic optimal flow con-
trol problem constrained by the full Navier-Stokes equations. There-
fore, we combine all the insights gained in the previous chapters: In
Chapter 2, we focused on the saddle point structure of a flow con-
trol problems in the context of a domain decomposition method, in
Chapter 3, we emphasized on the extension of the domain decom-
position approach to a linear optimal flow control problem and in
Chapter 4, we dealt with the non-linearity. Using this knowledge, we
derive a non-overlapping domain decomposition method for a non-
linear quadratic optimal flow control problem. We assume distributed
control and equip the Navier-Stokes equations with mixed outflow
and Dirichlet boundary conditions. Analogously to the non-linear
flow problem, the domain decomposition approach is applied to the
linearization of the optimality system.

If not stated differently, we use the same definitions, notation and
assumptions as in Chapters 2-4.

5.1 distributed optimal control problem

In the first step, we introduce the global model problem and derive the
optimality system. As in Chapter 3, let ΩC,Ω0 ⊆ Ω ⊂ Rd be Lipschitz
domains. Again, we assume that the boundary ∂Ω is decomposed
into ∂Ω = ∂Ωout ∪ ∂ΩD with ∂Ωout ∩ ∂ΩD = ∅. This first step is also
depicted in Fig. 10.

Under the assumptions (4.1) and given û ∈ L2(Ω0), our aim is to
solve an optimal control problem constrained by the non-linear Navier-
Stokes equations modeling a Newtonian fluid equipped with mixed
outflow and Dirichlet boundary conditions. We apply distributed
control with support on ΩC and consider the following optimal control
problem:

min
u,c

1
2

∫
Ω0

(u + uD − û)2dx +
α

2

∫
ΩC

c2 dx (5.1a)

109

110 ddm for an optimal control problem s .t. the navier-stokes eq

subject to (s.t.) (u ·∇)u−∇ · σ(u, p) = f + 1ΩC c in Ω, (5.1b)

∇ · u = 0 in Ω, (5.1c)

u = d on ∂ΩD, (5.1d)

σ(u, p)n = h on ∂Ωout. (5.1e)

As in the previous chapters, we assume that an extension uD ∈ H1(Ω)

of d exists, such that γd(uD) = d. We present a weak formulation for
(5.1), using the definitions from the previous Chapters 2-4. In this
chapter, we refer to the definition of the bilinear form a(·, ·) as stated
in Chapter 4.

With this notation, we seek a solution of the following non-linear
quadratic distributed optimal control problem: Find u ∈ H1

D(Ω),
p ∈ L2(Ω) and c ∈ L2(Ωc) such that:

min
u,c

1
2

m(1Ω0(u + uD − û),1Ω0(u + uD − û)) +
α

2
m(1Ωc c, 1Ωc c)

(5.2a)

s.t. a(u, v) + n(u, u, v)+

+b(v, p)− d(1Ωc c, v) = f (v)− a(uD, v)− n(uD, uD, v),
(5.2b)

b(u, q) = −b(uD, q) (5.2c)

for all v ∈ H1
D(Ω) and q ∈ L2(Ω).

Lemma 37. Under the assumption that an optimal solution (u, p, c)∗ ∈
H1

D(Ω)× L2(Ω)× L2(Ωc) for (5.2) and the Lagrange multipliers (z, r) ∈
H1

D(Ω)× L2(Ω) exist, the optimal solution is a KKT point. It fulfills the
necessary optimality conditions described by the KKT conditions which are
given by the following optimality system: Find u, z ∈ H1

D(Ω), p, r ∈
L2(Ω) and c ∈ L2(Ωc) such that

a(v, z) + n(v, u, z) + n(u, v, z)+

+b(v, r)−m(1Ω0 u, 1Ω0 v) = −m(1Ω0(û− uD), 1Ω0 v), (5.3a)

b(z, q) = 0, (5.3b)

d(1Ωc e, z) + αm(1Ωc c, 1Ωc e) = 0, (5.3c)

a(u, v) + n(u, u, v)+ (5.3d)

+b(v, p)− d(1Ωc c, v) = f (v)− a(uD, v)− n(uD, uD, v),

b(u, q) = −b(uD, q) (5.3e)

for all v ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ L2(Ωc).

Proof. We derive the optimality system (5.3) by applying a Lagrangian
based adjoint approach [33]. Therefore we define the Lagrange func-
tion

L(u, p, z, r, c) =

5.1 distributed optimal control problem 111

1
2

m(1Ω0(u + uD − û), 1Ω0(u + uD − û)) +
α

2
m(1Ωc c, 1Ωc c)+

− a(u, z)− n(u, u, z)− b(z, p) + d(1Ωc c, z)+

+ f (z)− a(uD, z)− n(uD, uD, z) +−b(u, r) + b(uD, r),

and derive a stationary condition, which reads:

∂

∂u
L(u, p, z, r, c) · v =m(1Ω0(u + uD − û), 1Ω0 v)− a(v, z)+

− n(v, u, z)− n(u, v, z)− b(v, r) = 0,
∂

∂p
L(u, p, z, r, c) · q =− b(z, q) = 0,

∂

∂c
L(u, p, z, r, c) · e = αm(1Ωc c, 1Ωc e) + d(1Ωc e, z) = 0

for all v ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ L2(Ωc).

For more details, we also refer to [24].

We solve this non-linear optimality system by applying the Newton
method, see Algorithm 4.1 in Chapter 4 for more details. Therefore,
we define the residuals at the linearization point (uk, pk, ck, zk, rk) ∈
H1

D(Ω)× L2(Ω)× L2(ΩC)×H1
D(Ω)× L2(Ω):

Fz(uk, zk, rk, v) : = a(v, zk) + n(v, uk, zk) + n(uk, v, zk) + b(v, rk)+

−m(1Ω0 uk, 1Ω0 v) + m(1Ω0(û− uD), 1Ω0 v),

Fr(zk, q) : = b(zk, q),

Fc(ck, zk, e) : = d(1Ωc e, zk) + αm(1Ωc c
k, 1Ωc e),

Fu(uk, pk, ck, v) : = a(uk, v) + n(uk, uk, v) + b(v, pk)− d(1Ωc c
k, v)+

− f (v) + a(uD, v) + n(uD, uD, v),

Fp(uk, q) : = b(uk, q) + b(uD, q).

We set

F(uk, pk, ck, zk, rk, v, q, e) =



Fz(uk, zk, rk, v)

Fr(zk, q)

Fc(ck, zk, e)

Fu(uk, pk, ck, v)

Fp(uk, q)


.

Our root problem then reads

F(u, p, c, z, r, v, q) = 0 ∀v ∈ H1
D(Ω), q ∈ L2(Ω).

112 ddm for an optimal control problem s .t. the navier-stokes eq

Next, we linearize (5.3) at the linearization point (uk, pk, ck, zk, rk) and
obtain the following weak formulation for the kth Newton step: Find
the corrections cu ∈ H1

D(Ω), cp ∈ L2(Ω), cc ∈ L2(ΩC), cz ∈ H1
D(Ω)

and cr ∈ L2(Ω) such that

a(v, ck
z) + n(v, ck

u, zk) + n(v, uk, ck
z)+

+n(ck
u, v, zk) + n(uk, v, ck

z)+

+b(v, ck
r)−m(1Ω0 ck

u, 1Ω0 v) = Fz(uk, zk, rk, v), (5.4a)

b(ck
z, q) = Fr(zk, q), (5.4b)

d(1Ωc e, ck
z) + αm(1Ωc c

k
c , 1Ωc e) = Fc(ck, zk, e), (5.4c)

a(ck
u, v) + n(ck

u, uk, v) + n(uk, ck
u, v)+

+b(v, ck
p)− d(1Ωc c

k
c , v) = Fu(uk, pk, ck, v), (5.4d)

b(ck
u, q) = Fp(uk, q) (5.4e)

for all v ∈ H1
D(Ω), q ∈ L2(Ω) and e ∈ L2(ΩC).

5.2 continuous domain decomposition

In the second main step, we derive a non-overlapping domain de-
composition method on the continuous level for the linearized weak
optimality system (5.4). As in the previous chapter in the first sub-step,
we derive a fully coupled equivalent formulation on subdomains, see
also Fig. 12. In the second sub-step, we decouple the system, which
leads to s locally independent linearized optimality systems and one
system of linearized coupling conditions, see Fig. 13. We partition the
domain as explained in Chapter 2 with the additional restrictions as
described in Chapter 3 for the control domain ΩC. We also use the
same definitions as in the previous chapters for the decomposition of
the spaces and the bilinear forms.

5.2.1 Decomposition of the Residuals

Additionally to the decomposition of uk and pk in the last Chapter 4,
we analogously partition zk, pk and ck as follows:

zk
i := zk|Ωi , zk := (zk

1, zk
2, . . . , zk

s) ∈
s⊗

i=1

Ṽi,

rk
i := rk|Ωi ∈

L2(Ωi) if i ∈ N

L2
0(Ωi) if i /∈ N

,

rk := (rk
1, rk

2, . . . , rk
s , rk

Ω) ∈
s⊕

i=1

Qi ⊕ D(Ω),

5.2 continuous domain decomposition 113

ck
i := ck|Ωi , ck := (ck

1, ck
2, . . . , ck

s) ∈
s⊕

i=1

L2(ΩCi).

Furthermore, we define the local residuals:

Fz
i (u

k
i , zi

k, rk
i , vi) : = ai(vi, zi

k) + bi(vi, rk
i)+

+ ni(vi, uk
i , zi

k) + ni(uk
i , vi, zi

k)+

−mi(1Ω0 uk
i , 1Ω0 vi) + mi(1Ω0(û|Ωi − uDi), 1Ω0 vi),

Fr
i (zi

k, qi) : = bi(zi
k, qi),

Fθ
i (r

k
i , ξi) : = ci(ξi, rk

i),

Fc
i (c

k
i , zi

k, ei) : = di(1Ωc ei, zi
k) + αmi(1Ωc c

k
i , 1Ωc ei),

Fu
i (u

k
i , pk

i , ck
i , vi) : = ai(uk

i , vi) + ni(uk
i , uk

i , vi)+

+ bi(vi, pk
i)− di(1Ωc c

k
i , vi)+

− fi(vi) + ai(uDi , vi) + ni(uDi , uDi , vi),

Fp
i (u

k
i , qi) : = bi(uk

i , qi) + bi(uDi , qi),

Fη
i (pk

i) : = ci(ξi, pk
i).

with vi ∈ Vi , qi ∈ Qi , ei ∈ L2(ΩCi) and ξi ∈ R.
Moreover, we define the residuals on the interface:

Fz
Γ(u

k, zk, rk, vΓ) : = a(R(vΓ), zk) + b(R(vΓ), rk)+

+ n(R(vΓ), uk, zk) + n(uk,R(vΓ), zk)+

−m(1Ω0 uk, 1Ω0R(vΓ)) + m(1Ω0(û− uD), 1Ω0R(vΓ)),

Fr
Γ(z

k, qΩ) : = b(zk, qΩ),

Fu
Γ (u

k, pk, ck, vΓ) : = a(uk,R(vΓ)) + n(uk, uk,R(vΓ))+

+ b(R(vΓ), pk)− d(1Ωc c
k,R(vΓ))+

− f (R(vΓ)) + a(uD,R(vΓ)) + n(uD, uD,R(vΓ)),

Fp
Γ (u

k, qΩ) : = b(uk, qΩ) + b(uD, qΩ).

with vΓ ∈ H1/2
00 (Γ) and qΩ ∈ D(Ω).

5.2.2 Weak Formulation on Subdomains

In the first sub-step of the second step, we derive an equivalent weak
formulation on subdomains. Analogously to the previous chapters,
this formulation is still globally coupled.

114 ddm for an optimal control problem s .t. the navier-stokes eq

Lemma 38. (5.4) is equivalent to the following weak formulation on subdo-
mains: At the linearization point (uk, pk, ck, zk, rk) ∈ H1

D(Ω)× L2(Ω)×
L2(ΩC)×H1

D(Ω)× L2(Ω), find the corrections

cu =
s

∑
i=1

cui + cuΓ ∈ H1
D(Ω) with cui ∈ Vi, cuΓ ∈ H1/2

00 (Γ),

cp =
s

∑
i=1

cpi + cpΩ ∈ L2(Ω) with cpi ∈ L2(Ωi), cpΩ ∈ D(Ω),

cc =
s

∑
i=1

cci ∈ L2(ΩC) with cci ∈ L2(ΩCi),

cz =
s

∑
i=1

czi + czΓ ∈ H1
D(Ω) with czi ∈ Vi, czΓ ∈ H1/2

00 (Γ),

cr =
s

∑
i=1

cri + crΩ ∈ L2(Ω) with cri ∈ L2(Ωi), crΩ ∈ D(Ω).

such that

s

∑
i=1

(
ai(vi, ck

zi
) + ai(vi,Ri(ck

zΓi
)) + ai(Ri(vΓi), ck

zi
) + ni(vi, ck

ui
, zk

i)+

+ ni(vi,Ri(ck
uΓi

), zk
i) + ni(Ri(vΓi), ck

ui
, zk

i) + ni(vi, uk
i , ck

zi
)+

+ ni(vi, uk
i ,Ri(ck

zΓi
)) + ni(Ri(vΓi), uk

i , ck
zi
) + ni(ck

ui
, vi, zk

i)+

+ ni(Ri(ck
uΓi

), vi, zk
i) + ni(ck

ui
,Ri(vΓi), zk

i) + ni(uk
i , vi, ck

zi
)+

+ ni(uk
i , vi,Ri(ck

zΓi
)) + ni(uk

i ,Ri(vΓi), ck
zi
) + bi(vi, ck

ri
)+

+ bi(Ri(vΓi), ck
ri
)−mi(1Ω0 ck

ui
, 1Ω0 vi)−mi(1Ω0Ri(ck

uΓi
), 1Ω0 vi)+

−mi(1Ω0 ck
ui

, 1Ω0Ri(vΓi))
)
+ a(R(vΓ),R(ck

zΓ
))+

+ n(R(vΓ),R(ck
uΓ
), zk) + n(R(vΓ), uk,R(ck

zΓ
))+

+ n(R(ck
uΓ
),R(vΓ), zk) + n(uk,R(vΓ),R(ck

zΓ
))+

+ b(R(vΓ), ck
rΩ
)−m(1Ω0R(ck

uΓ
), 1Ω0R(vΓ))

=
s

∑
i=1

Fz
i (u

k
i , zi

k, rk
i , vi) + Fz

Γ(u
k, zk, rk, vΓ) (5.5a)

s

∑
i=1

(
bi(ck

zi
, qi) + bi(Ri(ck

zΓi
), qi)

)
+ b(R(ck

zΓ
), qΩ)

=
s

∑
i=1

(
Fr

i (zi
k, qi)

)
+ Fr

Γ(z
k, qΩ) (5.5b)

s

∑
i=1

(
di(1Ωc ei, ck

zi
) + di(1Ωc ei,Ri(ck

zΓi
)) + αmi(1Ωc c

k
ci

, 1Ωc ei)
)

=
s

∑
i=1

(
Fc

i (c
k
i , zi

k, ei)
)

(5.5c)

5.2 continuous domain decomposition 115

s

∑
i=1

(
ai(ck

ui
, vi) + ai(Ri(ck

uΓi
), vi) + ai(ck

ui
,Ri(vΓi)) + ni(ck

ui
, uk

i , vi)+

+ ni(Ri(ck
uΓi

), uk
i , vi) + ni(ck

ui
, uk

i ,Ri(vΓi)) + ni(uk
i , ck

ui
, vi)+

+ ni(uk
i ,Ri(ck

uΓi
), vi) + ni(uk

i , ck
ui

,Ri(vΓi))− di(1Ωc c
k
ci

, vi)+

− di(1Ωc c
k
ci

,Ri(vΓi)) + bi(vi, ck
pi
) + bi(Ri(vΓi), ck

pi
)
)
+

+ a(R(ck
uΓ
),R(vΓ)) + n(R(ck

uΓ
), uk,R(vΓ))+

+ n(uk,R(ck
uΓ
),R(vΓ)) + b(R(vΓ), ck

pΩ
)

=
s

∑
i=1

Fu
i (u

k
i , pk

i , ck
i , vi) + Fu

Γ (u
k, pk, ck, vΓ), (5.5d)

s

∑
i=1

(
bi(ck

ui
, qi) + bi(Ri(ck

uΓi
), qi)

)
+ b(R(ck

uΓ
), qΩ)

=
s

∑
i=1

(
Fp

i (u
k
i , qi)

)
+ Fp

Γ (u
k, qΩ) (5.5e)

for all vi ∈ Vi, vΓ ∈ H1/2
00 (Γ), ei ∈ L2(ΩCi), qi ∈ Qi and qΩ ∈ D(Ω).

Proof. We can use the same arguments as in Lemma 24 of Chapter
3.

5.2.3 Decoupling of Weak Formulation on Subdomains

Decoupling the weak formulation on subdomains leads to s indepen-
dent weak subdomain optimality systems and one system of coupling
conditions which is the second sub-step. We have to distinguish be-
tween subdomain optimality systems on non-outflow and on outflow
subdomains.

On a non-outflow subdomain, the local linearized optimality system
is given by: For given ck

uΓ
, ck

zΓ
∈ H1/2

00 (Γ), find ck
ui

, ck
zi
∈ H1

0(Ωi), ck
ci
∈

L2(ΩCi) and c̃k
pi

, c̃k
ri
∈ L2

0(Ωi) at the linearization point (uk
i , pk

i , ck
i , zk

i , rk
i),

such that

ai(vi, ck
zi
) + ai(vi,Ri(ck

zΓi
)) + bi(vi, c̃k

ri
)+

+ni(vi, ck
ui

, zk
i) + ni(vi,Ri(ck

uΓi
), zk

i)+

+ni(vi, uk
i , ck

zi
) + ni(vi, uk

i ,Ri(ck
zΓi
))+

+ni(ck
ui

, vi, zk
i) + ni(Ri(ck

uΓi
), vi, zk

i)+

+ni(uk
i , vi, ck

zi
) + ni(uk

i , vi,Ri(ck
zΓi
))+ (5.6a)

−mi(1Ω0 ck
ui

, 1Ω0 vi)−m(1Ω0Ri(ck
uΓi

), 1Ω0 vi) = Fz
i (u

k
i , zi

k, rk
i , vi)

bi(ck
zi

, q̃i) + bi(Ri(ck
zΓi
), q̃i) = Fr

i (zi
k, q̃i) (5.6b)

di(1Ωc ei, ck
zi
) + di(1Ωc ei,Ri(ck

zΓi
))+

116 ddm for an optimal control problem s .t. the navier-stokes eq

+αmi(1Ωc c
k
ci

, 1Ωc ei) = Fc
i (c

k
i , zi

k, ei) (5.6c)

ai(ck
ui

, vi) + ai(Ri(ck
uΓi

), vi)+

+ni(ck
ui

, uk
i , vi) + ni(Ri(ck

uΓi
), uk

i , vi)+

+ni(uk
i , ck

ui
, vi) + ni(uk

i ,Ri(ck
uΓi

), vi)+ (5.6d)

−di(1Ωc c
k
ci

, vi) + bi(vi, c̃k
pi
) = Fu

i (u
k
i , pk

i , ck
i , vi),

bi(ck
ui

, q̃i) + bi(Ri(ck
uΓi

), q̃i) = Fp
i (u

k
i , q̃i) (5.6e)

for all vi ∈ H1
0(Ωi), qi ∈ L2(Ωi) and ei ∈ L2(ΩCi).

Proposition 39. Assuming∫
Ωi

θidx =
∫

Ωi

∇ · zk
i dx,∫

Ωi

ηidx =
∫

Ωi

∇ · uk
i dx

holds, the equation system (5.6) is equivalent to the following local linearized
subdomain optimality system:

For given ck
uΓ

, ck
zΓ
∈ H1/2

00 (Γ), find ck
ui

, ck
zi
∈ H1

N(Ωi), ck
ci
∈ L2(ΩCi),

ck
pi

, ck
ri
∈ L2(Ωi) and ηi, θi ∈ R at the linearization point (uk

i , pk
i , ck

i , zk
i , rk

i),
such that

ai(vi, ck
zi
) + ai(vi,Ri(ck

zΓi
)) + bi(vi, ck

ri
)+

+ni(vi, ck
ui

, zk
i) + ni(vi,Ri(ck

uΓi
), zk

i)+

+ni(vi, uk
i , ck

zi
) + ni(vi, uk

i ,Ri(ck
zΓi
))+

+ni(ck
ui

, vi, zk
i) + ni(Ri(ck

uΓi
), vi, zk

i)+

+ni(uk
i , vi, ck

zi
) + ni(uk

i , vi,Ri(ck
zΓi
))+ (5.7a)

−mi(1Ω0 ck
ui

, 1Ω0 vi)−m(1Ω0Ri(ck
uΓi

), 1Ω0 vi) = Fz
i (u

k
i , zi

k, rk
i , vi)

bi(ck
zi

, qi) + bi(Ri(ck
zΓi
), qi) + ci(θi, qi) = Fr

i (zi
k, qi) (5.7b)

ci(ξi, cri) = Fθ
i (r

k
i , ξi) (5.7c)

di(1Ωc ei, ck
zi
) + di(1Ωc ei,Ri(ck

zΓi
))+

+αmi(1Ωc c
k
ci

, 1Ωc ei) = Fc
i (c

k
i , zi

k, ei) (5.7d)

ai(ck
ui

, vi) + ai(Ri(ck
uΓi

), vi)+

+ni(ck
ui

, uk
i , vi) + ni(Ri(ck

uΓi
), uk

i , vi)+

+ni(uk
i , ck

ui
, vi) + ni(uk

i ,Ri(ck
uΓi

), vi)+ (5.7e)

−di(1Ωc c
k
ci

, vi) + bi(vi, ck
pi
) = Fu

i (u
k
i , pk

i , ck
i , vi),

bi(ck
ui

, qi) + bi(Ri(ck
uΓi

), qi) + ci(ηi, qi) = Fp
i (u

k
i , qi), (5.7f)

ci(ξi, cpi) = Fη
i (pk

i , ξi) (5.7g)

5.2 continuous domain decomposition 117

for all vi ∈ H1
0(Ωi), qi ∈ L2(Ωi), ei ∈ L2(ΩCi) and ξi ∈ R.

Proof. Use the same arguments as in proof of Lemma 14 in Chapter
2.

As we can see, the local optimality systems on non-outflow subdo-
mains are independent of the global constants cpΩ , crΩ .

Analogously, on an outflow subdomain, we obtain the following
local linearized optimality system: For given ck

uΓ
, ck

zΓ
∈ H1/2

00 (Γ), find
ck

ui
, ck

zi
∈ H1

N(Ωi) , ck
ci
∈ L2(ΩCi) and ck

pi
, ck

ri
∈ L2(Ωi) at the lineariza-

tion point (uk
i , pk

i , ck
i , zk

i , rk
i), such that

ai(vi, ck
zi
) + ai(vi,Ri(ck

zΓi
)) + bi(vi, ck

ri
)+

+ni(vi, ck
ui

, zk
i) + ni(vi,Ri(ck

uΓi
), zk

i)+

+ni(vi, uk
i , ck

zi
) + ni(vi, uk

i ,Ri(ck
zΓi
))+

+ni(ck
ui

, vi, zk
i) + ni(Ri(ck

uΓi
), vi, zk

i)+

+ni(uk
i , vi, ck

zi
) + ni(uk

i , vi,Ri(ck
zΓi
))+ (5.8a)

−mi(1Ω0 ck
ui

, 1Ω0 vi)−m(1Ω0Ri(ck
uΓi

), 1Ω0 vi) = Fz
i (u

k
i , zi

k, rk
i , vi)

bi(ck
zi

, qi) + bi(Ri(ck
zΓi
), qi) = Fr

i (zi
k, qi) (5.8b)

di(1Ωc ei, ck
zi
) + di(1Ωc ei,Ri(ck

zΓi
))+

+αmi(1Ωc c
k
ci

, 1Ωc ei) = Fc
i (c

k
i , zi

k, ei) (5.8c)

ai(ck
ui

, vi) + ai(Ri(ck
uΓi

), vi)+

+ni(ck
ui

, uk
i , vi) + ni(Ri(ck

uΓi
), uk

i , vi)+

+ni(uk
i , ck

ui
, vi) + ni(uk

i ,Ri(ck
uΓi

), vi)+ (5.8d)

−di(1Ωc c
k
ci

, vi) + bi(vi, ck
pi
) = Fu

i (u
k
i , pk

i , ck
i , vi),

bi(ck
ui

, qi) + bi(Ri(ck
uΓi

), qi) = Fp
i (u

k
i , qi), (5.8e)

for all vi ∈ H1
N(Ωi), qi ∈ L2(Ωi) and ei ∈ L2(ΩCi). Since on

outflow subdomains, the corrections of the pressure cpi and the adjoint
pressure cri are uniquely defined as long as a solution exists, it is clear,
that the constants cpΩi

and crΩi
must be zero.

Since we are interested in solving the linearized global system (5.4)
by solving coupling conditions on the interface, the next lemma states,
under which conditions the local and the global formulations are
equivalent.

Lemma 40. It holds that

ck
u =

s

∑
i=1

ck
ui
+R(ck

uΓ
) ∈ H1

D(Ω),

ck
p =

s

∑
i=1

ck
pi
+ ck

pΩ
∈ L2(Ω),

118 ddm for an optimal control problem s .t. the navier-stokes eq

ck
c =

s

∑
i=1

ck
ci
∈ L2(ΩC),

ck
z =

s

∑
i=1

ck
zi
+R(ck

zΓ
) ∈ H1

D(Ω),

ck
r =

s

∑
i=1

ck
ri
+ ck

rΩ
∈ L2(Ω),

with (ck
ui

, ck
pi

, ck
ci

, ck
zi

, ck
ri
) ∈ Vi ×Qi × L2(ΩCi)×Vi ×Qi solution of (5.7)

or (5.8) (depending on the subdomain type) solve (5.4) if and only if the
following coupling conditions hold for ck

uΓ
, ck

zΓ
∈ H1/2

00 (Γ) and ck
pΩ

, ck
rΩ
∈

D(Ω) at the linearization point (uk, pk, ck, zk, rk) ∈ H1
D(Ω) × L2(Ω) ×

L2(ΩC) × H1
D(Ω) × L2(Ω). Find cuΓ , czΓ ∈ H1/2

00 (Γ) and cpΩ , crΩ ∈
D(Ω) such that

s

∑
i=1

(
ai(Ri(vΓi), ck

zi
) + ni(Ri(vΓi), ck

ui
, zk

i) + ni(Ri(vΓi), uk
i , ck

zi
)
)
+

+ ni(ck
ui

,Ri(vΓi), zk
i) + ni(uk

i ,Ri(vΓi), ck
zi
)−mi(1Ω0 ck

ui
, 1Ω0Ri(vΓi))+

+ bi(Ri(vΓi), ck
ri
)
)
+ a(R(vΓ),R(ck

zΓ
)) + n(R(vΓ),R(ck

uΓ
), zk)+

+ n(R(vΓ), uk,R(ck
zΓ
)) + n(R(ck

uΓ
),R(vΓ), zk)+

+ n(uk,R(vΓ),R(ck
zΓ
))−m(1Ω0R(ck

uΓ
), 1Ω0R(vΓ)) + b(R(vΓ), ck

rΩ
)

= Fz
Γ(u

k, zk, rk, vΓ)

b(R(ck
zΓ
), qΩ) = Fr

Γ(z
k, qΩ)

s

∑
i=1

(
ai(ck

ui
,Ri(vΓi)) + ni(ck

ui
, uk

i ,Ri(vΓi)) + ni(uk
i , ck

ui
,Ri(vΓi))+

− di(1Ωc c
k
ci

,Ri(vΓi)) + bi(Ri(vΓi), ck
pi
)
)
+ a(R(ck

uΓ
),R(vΓ))+

+ n(R(ck
uΓ
), uk,R(vΓ)) + n(uk,R(ck

uΓ
),R(vΓ)) + b(R(vΓ), ck

pΩ
)

= Fu
Γ (u

k, pk, ck, vΓ),

b(R(ck
uΓ
), qΩ) = Fp

Γ (u
k, qΩ)

for all vΓ ∈ H1/2
00 (Γ) and qΩ ∈ D(Ω).

Proof. This can be shown by using the same arguments as in Chapter
2 in the proof of Lemma 13.

5.3 discretization based on a finite element method

We use the same type of finite element method as described in Chapter
2 as well as the same spaces and finite element functions as described
in Chapter 3.

For better readability, we leave out the super index h for the lin-
earization point and the corrections.

5.3 discretization based on a finite element method 119

5.3.1 Decoupled Finite Element Formulation

In the third main step, we use the definitions of the previous chapters
for the finite element method and discretize the s decoupled weak
formulations of the subdomain optimality systems and the system of
the coupling condition. This step is illustrated in Fig. 16.

On a non-outflow subdomain, we obtain the following local lin-
earized optimality system: For given ck

uΓ
, ck

zΓ
∈ Vh

Γ, find ck
ui

, ck
zi
∈ Vh

i,0,
ck

ci
∈ Qh

i , ck
pi

, ck
ri
∈ Qh

i and ηh
i , θh

i ∈ R at the linearization point
(uk

i , pk
i , ck

i , zk
i , rk

i), such that

ai(vh
i , ck

zi
) + ai(vh

i , ck
zΓi
) + bi(vh

i , ck
ri
) + ni(vh

i , ck
ui

, zk
i)+

+ ni(vh
i , ck

uΓi
, zk

i) + ni(vh
i , uk

i , ck
zi
) + ni(vh

i , uk
i , ck

zΓi
)+

+ ni(ck
ui

, vh
i , zk

i) + ni(ck
uΓi

, vh
i , zk

i) + ni(uk
i , vh

i , ck
zi
)+

+ ni(uk
i , vh

i , ck
zΓi
)−mi(1Ω0 ck

ui
, 1Ω0 vh

i)−mi(1Ω0 ck
uΓi

, 1Ω0 vh
i)

= Fz
i (u

k
i , zi

k, rk
i , vh

i), (5.9a)

bi(ck
zi

, qh
i) + bi(ck

zΓi
, qh

i) + ci(θ
h
i , qh

i) = Fr
i (zi

k, qh
i), (5.9b)

ci(ξ
h
i , ck

ri
) = Fθ

i (r
k
i , ξi), (5.9c)

di(1Ωc e
h
i , ck

zi
) + di(1Ωc e

h
i , ck

zΓi
) + αmi(1Ωc c

k
ci

, 1Ωc e
h
i)

= Fc
i (c

k
i , zi

k, eh
i) (5.9d)

ai(ck
ui

, vh
i) + ai(ck

uΓi
, vh

i) + ni(ck
ui

, uk
i , vh

i) + ni(ck
uΓi

, uk
i , vh

i)+

+ ni(uk
i , ck

ui
, vh

i) + ni(uk
i , ck

uΓi
, vh

i)− di(1Ωc c
k
ci

, vh
i) + bi(vh

i , ck
pi
)

= Fu
i (u

k
i , pk

i , ck
i , vh

i),

bi(ck
ui

, qh
i) + bi(ck

uΓi
, qh

i) + ci(η
h
i , qh

i) = Fp
i (u

k
i , qh

i), (5.9e)

ci(ξ
h
i , ck

pi
) = Fη

i (pk
i , ξi) (5.9f)

for all vi ∈ Vh
i,0, qi ∈ Qh

i and ξi ∈ R. As we can see, the local
optimality systems on non-outflow subdomains are independent of
the global constants cpΩ , crΩ .

Similarly, on an outflow subdomain, the local linearized optimality
system yields: For given ck

uΓ
, ck

zΓ
∈ Vh

Γ, find ck
ui

, ck
zi
∈ Vh

i,N , ck
ci
∈ Qh

i
and ck

pi
, ck

ri
∈ Qh

i at the linearization point (uk
i , pk

i , ck
i , zk

i , rk
i), such that

ai(vh
i , ck

zi
) + ai(vh

i , ck
zΓi
) + bi(vh

i , ck
ri
) + ni(vh

i , ck
ui

, zk
i)+

+ ni(vh
i , ck

uΓi
, zk

i) + ni(vh
i , uk

i , ck
zi
) + ni(vh

i , uk
i , ck

zΓi
)+

+ ni(ck
ui

, vh
i , zk

i) + ni(ck
uΓi

, vh
i , zk

i) + ni(uk
i , vh

i , ck
zi
)

+ ni(uk
i , vh

i , ck
zΓi
)−mi(1Ω0 ck

ui
, 1Ω0 vh

i)−m(1Ω0 ck
uΓi

, 1Ω0 vh
i)

120 ddm for an optimal control problem s .t. the navier-stokes eq

= Fz
i (u

k
i , zi

k, rk
i , vh

i), (5.10a)

bi(ck
zi

, qh
i) + bi(ck

zΓi
, qh

i) = Fr
i (zi

k, qh
i), (5.10b)

di(1Ωc e
h
i , ck

zi
) + di(1Ωc e

h
i , ck

zΓi
) + αmi(1Ωc c

k
ci

, 1Ωc e
h
i)

= Fc
i (c

k
i , zi

k, eh
i) (5.10c)

ai(ck
ui

, vh
i) + ai(ck

uΓi
, vh

i) + ni(ck
ui

, uk
i , vh

i) + ni(ck
uΓi

, uk
i , vh

i)+

+ ni(uk
i , ck

ui
, vh

i) + ni(uk
i , ck

uΓi
, vh

i)− di(1Ωc c
k
ci

, vh
i) + bi(vh

i , ck
pi
)

= Fu
i (u

k
i , pk

i , ck
i , vh

i), (5.10d)

bi(ck
ui

, qh
i) + bi(ck

uΓi
, qh

i) = Fp
i (u

k
i , qh

i) (5.10e)

for all vi ∈ Vh
i,N and qi ∈ Qh

i .
The finite element formulation of the coupling conditions reads:
At the linearization point (uk, pk, ck, zk, rk) ∈ Vh ×Qh ×Qh ×Vh ×

Qh, find ck
uΓ

, ck
zΓ
∈ Vh

Γ and ck
pΩ

, ck
rΩ
∈ D(Ω) such that

s

∑
i=1

(
ai(vh

Γi
, ck

zi
) + ni(vh

Γi
, ck

ui
, zk

i) + ni(vh
Γi

, uk
i , ck

zi
)+

ni(ck
ui

, vh
Γi

, zk
i) + ni(uk

i , vh
Γi

, ck
zi
) + bi(vh

Γi
, ck

ri
)−mi(1Ω0 ck

ui
, 1Ω0 vh

Γi
)
)
+

+ a(vh
Γ, ck

zΓ
) + n(vh

Γ, ck
uΓ

, zk) + n(vh
Γ, uk, ck

zΓ
) + n(ck

uΓ
, vh

Γ, zk)+

+ n(uk, vh
Γ, ck

zΓ
) + b(vh

Γ, ck
rΩ
)−m(1Ω0 ck

uΓ
, 1Ω0 vh

Γ)

= Fz
Γ(u

k, zk, rk, vh
Γ) (5.11a)

b(ck
zΓ

, qh
Ω) = Fr

Γ(z
k, qh

Ω) (5.11b)
s

∑
i=1

(
ai(ck

ui
, vh

Γi
) + ni(ck

ui
, uk

i , vh
Γi
) + ni(uk

i , ck
ui

, vh
Γi
)− di(1Ωc c

k
ci

, vh
Γi
)+

+ bi(vh
Γi

, ck
pi
)
)
+ a(ck

uΓ
, vh

Γ) + n(ck
uΓ

, uk, vh
Γ) + n(uk, ck

uΓ
, vh

Γ)+

+ b(vh
Γ, ck

pΩ
) = Fu

Γ (u
k, pk, ck, vh

Γ), (5.11c)

b(ck
uΓ

, qh
Ω) = Fp

Γ (u
k, qh

Ω) (5.11d)

for all vh
Γ ∈ Vh

Γ and qh
Ω ∈ D(Ω). ck

ui
, ck

zi
∈ Vh

i , ck
ci
∈ Qh

i and
ck

pi
, ck

ri
∈ Qh

i are solutions of (5.9) and (5.10) depending on whether a
subdomain Ωi is a non-outflow or an outflow subdomain, respectively.

5.4 algebraic formulation

Based on the finite element discretization, we derive the resulting
global linear system corresponding to (5.5) and the Schur-complement
equations corresponding to (5.11). This is the last main step of the
derivation of the domain decomposition method. For the algebraic
representation, we use the same definitions as in Chapter 2-4. For
the matrix corresponding to the bilinear form a(·, ·), we use the def-

5.4 algebraic formulation 121

inition from Chapter 4. Additionally, we define the finite element
functions for the linearization point zk

i and the resulting coefficient
vector analogously to the definition of uk

i :

zk
i (x) =

nzi+nzΓi

∑
j=1

uk
j ψj(x), uk

i = (u1, . . . , unzi+nzΓi
)T ∈ R

(nzi+nzΓi
)
.

Furthermore, we define the finite element functions and the resulting
coefficient vectors for the corrections of the adjoint velocity

ck
zi
(x) =

nzi

∑
j=1

czj ψj(x), czi = (cz1 , . . . , cznzi
)T ∈ Rnzi ,

ck
zΓ
(x) =

nzΓ

∑
j=1

czj ψj(x), czΓ = (cz1 , . . . , cznzΓ
)T ∈ RnzΓ ,

ck
zΓi
(x) =

nzΓi

∑
j=1

czj ψj(x), czΓi
= (cz1 , . . . , cznΓi

)T ∈ R
nzΓi ,

for the corrections of the adjoint pressure

ck
ri
(x) =

nqi

∑
j=1

crj ϕj(x), cri = (cr1 , . . . , crnqi
)T ∈ Rnqi ,

ck
rΩ
(x) =

sN

∑
j=1

crΩj
ϕΩj(x), crΩ = (crΩ1

, . . . , crsN
)T ∈ RsN ,

and the corrections of the control

ck
ci
(x) =

nci

∑
j=1

ccj µj(x), cci = (cc1 , . . . , ccnci
)T ∈ Rnci .

1
2

2
d

d
m

f
o

r
a

n
o

p
t

i
m

a
l

c
o

n
t

r
o

l
p

r
o

b
l

e
m

s.
t.

t
h

e
n

a
v

i
e

r
-
s

t
o

k
e

s
e

q

Global Linear System and Schur-complement Equation

We write the global linear system which corresponds to the finite element formulation of (5.5), for an example with two subdomains. We
assume that Ω1 is a non-outflow subdomain and that Ω2 is an outflow subdomain.



A11
[
uk

1
]

B̃T
11 −(DC)11 0 0 0 0 0 0 0 A1Γ1

[
uk

1
]

0 0 0

B̃11 0 0 0 0 0 0 0 0 0 B̃1Γ1 0 0 0

0 0 α(MC)11 (DC)
T
11 0 0 0 0 0 0 0 0 (DC)

T
Γ11 0

−(M0)11 0 0 AT
11
[
zk

1
]

B̃T
11 0 0 0 0 0 −(M0)1Γ1 0 AT

Γ11
[
zk

1
]

0

0 0 0 B̃11 0 0 0 0 0 0 0 0 B̃1Γ1 0

0 0 0 0 0 A22
[
uk

2
]

BT
22 −(DC)22 0 0 A2Γ2

[
uk

2
]

0 0 0

0 0 0 0 0 B22 0 0 0 0 B2Γ2 0 0 0

0 0 0 0 0 0 0 α(MC)22 (DC)
T
22 0 0 0 (DC)

T
Γ22 0

0 0 0 0 0 −(M0)22 0 0 AT
22
[
zk

2
]

BT
22 −(M0)2Γ2 0 AT

Γ22
[
zk

2
]

0

0 0 0 0 0 0 0 0 B22 0 0 0 B2Γ2 0

AΓ11
[
uk

1
]

B̃T
1Γ1

−(DC)Γ11 0 0 AΓ22
[
uk

2
]

BT
2Γ2

−(DC)Γ22 0 0 AΓΓ
[
uk] BT

0 0 0

0 0 0 0 0 0 0 0 0 0 B0 0 0 0

−(M0)Γ11 0 0 AT
1Γ1

[
zk

1
]

B̃T
1Γ1

−(M0)Γ22 0 0 AT
2Γ2

[
zk

2
]

BT
2Γ2

−(M0)ΓΓ 0 AT
ΓΓ
[
zk] BT

0

0 0 0 0 0 0 0 0 0 0 0 0 B0 0





cu1

c̃p1

cc1

cz1

c̃r1

cu2

cp2

cc2

cz2

cr2

cuΓ

cpΩ

czΓ

crΩ



=



Fu
1
[
uk

1, pk
1, ck

1
]

Fp
1

[
uk

1
]

Fc
1
[
ck

1, zk
1
]

Fz
1
[
uk

1, zk
1, rk

1
]

Fr
1
[
zk

1
]

Fu
2
[
uk

2, pk
2, ck

2
]

Fp
2
[
uk

2
]

Fc
2
[
ck

2, zk
2
]

Fz
2
[
uk

2, zk
2, rk

2
]

Fr
2
[
zk

2
]

Fu
Γ
[
uk , pk , ck]

Fp
Γ
[
uk]

Fz
Γ
[
uk , zk , rk]

Fr
Γ
[
zk]



.

5.
4

a
l

g
e

b
r

a
i
c

f
o

r
m

u
l

a
t

i
o

n
1

2
3

Knowing that the local blocks (with sub index ·ii) are invertible, we can reduce the problem to a Schur-complement equation. Analogously
to the previous chapters, we directly write the alternative formulation. The Schur-complement S is defined as:

S
[
uk , zk

]
:=


AΓΓ

[
uk] BT

0 0 0

B0 0 0 0

−(M0)ΓΓ 0 AT
ΓΓ
[
zk] BT

0

0 0 B0 0



− ∑
i∈N


AΓi i

[
uk

i
]

BT
iΓi

−(DC)Γi i 0 0

0 0 0 0 0

−(M0)Γi i 0 0 AT
iΓi

[
zk

i
]

BT
iΓi

0 0 0 0 0





Aii
[
uk

i
]

BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii
[
zk

i
]

BT
ii

0 0 0 Bii 0



−1

AiΓi

[
uk

i
]

0 0 0

BiΓi 0 0 0

0 0 (DC)
T
Γi i

0

−(M0)iΓi 0 AT
Γi i
[
zk

i
]

0

0 0 BiΓi 0


︸ ︷︷ ︸

=:L1

− ∑
i/∈N


AΓi i

[
uk

i
]

BT
iΓi

0 −(DC)Γi i 0 0 0

0 0 0 0 0 0 0

−(M0)Γi i 0 0 0 AT
iΓi

[
zk

i
]

BT
iΓi

0

0 0 0 0 0 0 0





Aii
[
uk

i
]

BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii
[
zk

i
]

BT
ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0



−1

AiΓi

[
uk

i
]

0 0 0

BiΓi 0 0 0

0 0 0 0

0 0 (DC)
T
iΓi

0

−(M0)iΓi 0 AT
Γi i
[
zk

i
]

0

0 0 BiΓi 0

0 0 0 0


︸ ︷︷ ︸

=:L2

.

1
2

4
d

d
m

f
o

r
a

n
o

p
t

i
m

a
l

c
o

n
t

r
o

l
p

r
o

b
l

e
m

s.
t.

t
h

e
n

a
v

i
e

r
-
s

t
o

k
e

s
e

q

and the right hand side r as follows:

r[uk , pk , ck , zk , rk] :=


Fu

Γ
[
uk , pk , ck]

Fp
Γ
[
uk]

Fz
Γ
[
uk , zk , rk]

Fr
Γ
[
zk]

− ∑
i∈N


AΓi i

[
uk

i
]

BT
iΓi

−(DC)Γi i 0 0

0 0 0 0 0

−(M0)Γi i 0 0 AT
iΓi

[
zk

i
]

BT
iΓi

0 0 0 0 0





Aii
[
uk

i
]

BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii
[
zk

i
]

BT
ii

0 0 0 Bii 0



−1

Fu
i
[
uk

i , pk
i , ck

i
]

Fp
i
[
uk

i
]

Fc
i
[
ck

i , zk
i
]

Fz
i
[
uk

i , zk
i , rk

i
]

Fr
i
[
zk

i
]


︸ ︷︷ ︸

=:L3

− ∑
i/∈N


AΓi i

[
uk

i
]

BT
iΓi

0 −(DC)Γi i 0 0 0

0 0 0 0 0 0 0

−(M0)Γi i 0 0 0 AT
iΓi

[
zk

i
]

BT
iΓi

0

0 0 0 0 0 0 0





Aii
[
uk

i
]

BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii
[
zk

i
]

BT
ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0



−1

Fu
i
[
uk

i , pk
i , ck

i
]

Fp
i
[
uk

i
]

Fη
i
[
pk

i
]

Fc
i
[
ck

i , zk
i
]

Fz
i
[
uk

i , zk
i , rk

i
]

Fr
i
[
zk

i
]

Fθ
i
[
rk

i
]


︸ ︷︷ ︸

=:L4

.

5.4 algebraic formulation 125

These definitions yield the linearized Schur-complement equation
for the distributed optimal control problem applied to the Navier-
Stokes equations:

S[uk, zk](uΓ, pΩ, zΓ, rΩ)
T = r[uk, pk, ck, zk, rk].

It represents algebraically the interface coupling corresponding to the
finite element formulation (5.11).

The subproblems L1− L4 can be interpreted as solving local lin-
earized optimality systems of a distributed control problem constraint
by the Navier-Stokes equations.

L1 solve:



Aii
[
uk

i
]

BT
ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii
[
zk

i
]

BT
ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



AiΓi

[
uk

i
]

cuΓi

BiΓi cuΓi

(DC)
T
Γi i

czΓi

−MiΓi cuΓi
+ AT

Γi i
[
zk

i
]

czΓi

BiΓi czΓi


.

L1 solves a local linearized optimality system of a distributed control
problem applied to the Navier-Stokes equations with Dirichlet data
uΓi and zΓi on the local skeleton Γi , natural outflow conditions on
∂Ωi ∩ ∂Ωout and zero Dirichlet boundary data on ∂Ωi ∩ ∂Ω.

L2 solve:



Aii
[
uk

i
]

BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii
[
zk

i
]

BT
ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



AiΓi

[
uk

i
]

cuΓi

BiΓi cuΓi

0

(DC)
T
Γi i

czΓi

−MiΓi cuΓi
+ AT

Γi i
[
zk

i
]

czΓi

BiΓi czΓi

0


.

L2 solves a local linearized optimality system of a distributed control
problem applied to the Navier-Stokes equations with Dirichlet data.
On the local skeleton Γi, the Dirichlet data is set to uΓi and zΓi . For
non-outflow subdomains intersecting global Dirichlet boundary, the
Dirichlet data on the global boundary ∂Ωi ∩ ∂ΩD is set to zero.

L3 solve:

Aii

[
uk

i

]
BT

ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii

[
zk

i

]
BT

ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



Fu
i

[
uk

i , pk
i , ck

i

]
Fp

i

[
uk

i

]
Fc

i

[
ck

i , zk
i

]
Fz

i

[
uk

i , zk
i , rk

i

]
Fr

i

[
zk

i

]


.

126 ddm for an optimal control problem s .t. the navier-stokes eq

L3 solves a local linearized optimality system of a distributed control
problem applied to the Navier-Stokes equations with zero Dirichlet
data on the local skeleton Γi and natural outflow conditions on ∂Ωi ∩
∂Ωout. On ∂Ωi ∩ ∂ΩD the Dirichlet data for the velocity is set to uDi

and for the adjoint velocity to zero.
L4 solve:



Aii
[
uk

i
]

BT
ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii
[
zk

i
]

BT
ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



Fu
i
[
uk

i , pk
i , ck

i
]

Fp
i
[
uk

i
]

Fη
i
[
pk

i
]

Fc
i
[
ck

i , zk
i
]

Fz
i
[
uk

i , zk
i , rk

i
]

Fr
i
[
zk

i
]

Fθ
i
[
rk

i
]


.

L4 solves a local linearized optimality system of a distributed control
problem applied to the Navier-Stokes equations with Dirichlet data.
For inner subdomains a homogeneous Dirichlet boundary problem is
solved. For the non-outflow subdomains intersecting global Dirichlet
boundary, the Dirichlet data on the global boundary ∂Ωi ∩ ∂ΩD is
set to uDi for the velocity and zero for the adjoint velocity. On the
skeleton Γi, homogeneous Dirichlet boundary data is set.

Adding up L1 and L3 leads to
L1 + L3 solve:



Aii

[
uk

i

]
BT

ii −(DC)ii 0 0

Bii 0 0 0 0

0 0 α(MC)ii (DC)
T
ii 0

−(M0)ii 0 0 AT
ii

[
zk

i

]
BT

ii

0 0 0 Bii 0





ui

pi

ci

zi

ri


=



Fu
i

[
uk

i , pk
i , ck

i

]
−AiΓi

[
uk

i

]
cuΓi

Fp
i

[
uk

i

]
− BiΓi

cuΓi

Fc
i

[
ck

i , zk
i

]
− (DC)

T
Γi iczΓi

Fz
i

[
uk

i , zk
i , rk

i

]
+ MiΓi

cuΓi
−AT

Γi i

[
zk

i

]
czΓi

Fr
i

[
zk

i

]
− BiΓi

czΓi


,

which is the algebraic representation of the local decoupled subprob-
lems (5.10) on outflow subdomains Ωi.

Similarly, adding up L2 and L4 yields the algebraic representation
of the local decoupled subproblems (5.9) on non-outflow subdomains
Ωi .

L2 + L4 solve:



Aii

[
uk

i

]
BT

ii 0 −(DC)ii 0 0 0

Bii 0 ci 0 0 0 0

0 cT
i 0 0 0 0 0

0 0 0 α(MC)ii (DC)
T
ii 0 0

−(M0)ii 0 0 0 AT
ii

[
zk

i

]
BT

ii 0

0 0 0 0 Bii 0 ci

0 0 0 0 0 cT
i 0





ui

pi

ηi

ci

zi

ri

θi


=



Fu
i

[
uk

i , pk
i , ck

i

]
−AiΓi

[
uk

i

]
cuΓi

Fp
i

[
uk

i

]
− BiΓi

cuΓi

Fη
i

[
pk

i

]
Fc

i

[
ck

i , zk
i

]
− (DC)

T
Γi iczΓi

Fz
i

[
uk

i , zk
i , rk

i

]
+ MiΓi

cuΓi
−AT

Γi i

[
zk

i

]
czΓi

Fr
i

[
zk

i

]
− BiΓi

czΓi

Fθ
i

[
rk
i

]



.

Remark. The local subproblems L3 and L4 are solved when computing
the right hand side r, whereas L1 and L2 are solved when applying
the Schur-complement operator. The four problems do not depend
on the global pressure variable pΩ and global adjoint pressure rΩ.

5.4 algebraic formulation 127

The coupling vector (uΓ, pΩ, zΓ, rΩ) does also not depend on the local
Lagrange parameters ηi and θi.

5.4.1 General Operator

In Chapter 6, we derive two algorithms, which are independent of the
model problem. One to solve the Schur-complement equations and
another one to solve the global linear systems. Therefore, we define a
generalized operator introduced in Chapter 2 in Section 2.6.4. Again,
the general operator is based on the block matrices used in the global
linear system. For non-outflow subdomain, we get:

Ki =



Aii
[
uk

i
]

0 −(Dc)ii B̃T
ii 0 AiΓi

[
uk

i
]

0 0 0

−(M0)ii AT
ii
[
uk

i
]

0 0 B̃T
ii −(M0)iΓi AT

Γi i
[
uk

i
]

0 0

0 (Dc)T
ii α(Mc)ii 0 0 0 (Dc)T

Γi i
0 0

B̃ii 0 0 0 0 B̃iΓi 0 0 0

0 B̃ii 0 0 0 0 B̃iΓi 0 0

AΓi i
[
uk

i
]

0 −(Dc)Γi i B̃T
iΓi

0 AΓiΓi

[
uk

i
]

0 BT
0,i 0

−(M0)Γi i AT
iΓi

[
uk

i
]

0 0 B̃T
iΓi

−(M0)ΓiΓi AT
ΓiΓi

[
uk

i
]

0 BT
0,i

0 0 0 0 0 B0,i 0 0 0

0 0 0 0 0 0 B0,i 0 0



:=


Aii BT

ii AiΓi 0

Bii 0 BiΓi 0

AΓi i BT
Γi i

AΓiΓi BT
Ωi

0 0 BΩi 0

 .

For outflow subdomains, we get a similar operator. We only have to
replace the submatrices of B̃ with the corresponding submatrices of B.

summary

In this chapter, we derived a non-overlapping domain decomposition
method for a non-linear quadratic optimal flow control problems as-
suming distributed control. As constraints, we applied Navier-Stokes
equations equipped with mixed outflow and Dirichlet boundary con-
ditions. As in the linear optimal control case, the domain decompo-
sition method was applied to the optimality system. Analogously
to the non-linear model problem treated in the previous chapter, the
Newton-method was applied as an outer loop. In the next chapter, we
derive solution algorithms and preconditioners for all model problems
considered in Chapter 2 - 5.

6
P R E C O N D I T I O N E D S O LV I N G R O U T I N E S B A S E D
O N D O M A I N D E C O M P O S I T I O N M E T H O D S

In this chapter, we derive two different solution algorithms and
appropriate preconditioners: One solution algorithm for the Schur-
complement equation and the other one for the coupled global linear
system. The preconditioners are derived on the algebraic level and
independent of the model problems considered in the previous four
chapters. They exploit the structure of the domain decomposition
methods and take into account the basic phenomenon of a saddle
point structure which is a characteristic of all model problems consid-
ered in this work. First, we propose a one level Neumann-Neumann
preconditioner and a two level balancing Neumann-Neumann precon-
ditioner for the Schur-complement equations based on [45, Section 4].
Using the ideas of these interface preconditioners, we derive a global
Schur-complement preconditioner for the global linear system. This
global preconditioner consists of a subdomain and a skeleton block.
The structure of this chapter is also outlined in Fig. 18.

We use the following notation throughout this chapter. By the terms
velocity and pressure, we refer in case of an optimal control problem
to the state and adjoint velocity as well as state and adjoint pressure.
Due to the saddle point structure of the model problems, we get global
couplings for the velocity on the skeleton and as global couplings for
the pressure, we get one constant per subdomain. If necessary, we

Figure 18: Structure of Chapter 6.

129

130 preconditioned solving routines based on ddms

point out, to which coupling we refer, otherwise, we always refer by
the term “couplings” to the combination of both coupling types.

6.1 generalization of the schur-complement equation

In this section, we generalize the Schur-complement equation for the
four model problems described in Chapter 2-5.

First, we give a general form of the saddle point Schur-complement
operator. Therefore, we repeat the definition of the general local
subdomain operator matrix Ki based on the definitions made for each
model problem in Chapters 2-5:

Ki =

(
Kii KiΓi

KΓii KΓiΓi

)
=


Aii BT

ii AiΓi 0

Bii 0 BiΓi 0

AΓii BT
Γii
AΓiΓi BT

Ωi

0 0 BΩi 0

 . (6.1)

Next, we define the general projection matrix

RLi :=

(
RΓi 0

0 RΩi

)
∈ {0, 1}(mΓ+mΩ)×(mΓi+mΩi),

which projects entries of a local coupling vector corresponding to one
subdomain into the global coupling vector. RLi can be split into the
projection matrix RΓi ∈ {0, 1}mΓ×mΓi for the skeleton couplings and
the projection matrix for the pressure couplings RΩi ∈ {0, 1}mΩ×mΩi .
mΓ and mΓi denote the number of degrees of freedom for the velocity
on the global and local skeletons, respectively. mΩ and mΩi denote the
number of degrees of freedom of the global and local pressure spaces,
respectively. In case of a two dimensional optimization problem, mΓ

includes the number of degrees of freedom for the state and adjoint
velocity on the global skeleton and mΩi = 2, one constant for the state
and one for the adjoint pressure. The (restriction) matrix RT

Li
restricts

the global couplings (the velocity degrees of freedom on the global
skeleton and the global pressure constants) to the local couplings (the
velocity degrees of freedom on the local skeleton and the pressure
constants corresponding to the subdomain). Let the vector (xΓ, xΩ)

T

denote a general global coupling vector. First, we number the degrees
of freedom on the global skeleton denoted by the subindex Γ, second,
we number the degrees of freedom of the pressure denoted by the
subindex Ω. Using these definitions, we write the general or global
Schur-complement operator S in two different variants:

6.1 generalization of the schur-complement equation 131

S : =
s

∑
i=1

RLi (KΓiΓi −KΓiiK
−1
ii KiΓi)︸ ︷︷ ︸

=:Si

RT
Li

=
s

∑
i=1

RLi SiRT
Li
∈ R(mΓ+mΩ)×(mΓ+mΩ)

The first variant emphasizes the general block structure based on the
local block matrices of Ki and defines the local Schur-complement
operator Si.

S =
s

∑
i=1

(
RΓi 0

0 RΩi

)(
AΓiΓi BT

Ωi

BΩi 0

)
︸ ︷︷ ︸

(∗)

(
RΓi 0

0 RΩi

)T

−
(

RΓi 0

0 RΩi

)(
AΓi i B

T
Γi i

0 0

)(
Aii BT

ii

Bii 0

)−1

︸ ︷︷ ︸
(∗∗)

(
AiΓi 0

BiΓi 0

)(
RΓi 0

0 RΩi

)T

.

=

(
SΓ BT

Ω

BΩ 0

)

The second formulation points out the global (∗) and local (∗∗) saddle
point structure.

In this work, we do not compute the matrix of the Schur-complement
operator S or the local Schur-complement operator Si explicitly. Com-
puting this operator matrix means to compute on each subdomain
the inverse of the matrix Kii. Numerically that is too expensive [56,
Chapter 4]. In our approach, we compute the result by applying the
operator S to a vector (xΓ, xΩ)

T, see Algorithm 6.1.
Let the vector (b1, . . . , bs, bΓ, bΩ)

T denote the right hand side of
the global linear system, where we first number the inner degrees of
freedom of each subdomain, then the degrees of freedom of the global
skeleton and finally the degrees of freedom of the pressure constants.
Based on this vector, we consider the following formulation for the
general right hand side of the Schur-complement equation:

r : = (bΓ, bΩ)
T −

s

∑
i=1

RLi KΓiiK
−1
ii bi.

One objective in this section is to derive a preconditioned solution
algorithm to solve the general Schur-complement equation:

S(xΓ, xΩ) = r.

132 preconditioned solving routines based on ddms

Algorithm 6.1 Apply Schur-complement

1: function S(xΓ, xΩ)
2: Restrict: (xΓi , xΩi)← (RT

Γi
xΓ, RT

Ωi
xΩ)

3: if exact then
4: Solve (preconditioned): Kiixi = KiΓi xΓi

5: else if inexact then
6: Solve lΓ (preconditioned) steps: Kiixi = KiΓi xΓi

7: end if
8: Compute: (yΓi , yΩi)← KΓiixi + KΓiΓi(xΓi , xΩi)
9: Allreduce: (yΓ, yΩ)

T ← ∑i(RΓi yΓi , RΩi yΩi)
10: return (yΓ, yΩ)

T

11: end function

The “exact” variant of Algorithm 6.1 describes the steps, when
applying the the Schur-complement operator S to a global coupling
vector (xΓ, xΩ). In step 2, we restrict the global data to the subdomains.
On each subdomain a local problem with Dirichlet data on the local
skeleton is solved in step 4. To solve the local problem, we use an
iterative Krylov subspace solver. Since the problem is non-symmetric,
a GMRES-method of Saad is our appropriate choice [48, Chapter 6 + 9]
and [50]. To improve the solver, we use an incomplete LU factorization
as a right preconditioner to accelerate the GMRES-method [48, Chapter
10] and [49]. In the next step 8, the resulting Dirichlet data is projected
to natural boundary (outflow) data by computing the described matrix-
vector operation. Steps 2, 4 and 8 are all local and can be computed in
parallel. Only in step 9, when the local result is projected to the global
data structure and added up, global communication is needed. Fig 19

also sketches the application of the Schur-operator.

Remark 41. By solving the local problems in step 4 with an iterative
solver, the Schur-complement operator is not computed exactly, only
up to the given stopping tolerance of the solver. In consequence,
the Schur-complement equation is algebraically not equivalent to the
global problem. But our numerical experiments in the next chapter 7

show that we nevertheless obtain accurate results, when solving the
local problems in step 4 very accurately.

6.2 preconditioners for the schur-complement equation

One of our aims is to develop a parallel method which is scalable and
efficient. These two characteristics form the basis that a method is suit-
able for high performance computing. In this subsection, we describe
two interface preconditioners for the Schur-complement equations.
In the next Chapter 7, we study their applicability with respect to
high performance computing. Consequently, one main requirement
is that the preconditioners must run in parallel. Both preconditioner

6.2 preconditioners for the schur-complement equation 133

Figure 19: The figure shows schematically how to apply the Schur-
complement operator, how to compute the right hand side and
final solution in case of solving the global system via the Schur-
complement equation, and how to apply the Neumann-Neumann
preconditioner. In all cases first, local problems are solved on the
subdomain in parallel. The results are collected and distributed to
all processes. Then the same global operation is computed on all
processes in parallel. Like this all processes know the result of the
global computation and no further communication is needed.

are by construction parallel. They exploit the local structure of the
global Schur-complement. The Neumann-Neumann preconditioner
is based on the ideas of the Neumann-Neumann preconditioner for
the Poisson equation. Both preconditioners consider the local saddle
point structure and exchange information with the direct neighboring
subdomains. The balancing Neumann-Neumann preconditioner is
based on the ideas for a preconditioner with the same name for the
Poisson equation. It extends the Neumann-Neumann preconditioner
by also considering the global saddle point structure and interchang-
ing information globally through a coarse problem. For more details
on the preconditioners for the Poisson equation, see [43, 46, 51] and
references therein.

6.2.1 Neumann-Neumann Preconditioner

The idea of the Neumann-Neumann preconditioner is based on two
steps. In the first step, local independent subdomain problems with
natural boundary conditions on the skeleton are solved. In the second
step, the result in form of Dirichlet data on the local skeleton is
weighted and exchanged with the neighboring subdomains. Since the
local subproblems are locally independent, the first step can be done
in parallel for all subdomains. In the second step, communication
with the neighboring subdomains is needed to exchange the Dirichlet
data, see also Fig. 19.

134 preconditioned solving routines based on ddms

The operator form of the Neumann-Neumann preconditioner is
given as follows:

PNN :=
s

∑
i=1

RΓi DΓi P
NN
i DΓi R

T
Γi

.

It is an additive preconditioner, see, e.g., [51, Chapter 5]. DΓi are
diagonal matrices of dimension mΓi which weight the local skeleton
entries. The weights can be chosen arbitrarily as long as it holds that
[?]

IΓ =
s

∑
i=1

RΓi DΓi R
T
Γi

with IΓ the identity matrix of dimension mΓ. A natural choice for
the diagonal entries are the reciprocals of the counting functions [?].
The counting functions of each degree of freedom is the number of
subdomains on which the degree of freedom lies or, in other words,
the number of subdomains which share a degree of freedom. Hence,
the counting function of an inner degree of freedom is always one. On
the skeleton Γ, the counting function is at least two. The local operator
PNN

i of the preconditioner corresponds to the local subdomain matrix
Ki. It implies solving on each subdomain a local problem with natural
boundary conditions on the local skeleton Γi. On the other part of
the subdomain boundary either outflow conditions or homogeneous
Dirichlet boundary conditions are applied. That depends on the type
of the subdomain. On inner subdomains, only natural boundary
conditions are implied.

Remark. Since the pressure is uniquely defined on all subdomains, no
normalization condition must be implied. On the continuous level,
it means that the pressure lies in L2(Ωi). This has impact on the
implementation.

Algorithm 6.2 describes the steps, when applying the preconditioner
to a global skeleton vector. In step 2 of Algorithm 6.2, we restrict the
global skeleton to the local skeleton. Since the global skeleton is known
to every process (or at least the needed part of the global skeleton),
this is a local operation, which can be done in parallel. In step 3 and 9,
we weight the entries on the local skeleton. Step 5 and 7 correspond
to solving a local subproblem with natural boundary conditions on
the local skeleton. Since PNN is used as a preconditioner, we do not
need to solve the local problems exactly as in the case when applying
the exact Schur-complement operator. In the “exact” variant (step 5),
we solve the local problem up to a given tolerance. In the “inexact”
variant (step 7), we compute a fixed number lΓ of iterations. As for
the Schur-complement operator, we use as a solver a preconditioned

6.2 preconditioners for the schur-complement equation 135

Algorithm 6.2 Apply Neumann-Neumann preconditioner

1: function PNN(vΓ)
2: Restrict: vΓi ← RT

Γi
vΓ

3: Weight: vΓi ← DΓi vΓi

4: if exact then
5: Solve (preconditioned): Ki(wi, wΓi)

T = (0i, vΓi)
T

6: else if inexact then
7: Solve lΓ (preconditioned) steps: Ki(wi, wΓi)

T = (0i, vΓi)
T

8: end if
9: Weight: wΓi ← DΓi vΓi

10: Project and Allreduce: wk+1
Γ ← ∑i RΓi w

k+1
Γi

11: return wk+1
Γ

12: end function

GMRES-method and an incomplete LU-factorization as preconditioner,
see, e.g., [48, Chapters 6, 9 + 10]. Step 10 is the only global operation,
where global communication is needed. To get Dirichlet data on the
global skeleton as the result of applying the Neumann-Neumann
preconditioner, we need to add up local Dirichlet data projected to the
global skeleton.

Note that the Neumann-Neumann preconditioner is independent of
the global pressure couplings xΩ. Consequently, it only considers the
local saddle point structure of the Schur-complement operator. We
also recognize that the step 2, 5, 7 and 10 of applying the Neumann-
Neumann preconditioner are similar to the steps 2, 4, 6 and 8 of
applying the Schur-complement operator. Therefore, the cost of the
application of both operators are comparable. They may differ with
respect to the accuracy of the stopping criteria for the local solvers.

6.2.2 Balancing Neumann-Neumann Preconditioner

The Neumann-Neumann preconditioner only exchanges information
between subdomains which are direct neighbors and neglects the
information provided by the global saddle point structure. Hence,
we propose as an improvement the balancing Neumann-Neumann
preconditioner. In addition to solving local subdomain problems with
natural boundary conditions, a global but very coarse problem is
solved. By solving the coarse problem, the preconditioner not only
considers the global saddle point structure but also provides a global
exchange of information. For the Stokes problem, the preconditioner
was proposed and studied in detail in [45].

By adding the coarse level, we also add a global coupling which
at a first glance contradicts the requirement to provide a parallel pre-
conditioner but we expect that the improvement of the preconditioner
with respect to the reduction of iterations makes up for the added
sequential step. In numerical experiments, we study and compare

136 preconditioned solving routines based on ddms

the Neumann-Neumann and balancing Neumann-Neumann precon-
ditioner not only regarding the number of iterations, but also with
respect to the cost of the set up of the preconditioner and the cost to
apply the preconditioner in each iteration, see Chapter 7.

As stated in [45] by using inf-sup stable spaces for the coarse prob-
lem, it is even possible to provide a balancing Neumann-Neumann
preconditioner which is independent of the number of subdomains
or in other words stable with respect to the increasing number of
subdomains.

Before we define the operator for the balancing Neumann-Neumann
preconditioner, we define the discrete coarse space. The coarse prob-
lem also has a saddle point structure. Since our aim is to provide a
very coarse problem, we model the velocity and the pressure only by
a few degrees of freedom per subdomain. For the coarse pressure, we
use the same discretization as for the global pressure and therefore
use the space D(Ω):

D(Ω) :=

D(Ω)× D(Ω) if optimal control problem

D(Ω) otherwise
.

In case that the model problem are the Oseen equations with inhomo-
geneous global boundary conditions, we replace D(Ω) with one of
the spaces D̂(Ω) or D̃(Ω) depending on the weak formulation.

We give two definitions for the discrete coarse velocity space. The
first definition V1

0 is purely based on the counting functions. Although
we know that this proposal does not yield an inf-sup stable coarse
space V1

0 ×D(Ω), we consider it because V1
0 is very easy to imple-

ment and the implementation is independent of how the domain is
partitioned. Furthermore, numerical experiments in Chapter 7 show
significant improvement comparing the Neumann-Neumann and the
balancing Neumann-Neumann preconditioner.

For each subdomain and each velocity component, we define the
vector µ

j
i ∈ RmΓ . The subindex i indicates the subdomain and the

super index j indicates the velocity component. When considering as
an example a two dimensional optimal control problem, the index j
runs from 1 to 4, where 1 and 2 correspond to the two components of
the state velocity, and analogously, 3 and 4 to the two components of
the adjoint velocity. All entries of the vector µ

j
i which do not belong

to degrees of freedom on the local skeleton Γi are set to 0. All entries
belonging the to the local subdomain but not to the degrees of freedom
of the velocity component j are also 0. The remaining entries contain
the reciprocal of the counting function of that degree of freedom. The
first coarse velocity space is then defined as

6.2 preconditioners for the schur-complement equation 137

V1
0 :=

{
v ∈ Vh

Γ : v ∈ span{µj
i}
}

.

The second proposal V2
0 for the coarse velocity space leads to an inf-

sup stable coarse space. Motivated by inf-sup stable Taylor-Hood
finite elements on the fine level, we enrich the first coarse space by
adding, depending on the triangulation, continuous coarse piecewise
bi-or triquadratic functions or continuous coarse piecewise quadratic
functions. This leads to the second coarse velocity space

V2
0 :=

{
v ∈ Vh

Γ : v ∈ span{µj
i} ∪Q2(Γ) (or P2(Γ))

}
.

Lemma 42. The coarse space V2
0 ×D(Ω) satisfies the inf-sup condition.

Proof. See [45, Lemma 5.2].

Remark. The implementation of V2
0 may be tricky. The definitions of

the piecewise quadratic or bi-or triquadratic functions for the coarse
space are based on the elements of a triangulation. Aiming at a very
coarse velocity space which is formed of only a few basis functions,
it is necessary that each coarse triangulation of one subdomain only
consists of a few elements. Thus, we need to assume a restriction
with respect to the way of splitting the global domain into subdo-
mains. Depending on the element type, the coarse triangulation of
the subdomains must be formed in two dimension by a few coarse
triangles or quadrilaterals and in three dimensions be a few hexahe-
dra or tetrahedra. The more coarse elements are needed to define
a coarse triangulation of one subdomain, the larger gets the coarse
velocity space. The smallest coarse space can be achieved if each
coarse triangulation of a subdomain contains exactly one element.

Next, we define the coarse operator. Therefore, let L0 ∈ RmΓ×mv
0 be

the matrix whose columns are the vectors spanning the coarse velocity
space, either V1

0 or V2
0. mv

0 is the number of vectors which span
the coarse velocity space. Then, we can define the projection matrix
R0 ∈ R(mΓ+mΩ)×(mv

0+mΩ), which projects the entries of the coarse space
to the coupling space by

R0 =

(
L0 0

0 IΩ

)
.

Here, IΩ is the identity matrix with the size of the dimension of the
space D(Ω).

Now, we can define the coarse operator matrix S0:

138 preconditioned solving routines based on ddms

S0 = RT
0 SR0 =

(
LT

0SΓL0 (BΩL0)T

BΩL0 0

)
.

Since we do not compute the Schur-complement operator S, the
coarse matrix S0 cannot be computed by matrix-vector operations. We
compute the matrix S0 by applying the Schur-complement operator
to each of the columns of the matrix R0. Consequently to compute
the matrix S0, we need to solve for each of the mv

0 vectors of the
matrix L0 on each subdomain a local Dirichlet problem. This is the
main cost factor in the set up for the balancing Neumann-Neumann
preconditioner.

Now, we can define the coarse operator matrix for the balancing
Neumann-Neumann preconditioner PbNN

0 :

PbNN
0 = R0S−1

0 RT
0 .

Algorithm 6.3 describes the steps, when applying the coarse opera-
tor PbNN

0 to a coupling residual vector (vΓ, vΩ).

Algorithm 6.3 Apply coarse operator PbNN
0

1: function PbNN
0 ((vΓ, vΩ))

2: Restrict: v0 ← RT
0 (vΓ, vΩ)

3: if exact then
4: Solve (preconditioned): S0w0 = v0
5: else if inexact then
6: Solve lΓ (preconditioned) steps: S0w0 = v0
7: end if
8: Project: (wΓ, wΩ)← R0w0
9: return (wΓ, wΩ)

10: end function

In step 2 (or 8), we restrict (or project) the coupling vector to the
coarse space (or vice versa). In step 4, we solve a coarse saddle point
problem. Either with a direct solver or an iterative solver up to a given
stopping tolerance. In our implementation this is a local operation.
Since the coarse matrix is very small compared to the subdomain
matrices, we store the coarse matrix as well as the projection matrix R0

on every process. The skeleton vector is also globally known. On each
process, we solve the same problem independently. Consequently, the
result is directly known to all processes which avoids communication.

Using these definitions, we define the balancing Neumann-Neumann
preconditioner:

PbNN =PbNN
0 + (I − PbNN

0 S)PNN .

6.2 preconditioners for the schur-complement equation 139

Figure 20: This figure outlines diagrammatically the application of the bal-
ancing Neumann-Neumann preconditioner. In the first step, we
apply the Neumann-Neumann preconditioner, secondly, we com-
pute the Schur-complement operator and finally, we solve a coarse
problem.

140 preconditioned solving routines based on ddms

We chose the non-symmetric definition of the balancing Neumann-
Neumann preconditioner. This is convenient, since we solve non-
symmetric model problems and use a suitable solver. The precondi-
tioner is of hybrid type because it combines the coarse solver, which is
treated multiplicative, whit the additively treated Neumann-Neumann
preconditioner, see [51, Chapter 5]. Algorithm 6.4 describes the
steps, when applying the preconditioner PbNN to a residual vector
(vΓ, vΩ)

T ∈ RmΓ+mΩ .

Algorithm 6.4 Apply balancing Neumann-Neumann preconditioner

1: function PbNN((vΓ, vΩ))
2: Apply PNN : v1

Γ ← PNN(vΓ) . Alg. 6.2
3: Apply S: (v2

Γ, v2
Ω)← S(v1

Γ, vΩ) . Alg. 6.1
4: Compute: (v2

Γ, v2
Ω)← (vΓ, vΩ)− (v2

Γ, v2
Ω)

5: Apply PbNN
0 : (wΓ, wΩ)← PbNN

0 (v2
Γ, v2

Ω) . Alg 6.3
6: Compute: wΓ ← v1

Γ + wΓ
7: return (wΓ, wΩ)
8: end function

Applying the balancing Neumann-Neumann preconditioner can
be subdivided in two categories. In category one, described by step
4 and 6, the vectors are updated. This category is a vector-vector
operation, which is not very costly. The second category covers the
steps where operators must be applied, see step 2, 3 and 5. Applying a
operator always implies solving a saddle point problem. Either on the
subdomain level as in step 2 and 3 including global communication
or on the coarse level as in step 5. The application of the balancing
Neumann-Neumann preconditioner is illustrated schematically in Fig.
20.

6.3 comparison of the neumann-neumann and the bal-
ancing neumann-neumann preconditioner

When comparing the two preconditioners, we need to consider on the
one hand the characteristics of the preconditioners and on the other
hand the cost for the set up and its application.

Both preconditioners consider the local saddle point structure and
consequently are a good approximation for the local part of the Schur-
complement operator. They both exchange information with its direct
neighbors. When applying the Neumann-Neumann preconditioner to
many subdomains the exchange of information between two subdo-
mains takes as least as many iterations as subdomains are in between
two subdomains. Numerical experiments in the next chapter show that
the number of iterations for the Neumann-Neumann preconditioner
increases rapidly with the number of subdomains. The idea of the bal-
ancing Neumann-Neumann preconditioner is to improve the exchange
of information by solving a global but very coarse problem. By doing

6.4 solution algorithm for the schur-complement equation 141

this, in every iteration information is exchanged globally. Therefore,
the coarse part of the preconditioner considers the global saddle point
which is completely ignored by the one level Neumann-Neumann pre-
conditioner. By considering an inf-sup coarse implementation, we can
even achieve that the balancing Neumann-Neumann preconditioner
gets independent of the number of subdomains, see [45, Section 6].

Comparing the cost for the set up and in each iteration, the one
level Neumann-Neumann preconditioner is much cheaper. For the set
up, we only need to determine the weights for the matrices DΓi and
assemble the local subdomain matrices with natural boundary condi-
tions. To set up the balancing Neumann-Neumann preconditioner two
more steps are needed. We additionally need to set up the projection
matrix R0 by determining the counting functions. The most costly part
is the computation of the coarse matrix S0. The Schur-complement
operator needs to be applied mv

0 times which implies solving local
Dirichlet problems on each subdomain and global communication.
The more subdomains the more Dirichlet problems on the one hand,
but the more subdomains the smaller the Dirichlet problems on the
other hand. Furthermore the global skeleton grows with the number
of subdomains. Consequently, the communication gets more costly.

The cost to apply the Neumann-Neumann preconditioner in each
iteration can be split into two parts: First, solving in parallel local
subdomain problems with natural boundary conditions on the local
skeleton and second, communicating the results globally.

One iteration of the balancing Neumann-Neumann preconditioner
is more costly, additionally the Schur-complement operator is applied
in each iteration. That involves solving local subdomain problems with
inhomogeneous Dirichlet boundary conditions on the local skeleton
and global communication between all processes to distribute the
result. Additionally a coarse problem is solved in each iteration.

Summarizing, we can say that on the one hand the mathematical
characteristics of the two level balancing Neumann-Neumann precon-
ditioner improve the one level Neumann-Neumann preconditioner but
on the other hand the two level balancing Neumann-Neumann precon-
ditioner is more costly. In our numerical experiments in Chapter 7, in
which we study not only the number of iterations but also the run time
for the set-up of the solver and the solving time, we observe a sub-
stantial improvement of the two level balancing Neumann-Neumann
preconditioner compared to the one level Neumann-Neumann pre-
conditioner regarding the reduction of iterations and the runtime.

142 preconditioned solving routines based on ddms

Algorithm 6.5 Compute global solution via Schur-complement equa-
tion

1: function ComputeGlobalSolution

2: Compute (bΓ, bΩ)← RightHandSide . Alg. 6.6
3: (xΓ, xΩ)← SolveSkeleton((x0

Γ, x0
Ω), (bΓ, bΩ)) . Alg. 6.7

4: Compute FinalSolution(xΓ, xΩ) . Alg. 6.8
5: end function

6.4 solution algorithm for the schur-complement equa-
tion

In this section, we describe the steps how to solve the global model
problems by solving the Schur-complement equation and in which
step we apply the Neumann-Neumann type preconditioners.

Algorithm 6.5 gives an overview about the three main steps of
the solution algorithm: Before we can solve the Schur-complement
equation as described in Algorithm 6.7 (step 3), we need to compute
the right hand side r (step 2) as outlined in more detail in Algorithm
6.6. Solving the Schur-complement equation is the main part of
the solution process. The outcome of solving the Schur-complement
equation is a coupling vector containing the solution for the velocity on
the skeleton and global constants for the pressure on each subdomain.
The coupling vector is the input to compute the final global solution
on Ω (step 4) as further specified in Algorithm 6.8.

Algorithm 6.6 Compute right hand side

1: function RightHandSide

2: Given: bi, bΓi , bΩi

3: Solve: Kiixi = bi −KiDi xDi

4: Compute: bΓi ← bΓi + KΓiixi
5: Allreduce:(bΓ, bΩ)

T ← ∑i(RΓi bΓi , RΩi bΩi)
6: return (bΓ, bΩ)

T

7: end function

Computing the right hand side r, see Algorithm 6.6, is done analo-
gously to applying the Schur-complement equation. We solve a local
Dirichlet problem on each subdomain, see step 3. In step 4, we project
the Dirichlet data to natural boundary (outflow) data by matrix-vector
operations. The global coupling vector containing the right hand side
is then computed via global communication as described in step 5.

We solve the Schur-complement equation via a flexible right pre-
conditioned variant of the GMRES method [48, Chapter 9.4], see also
Algorithm 6.7. The GMRES method is an appropriate choice since our
Schur-complement operator is not positive definite and non-symmetric.
As a preconditioner, we apply the one level Neumann-Neumann or the
two level balancing Neumann-Neumann preconditioner. Both precon-

6.4 solution algorithm for the schur-complement equation 143

ditioners are applied in an operator form which internally solves local
linear systems up to a given stopping tolerance. Therefore the number
of iterations of the local linear solvers may change in each iteration of
the skeleton solver. Consequently, applying the preconditioner is not a
linear operation anymore. To be able to compute the final solution or
the solution for the restart, the flexible variant stores in each iteration
not only the basis of the Krylov-space but also the vector zj, see step
8 and 17. In our implementation the global skeleton vector is known
to all processes. Therefore the FGMRES method 6.7 is executed on
all processes at the same time. Like this every process knows the
next iterate and we avoid communication between the processes. The
most costly parts, which are applying the preconditioner (step 6 or 8)
and applying the Schur-complement operator (step 10), are done in
parallel for each subdomain.

Algorithm 6.7 Solve Schur-complement equation via FGMRES

1: function SolveSkeleton((x0
Γ, x0

Ω), (bΓ, bΩ))
2: Compute Residual: (r0

Γ, r0
Ω)← (bΓ, bΩ)− S(x0

Γ, x0
Ω) . Alg. 6.1

3: Normalize: (v1
Γ, v1

Ω)← 1
‖(r0

Γ,r0
Ω)‖2

(r0
Γ, r0

Ω)

4: for j = 1, . . . , m do
5: if Neumann-Neumann preconditioner then
6: Apply PNN : (zj

Γ, zj
Ω)← PNN(vj

Γ, vj
Ω) . Alg. 6.2

7: else if balancing Neumann-Neumann preconditioner then
8: Apply PbNN : (zj

Γ, zj
Ω)← PbNN(vj

Γ, vj
Ω) . Alg. 6.4

9: end if
10: Apply S: (wΓ, wΩ)← S(zj

Γ, zj
Ω) . Alg. 6.1

11: for i = 1, . . . , j do
12: Compute: hi,j ← ((wΓ, wΩ), (vi

Γ, vi
Ω))2

13: Orthogonalize: (wΓ, wΩ)← (wΓ, wΩ)− hi,j(vi
Γ, vi

Ω)
14: end for
15: Compute: hj+1,j ← ‖(wΓ, wΩ)‖2

16: Normalize: (vj+1
Γ , vj+1

Ω)← 1
hj+1,j

(wΓ, wΩ)

17: Define: Zm := [z1, . . . , zm]
18: Define: Hm := {hi,j}1≤i≤j+1;1≤j≤m
19: end for
20: Compute: ym = argminy‖‖(r0

Γ, r0
Ω)‖2e1 −Hmy‖2

21: Compute: (xm
Γ , xm

Ω) = (x0
Γ, x0

Ω) + Zmym
22: if Stopping criterion fulfilled then
23: return (xΓ, xΩ)← (xm

Γ , xm
Ω)

24: else
25: (x0

Γ, x0
Ω)← (xm

Γ , xm
Ω) Goto 2

26: end if
27: end function

Once we know the solution on the skeleton and the pressure con-
stants for the subdomains, we can compute the global solution on the

144 preconditioned solving routines based on ddms

Algorithm 6.8 Compute final solution

1: function FinalSolution(xΓ, xΩ)
2: Restrict: (xΓi , xΩi)← (RT

Γi
xΓ, RT

Ωi
xΩ)

3: Solve: Kiixi = bi −KiΓxΓ −KiDi xDi

4: Add pressure global constant xΩi to local pressure
5: end function

domain Ω. Therefore, we need to solve a Dirichlet problem on each
subdomain. Then on each processor the global solution restricted to
the corresponding subdomain is stored.

6.5 parallelization of global system via domain decom-
position

Another possibility to exploit the characteristics of the domain decom-
position method arises when directly solving the coupled global linear
system. Here, we use the domain decomposition as a parallelization
method which provides parallel matrix-vector operations. The global
linear systems corresponding to the four different model problems
can be written in the following general block format:

Kx = b⇔
(

KI I KIΓ

KΓI KΓΓ

)(
xI

xΓ

)
=

(
bI

bΓ

)
, (6.2)

where the different blocks are defined as

KI I =


K11 0 0

0
. . . 0

0 0 Kss

 , KIΓ =


K1Γ1 RT

L1
...

K1Γs R
T
Ls

 ,

KΓI =
(

RL1 KΓ11 · · · RLs KΓss

)
, KΓΓ =

s

∑
i=1

RLi KΓiΓi R
T
Li

.

Using these block matrices, we get another formulation of the general
Schur-complement operator:

S :=KΓΓ −KΓIK−1
I I KIΓ. (6.3)

Note that in the following, the subscript Γ of a vector refers to the
whole coupling vector, including the skeleton and the pressure con-
stants.

6.6 global schur-complement preconditioner 145

In our parallelization approach, we use as many processors as sub-
domains. In that way each processor corresponds to one subdomain.
On processor i, we store one local subdomain matrix Ki (6.1) and the
local subdomain vector (xi, xΓi)

T. Additionally, we store on each sub-
domain the global skeleton vector. Like this we get a good framework
for the matrix-vector operations needed to solve the global linear sys-
tem in parallel with an iterative method. In each operation, we have
to make sure, that the local skeleton vectors and the global skeleton
vector on each subdomain are updated and contain the same data.
This set-up then fits very well to the global Schur-complement precon-
ditioner, we derive in the next subsection. Note that each of the blocks
Kii contains the local saddle point structure and each of the the blocks
KΓiΓi contains the local part of the global saddle point structure. The
matrix KΓΓ then forms the global saddle point structure.

Note that depending on the number of subdomains, we get a dif-
ferent discretization for the pressure. They are equivalent on the
continuous level but not the same on the discrete level. The pressure
is coupled through global constants on each subdomain. Thus the
more subdomains we have, the more larger gets the global pressure
space. Therefore we cannot expect to solve the global linear system
with the same number of iterations, when using different number of
subdomains/processes, even though no preconditioner is applied.

6.6 global schur-complement preconditioner

Next, we derive a global preconditioner for the global linear system
(6.2) by exploiting the block structure of the matrix. This leads us to a
global Schur-complement preconditioner which is based on the ideas
presented in [9, Chapter 5].

Note that since the local block matrices Kii are invertible, it directly
follows that the global block matrix KI I is invertible. Thus, we can
decompose the global matrix as follows:

K =

(
II 0

KΓIK−1
I I IΓ

)(
KI I 0

0 S

)(
II K−1

I I KIΓ

0 IΓ

)

with the Schur-complement operator S as defined before (6.3) and II

and IΓ the identity matrices with dimensions of the blocks KI I and
KΓΓ, respectively.

Since S is the Schur-complement operator, we know that it is invert-
ible. Then we can invert the global matrix K:

K−1 =

(
II −K−1

I I KIΓ

0 IΓ

)(
K−1

I I 0

0 S−1

)(
II 0

−KΓIK−1
I I IΓ

)
.

146 preconditioned solving routines based on ddms

A good preconditioner approximates the inverse of the system matrix.
This leads to the following proposal for a global preconditioner PK :

PK =

(
II −PI IKIΓ

0 IΓ

)(
PI I 0

0 PΓ

)(
II 0

−KΓI PI I IΓ

)
.

Consequently, we need to find a good subdomain preconditioner PI I

and a good skeleton preconditioner PΓ.

6.6.1 Subdomain Preconditioner PI I

The subdomain preconditioner PI I is an approximation of the inverse
of KI I . Consequently, it can be interpreted as solving local Dirichlet
problems on each subdomain. Thus, our proposal for the subdomain
preconditioner PI I is to apply the a preconditioned Dirichlet solver
with a fixed number lI of iterations. Analyzing the block structure, we
have two different cases when applying the subdomain preconditioner
PI I :

1. wI = PI IvI : The subdomain preconditioner is applied directly
to an “inner” vector. Applying the subdomain preconditioner
in this case, means that we solve on each subdomain lI steps of
a local Dirichlet problem with a given right hand side for the
inner degrees of freedom and homogeneous Dirichlet conditions
on the skeleton.

2. wI = PI IKIΓwΓ: This case can be interpreted as solving lI itera-
tions of a local Dirichlet problem on each subdomain with given
inhomogeneous Dirichlet data wΓ on the skeleton.

Algorithm 6.9 Subdomain preconditioner (Case 1)

1: function PI I(vI)
2: Restrict: (vi, vΓi)← (vI |Ωi , 0)
3: Solve lI (preconditioned) steps: Kiiwi = vi
4: Project: (wI)|Ωi ← wi
5: return (wI)
6: end function

Algorithm 6.9 describes the first variant of the subdomain precon-
ditioner PI I . In step 2 the global inner vector is restricted to the
subdomain. In step 3, we apply lI steps of a preconditioned iterative
local Dirichlet solver on each subdomain. In step 4, we project the local
inner vector to the global inner vector. Step 2 and 4 are trivial, since
we store on each processor the vector with the entries corresponding
to the subdomain.

Algorithm 6.10 describes the second variant of the subdomain pre-
conditioner PI I . In step 2 we restrict the global Dirichlet data wΓ to the

6.6 global schur-complement preconditioner 147

Algorithm 6.10 Subdomain preconditioner (Case 2)

1: function PI I(wΓ)
2: Restrict: wΓi ← RT

Γi
wΓ

3: Solve lI (preconditioned) steps: Kiiwi = KiΓwΓi

4: Project: (wI)|Ωi ← wi
5: return (wI)
6: end function

local skeleton. Since the global vector wΓ is known to all processors,
no communication is needed. In step 3, we apply lI steps of a local
preconditioned Dirichlet solver on each processor to a subdomain
problem with given Dirichlet data on the skeleton Γ. In step 4, we
project the local inner result to the global vector. Analogously to the
steps 2 and 4 of Algorithm 6.9, this step is trivial.

6.6.2 Skeleton Preconditioner PΓ

The skeleton preconditioner PΓ approximates the inverse of the Schur-
complement operator S. Analogously to the subdomain precondi-
tioner, we propose to apply a preconditioned Schur-complement solver
with a fixed number of iteration lΓ, see Algorithm 6.11. Our proposal
is to use the inexact variant of the skeleton solver as described in Al-
gorithm 6.7. As a preconditioner for the Schur-complement solver, we
can either apply the inexact variant of the Neumann-Neumann precon-
ditioner or the inexact variant of the balancing Neumann-Neumann
preconditioner. As described in Algorithm 6.2 and Algorithm 6.4,
only a fixed number of iterations lΓ is computed when applying the
local operator PNN

i and the coarse operator PbNN
0 . Applying the Schur-

complement operator implies solving local Dirichlet problems on
each subdomain. We propose to apply the inexact Schur-complement
operator because it is only used as a preconditioner and thus it is
not necessary to solve the Schur-complement equation exactly, which
would also be too expensive. The inexact Schur-complement operator
is defined as follows

S̃ = KΓΓ −KΓI PI IKIΓ.

Instead of solving the local Dirichlet problems accurately, we apply
the local subdomain preconditioner and only compute a fixed number
of iterations as described in the inexact variant of Algorithm 6.1.

Algorithm 6.11 Skeleton preconditioner

1: function PΓ(wΓ)
2: Apply inexact SolveSkeleton(vΓ) return (wI)
3: end function

148 preconditioned solving routines based on ddms

6.7 algorithm for the global schur-complement precon-
ditioner

In this subsection, we give an algorithmic description, how to apply
the global Schur-complement preconditioner PK, see Algorithm 6.12.

Algorithm 6.12 Global Schur-complement preconditioner

1: function PK(vI , vΓ)
2: Apply PI I : w1

I ← PI IvI . Alg. 6.9
3: Compute: v1

Γ ← KΓIw1
I

4: Compute: v2
Γ ← vΓ − v1

Γ
5: Apply PΓ: wΓ ← PΓv2

Γ . Alg. 6.11

6: Apply PI I : w2
I ← PI IKIΓwΓ . Alg. 6.10

7: Compute: wI ← w1
I −w2

I
8: return (wI , wΓ)
9: end function

For a better understanding, how to apply the preconditioner, we
expand the block structure of the preconditioner applied to a residual
vector PK(vI , vΓ)

T:

(
wI

wΓ

)
=

(
PI IvI − PI IKIΓPΓ(−KΓI PI IvI + vΓ)

PΓ(−KΓI PI IvI + vΓ)

)
.

In step 2, we apply the first variant of the subdomain preconditioner
to the given residual vector vI . It is a local operation. The result is
stored in w1

I and reused in step 7. Step 2 - 4 prepare the residual vector
vΓ to which the skeleton preconditioner PΓ is applied in step 5. The
matrix-vector operation in step 3 requires global communication. It
projects Dirichlet data to natural boundary data. The application of the
skeleton preconditioner in step 5 also requests global communication.
This step provides the final result on the global skeleton wΓ. Step
6 is again a local step, where the second variant of the subdomain
preconditioner is applied. The vector-vector operation described in
step 7 computes the final result for the inner degrees of freedom in
form of the vector wI .

Analogously to the case of the interface preconditioners the global
Schur-complement preconditioner is not a linear operation. Further-
more the problem is not symmetric. Consequently, an appropriate
choice for an iterative solver for the global linear system is again a
FGMRES-method [47, 48, Chapter 9.4].

summary

In this chapter, we derived a solution algorithm for the Schur-comple-
ment equation. Furthermore, we developed and compared a Neumann-

6.7 alg . for the global schur-complement preconditioner 149

Neumann and a balancing Neumann-Neumann preconditioner for
the interface equation. Based on the ideas of the solution algorithm
for the Schur-complement equation and of these Neumann-Neumann
type preconditioners, we derived a global Schur-complement precon-
ditioner for the global linear system. In the next chapter, we study
these solvers and preconditioners based on numerical experiments in
the framework of high performance computing for the different model
problems considered in Chapter 2-5.

7
N U M E R I C A L E X P E R I M E N T S

This chapter is dedicated to the numerical experiments. After intro-
ducing the used software and hardware, we give an overview about
the set-up of the different numerical experiments. They mostly cover
the model problems introduced in Chapter 2 - 5. We apply both the
Schur-complement and the global approach, which we presented in
the previous Chapter 6 to solve the different model problems. After
verifying the correctness of the methods and their implementation
by means of solving a problem for which the analytical solution is
known, we analyze both methods in the context of high performance
computing. Based on the number of iterations of the solvers and the
runtime, we analyze effectiveness and the differences between the
preconditioners and evaluate the speed up and efficiency for both
methods.

7.1 hiflow
3 -software

The domain decomposition methods are implemented with the paral-
lel finite element software package HiFlow3[3, 4]. We adapted various
parts of the software to make it work in the context of non-overlapping
domain decomposition methods: We developed a partitioner for the
degrees of freedom, which distinguishes between the inner degrees of
freedom and the degrees of freedom on the local and global skeleton.
Based on this partitioning, we implemented a new linear algebra struc-
ture for the Schur-complement operator and a suitable global skeleton
vector structure. Exploiting this domain decomposition structure espe-
cially with respect to the partitioning of the degrees of freedoms, we
implemented a structure for the linear algebra suitable for the global
approach. Furthermore, we implemented the Neumann-Neumann
preconditioner, the balancing Neumann-Neumann preconditioner and
the global Schur-complement preconditioner, based on the implemen-
tation for the Neumann-Neumann type preconditioners.

For the mesh partitioning we used the software tool Metis [35]
to which an interface is implemented in HiFlow3. Metis partitions
the global mesh into non-overlapping subdomain meshes which co-
incide with our non-overlapping subdomains. The finite element
triangulation is done directly on those subdomains. We assume that

151

152 numerical experiments

Parameter Value

Preconditioner Number 11

Preprocessing Type 0

Maximum of Multi Levels 20

Memory Factor 0.8

Pivot Threshold 2.5

Minimal Pivot 0.01

Table 1: ILU++ parameters.

each subdomain created by Metis is connected. The parallelization is
achieved by mapping each subdomain to one process.

Moreover, we used the HiFlow3-interface to the ILU++ library for
the preconditioners of the local solvers. While this library provides
various implementations of the incomplete LU-factorization, we use it
more or less as a black box and set the parameters, as listed in Table 1.
The parameters were chosen based on empirical testing. We refer to
the literature for details about the meaning of the parameters [41, 42].

All numerical experiments were conducted on a cluster consisting
of ten two socket nodes with a total of 120 cores. The nodes are
connected via infiniband and each of the nodes provides between 48

and 192 GB of memory.

7.2 overview and structure of the numerical experiments

In this section, we provide an overview about the different numerical
experiments. First, we describe the two example problems which we
used, then, we review shortly the two solution approaches introduced
in Chapter 6 and state the parameters for the solvers.

For the numerical experiments, we defined two examples, which
cover the model problems introduced in Chapter 2 - 5 equipped with
mixed outflow and Dirichlet boundary conditions. In our examples,
we assume distributed control. The first one is based on the Oseen
equations and the second on the Navier-Stokes equations. Both exam-
ples are handled in the same way as outlined in Fig. 21. First, we solve
a Stokes problem, whose solution is used as the desired state u0 for the
optimization problem and in case of the Oseen example also for the
advection a, see Fig. 25a and Fig. 26a. In a second step, we solve either
the linear Oseen or the non-linear Navier-Stokes equations without
control. By setting the start solution to the solution of the Stokes prob-
lem, we begin directly with a divergence free solution. Next, we solve
several optimal flow control problems assuming distributed control
constrained either by the Oseen or by the Navier-Stokes equations. In
each experiment, we successively reduce the regularization parameter
α ∈ {1.0, 10−1, 10−2, 10−3, 10−4}. For α = 1.0, we use the solution of

7.2 overview and structure of the numerical experiments 153

Figure 21: Overview about the program execution for both examples.

the Oseen or Navier-Stokes equation as a start solution, respectively.
In this case the adjoint velocity and adjoint pressure are set to 0. In
the other cases, we use the solution of the last optimal control prob-
lem as a start solution. In all cases, we start with a divergence free
solution. In Chapter 2, we assume a · n = 0 for the Oseen equations
on the outflow boundary. By choosing the Stokes solution as given
advection, this assumption does not hold. Therefore, we have to adapt
the formulation of the bilinear form a(·, ·) such that it accounts for
the outflow conditions analogously as we defined the trilinear form
n(·, ·, ·) on the outflow boundary in Chapter 4.

(a) Channel geometry.

(b) Backward facing step geometry.

Figure 22: Geometries.

For both examples, we have

154 numerical experiments

• Ω0 = ΩC = Ω,

• and the right hand sides are set to f = 0 and h = 0.

By setting h = 0, we assume natural boundary conditions on the
boundary ∂Ωout. The Dirichlet boundary ΩD is split into two parts,
see also Fig. 22: On ∂ΩD \ ∂Ωin, we assume d = 0 and on ∂Ωin, we
assume the following inflow profile:

d(x1, x2) =
(

4umx2(1− x2)/H2, 0
)T

,

where um is the maximum inflow speed and H is the height of the
geometry at the inflow boundary. We execute the example using two
different geometries: a channel and a backward facing step geometry,
see Fig. 22. The channel geometry is chosen for the verification
of the method and its implementation, since an analytical solution
is known. For the other geometry, no analytical solution is known.
We use this backward facing step geometry to study both solution
methods in the context of high performance computing. Therefore,
we run numerical experiments with different numbers of subdomains,
which are listed in Table 2. Table 3 shows the number of degrees of

Schur-complement Method Global Method

Oseen

NN 4 8 16 32 - - - 4 8 16 32 - -

bNN 4 8 16 32 48 64 80 4 8 16 32 48 64

Navier-Stokes

NN 4 8 16 - - - - 4 8 16 - - -

bNN 4 8 16 32 48 64 80 4 8 16 32 48 64

Table 2: Number of subdomains used in the numerical experiments for the
backward facing step geometry.

freedom for the chosen triangulation on the global domain for each
variable and the resulting total when partitioned into four subdomains.
Since the pressure discretization changes depending on the number of
subdomains, the total number differs. In our implementation, we do
not discretize the control variable. We use the relationship defined by
the optimality condition c = 1

α z and reduce the optimality system to
a system of four partial differential equations. The control c can be
computed in a post processing step based on the solution of z, see also
[23, Chapter 6]. For both examples, we analyze the Reynolds number
[38, Chapter 5.4]

Re :=
ρVL

µ
.

7.2 overview and structure of the numerical experiments 155

Channel Backward facing step

No Control Control No Control Control

Total #DoFs 187237 374474 445688 891376

Total #DoFs for u 166172 166172 395534 395534

Total #DoFs for p 21065 21065 50154 50154

Total #DoFs for z - 166172 - 395534

Total #DoFs for r - 21065 - 50154

Table 3: Number of degrees of freedom (DoFs) for the two different geome-
tries for an example with four subdomains.

Therefore, we define the reference length L := H = 0.41 m and the
reference speed V := 2

3 um. In both examples, we assume a normal-
ized density of ρ = 1.0 kg m−3. For the Oseen example, we set the
maximum inflow speed to um = 0.2 m/s and the dynamic viscosity to
µ = 10 kg m−1s−1, which leads to a Reynolds number Re = 5.5e− 3.
This is reasonable, since the Oseen equations model creeping flow
which is characterized amongst others by a Reynolds number tending
to 0. In case of the Navier-Stokes example, we set um = 1.0 m/s and
µ = 0.1 kg m−1s−1, thus Re = 2.73.

Figure 23: Method Overview.

We solve both examples applying the Schur-complement and the
global approach. For the Navier-Stokes example, we apply a Newton-
method as an outer loop to resolve the non-linearity, see also Alg. 4.2.
In case of the Schur-complement method, we either apply the exact
Neumann-Neumann preconditioner (eNN) or the exact balancing
Neumann-Neumann (ebNN) preconditioner. For the global approach,
we apply the global Schur-complement preconditioner using either the
inexact Neumann-Neumann (iNN) or the inexact balancing Neumann-
Neumann (ibNN) preconditioner for the skeleton block. An overview
about the methods is given in Fig. 23. The stopping tolerances for
the Schur-complement and global approach are given in Table 4. The
relative and absolute tolerances are defined as follows:

relative tolerance:
∥∥∥rk
∥∥∥

2
/
∥∥r0∥∥

2 ,

absolute tolerance:
∥∥∥rk
∥∥∥

2
,

156 numerical experiments

where ‖·‖2 denotes the Euclidean norm, k the iteration of the solver,
such that r0 denotes the start residual and rk the residual of the kth
iteration step. The stopping tolerance is given either by the relative or
absolute tolerance or by the maximum number of iterations. For the
Schur-complement method, we need to define stopping tolerances for
the Schur-complement solver, solving the Schur-complement equation.
Furthermore, we need to define stopping tolerances for the Dirichlet
solver used for the local Dirichlet problems needed when applying
the Schur-complement operator. The solutions of these problems form
the basis of the Krylov-subspace for the skeleton equation and must
therefore be solved very accurately, see also Remark 41. This Dirichlet
solver is also used for the ebNN preconditioner to compute the coarse
operator S0 and to apply the Schur-complement operator inside the
ebNN preconditioner. Moreover, we define stopping tolerances for
the Neumann solver used to solve the local problems with natural
boundary conditions inside the eNN and ebNN preconditioners, when
applying the operator PNN and also for the coarse solver needed when
applying the coarse operator PbNN

0 of the ebNN preconditioner. Since
the Neumann and coarse solvers are used inside the preconditioner,
the stopping tolerances are lower at least for the relative tolerance.

For the global method, the stopping tolerance for the global solver
is defined analogously to the stopping tolerances of the Schur-comple-
ment solver of the Schur-complement approach. The Dirichlet solver 1

is used to compute the coarse operator S0 for the ibNN preconditioner
applied for the skeleton block PΓ. For the other linear solvers, we use
the inexact variants and therefore only define the maximum number
of iterations corresponding to lI and lΓ. We only solve one iteration
of the inexact Schur-complement solver, but for the Dirichlet solver
2, Neumann solver and coarse solver used for the preconditioner of
the Schur-complement solver, we compute each four iterations. For
the inner block of the preconditioner PI , we solve again only one
iteration. This is an appropriate choice having in mind the trade-off
between the cost to apply the preconditioner in each iteration and the
efficiency of the preconditioner. When analyzing the results for the
global approach, we will observe later that the parameters may also
depend on the problem type. For the non-linear solver needed for the
Navier-Stokes example, we chose the same stopping tolerances for the
Schur-complement and the global method.

For all solvers, except the ones used inside the global Schur-comple-
ment preconditioner, we used a restart variant [48] for which the
restart parameter is also given in the Table 4.

7.3 verification of both methods and their implementation 157

rel. tol. abs. tol. max. #iter. restart
Schur-complement approach

Schur-complement solver 1e-8 1e-12 1000 500

Dirichlet solver 1e-14 1e-16 1000 100

Neumann solver 1e-8 1e-16 1000 100

Coarse solver 1e-8 1e-10 1000 10

Non-linear solver 1e-6 1e-10 10

Global approach

Global solver 1e-8 1e-12 10000 500

PΓ

Schur-complement solver - - 1

Dirichlet solver 1 1e-14 1e-16 1000 100

Dirichlet solver 2 - - 4

Neumann solver - - 4

Coarse solver - - 4

PI I Dirichlet solver - - 1

Non-linear solver 1e-6 1e-10 10

Table 4: The table shows the stopping criteria and restart parameters for
the different solvers. rel. tol. abbreviates relative tolerance, abs.
tol. absolute tolerance and max. #iter. the maximum number of
iterations.

7.3 verification of both methods and their implementa-
tion

To verify the both methods and their implementation in HiFlow3, we
solve the Oseen and Navier-Stokes example in a channel domain, for
which the exact analytical solution is given by:

u1(x1, x2) =
4um

H2 x2(H − x2),

u2(x1, x2) = 0,

p(x1, x2) = µ

(
−8um

H2 x1 +
17.6um

H2

)
,

z1(x1, x2) = 0,

z2(x1, x2) = 0,

r(x1, x2) = 0,

c1(x1, x2) = 0,

c2(x1, x2) = 0.

The solution of the velocity u1 and u2 for the Oseen and for the
Navier-Stokes equations matches the desired state, which arises as

158 numerical experiments

No Control Control α = 1.0

H
1 -e

rr
or

of
u

L2 -e
rr

or
of

p

H
1 -e

rr
or

of
u

L2 -e
rr

or
of

p

H
1 -e

rr
or

of
z

L2 -e
rr

or
of

r

O
se

en
Sc.

eNN 1.2e-09 1.1e-10 1.2e-09 1.9e-10 1.4e-12 2.9e-11

ebNN 8.8e-10 3.1e-11 1.1e-09 6.0e-11 6.6e-13 1.9e-11

Gl.
iNN 1.2e-09 8.2e-12 1.2e-09 8.2e-12 9.1e-15 2.6e-14

ibNN 1.3e-09 8.3e-12 1.3e-09 6.9e-12 2.5e-15 5.6e-14

N
av

ie
r-

St
.

Sc.
eNN 4.9e-09 7.7e-11 4.9e-09 7.7e-11 - -

ebNN 4.2e-09 1.2e-11 4.2e-09 1.2e-11 - -

Gl.
iNN 3.8e-09 1.1e-09 3.8e-09 1.1e-09 - -

ibNN 4.2e-09 2.8e-11 4.2e-09 2.8e-11 - -

Table 5: The table shows the global errors between finite element approxi-
mation of the analytical solution and computed finite element so-
lution in the channel domain for both examples solved with Schur-
complement (Sc.) and the global (Gl.) approach.

the solution of the Stokes equations. Thus, our objective is directly
fulfilled and we do not need to control the systems. Hence, the adjoint
variables and the control are 0. Due to this fact, we only run the
experiment for the regularization parameter α = 1.0.

For both methods, the experiments were conducted using the cor-
responding preconditioners, see Fig 23. Since the exact solution is a
Poiseuille profile, which can be exactly represented by the used Taylor-
Hood finite elements, we expect a very good approximation. Due to
this fact, we also used stricter stopping tolerances than for the numeri-
cal experiments in the backward facing step geometry. We reduced
the relative tolerance for the global and Schur-complement solver to
1.0e− 12 and the absolute tolerance to 1.0e− 14. The H1-errors for the
velocity and adjoint velocity and the L2−errors for the pressure and
adjoint pressure are shown in Table 5. The left part of the table shows
the result for the case without control, and the right part the case
with distributed control. In the upper part, we listed the errors for the
Oseen example and in the lower part for the Navier-Stokes example.
Since the absolute error of the start residual for the Newton method
already fulfilled the stopping criterion, we did not explicitly compute
the error for the adjoint variable for the Navier-Stokes equations. For
the Oseen example the stopping criterion was not fulfilled for the
start residual, such that we could compute all errors. The numerical
experiments for the NN-type preconditioners were run with four sub-
domains and for the bNN-type preconditioner with 16 subdomains.
Based on the errors, we can evaluate the suitability of the proposed
methods.

7.4 simulation results in backward facing step geometry 159

7.4 simulation results in backward facing step geometry

Figure 24: Values of costfunctionals for Oseen and Navier-Stokes examples
for different regularization parameters. nc abbreviates the case
without control.

Before we study both methods in the context of high performance
computing, we look at some simulation results in the backward facing
step geometry. Fig. 24 shows the values of the costfunctional for the
Oseen and the Navier-Stokes example:

J(u, c) =
1
2
‖u + uD − u0‖2

L2(Ω) +
α

2
‖c‖2

L2(Ω) .

For the Oseen example, the values of the costfunctional have an
order of magnitude of 1.0e− 11 and thus are very small even without
applying a distributed control. Looking at the simulation results
shown in Fig. 25, there is no difference visible to the eye between
the desired state, the solution of the Oseen equation without control
and the solution of the Oseen equation. Nevertheless, we observe that
the control field shown in Fig. 25d develops three eddies. Since the
order of magnitude of the control filed is three times lower than of the
velocity field the influence is relatively small. The situation changes
for the Navier-Stokes example. The values of the costfunctional are
still very small but between five and seven magnitudes larger than for
the Oseen example, see Fig. 24. Comparing the velocity field of the
desired state, the solution without control and with control in Fig. 26,
almost no difference can be seen, analogously to the Oseen example.
But in this case, the control field develops two eddies of the same
magnitude as the velocity field. A smaller one with less influence
before the step and a bigger one directly behind the step.

7.5 analysis of the preconditioners

In this section, we analyze the exact and inexact Neumann-Neumann
type preconditioners in the framework of high performance comput-
ing. Therefore, we look at the numbers of iterations for the Schur-

160 numerical experiments

(a) Desired State (Computed solution of the Stokes equations).

(b) Velocity Field of the Oseen example without control.

(c) Velocity Field of the Oseen example with control at α = 1.0e− 4.

(d) Control Field of the Oseen example at α = 1.0e− 4.

Figure 25: Results of the flow simulations for the Oseen example.

7.5 analysis of the preconditioners 161

(a) Desired State (Computed solution of the Stokes equations).

(b) Velocity Field of Navier-Stokes solution without control.

(c) Velocity Field of Navier-Stokes example with control at α = 1.0e− 4.

(d) Control Field of the Navier-Stokes example at α = 1.0e− 4.

Figure 26: Results of the flow simulations for Navier-Stokes example.

162 numerical experiments

Number of Newton iterations applying

Schur-complement solver (Navier-Stokes)

α no control 1.0 1.0e− 1 1.0e− 2 1.0e− 3 1.0e− 4

s with preconditioner PNN

4,8 2 7 5 5 4 3

16 2 6 4 4 3 2

s with preconditioner PbNN

4, 48, 64, 80 2 6 4 4 3 2

8, 16, 32 2 5 4 4 3 2

Table 6: The table shows the mean values of the number of FGMRES it-
erations of the skeleton solver per Newton step applying the two
Neumann-Neumann-type preconditioners to solve the Navier-Stokes
example.

Number of Newton iterations applying
global solver (Navier-Stokes)

α no control 1.0 1.0e− 1 1.0e− 2 1.0e− 3 1.0e− 4

#iter 2 6 5 5 4 3*

Table 7: The table shows the number of Newton iterations when applying
the global solver. (*) The method did not terminate when applying
the inexact balancing Neumann-Neumann preconditioner for the
skeleton block for 32, 48 and 64 subdomains for the control case
with α = 1.0e− 4.

complement and global solver and for the non-linear Navier-Stokes
example also at the number of Newton steps. Furthermore, we analyze
the time per iteration and compare the set-up time of the precondi-
tioners with the solving time.

For the different numerical experiments, Tables 8 and 10 list the
number of iterations of the Schur-complement solver for the Oseen
and Navier-Stokes example, while Tables 9 and 11 specify the number
of iterations for the global solver. For the non-linear Navier-Stokes
example, the tables list the mean values with respect to the Newton
steps, which we record in Tables 6 and 7 for the Schur-complement
and global approach, respectively. Analyzing the number of Newton
iterations, we note that for the global solver the number of Newton
steps only depends on whether we solve a problem without control or
in case of applying distributed control on the regularization parameter
α. We expected this result due to the fact that the Newton method is
applied as an outer loop. In all cases the Newton method is stopped
with an absolute residual in the order of magnitude of 10−10. The
relative residual was reduced at least by five orders of magnitude.
Applying the Schur-complement solver as an inner loop to compute

7.5 analysis of the preconditioners 163

the correction, we observe a slightly different situation. Depending
on the preconditioner and the number of subdomains, the number
of Newton steps differs for some cases by one iteration taking the
number of Newton-iterations of the global approach as a reference.
The absolute residual also does not reach the same order of magnitude
as in the case when applying the global solver. But in all cases the
residual is reduced by an order of magnitude between three and four
which indicates that the method converged. To assure that we reached
the minimal residual, we applied an inexact variant of the Newton
method [13], in case that the residual was not reduced anymore at a
step size of 1.0, we reduce the step size successively. We stopped the
Newton method, in case that even at a step size of 0.1 the residual
could not be reduced anymore. Even thought, we did not reach the
same order of magnitude for the absolute residual, the values for the
costfunctionals are the same. Therefore, we conclude that we resolved
the problem sufficiently.

#Iter of Schur-complement solver for Oseen example

α no control 1.0 1.0e− 1 1.0e− 2 1.0e− 3 1.0e− 4

s eNN

4 41 65 42 48 60 63

8 78 141 107 114 130 141

16 218 284 204 214 234 290

32 999 478 491 396 414 1000(*)

s ebNN

4 20 27 16 18 21 25

8 32 49 29 35 43 50

16 51 73 44 52 69 88

32 141 124 120 119 121 138

48 435 187 184 175 180 210

64 486 213 207 205 211 253

80 1000(*) 265 258 257 264 302

Table 8: The table shows the number of FGMRES iterations of the Schur-
complement solver applying the two Neumann-Neumann-type pre-
conditioners to solve the Oseen example. (*)The maximum of itera-
tions was set to 1000.

Next, we analyze the number of iterations of the Schur-complement
and global solver for both examples see Tables 8 - 11. As expected,
with an increasing number of subdomains, the number of iterations for
the eNN and iNN preconditioners increases much stronger compared
to the increase of iterations for the ebNN and ibNN preconditioners.
Only based on this observation, we can conclude that both variants
of the NN-type preconditioners are not suitable for high performance

164 numerical experiments

#Iter of global solver for Oseen example

α no control 1.0 1.0e− 1 1.0e− 2 1.0e− 3 1.0e− 4

s iNN

4 399 239 196 216 251 384

8 1321 353 276 283 359 10000(*)

16 8501 1001 296 451 710 10000(*)

32 10000(*) 1962 803 1501 10000(*) 10000(*)

s ibNN

4 274 132 102 100 135 249

8 361 151 124 139 142 360

16 419 133 110 130 168 380

32 758 133 109 133 303 1501

48 933 208 131 250 501 10000(*)

64 1340 220 158 423 2944 10000(*)

Table 9: The table shows the number of FGMRES iterations of the global
solver applying the two variants of the global Schur-complement
preconditioner to solve the Oseen example.(*) The maximum of
iterations is set to 10000.

computing. When looking at the total runtime in Tab. 12, we also see
that starting from 16 subdomains the bNN-type preconditioners are
quicker than the NN-type preconditioners. This is another record that
the NN-type preconditioners are not suitable for high performance
computing. Graphically this is also depicted for the Navier-Stokes
example without control in the upper part of Fig 33. Analyzing the
number of iterations for the bNN-type preconditioners, we note that
the number of iterations increases for an increasing number of subdo-
mains but much slower as in the case when applying the variant of
the NN-type preconditioners. This also coincides with our theoretical
considerations. Only for inf-sup stable coarse finite elements, we can
expect that the number of iterations is independent of the number
of subdomains at least for the Schur-complement approach. Further-
more, we observe that looking at the ebNN variant the number of
iterations is more or less stable for a specific number of subdomains
while the number of iterations for the ibNN preconditioner increases
along with decreasing the regularization parameter. From that point
of view the ebNN preconditioner seems to be more robust.

In the next step, we look at the time per iteration for both approaches
applied to the Oseen and the Navier-Stokes example, as it is shown in
Fig. 27 and 28. Sub-figures on the left side correspond to the Schur-
complement approach and on the right side to the global approach.
Exemplary, we show the case without control for each method in the
upper sub-figures while the lower sub-figures display the case apply-

7.5 analysis of the preconditioners 165

Mean value of #iter of Schur-complement solver
per Newton step (Navier-Stokes)

α no control 1.0 1.0e− 1 1.0e− 2 1.0e− 3 1.0e− 4

s eNN

4 29 38 43 50 57 63

8 55 89 94 102 109 118

16 107 193 201 217 236 255

s ebNN

4 18 33 34 38 35 32

8 33 61 61 66 58 56

16 50 91 95 111 103 87

32 73 147 149 167 177 151

48 97 161 165 180 216 190

64 121 225 218 238 287 246

80 143 246 252 262 334 275

Table 10: The table shows the mean values of the number of FGMRES
iterations of the skeleton solver per Newton step applying the
two Neumann-Neumann-type preconditioners to solve the Navier-
Stokes example.

ing distributed control for the regularization parameter α = 1.0e− 3.
In each sub-figure, we compare the time per iteration of the NN and
bNN-type preconditioners. The time per iteration was computed by
dividing the solving time of the Schur-complement or global solver by
the total number of iterations. In case of the non-linear Navier-Stokes
example, we used the mean values with respect to the Newton-steps
for the solving time and the number of iterations. Therefore, the time
includes all steps executed in each iteration of the solver, especially the
costly steps of applying the preconditioner and the Schur-complement
or global operator depending on the approach, (see also steps 6, 8 and
10 of Alg. 6.7). As expected, we observe that both variants of the bNN
preconditioner consume more time per iteration than the variants of
the NN preconditioner. This results from the fact that for the bNN
type we additionally need to apply the Schur-complement and coarse
operator, see also Fig. 20. Moreover, we see that for an increasing
number of subdomains, the time per iterations decreases proportional
to the subdomain size which is shown in Fig. 31. It indicates that
the smaller the problem the faster we can solve it. Furthermore, we
observe that one iteration of the Schur-complement solver is between
six and ten times slower than an iteration of the global solver. To be
able to conclude, which approach is more reasonable in the context of
high performance computing, we compare the total time for the Schur-
complement approach with the total time for the global approach in

166 numerical experiments

Mean value of #iter of global solver
per Newton step (Navier-Stokes)

α no control 1.0 1.0e− 1 1.0e− 2 1.0e− 3 1.0e− 4

s iNN

4 151 112 122 211 162 137

8 218 174 187 311 261 194

16 345 325 369 9629 1398 983

s ibNN

4 120 55 68 150 190 272

8 138 69 76 155 439 361

16 132 85 119 243 3493 600

32 143 122 176 359 1422 -

48 157 174 368 733 920 -

64 181 204 493 4021 1256 -

Table 11: The table shows the mean values of the number of FGMRES it-
erations of the global solver per Newton step applying the two
Neumann-Neumann-type preconditioners to solve the Navier-
Stokes example.

Total solving time for Navier-Stokes example without control

s 4 8 16

Sc.
eNN 1631.5 1022.8 761.1

ebNN 2094.1 1231.1 613.1

Gl.
iNN 1422.0 829.1 663.0

ibNN 1616.7 934.0 481.3

Table 12: Comparing the total time depending on preconditioner type and
method to solve Navier-Stokes example without control.

Fig. 29. For values larger than one the global approach is faster. For
most cases, the global approach is faster even though, more iterations
are needed. From that point of view, the global approach features a
greater potential in high performance computing.

Another important aspect for the analysis of the preconditioners in
the framework of high performance computing is their set-up time.
Therefore, in Fig. 32 and 33, we compare the set-up time for the bNN-
type preconditioners with the solving time for both examples solved
with the two approaches applying the preconditioners. The figures and
sub-figures are arranged analogously to Fig. 27 and 28. In the upper
part of Fig 28, we additionally compare the NN-type preconditioner
and the bNN-type preconditioners. As expected, we observe that the
set-up time for the NN preconditioners is smaller than for the bNN

7.5 analysis of the preconditioners 167

(a) Legend for Fig. 27 and Fig. 28.

(b) Oseen example without control. (c) Oseen example with distributed con-
trol for α = 1.0e− 3.

(d) Oseen example without control. (e) Oseen example with distributed con-
trol for α = 1.0e− 3.

Figure 27: The figure shows the time per iteration for the two solving ap-
proaches applied to the Oseen example exemplarily for the non-
control and the control case for α = 1.0e− 3.

preconditioners. Furthermore, the set-up times are independent of
the approach, since the same steps need to be realized. For the NN
and bNN preconditioners, the set-up time includes the time for the
set-up of the local ILU++ preconditioners for the local Dirichlet and
Neumann solvers. In the set-up time of the bNN preconditioners
additionally enters the time for the set-up of the ILU++ preconditioner
for the coarse solver and the computation of the coarse operator S0.
For its computation in the non-control case, we have to solve as many
local problems as subdomains, in the control case, the coarse space
is twice as large, which means that we need to solve twice as many
local subdomain problems. Even though we have to solve more local
problems for the set-up as the subdomain number increases, the set-up
time is divided in half along with doubling the number of subdomains,
which is graphically shown in Fig. 30. In sub-figure 30a, we compare
the set-up times for the Oseen example and in sub-figure 30b for
the Navier-Stokes example. This evolution for the set-up time can be
explained by the following two observations: First, we observe that the

168 numerical experiments

(a) Navier-Stokes example without con-
trol.

(b) Navier-Stokes example with dis-
tributed control for α = 1.0e− 3.

(c) Navier-Stokes example without con-
trol.

(d) Navier-Stokes example with dis-
tributed control for α = 1.0e− 3.

Figure 28: The figure shows the time per iteration for the two solving ap-
proaches applied to the Navier-Stokes example exemplarily for
the non-control and the control case for α = 1.0e− 3.

set-up time for the Neumann-Neumann preconditioner also reduces
anti-proportionally to the increasing number of subdomains, therefore
we conclude that the set-up time for the local ILU++ preconditioners
reduces for smaller problems. Since this does not explain the whole
reduction, we furthermore conclude that even thought we have to
solve more local problems, the size of the problem is the crucial part.
The smaller the problem the quicker a local problem can be solved.

7.5 analysis of the preconditioners 169

(a) Legend for Figures 29, 30, 34 and 36.

(b) Oseen example.

(c) Navier-Stokes example.

Figure 29: For different numbers of subdomains, this figure shows the ratio
between the total time of the Schur-complement solver and the
total time of the global solver for both examples applying the
bNN-type preconditioner.

170 numerical experiments

(a) Oseen example.

(b) Navier-Stokes example.

Figure 30: For different numbers of subdomains, this figure shows the set-up
time for the bNN preconditioner for both examples. The legend is
shown in Fig. 29a.

7.5 analysis of the preconditioners 171

Figure 31: For different numbers of subdomains, this figure compares the
mean value (mv) of the number of degrees of freedom (DoFs) on
one subdomain with the number of DoFs on the global skeleton.

(a) Oseen example without control. (b) Oseen example without control.

(c) Oseen example with distributed con-
trol for α = 1.0e− 2.

(d) Oseen example with distributed con-
trol for α = 1.0e− 2

Figure 32: The figure compares the solving time with the set-up time for
the two approaches with the two corresponding preconditioners
for the Oseen example exemplarily for the non-control and the
control case for α = 1.0e− 2. The legend is given in Fig. 33a.

172 numerical experiments

(a) Legend for Fig. 32 and Fig. 33.

(b) Navier-Stokes example without con-
trol.

(c) Navier-Stokes example without con-
trol.

(d) Navier-Stokes example with dis-
tributed control for α = 1.0e− 1.

(e) Navier-Stokes example with dis-
tributed control for α = 1.0e− 1.

Figure 33: The figure compares the solving time with the set-up time for the
two approaches with the two corresponding preconditioners for
the Navier-Stokes example exemplarily for the non-control and
the control case for α = 1.0e− 1.

7.6 scalability study 173

7.6 scalability study

In this subsection, we study the scalability of both methods applying
the bNN-type preconditioner by evaluating their speed up and effi-
ciency. Since both methods are intrinsically parallel, we redefine the
speed up and efficiency with respect to the numerical experiments
with four subdomains:

Speed up: Sp =
T4

Tp
,

Efficiency: Ep =
Sp

(p/4)
,

where Tp denotes the total solving time using p processes which
in our case coincides with the number of subdomains. We do not
analyze the NN-type preconditioners, since we already concluded in
the previous subsection that they are not suitable for high performance
computing. Fig. 34 and 35 depict the speed up, and Fig. 36 and 37 the
efficiency, for the Oseen and Navier-Stokes example, respectively. The
figures are arranged analogously: The upper part shows the results
for the Schur-complement method, the lower part those for the global
method. We cannot expect a linear speed up and an efficiency of 1 for
several reasons: Firstly, the cost for the communication increases with
the number of subdomains. Secondly, as observed in the previous
subsection for both approaches, the number of iterations increases with
the number of subdomains. In each iteration global communication
is needed three times: Two times for applying the Schur-complement
operator and once for applying the NN-type preconditioner inside
the bNN-type preconditioner. Taking together, these effects have a
negative impact on the speed up and efficiency. Despite this face, we
observe a speed up for the Schur-complement approach, which is even
almost linear for the Navier-Stokes example. The better than linear
speed up for the distributed control case for α = 1.0e− 4 results from
the fact, that we need above the ordinary time to solve that specific
problem on four subdomains. For that specific case, we observe that
during the application of solving the local Dirichlet problems the
Schur-complement operator, the maximal number of iterations (1000)
is reached several times while for the cases with more subdomains
much fewer iterations are needed. For the global solver, we note a
speed up greater than 1 with up to 48 subdomains. Here, we directly
see the impact that the number of iterations is not stable with respect to
the number of subdomains but grows as the regularization parameter
is reduced.

Looking at the efficiency of the Schur-complement approach, we
obtain very good results for the Navier-Stokes example. For the Os-
een example the efficiency levels out at about 32 subdomains. As

174 numerical experiments

(a) Schur-complement approach.

(b) Global approach.

Figure 34: The figure shows the speed up for the two approaches solving the
Oseen example with the corresponding bNN type preconditioners.
The legend is shown in Fig. 29a.

7.6 scalability study 175

(a) Schur-complement approach.

(b) Global approach.

Figure 35: The figure shows the speed up for the two approaches solving
the Navier-Stokes example with the corresponding bNN type
preconditioners. The legend is shown in Fig. 29a

176 numerical experiments

(a) Schur-complement approach.

(b) Global approach.

Figure 36: The figure shows the efficiency for the two approaches each ap-
plying the bNN type preconditioners for the Oseen example. The
legend is shown in Fig. 29a.

7.6 scalability study 177

(a) Schur-complement approach.

(b) Global approach.

Figure 37: The figure shows the efficiency for the two approaches each apply-
ing the bNN type preconditioners for the Navier-Stokes examples.
The legend is shown in Fig. 29a.

178 numerical experiments

expected after analyzing the speed up, for the global approach the
efficiency decreases with the number of subdomains. For the control
case of α = 1.0e− 2, the efficiency decreases due to the fact that this
specific problem requires above the ordinary number of iterations.
Regarding the global solver, we assume that there exist more suitable
parameters for the global Schur-complement preconditioner. Nev-
ertheless, we conclude that both methods show a great potential in
high performance computing, in part due to the fact that there exist
several possibilities to improve both approaches. One option is the
implementation of an inf-sup stable coarse space [21, 45]. In case of
the global Schur-complement preconditioner a detailed study of the
parameters for the preconditioner seems promising.

summary

In this chapter, we studied the solvers derived in the previous chapters
by means of numerical experiments. To verify the method and its
implementation, we solved a problem for which the analytical solution
is known. Then, we investigated the effectiveness of the precondi-
tioners based on the number of iterations. Based on the set-up time
and runtime for the different preconditioners, we compared the dif-
ferent preconditioners. Furthermore, we studied their speed up and
efficiency.

8
C O N C L U S I O N

In this work, we deal with optimization problems constrained by a sys-
tem of partial differential equations modeling the physical dynamics
of flow. Determining an optimal control for a flow problem is usually
numerically challenging because it relies on solving a fully coupled
optimality system. This system involves the numerical treatment of
the flow problem, which is generally itself difficult to solve. To tackle
the complexity of such optimal flow control problems, we develop effi-
cient parallel numerical solvers and preconditioners based on domain
decomposition methods (DDMs), which exploit the computational
power provided in high performance computing.

summary of contributions

A first challenge in deriving a non-overlapping DDM for flow and
optimal flow control problems is to obtain local problems featuring
the same saddle point structure as the global problem. In this work,
we show that by deriving the DDM on the continuous level, we
obtain local problems on the subdomains which display the same
saddle point structure. Thus also for optimal flow control problems,
the two main ideas of a non-overlapping DDM hold: On the one
hand known and well-established methods developed for the global
problems can be reused to solve the local independent problems, and
on the other hand the methods can be applied in parallel due to
independence of the local problems. Furthermore, we investigate in
detail the differences between inhomogeneous Dirichlet boundary
conditions and mixed outflow and Dirichlet conditions in the context
of non-overlapping DDMs. We apply two DDMs to several different
flow models and show that these methods can be used to solve optimal
flow control problems, even for the non-linear case with the full Navier-
Stokes equations as constraints.

For discretization of these problems, we employ an appropriate
finite element method and develop efficient parallel solvers for the
corresponding linear systems. Using the algebraic formulation, we de-
rive two solution methods: one for the decoupled Schur-complement
equation, and one for the globally coupled domain decomposition
formulation. We extend the existing one- and two-level Neumann-

179

180 conclusion

Neumann type preconditioners for flow problems to the problem of
optimal flow control. Based on these ideas, a preconditioner for the
global formulation is derived, which exploits the block structure of
the domain decomposition matrix for efficient evaluation.

We analyze in detail several aspects of the preconditioners by means
of numerical experiments. We investigate the runtime of the various
steps in the computation, the effectiveness of the preconditioners in
terms of the number of iterations, as well the scalability in terms of
speed up and efficiency. As expected, we observe a trade-off between
the cost for applying a preconditioner and the effectiveness with re-
spect to the number of iterations. Although the Neumann-Neumann
type preconditioners are less expensive with respect to set-up cost and
cost per iterations, only the more costly balancing Neumann-Neumann
type preconditioners enable us to solve these problems with a large
number of subdomains. In particular the results obtained for the bal-
ancing Neumann-Neumann type preconditioners establish the great
potential of using DDMs in the context of optimal flow control. Com-
paring both methods, the global approach based on a fully coupled
formulation is in almost all cases faster than the Schur-complement
approach. But on the other hand, the Schur-complement approach
does not depend on parameters, which makes it more robust, and we
obtain better results with respect to the speed up and efficiency. Sum-
marizing, we demonstrate that both solvers applying the balancing
Neumann-Neumann type preconditioners make it possible to tackle
complex applications on high performance computing architectures.

We conclude that non-overlapping DDMs can also be applied to
non-linear flow control problems constrained by the full Navier-Stokes
equations. Furthermore, by studying the speed up and efficiency of the
parallel solvers and preconditioners developed in this work for flow
and optimal flow control problems, we demonstrate how to exploit
the computational power available nowadays in high performance
computing in a scalable and efficient manner for such sophisticated
problems. We also conclude that the global exchange of information re-
alized by the balancing Neumann-Neumann type is crucial to provide
effective, scalable and efficient preconditioners.

outlook

By means of numerical experiments, we demonstrate that the DDMs
that we have developed converge, but from the numerical analysis
point of view, a proof of convergence for the DDM on the continuous
level in the context of optimal flow control problems is still an open
question. Another open and interesting issue is a theoretical estimation
of the condition numbers for the preconditioners derived in this work.

From the implementational and numerical perspective, we point
out some promising possibilities to improve the methods with respect

conclusion 181

to the properties requested in high performance computing. We
expect to achieve a significant benefit by implementing inf-sup stable
finite elements for the coarse space used for the balancing Neumann-
Neumann preconditioners. Another aspect is whether it is possible
to reduce the cost to apply the exact balancing Neumann-Neumann
preconditioner by actively controlling the stopping tolerances of the
local solvers inside the preconditioner. Considering the global solver
applied to the fully coupled linear system, an interesting question is to
estimate a relation between the parameters for the inexact balancing
Neumann-Neumann preconditioner and the problem, on the one hand
with respect to the model problem and on the other hand with respect
to the different regularization parameters.

In this work, we present and analyze parallel and scalable methods
for high performance computing. The next step is to extend these
methods for future exascale hardware architectures. The parallel meth-
ods need to be prepared for a dramatic increase in the number of cores
which in the context of a DDM leads to a corresponding significant
increase of subdomains. Thus, the interface becomes substantial larger
and accordingly the cost for communication increases. Therefore, one
main challenge is the reduction of global communication. One idea is
to extend the two-level Neumann-Neumann type preconditioners to
hierarchical Neumann-Neumann type preconditioners.

B I B L I O G R A P H Y

[1] Y. Achdou, P. Le Tallec, F. Nataf, and M. Vidrascu. A domain
decomposition preconditioner for an advection-diffusion problem.
Computer Methods in Applied Mechanics and Engineering, 184(2-4):
145 – 170, 2000.

[2] R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of
Pure and applied mathematics. Academic Press, Amsterdam, 2. ed.,
repr. edition, 2007.

[3] H. Anzt, W. Augustin, M. Baumann, H. Bockelmann, T. Gengen-
bach, T. Hahn, V. Heuveline, E. Ketelaer, D. Lukarski, A. Otzen,
S. Ritterbusch, B. Rocker, S. Ronnas, M. Schick, C. Subramanian,
J.-P. Weiss, and F. Wilhelm. HiFlow3 – A Flexible and Hardware-
Aware Parallel Finite Element Package. EMCL Preprint Series,
2010.

[4] H. Anzt, W. Augustin, M. Baumann, T. Gengenbach,
T. Hahn, A. Helfrich-Schkarbanenko, V. Heuveline, E. Ketelaer,
D. Lukarski, A. Nestler, S. Ritterbusch, S. Ronnas, M. Schick,
M. Schmidtobreick, C. Subramanian, J.-P. Weiss, F. Wilhelm, and
M. Wlotzka. HiFlow3: A Hardware-Aware Parallel Finite Ele-
ment Package. In Tools for High Performance Computing 2011, pages
139–151. Springer Berlin Heidelberg, 2012.

[5] D. Barz, H. Bockelmann, and V. Heuveline. Optimization of an
electrokinetic mixer for microfluidic applications. Biomicrofluidics,
6, 2012.

[6] R. Becker, V. Heuveline, and R. Rannacher. An Optimal Control
Approach to Adaptivity in Computational Fluid Mechanics. In-
ternational Journal for Numerical Methods in Fluids, 40(1-2):105–120,
2002.

[7] G. Biros and O. Ghattas. Parallel Lagrange–Newton–Krylov–
Schur Methods for PDE-Constrained Optimization. Part I: The
Krylov–Schur Solver. SIAM Journal on Scientific Computing, 27(2):
687–713, 2005.

[8] G. Biros and O. Ghattas. Parallel Lagrange–Newton–Krylov–
Schur Methods for PDE-Constrained Optimization. Part II: The
Lagrange–Newton Solver and Its Application to Optimal Control
of Steady Viscous Flows. SIAM Journal on Scientific Computing, 27,
2005.

183

184 bibliography

[9] H. Bockelmann. High Performance Computing Based Methods for
Simulation and Optimisation of Flow Problems. PhD thesis, Karlsruhe
Institute of Technology, 2010.

[10] D. Braess. Finite Elemente : Theorie, schnelle Löser und Anwendungen
in der Elastizitätstheorie. Springer, 2007.

[11] R. Buchty, V. Heuveline, W. Karl, and J.-P. Weiss. A Survey on
Hardware-aware and Heterogeneous Computing on Multicore
Processors and Accelerators. Concurrency and Computation: Prac-
tice and Experience, 24(7):663–675, 2012.

[12] C. Calgaro and J. Laminie. On the Domain Decomposition
Method for the Generalized Stokes Problem with Continuous
Pressure. Numerical Methods for Partial Differential Equations, 16(1):
84–106, 2000.

[13] P. Deuflhard. Newton Methods for Nonlinear Problems : Affine In-
variance and Adaptive Algorithms. Springer series in computational
mathematics ; 35. Springer, 2006.

[14] J. Donea and A. Huerta. Finite Element Methods for Flow Problems.
Wiley, 2004.

[15] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements,
volume 159 of Applied mathematical sciences. Springer, 2004.

[16] A. V. Fursikov. Optimal Control of Distributed Systems : Theory and
Applications, volume 187 of Translations of mathematical monographs.
American Mathematical Society, Providence, RI, 2000.

[17] A. V. Fursikov, M. D. Gunzburger, and L. S. Hou. Boundary Value
Problems and Optimal Boundary Control for the Navier–Stokes
System: the Two-Dimensional Case. SIAM J. Control Optim., 36

(3):852–894, 1998.

[18] G.P. Galdi. An Introduction to the Mathematical Theory of the Navier-
Stokes Equations : Steady-State Problems. Springer Monographs in
Mathematics Springer Link : Bücher. Springer New York, 2011.

[19] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokes
equations : theory and algorithms. Springer series in computational
mathematics ; 5. Springer, 1986.

[20] R. Glowinski, J. L. Lions, and J. He. Exact and Epproximate Con-
trollability for Distributed Parameter Systems : a Numerical Approach,
volume 117 of Encyclopedia of mathematics and its applications. Cam-
bridge Univ. Press, 2008.

[21] P. Goldfeld, L. F. Pavarino, and O. B. Widlund. Balancing
Neumann-Neumann preconditioners for mixed approximations

bibliography 185

of heterogeneous problems in linear elasticity. Numerische Mathe-
matik, 95:283–324, 2003.

[22] M. D. Gunzburger. Finite Element Methods for Viscous Incompressible
Flows : a Guide to Theory, Practice, and Algorithms. Computer
science and scientific computing. Academic Press, 1989.

[23] M. D. Gunzburger. Perspectives in Flow Control and Optimization.
Advances in design and control ; 5. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2003.

[24] M.D. Gunzburger, L. Hou, and T.P. Svobodny. Analysis and finite
element approximation of optimal control problems for the sta-
tionary Navier–Stokes equations with distributed and Neumann
controls. Mathematics of Computation, 57(195):123–152, 1991.

[25] M. Heinkenschloss and M. Herty. Distributed solution of optimal
control problems governed by parabolic equations. In Robust
Optimization-Directed Design, volume 81 of Nonconvex Optimization
and Its Applications, pages 73–94. Springer US, 2006.

[26] M. Heinkenschloss and H. Nguyen. Balancing Neumann-
Neumann Methods for Elliptic Optimal Control Problems. In Do-
main Decomposition Methods in Science and Engineering, volume 40

of Lecture Notes in Computational Science and Engineering, pages
589–596. Springer Berlin Heidelberg, 2005.

[27] M. Heinkenschloss and H. Nguyen. Neumann–Neumann Do-
main Decomposition Preconditioners for Linear-Quadratic Ellip-
tic Optimal Control Problems. SIAM Journal on Scientific Comput-
ing, 28(3):1001–1028, 2006.

[28] M. Heinkenschloss and D. Ridzal. Integration of Sequential
Quadratic Programming and Domain Decomposition Methods
for Nonlinear Optimal Control Problems. In Domain Decomposition
Methods in Science and Engineering XVII, volume 60 of Lecture Notes
in Computational Science and Engineering, pages 69–80. Springer
Verlag, 2008.

[29] V. Heuveline and F. Schieweck. On the Inf-Sup Condition for
Higher Order Mixed FEM on Meshes with Hanging Nodes. Math-
ematical Modelling and Numerical Analysis M2AN, 41(1):1–20, 2007.

[30] J. G. Heywood, R. Rannacher, and S. Turek. Artificial boundaries
and flux and pressure conditions for the incompressible Navier-
Stokes equations. International Journal for Numerical Methods in
Fluids, 22(5):325–352, 1996.

[31] M. Hinze. Optimal and instantaneous control of the instation-
ary Navier-Stokes equations. Habilitation thesis, Fachbereich
Mathematik,Universität Berlin, 2000.

186 bibliography

[32] M. Hinze and K. Kunisch. Second order methods for boundary
control of the instationary Navier-Stokes system. ZAMM - Journal
of Applied Mathematics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik, 84(3):171–187, 2004.

[33] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization
with PDE Constraints. Mathematical Modelling: Theory and
Applications ; 23. Springer Netherlands, 2009.

[34] F. Jarre and J. Stoer. Optimierung. Springer-Lehrbuch. Springer,
Berlin, 2004.

[35] G. Karypis and V. Kumar. A Fast and Highly Quality Multi-
level Scheme for Partitioning Irregular Graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1999.

[36] K. Kunisch and B. Vexler. Optimal vortex reduction for instation-
ary flows based on translation invariant cost functionals. SIAM
Journal on Control and Optimization, 46(4):1368–1397, 2007.

[37] K. Kunisch and B. Vexler. On the Choice of the Cost Functional
for Optimal Vortex Reduction for Instationary Flows. In Active
Flow Control, volume 95 of Notes on Numerical Fluid Mechanics
and Multidisciplinary Design, pages 339–352. Springer Berlin /
Heidelberg, 2007.

[38] W. J. Layton. Introduction to the Numerical Analysis of Incompressible
Viscous Flows. Computational Science & Engineering Series; 6.
Society for Industrial and Applied Mathematics, 2008.

[39] J. L. Lions. Optimal Control of Systems Governed by Partial Differen-
tial Equations, volume 170 of Die Grundlehren der mathematischen
Wissenschaften in Einzeldarstellungen. Springer, 1971.

[40] G. Matthies and F. Schieweck. A Multigrid Method for Incom-
pressible Flow Problems Using Quasi Divergence Free Functions.
SIAM Journal on Scientific Computing, 28(1):141–171, 2006.

[41] J. Mayer. A multilevel Crout ILU preconditioner with pivoting
and row permutation. Numerical Linear Algebra with Applications,
14(10):771–789, 2007.

[42] J. Mayer. Symmetric Permutations for I-matrices to Delay and
Avoid Small Pivots During Factorization. SIAM Journal on Scien-
tific Computing, 30(2):982–996, 2008.

[43] F. Nataf, H. Xiang, and V. Dolean. A two level domain decompo-
sition preconditioner based on local Dirichlet-to-Neumann maps.
Comptes Rendus Mathematique, 348(21-22):1163 – 1167, 2010.

[44] H. Nguyen. Domain Decomposition Methods for Linear-Quadratic
Elliptic Optimal Control Problems. PhD thesis, Rice University, 2004.

bibliography 187

[45] L. Pavarino and O. Widlund. Balancing Neumann-Neumann
methods for incompressible Stokes equations. Communications on
Pure and Applied Mathematics, 55(3):302–335, 2002.

[46] A. Quarteroni and A. Valli. Domain Decomposition Methods for
Partial Differential Equations. Numerical mathematics and scientific
computation. Clarendon Press, 2005.

[47] Y. Saad. A Flexible Inner-Outer Preconditioned GMRES Algo-
rithm. SIAM Journal on Scientific Computing, 14(2):461–469, 1993.

[48] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Society
for Industrial and Applied Mathematics, 2003.

[49] Y. Saad. Multilevel ILU with Reorderings for Diagonal Dom-
inance. SIAM Journal on Scientific Computing, 27(3):1032–1057,
2005.

[50] Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal
Residual Algorithm for Solving Nonsymmetric Linear Systems.
SIAM Journal on Scientific and Statistical Computing, 7(3):856–869,
1986.

[51] B. F. Smith, P. E. Bjørstad, and W. D. Gropp. Domain Decomposition
: Parallel Multilevel Methods for Elliptic Partial Differential Equations.
Cambridge Univ. Press, 2004.

[52] H. Sohr. The Navier-Stokes Equations : An Elementary Functional
Analytic Approach. Birkhäuser advanced texts. Birkhäuser, 2001.

[53] V.A. Solonnikov. Stokes and Navier-Stokes equations in domains
with noncompact boundaries. College de France Seminar, 4:240–349,
1983.

[54] C. Taylor and P. Hood. A numerical solution of the Navier-Stokes
equations using the finite element technique. Computers & Fluids,
1(1):73 – 100, 1973.

[55] R. Temam. Navier-Stokes Equations : Theory and Numerical Analysis.
AMS Chelsea Publ., 2001.

[56] A. Toselli and O. Widlund. Domain Decomposition Methods - Algo-
rithms and Theory. Springer series in computational mathematics ;
34. Springer, Berlin, 2005.

	Dedication
	Abstract
	Acknowledgments
	Contents
	1 Introduction
	2 Domain Decomposition Method for the Oseen Equations
	2.1 General Definitions
	2.2 Inhomogeneous Dirichlet Boundary Conditions
	2.3 Outflow Boundary Conditions
	2.4 Continuous Domain Decomposition
	2.4.1 Decomposition of the Domain
	2.4.2 Decomposition of the Velocity Space
	2.4.3 Decomposition of the Pressure Space
	2.4.4 Decomposition of the Bilinear Forms
	2.4.5 Weak Formulation on Subdomains
	2.4.6 Decoupling of Weak Formulation on Subdomains

	2.5 Discretization Based on a Finite Element Method
	2.5.1 Definitions for the Finite Element Methods
	2.5.2 Decoupled Finite Element Formulation

	2.6 Algebraic Formulation
	2.6.1 Algebraic Formulation for the Velocity
	2.6.2 Algebraic Formulation for the Pressure
	2.6.3 Global Linear Systems and Schur-complement Equations
	2.6.4 General Operator

	3 DDM for Optimal Control Problem constrained by Oseen
	3.1 General Definitions
	3.2 Distributed Optimal Control Problem
	3.2.1 Strong Interpretation of the Optimality System

	3.3 Optimal Boundary Control Problem
	3.3.1 Strong Interpretation of the Optimality System

	3.4 Continuous Domain Decomposition
	3.4.1 Definitions for the Distributed Control Case
	3.4.2 Weak Formulation on Subdomains for Distributed Control
	3.4.3 Decoupling of Weak Formulation on Subdomains for Distributed Control
	3.4.4 Definitions for the Boundary Control Case
	3.4.5 Weak Formulation on Subdomains for Boundary Control
	3.4.6 Decoupling of Weak Formulation on Subdomains for Boundary Control

	3.5 Discretization Based on FEM for Distributed Control
	3.5.1 Decoupled Finite Element Formulation

	3.6 Discretization Based on FEM for Boundary Control
	3.6.1 Decoupled Finite Element Formulation

	3.7 Algebraic Formulation
	3.7.1 Definitions for the Distributed Control Case
	3.7.2 Definitions for the Boundary Control Case
	3.7.3 Global Linear System and Schur-complement Equation for the Distributed Control Case
	3.7.4 General Operator for the Distributed Control Case
	3.7.5 Global Linear System and Schur-complement Equation for the Boundary Control Case

	4 DDM for the Navier-Stokes equations
	4.1 Navier-Stokes Equations with Outflow Boundary Conditions
	4.2 Continuous Domain Decomposition
	4.2.1 Decomposition of the Bilinear Forms
	4.2.2 Decomposition of the Residuals
	4.2.3 Weak Formulation on Subdomains
	4.2.4 Decoupling of Weak Formulation on Subdomains

	4.3 Discretization Based on a Finite Element Method
	4.3.1 Decoupled Finite Element Formulation

	4.4 Algebraic Formulation
	4.4.1 Global Linear System and Schur-complement Equation
	4.4.2 Solution Algorithm
	4.4.3 General Operator

	5 DDM for an Optimal Control Problem s.t. the Navier-Stokes Eq
	5.1 Distributed Optimal Control Problem
	5.2 Continuous Domain Decomposition
	5.2.1 Decomposition of the Residuals
	5.2.2 Weak Formulation on Subdomains
	5.2.3 Decoupling of Weak Formulation on Subdomains

	5.3 Discretization Based on a Finite Element Method
	5.3.1 Decoupled Finite Element Formulation

	5.4 Algebraic Formulation
	5.4.1 General Operator

	6 Preconditioned Solving Routines based on DDMs
	6.1 Generalization of the Schur-complement Equation
	6.2 Preconditioners for the Schur-complement equation
	6.2.1 Neumann-Neumann Preconditioner
	6.2.2 Balancing Neumann-Neumann Preconditioner

	6.3 Comparison of the Neumann-Neumann and the balancing Neumann-Neumann Preconditioner
	6.4 Solution Algorithm for the Schur-complement equation
	6.5 Parallelization of Global System via Domain Decomposition
	6.6 Global Schur-complement Preconditioner
	6.6.1 Subdomain Preconditioner PII
	6.6.2 Skeleton Preconditioner P

	6.7 Alg. for the Global Schur-complement Preconditioner

	7 Numerical Experiments
	7.1 HiFlow3-Software
	7.2 Overview and Structure of the Numerical Experiments
	7.3 Verification of both Methods and their Implementation
	7.4 Simulation Results in Backward Facing Step Geometry
	7.5 Analysis of the Preconditioners
	7.6 Scalability Study

	8 Conclusion
	Bibliography

