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1 Introduction

1.1 Motivation

The simulation of relativistic laser-plasma interaction is a very active field of research.
The SFB TR18 “Relativistic Laser Plasma Dynamics” investigates the physics of ultra-
intense laser interaction with matter. Since experiments are very expensive and time-
consuming and the lasers are highly susceptible to minor vibrations from the environ-
ment and experiments thus a delicate undertaking, the numerical simulation assists
experimental researchers in finding the parameters they are looking for in their exper-
iments. Then the results from simulations and actual experiments can be compared to
optimize the model if necessary. That way, many expensive experiments do not have to
be carried out because a cheaper computer aided simulation will make a good prediction
of what will happen.

While the simulation of electromagnetic phenomena by themselves is rather well
understood and also many numerical schemes for nonlinear conservation laws have been
developed, the combination of the two for the simulation of laser-plasma interaction is
rather fragile. This is the experience that can easily be made in numerical experiments
in this field. Hence the appropriate choice as well as a fundamental understanding of the
applied numerical methods is extremely important.

The theoretical physics group in Düsseldorf who we are collaborating with, have tried
many different approaches to various problems in the simulation of relativistic laser-
plasma interaction. The numerical methods have to be chosen according to what effects
are to be observed and which model is used. The physicists heavily rely on PIC (particle-
in-cell) codes [Puk99] for their simulations because that is an established machinery,
which, unfortunately, consume a lot of computing time due to their complexity.

If the density of the plasma is only of minor interest, its numerical solution is often
omitted because of the difficulties that arise there. For that case, a promising implemen-
tation for high densities using an exponential integrator is presented in [TPLH10]. If
only the density modulation, i.e., the difference to some initial background density, is con-
sidered, the difficulties we have with the continuity equation do not arise here because
negative values are allowed. For the one-dimensional wave-formulation, this has been
investigated in [KSH+06].

To gain some insight into the problems involved in the simulation of relativistic laser-
plasma interaction, let us shortly go over some attempts of numerically solving such a
system from the literature.

In the one-dimensional case, Maxwell’s equations can be rewritten in terms of poten-
tials — a vector potential for the magnetic field and a scalar potential for the electric field.
With some further model reduction, the equations become much simpler. For this special
case, flux-corrected transport (FCT) as introduced in [BB73, Zal79] yields excellent nu-
merical results even when ion movement is considered.1 Unfortunately, the energy is not
conserved very well. The goal of this thesis is thus to enhance energy conservation of the
laser-plasma simulations and extend everything to higher dimensions.

After the good results with FCT, we considered relativistic wave breaking. A for-
mulation in Lagrangian coordinates has been described in [LLS07], which leads to a
system of ordinary differential equations if the continuity equation is neglected. These
can be solved easily, e.g. by the symplectic Euler method. Depending on the parameters

1These experiments have been investigated in the Master’s thesis [Wor10].



1 Introduction

of the equations, there is slow and fast wave-breaking and the Lagrangian system is well
suited for these circumstances. When trying to solve the system of partial differential
equations — including the continuity equation — directly, we found that FCT does work
to the extend that it preserves positivity and remains stable. Unfortunately, the amount
of diffusion left in the scheme from the underlying low order method prevents the growth
of peaks from the existing waves. These peaks, however, lead to the wave-breaking. So
we ended up with a good qualitative recreation of the waves themselves, but not of the
height of their peaks. Hence, we cannot find the time when wave-breaking occurs.

One problem that has been of great interest to physicists, is the laser-plasma transi-
tion of a laser pulse. The challenge in this case is the time the pulse enters the plasma.
The laser excites the plasma and the waves it creates within the transition area, which
is usually a rather narrow and steep ascent, can cause tiny wake-breaking. This in turn,
leads to severe instabilities in most simulations. The experiences with simulations of
relativistic wave-breaking give reason to believe that FCT should yield suitable results
here.

1.2 Thesis Outline

The goal of this thesis is a stable, positivity preserving simulation of a hydrodynamic
model for relativistic laser-plasma interaction that is competitive with established codes
used for more complex models of this problem. The path to describe the theory, problems
and solution to this is as follows.

In chapter 2, we shortly review Maxwell’s equations and their numerical solution. We
are concerned with laser light, which is described by Maxwell’s equations. In one space
dimension, the wave formulation is a favorable way of stating the equations, while for
higher dimensions, the Yee scheme is the most widely used approach for the numerical
approximation. For both cases, we examine the extraordinary properties of the so-called
magic time step.

Chapter 3 is divided into two parts. First we discuss the theory of hyperbolic conser-
vation laws and the many problems that arise. The main problem is the formation of
shocks even from smooth initial data. Afterwards we give a brief overview of numerical
methods for this class of partial differential equations and their analysis. We review clas-
sical stability analysis, illustrate their insufficiency for nonlinear problems and discuss
better suitable notions of stability.

Chapter 4 describes models and methods from computational physics: the derivation
of the plasma equation from the Vlasov equation, the Boris push for an appropriate
treatment of the Lorentz force as well as a discussion of unit systems and relativistic
equations. All of these are fundamental for this thesis and are thus collected here for the
sake of readability.

In chapter 5, we introduce flux-corrected transport (FCT) algorithms that will help
us in the numerical solution of hyperbolic conservation laws. The goal here is to avoid
negative densities, which can occur in numerical simulations and lead to instabilities.
The idea is to combine monotone diffusive schemes with higher order methods, which are
not free of spurious oscillations, into a new method that preserves positivity without the
great extent of numerical diffusion. The scheme is easily reformulated for multidimen-
sional problems and enhanced by strong stability preserving Runge-Kutta methods for
the time integration.

We then turn to applications in relativistic laser-plasma interaction. We formulate
a complete algorithm for the simulation of a vacuum-plasma transition for one- and

6



1.2 Thesis Outline

two-dimensional examples in chapters 6 and 7, where we also show extensive numerical
examples. Comparisons to established codes are carried out to show the accuracy as well
as the saving of computational time.

Finally, we give a short conclusion and outlook in chapter 8.

7





2 Numerical Solution of Maxwell’s Equations

We are going to be looking at laser-plasma interaction. Laser is light, which consists
of electromagnetic waves. Those are described by Maxwell’s equations. A detailed de-
scription of Maxwell’s equations for different kind of media can be found e.g. in [Jac99]
or [TH05].

For this thesis, we can restrict ourselves to the case of homogeneous, isotropic media.
We assume sufficient smoothness of all functions, so all derivatives are defined. Maxwell’s
equations in cgs units then read

1
c
∂E
∂t

=∇×B− 4π
c

j (2.1a)

1
c
∂B
∂t

=−∇×E (2.1b)

∇·E = 4πρ (2.1c)

∇·B = 0 (2.1d)

on some bounded Lipschitz domain Ω⊂ R3, subject to appropriate initial and boundary
conditions. E : Ω× [0,∞) → R3 is the electric and B : Ω× [0,∞) → R3 the magnetic field
intensity, j :Ω× [0,∞) → R3 is the electric current density, ρ :Ω× [0,∞) → R the electric
charge density and c the speed of light.

We denote the components of any vector-valued function by subscripts x, y and z, i.e.,

F(x, t)=
Fx(x, t)

Fy(x, t)
Fz(x, t)

 , x=
x

y
z

 .

Equation (2.1a) is called Ampère’s law, (2.1b) Faraday’s law. They state the interac-
tion between electric and magnetic fields. Equation (2.1c) is Gauss’s law. It describes
the electric flux through a closed surface while (2.1d) states the absence of magnetic
monopoles.

Recall that ∇= [
∂x ∂y ∂z

]T and ∇· is the divergence operator, ∇× the curl operator.
If we write out the curl operators in (2.1a) and (2.1b), we obtain the following system

of coupled scalar equations:

1
c
∂Ex

∂t
= ∂Bz

∂y
− ∂By

∂z
− 4π

c
jx

1
c
∂E y

∂t
= ∂Bx

∂z
− ∂Bz

∂x
− 4π

c
j y

1
c
∂Ez

∂t
= ∂By

∂x
− ∂Bx

∂y
− 4π

c
jz

1
c
∂Bx

∂t
= ∂E y

∂z
− ∂Ez

∂y
1
c
∂By

∂t
= ∂Ez

∂x
− ∂Ex

∂z
1
c
∂Bz

∂t
= ∂Ex

∂y
− ∂E y

∂x

Since we have eight equations for only six unknowns, we have to discuss the existence
and uniqueness of solutions for (2.1).



2 Numerical Solution of Maxwell’s Equations

Lemma 2.1. A smooth solution of (2.1) can only exist if the compatibility condition

∂tρ+∇· j = 0 (2.2)

is satisfied.

Proof.

∂tρ = ∂t

(
1

4π
∇·E

)
= 1

4π
∇· (∂tE)= 1

4π
∇·

(
c∇×B− c

4π
c

j
)
=−∇· j

because ∇· (∇×F)= 0 for smooth vector fields F.

Lemma 2.2. Let E(x, t) and B(x, t) be a smooth solution of (2.1a), (2.1b) and (2.2). If the
solution satisfies (2.1c) and (2.1d) at t = 0, then this holds for all t ≥ 0.

Proof. For Gauss’ law, we have

∂t(∇·E−4πρ)=∇· (c∇×B−4π j)− (−4π∇· j)= c∇· (∇×B)= 0,

so ∇·E−4πρ is constant in time and thus stays zero.
For the magnetic counterpart we have

∂t(∇·B)=−c∇· (∇×E)= 0.

This tells us that we do not have to consider (2.1c) and (2.1d) as long as we ensure
they are fulfilled initially.

Finally, we cite a result on the uniqueness of solutions of

1
c
∂E
∂t

=∇×B (2.3a)

1
c
∂B
∂t

=−∇×E (2.3b)

on a bounded Lipschitz domain Ω⊂R3 with initial conditions E(x,0)= E0(x) and B(x,0)=
B0(x) and boundary conditions E(x, t)×ν(x) = 0 and B(x, t) ·ν(x) = 0 on Γ = ∂Ω, where
ν(x) is the outer normal (cf. [PR00] or [Jah10]):

Theorem 2.3. If under the above assumptions,

B0(x) ∈ H(curl,Ω) := {F ∈ L2(Ω)3 :∇×F ∈ L2(Ω)3}

and
E0(x) ∈ H0(curl,Ω) := {F ∈ H(curl,Ω) : F ×ν= 0 on Γ},

then (2.3) has a unique solution E(x, t), B(x, t).

2.1 The Wave Equation and the Magic Time Step

In some cases we might not be interested in both fields, but only in the effects they might
have. Let us consider free space where j ≡ 0 and no charge, i.e., ρ = 0. If we take the
derivative with respect to time t in either of equations (2.1) and then substitute the other,
we end up with a wave equation for one of the fields. For example,

1
c
∂

∂t
1
c
∂E
∂t

= 1
c
∂

∂t
(∇×B) (2.4)

⇐⇒ 1
c2
∂2E
∂t2 =∇× 1

c
∂B
∂t

=∇× (−∇×E) (2.5)

=−∇× (∇×E)=∆E−∇(∇·E)=∆E. (2.6)

10



2.1 The Wave Equation and the Magic Time Step

The same can be done for the magnetic field B.
In the one-dimensional case where derivatives with respect to y and z are set to zero,

this reduces to
∂2E
∂t2 = c2 ∂

2E
∂x2 . (2.7)

This way we have reduced the system of two equations to one wave equation.

Numerical Scheme for the Wave Equation

We now discuss the numerical solution of (2.7). Suppose we use central finite differences
for the approximation on both sides, i.e.,

En+1
j −2En

j +En−1
j

(∆t)2 +O
(
(∆t)2)= c2

En
j+1 −2En

j +En
j−1

(∆x)2 +O
(
(∆x)2)

, (2.8)

where subscripts j denote the spatial grid point x j = j∆x and superscripts n denote the
time level tn = n∆t. Solving (2.8) for the newest value En+1

j , we obtain

En+1
j = c2(∆t)2

En
j+1 −2En

j +En
j−1

(∆x)2 +2En
j −En−1

j , (2.9)

a fully explicit second order accurate scheme. It is widely known as the leap-frog scheme.
A particularly interesting case is c ∆t

∆x = 1, where the scheme reduces to

En+1
j = En

j+1 −2En
j +En

j−1 +2En
j −En−1

j

= En
j+1 +En

j−1 −En−1
j .

(2.10)

In some non-trivial cases, the numerical scheme reproduces the exact solution (cf. [TH05]):

Lemma 2.4. Let E(x, t) = F(x+ ct)+G(x− ct) be a traveling wave solution of (2.7) with
E0(x) = F(x)+G(x) and E′

0(x) = F ′(x)−G′(x). Let ∆t = ∆x
c and suppose that the starting

values of the scheme (2.10) are exact, i.e., E0
j = E0(x j), E1

j = E(x j,∆t)= F(x j+ c∆t)+G(x j−
c∆t). Then the numerical method (2.10) yields the exact result, i.e., En

j = E(x j, tn).

Remark 2.5. Due to its remarkable properties, the choice ∆t = ∆x
c is called the magic time

step.

Proof. Suppose that Ek
j = F(x j + ctk)+G(x j − ctk) for all k = 0, . . . ,n, j ∈ Z. Then the

scheme (2.9) with δ := c∆t =∆x reads

En+1
j = F(x j +∆x+ cn∆t)+G(x j +∆x− cn∆t)+F(x j −∆x+ cn∆t)+G(x j −∆x− cn∆t)

−F(x j + c(n−1)∆t)−G(x j − c(n−1)∆t)

= F(x j + (n+1)δ)+G(x j − (n−1)δ)+F(x j + (n−1)δ)+G(x j − (n+1)δ)

−F(x j + (n−1)δ)−G(x j − (n−1)δ)

= F(x j + (n+1)δ)+G(x j − (n+1)δ)

= F(x j + tn+1)+G(x j + tn+1)

= E(x j, tn+1)

Lemma 2.6. Let E(x, t)= E0eiωt−ikx with ω
k = c be a harmonic wave solution of (2.7). The

method (2.9) yields the exact result if E0
j = E(x j, t0), E1

j = E(x j, t1) and ∆t = ∆x
c (magic

time step).

11



2 Numerical Solution of Maxwell’s Equations

Proof. Suppose that Ek
j = E(x j, tk) = E0eiωtk−iωx j for all j ∈ Z and k = 0, . . . ,n. Then the

scheme (2.9) with δ := c∆t =∆x reads

En+1
j = En

j+1 +En
j−1 −En−1

j

= E0eiωn∆t−ik( j+1)∆x +E0eiωn∆t−ik( j−1)∆x −E0eiω(n−1)∆t−ik j∆x

= E0eiω(n−1)δ−iω jδ+E0eiωnδ−iω( j−1)δ−E0eiω(n−1)δ−iω jδ

= E0eiωnδ−iω( j−1)δ

= E
(
x j, tn+1)

)
.

Stability

Stability is one of the most important issues in numerical simulations. Very often large
time steps lead to numerical instability. We want to understand this phenomenon and
find conditions for ∆t, for which the numerical solution remains bounded. We will look
into this topic in more detail and in a more general setting in section 3.2.2. For now,
consider a harmonic wave solution of (2.7), but with a possibly complex ω̃,

En
j = E0eiω̃tn−ik̃x j = E0ei(Re(ω̃)+i Im(ω̃))n∆t−ik̃ j∆x = E0e−Im(ω̃)n∆teiRe(ω̃)n∆t−ik̃ j∆x. (2.11)

Written in this form, we can tell that a real-valued ω̃ will keep the wave amplitude
constant with time while the imaginary part changes it. The amplitude will decrease
exponentially for Im(ω̃)> 0 and increase exponentially for Im(ω̃)< 0.

Now substitute En
j ≈ E(x j, tn) = E0eiω̃tn−ik̃x j into the numerical scheme (2.9) with

tn = n∆t and x j = j∆x and obtain

E0eiω̃tn−ik̃x j
1

(∆t)2

(
eiω̃∆t −2+ e−iω̃∆t

)
!= E0eiω̃tn−ik̃x j

c2

(∆x)2

(
eik̃∆x −2+ e−ik̃∆x

)
.

The identity eia + e−ia = 2cos(a) yields

1
(∆t)2 (cos(ω̃∆t)−1)= c2

(∆x)2 (cos(k̃∆x)−1).

Solving this for ω̃ yields

ω̃= 1
∆t

arccos(ζ)

where

ζ := c2 ∆t2

∆x2

(
cos(k̃∆x)−1

)+1 ∈ 1+ c2 ∆t2

∆x2 [−2,0].

For ζ≥−1, ω̃ is real, yielding a constant wave amplitude with time. If c ∆t
∆x > 1 then ζ<−1

and ω̃ will be complex. Using the complex arccosine function

arccos(ζ)=−i ln
(
ζ±

√
ζ2 −1

)
,

we obtain
ω̃=− i

∆t
ln

(
ζ±

√
ζ2 −1

)
so that Re(ω̃)= 0 and Im(ω̃)=− 1

∆t ln
(
ζ±

√
ζ2 −1

)
. Substituting this into (2.11), we obtain

En
j = E0en ln

(
ζ+
p
ζ2−1

)
e−ik̃ j∆x = E0

(
ζ±

√
ζ2 −1

)n
e−ik̃ j∆x.

12



2.1 The Wave Equation and the Magic Time Step

Since ζ<−1, the exponential growth factor ζ−
√
ζ2 −1 is less than −1 and hence causes

numerical instabilities. To avoid them, we have to choose c ∆t
∆x ≤ 1, that is ∆t ≤ ∆x

c , as
stability is guaranteed for time steps smaller than or equal to the magic time step only.
So we have stability (in L∞) if and only if

∣∣∣ζ±√
ζ2 −1

∣∣∣< 1.

Dispersion

Now let us consider the case where ∆t ≤ ∆x
c . We want to understand the numerical

dispersion (cf. [TH05]).
The harmonic wave E(x, t)= E0eiωt−ikx solves the wave equation (2.7) if and only if ω

and k satisfy the dispersion relation

ω=±ck. (2.12)

ω is called the angular frequency, k the wave number, ω
k = ±c the phase velocity and

dω
dk =±c the group velocity.

To understand numerical dispersion, we substitute En
j ≈ E(x j, tn)= E0eiωtn−ik̃x j with

some ω, but k̃ 6= k into the numerical scheme (2.9) with tn = n∆t and x j = j∆x, which
yields

E0eiωtn−ik̃x j
1

(∆t)2

(
eiω∆t −2+ e−iω∆t

)
!= E0eiωtn−ik̃x j

c2

(∆x)2

(
eik̃∆x −2+ e−ik̃∆x

)
.

With Euler’s formula, we obtain the numerical dispersion relation

1
(∆t)2 (cos(ω∆t)−1)= c2

(∆x)2 (cos(k̃∆x)−1). (2.13)

If ∆t = ∆x
c (magic time step), we have

cos(k̃∆x)= cos(ω∆t)

and thus
k̃∆x =±ω∆t

and
k̃ =±ω∆t

∆x
=±ω∆t

c∆t
=±ω

c
= k.

If ∆t < ∆x
c , the Taylor series expansion of the cosine for small ∆t and ∆x yields

1
(∆t)2

(
1− 1

2
(ω∆t)2 +O ((ω∆t)4)−1

)
!= c2

(∆x)2

(
1− 1

2
(k̃∆x)2 +O ((k̃∆x)4)−1

)
⇐⇒ 1

2
ω2 +O (ω4∆t2)= 1

2
c2k̃2 +O (c2k̃4∆x2)

⇐⇒ k̃2 = ω2

c2 +O (∆t2 +∆x2).

This means that for ∆t,∆x → 0, k̃ goes to ±ω
c , so we have a good approximation for small

∆t. For large ∆t, the numerical solution still has the correct shape, but it is shifted
against the exact solution. This is dispersion. For given time step ∆t and mesh size ∆x
and a given period 2π

ω
of a propagating wave, (2.13) can be used to compute the numerical

wave number k̃, phase velocity ω

k̃
and group velocity dω

dk̃
. It can provide some good insight

as to why numerical results look as they do.

13



2 Numerical Solution of Maxwell’s Equations

2.2 The Yee Algorithm

When choosing a grid to represent the domain, usually all quantities are stored at the
same grid points. The brilliant idea of Kane S. Yee [Yee66] was to mimic the interleaving
of the continuous equations by interleaved grid positions. The arrangement is such that
each component is surrounded by four components of the other field — each half a grid
step away. These four neighbors are just the ones from the corresponding equation, see
figure 2.1. We can imagine this as two interleaved cuboids — one for the electric and one
for the magnetic field.

(i− 1
2 , j− 1

2 ,k− 1
2 ) (i+ 1

2 , j− 1
2 ,k− 1

2 )

(i+ 1
2 , j+ 1

2 ,k− 1
2 )

(i− 1
2 , j− 1

2 ,k+ 1
2 )

(i+ 1
2 , j+ 1

2 ,k+ 1
2 )

Ex

E y

Ez By

Bx

Bz

Figure 2.1: Schematic view of a 3D Yee cell

Let us take the equation for By as an example. It involves the spatial derivatives of
Ex and Ez. When we use central finite differences, the four neighbors are just the ones
we need for the scheme.

When moving on to the time derivatives, the usual approach is to solve all equations
simultaneously to have approximations at some time tn. The Yee scheme however, also
staggers the components in time. That means electric and magnetic components are
stored at different times to have a leapfrog-type arrangement. If we consider a one-
dimensional example, i.e., we set derivatives with respect to y and z to zero, we have the
transverse magnetic (TM) mode

1
c
∂Bx

∂t
= 0

1
c
∂By

∂t
= ∂Ez

∂x
1
c
∂Ez

∂t
= ∂By

∂x

14



2.2 The Yee Algorithm

and the transverse electric mode

1
c
∂Ex

∂t
= 0

1
c
∂E y

∂t
=−∂Bz

∂x
1
c
∂Bz

∂t
=−∂E y

∂x
.

That means that Ex and Bx are constant in time and we have only four equations for the
remaining four unknowns left. They are interleaved such that only By and Ez depend
on each other as do E y and Bz. Let us look at the former. Figure 2.2 shows what the
staggering in space and time looks like.

t = 0
x = 0

Ez

x =∆x

Ez

x = 2∆x

Ez

x = 3∆x

t = 0.5∆t

By By By By

t =∆t
Ez Ez Ez

t = 1.5∆t

By By By By

t = 2∆t
Ez Ez Ez

Figure 2.2: Space-time chart of the Yee algorithm for a one-dimensional example

With this configuration, two quantities are always ∆x apart and we can use central
finite differences for the approximation of the spatial derivatives. In the one-dimensional
example this leads to

B
n+ 1

2
y, j = B

n− 1
2

y, j + c
∆t
∆x

(
En

z, j+ 1
2
−En

z, j− 1
2

)
(2.14a)

B
n+ 1

2
z, j = B

n− 1
2

z, j − c
∆t
∆x

(
En

y, j+ 1
2
−En

y, j− 1
2

)
(2.14b)

En+1
y, j+ 1

2
= En

y, j+ 1
2
− c

∆t
∆x

(
B

n+ 1
2

z, j+1 −B
n+ 1

2
z, j

)
(2.14c)

En+1
z, j+ 1

2
= En

z, j+ 1
2
+ c

∆t
∆x

(
B

n+ 1
2

y, j+1 −B
n+ 1

2
y, j

)
. (2.14d)

The same is done for the three-dimensional set of equations. The Yee cell in figure 2.1
is constructed such that each component has four neighbors that are half a mesh width

15



2 Numerical Solution of Maxwell’s Equations

away. Those are the field components needed for a central finite difference approximation
of the spatial derivatives. This is the famous Yee algorithm. It is second order accurate
in space and time due to the central finite differences.

Splitting Methods

The Yee scheme is an example of a splitting method. Splitting methods have their roots
in the field of ordinary differential equations (cf. [HLW06, chapter II.5]), so for a short
recollection, let us consider a system

y′ = f (y).

The exact flow ϕt associates the value y(t) of the solution with initial data y(0) = y0 for
any point y0,

ϕt(y0)= y(t) if y(0)= y0.

When a numerical method is used to approximate the solution y(tn+1), this can be repre-
sented by another mapping, the numerical flow

Φ∆t : yn 7→ yn+1

which maps the already known yn to the yet unknown yn+1 ≈ y(tn+1), where ∆t = tn+1−tn
denotes the step size. To any method Φ∆t, we can define its adjoint method Φ∗

∆t =Φ−1
−∆t

as the inverse map of the original method with reversed time step. The implicit Euler
method is the adjoint of the explicit Euler method. A method with Φ∗

∆t = Φ∆t is called
symmetric.

Now we can construct new methods by composition, i.e.,

Ψ∆t =Φα1∆t ◦ · · · ◦Φαs∆t

for real numbers α1, . . . ,αs. A very common technique is to combine a method with its
adjoint,

Ψ∆t =Φ ∆t
2
◦Φ∗

∆t
2

because for any consistent one-step method Φ∆t of order one, Ψ∆t is a second order
symmetric method (cf. [HLW06, chapter II.5]). For the explicit Euler method, we obtain
the implicit midpoint rule by this trick.

These compositions can be applied to “composed” system of equations. Assume that
our system takes some split form

y′ = f [1](y)+ f [2](y),

like a discretization of a two-dimensional partial differential equation or simply two
different forces like the electric and magnetic terms in the Lorentz force. Assuming
we can explicitly calculate the exact flows ϕ[1]

t and ϕ[2]
t of the systems y′ = f [1](y) and

y′ = f [2](y), we can compute an approximate solution to the whole system in two steps.
Starting from y0, we calculate some intermediate value y

1
2 by solving the first system,

which we use as initial data when solving the second one. This yields a numerical method

Φ∆t =ϕ[2]
∆t ◦ϕ[1]

∆t . (2.15)

We obtain the adjoint by reversing the order, in which we solve the systems. These first
order methods are called Lie-Trotter splitting (cf. [Tro59]).
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2.2 The Yee Algorithm

A symmetric approach is

Φ[S]
∆t =ϕ[1]

∆t/2 ◦ϕ
[2]
∆t ◦ϕ[1]

∆t/2, (2.16)

the Strang splitting (cf. [Str68]), which is the composition of the Lie-Trotter method and
its adjoint with step sizes ∆t

2 , so we have second order. The Yee scheme is an example of
a Strang splitting.

Of course, in practice we do not usually have the means to solve the partial systems
exactly, so we proceed by substituting the numerical flow into the splittings.

The Magic Time Step

Now recall the magic time step from the wave formulation of Maxwell’s equations. Also
with the Yee scheme, the magic time step yields the exact solution to the discrete problem.
To show this exemplarily for the one-dimensional TM mode — the coupled By and Ez
equations—, we consider the solutions to the corresponding wave equations,

By(x, t)= FB(x+ ct)+GB(x− ct),

Ez(x, t)= FE(x+ ct)+GE(x− ct).

Inserting these into the first order equations (2.14a) and (2.14d) for By and Ez, we find
that FB = FE and GE =−GB, so the solutions are of the form

By(x, t)= F(x+ ct)+G(x− ct),

Ez(x, t)= F(x+ ct)−G(x− ct).

We can now use these to check for the magic time step:

Lemma 2.7. Let

By(x, t)= F(x+ ct)+G(x− ct)

Ez(x, t)= F(x+ ct)−G(x− ct)

be a traveling wave solution of the TM mode and

Bz(x, t)= F̃(x+ ct)+ G̃(x− ct)

E y(x, t)=−F̃(x+ ct)+ G̃(x− ct)

be a traveling wave solution of the TE mode. Then the Yee scheme with δ := c∆t =∆x yields
the exact results if the initial data are exact, i.e.,

B0
y, j = By(x j, t0), E0

z, j+ 1
2
= Ez(x j+ 1

2
, t0),

B0
z, j = Bz(x j, t0), E0

y, j+ 1
2
= E y(x j+ 1

2
, t0).

Proof. With δ := c∆t =∆x, the Yee scheme for the TM mode reads

B
n+ 1

2
y, j = B

n− 1
2

y, j +En
z, j+ 1

2
−En

z, j− 1
2

En+1
z, j+ 1

2
= En

z, j+ 1
2
+B

n+ 1
2

y, j+1 −B
n+ 1

2
y, j .
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2 Numerical Solution of Maxwell’s Equations

Inserting the exact initial values yields

B
n+ 1

2
y, j = F(x j + ctn − δ

2 )+G(x j − (ctn − δ
2 ))+F(x j + δ

2 + ctn)−G(x j + δ
2 − ctn)

−F(x j − δ
2 + ctn)+G(x j − δ

2 − ctn)

= F(x j + δ
2 + ctn)+G(x j − δ

2 − ctn)

= F(x j + ctn+ 1
2
)+G(x j − ctn+ 1

2
)

= By(x j, tn+ 1
2
)

and

En+1
z, j+ 1

2
= F(x j + δ

2 + ctn)−G(x j + δ
2 − ctn)+F(x j +δ+ ctn + δ

2 )+G(x j +δ− (ctn + δ
2 ))

−F(x j + tn + δ
2 )−G(x j − (tn + δ

2 ))

= F(x j + δ
2 + ctn +δ)+G(x j − δ

2 +δ−δ− ctn)

= F(x j+ 1
2
+ ctn+1)+G(x j+ 1

2
− ctn+1)

= Ez(x j+ 1
2
, tn+1).

The proof for the TE mode is completely analogous.

The same property holds again for the harmonic wave solutions:

Lemma 2.8. Let By(x, t) = eiωt−ikx and Ez(x, t) =−eiωt−ikx be a harmonic wave solution
of the TM mode with ω

k = c and Bz(x, t) = eiω̃t−ik̃x and E y(x, t) = −eiω̃t−ik̃x a harmonic
wave solution of the TE mode with ω

k =−c. Then the Yee scheme with δ := c∆t =∆x yields
the exact results if the initial data are exact, i.e.,

B0
y, j = By(x j, t0), E0

z, j+ 1
2
= Ez(x j+ 1

2
, t0),

B0
z, j = Bz(x j, t0), E0

y, j+ 1
2
= E y(x j+ 1

2
, t0).

Proof. With δ := c∆t =∆x, the Yee scheme for the TM mode reads

B
n+ 1

2
y, j = B

n− 1
2

y, j +En
z, j+ 1

2
−En

z, j− 1
2

= eiω(tn− δ
2c )−iωc x j − eiωtn−iωc (x j+δ2 ) + eiωtn−iωc (x j−δ2 )

= eiωtn−iωc x j−iω δ
2c − eiωtn−iωc x j−iω δ

2c + eiωtn−iωc x j+iω δ
2c

= eiω(tn+ δ
2c )−ikx j

= By(x j, tn+ 1
2
)

and

En+1
z, j+ 1

2
= En

z, j+ 1
2
+B

n+ 1
2

y, j+1 −B
n+ 1

2
y, j

=−eiωtn−iωc (x j+δ2 ) + eiω(tn+ δ
2c )−iωc (x j+δ) − eiω(tn+ δ

2c )−iωc x j

=−eiωtn−iωc x j−iωδ2 + eiωtn−iωc x j−iω δ
2c − eiωtn−iωc x j+iω δ

2c

=−eiωtn−iωc x j+iω(δc −
δ
2c )

=−eiω(tn+δc )−ik(x j+δ2 )

= Ez(x j+ 1
2
, tn+1).
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2.2 The Yee Algorithm

The proof for the TE mode is carried out analogously.

Dispersion

Now we look again at dispersion. We consider once more the TM mode and a traveling
wave solution of the form

B
n+ 1

2
y, j = By0 eiω(n+ 1

2 )∆t−ik̃ j∆x, (2.17)

En
z, j+ 1

2
= Ez0 eiωn∆t−ik̃( j+ 1

2 )∆x. (2.18)

Substituting this into the scheme (2.14), we obtain

By0 =−
∆tEz0 sin(k̃∆x

2 )

c∆xsin(ω∆t
2 )

,

Ez0 =−
∆tBy0 sin(k̃∆x

2 )

c∆xsin(ω∆t
2 )

.

Substituting By0 into Ez0 then yields

sin2
(
ω
∆t
2

)
= c2 ∆t2

∆x2 sin2
(
k̃
∆x
2

)
or

sin
(
ω
∆t
2

)
=±c

∆t
∆x

sin
(
k̃
∆x
2

)
=: ζ

and
ω= 2

∆t
arcsin(ζ).

For ∆x,∆t → 0, we use the Taylor series expansion of the sine function to see

k̃ =±ω
c
+O (∆t2 +∆x2).

Thus, as for the wave equation, we have a second order approximation of the true wave
number k.

If we consider the full set of three-dimensional Maxwell’s equations, we obtain the
numerical dispersion relation

sin2
(
ω
∆t
2

)
= c2 ∆t2

∆x2 sin2
(
k̃x
∆x
2

)
+ c2 ∆t2

∆y2 sin2
(
k̃y
∆y
2

)
+ c2 ∆t2

∆z2 sin2
(
k̃z
∆z
2

)
.

Stability

We now consider again the possibility of a complex-valued ω̃ for |ζ| > 1. With the complex
arcsine function arcsin(ζ)=−i ln

(
iζ±

√
1−ζ2

)
, we obtain

ω̃= π

∆t
− 2i
∆t

ln
(
ζ±

√
ζ2 −1

)
.

Substituting this into our trial solution, we obtain

V n
j =V0

(
ζ±

√
ζ2 −1

)2n
ei π

∆t n∆t−ik j∆x
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2 Numerical Solution of Maxwell’s Equations

where V represents either By or Ez. We have
(
ζ+

√
ζ2 −1

)
greater than one for ζ > 1.

Thus we have exponential growth if c ∆t
∆x > 1 and our stability bound is again ∆t ≤ ∆x

c .
In the full three-dimensional setting, we have

ζ :=±c∆t

√
1
∆x2 sin2

(
k̃x
∆x
2

)
+ 1
∆y2 sin2

(
k̃y
∆y
2

)
+ 1
∆z2 sin2

(
k̃z
∆z
2

)
.

Again, |ζ| ≤ 1 is required for stability with the same arguments as in one dimension. The
stability bound, however, for ∆x =∆y=∆z =:∆ is now

∆t ≤ ∆

c
p

3
.

In two dimensions, the factor is
p

2, so we have to choose

∆t ≤ ∆

c
p

2

for stability.
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3 Hyperbolic Conservation Laws

The conservation of quantities like mass or energy is of great importance in physics.
In this chapter, we first derive the differential equations describing this conservation,
and discuss some theory on this kind of equations and the most important classes. One
of the major difficulty is that solutions to nonlinear hyperbolic equations can become
discontinuous, even if the initial data are smooth. Or we may have infinitely many
solutions and then have to find a way to pick the physically relevant one. This will lead
us to viscosity solutions and entropy conditions.

Next we turn to the numerical point of view and consider methods for the approx-
imation of hyperbolic conservation laws. This includes a discussion of the numerical
analoga of theoretical concepts like entropy. We will review standard (linear) stability
analysis and argue why it fails for nonlinear equations. Thus, we will discuss nonlinear
stability conditions. To gain even further insight into some standard numerical schemes,
we will also consider modified equations, which can help us understand the behavior of
the methods.

Extensive sources on the theory and numerics of hyperbolic conservation laws beyond
the scope of this thesis are [Kro97] and [LeV11]. Most of the contents of this chapter can
be found there. Other important works include [Whi74] or [CF76]. A further reference,
especially for convergence results, is [DiP83].

3.1 Theory

To derive a mathematical model for conservation, we consider a quantity u :Ω×R+ →R

— let us say some density — on a Lipschitz domain Ω⊂Rd and a volume V ⊂Ω, also with
Lipschitz boundary. The total mass in this volume is then

mV (t) :=
∫

V
u(x, t)dx.

We now assume this substance to be in motion. It flows in or out through the volume
boundary ∂V . This flow is given by a vector field f :Ω×R+ →Rd with f = f (u(x, t)). The
flow through V is thus

FV (t) :=
∫
∂V

f (u(x, t)) ·nV (x)dσ,

where nV (x) is the outer normal of V . The total balance in absence of sources is

d
dt

mV (t)=−FV (t) for all V ⊂Ω.

The sign is due to the requirement d
dt mV ≤ 0 when f points along nV . The equality

expresses that no mass is created or disappears, which explains the term conservation
law. The divergence theorem now yields∫

V
∂tu(x, t)+∇· f (u((x, t))dx= 0 for all V ⊂Ω (3.1)

and since (3.1) must hold for arbitrary V , we obtain the equality

∂tu(x, t)+∇· f (u(x, t))= 0 for all (x, t) ∈Ω×R+. (3.2)

Equation (3.2) is called conservation law in differential form. Depending on the appli-
cation, we may also have to provide appropriate initial and/or boundary conditions. In
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applications, we often consider several conserved quantities and combine them into one
vector u.

(3.2) is called hyperbolic if the Jacobian f u(u(x, t)) has only real eigenvalues and is
diagonalizable. It is called strictly hyperbolic if the eigenvalues are distinct.

3.1.1 The Advection Equation

The simplest form of conservation law is the advection equation where we have f (u)= uv
for some velocity v = v(x, t). The general multi-dimensional advection equation thus
reads

∂tu+∇· (uv)= 0. (3.3)

In the one-dimensional case with f (u) = au, for some constant a ∈ R, the advection
equation reads

∂tu(x, t)+a∂xu(x, t)= 0. (3.4)

If u0(x) = u(x,0) is the initial data, then u(x, t) = u0(x− at) satisfies (3.4) for all t ≥ 0.2

So the initial profile is simply advected with velocity a. Based on this simple problem,
various schemes can be derived for the numerical solution of conservation laws. The
advection equation is a nice test problem for new methods, especially since the exact
solution is known and easy to understand and compute.

The advection equation (3.4) is also the foundation for further concepts of stability or
the characterization of errors. One important issue is dispersion. Inserting a harmonic
wave solution u(x, t)= eiωt−ikx into (3.4), we obtain

iωeiωt−ikx −aikeiωt−ikx = 0

⇐⇒ω= ak

This is the exact dispersion relation. Our numerical schemes should not only yield a good
approximation to the solution, but also to this relation. A poor numerical dispersion can
yield unusable results even if the shape of the solution is correct. A simple example is a
sine wave that is transported with velocity a. The dispersion error yields a phase error,
which can lead to a numerical solution that is just the negative of the exact solution for
sufficiently large simulation times. In chapter 2 we saw that both the Yee scheme and
the scheme for the wave equation did well here.

For real ω, there is only propagation, while a positive imaginary part Im(ω) results
in damping or dissipation. The phase and group velocities are defined by

cp = Re(ω)
k

, cg =Re
dω
dk

.

A wave is called dispersive if the phase velocity depends on the wave number k. If it
is composed of different harmonic waves, it will deform while traveling because faster
waves overtake the slower ones. For a non-dispersive wave, phase and group velocity are
equal, cp = cg. For (3.4), we have cp = cg = a.

2The notation u0 is not to be confused with powers of u. For numerical approximations, the notation is
u(x j , tn)≈ un

j , hence we superscribe the zero for the initial condition for consistent notation.
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3.1 Theory

3.1.2 Scalar Conservation Laws

For the description of many phenomena, scalar advection equations are not enough, so
we go back to (3.2), but we now consider scalar conservation laws

∂u
∂t

+ ∂

∂x
f (u)= 0, t > 0, x ∈R, (3.5)

with a scalar function u = u(x, t) and f ∈ C∞(R) locally bounded. For uniqueness we need
an initial condition

u(x,0)= u0(x)

with u0 ∈ L∞(R). Since classical solutions of (3.5) can seldom be obtained, we look for
weak solutions, which are defined by multiplying (3.5) by a test function φ ∈ C∞

0 (R×[0,T])
— i.e., φ ∈ C∞(R× [0,T]) with compact support — and integration by parts:

Definition 3.1. (Weak solution)
Let u0 ∈ L∞(R). A function u ∈ L∞(R×R+) is called weak solution of

∂u
∂t

+ ∂

∂x
f (u)= 0 for (x, t) ∈R× (0,T) (3.6a)

u(x,0)= u0(x) for x ∈R (3.6b)

if for all φ ∈ C∞
0 (R× [0,T])

∫ T

0

∫
R

u∂tφ+ f (u)∂xφdx dt+
∫
R

u0φ(x,0)dx = 0 (3.7)

holds.

It can readily be shown that if a weak solution u is in C1(R×R+), then it is in fact a
classical solution, i.e., , (3.6) holds pointwise (cf. [Kro97, chapter 2.1]).

If f is differentiable, we can rewrite (3.5) in characteristic form

∂u
∂t

+a(u)
∂u
∂x

= 0, a(u)= ∂ f
∂u

. (3.8)

Note that
∂u
∂t

+a(u)
∂u
∂x

=
(
a(u),1

)
·
(
∂u
∂x

,
∂u
∂t

)T

=:
(
a(u),1

) ·∇u,

so we are dealing with a directional derivative in the x-t-plane. Thus (3.8) means there
is no change in the solution u in the direction of (a(u),1) in the x-t-plane. Considering a
curve x(t) that is everywhere tangent to (a(u),1) and comparing the slopes, we obtain

dx
dt

= a(u),

so
u ≡ const. for x = a(u)t+const.

These curves are called characteristics, u is also called the characteristic variable and a
the characteristic speed. We see that u is constant along the characteristics, which are
straight lines.
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Figure 3.1: Characteristics forming a shock in the inviscid Burgers equation

3.1.3 Shocks and Rarefaction Waves

For a(u) ≡ a, all the characteristics are parallel and the solution is transported via
u(x, t) = u0(x− at) just as we have seen before. For non-constant a(u), however, the
different slopes yield non-parallel characteristics and they may hence intersect — even
for smooth initial data. Since u is constant along characteristics, discontinuities arise
from the different values along each of them.

To illustrate this behavior, consider the simplest example of a nonlinear scalar con-
servation law, the inviscid Burgers equation

∂u
∂t

+ ∂

∂x

(
1
2

u2
)
= 0. (3.9)

Now choose smooth, monotone initial conditions with

u0(x)=


1 x ≤ 0
β(x) 0< x < 1
0 x ≥ 1

with β(x) such that u0 is monotone and smooth. If we look at the characteristics outside
the interval (0,1), we see the following problem: For x ≥ 1 the characteristics are parallel
to the t-axis, while for x ≤ 0 they move to the right so they will eventually intersect.
These characteristics are sketched in figure 3.1.

Up to t = 1, we can construct a differentiable solution from the characteristics, which
then becomes discontinuous, so it is not clear how it can be continued.

The following lemma provides a jump condition for weak solutions that are piecewise
smooth (cf. [Kro97, lemma 2.1.4]).

Lemma 3.2 (Rankine-Hugoniot). Let γ : t 7→ (xS(t), t) be a smooth curve that separates
R×R+ into two parts DL and DR . Furthermore, let u ∈ L1

loc(R×R+) such that uL :=
u|DL ∈ C1(

DL
)

and uR := u|DR ∈ C1(
DR

)
and uL and uR satisfy (3.5) locally in DL and

DR respectively in the classical sense. Then u is a weak solution of (3.6) if and only if

f
(
uR(xS(t), t)

)− f
(
uL(xS(t), t)

)= x′s(t)
(
uR(xS(t), t)−uL(xS(t), t)

)
(3.10)
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for all t > 0. Instead of (3.10), we will often write

f (uR)− f (uL)= S(uR −uL) (3.11)

with S := x′s(t).

This is called the Rankine-Hugoniot jump condition and S is the propagation speed
of the discontinuity.

Solving the jump condition for the shock speed, we obtain

S = f (uR)− f (uL)
uR −uL

which by the mean value theorem implies

S = f ′(ũ)= a(ũ)

for some ũ between uL and uR . a(ũ) can be regarded as a mean value of a(u) for u
between uL and uR . In this sense, the shock speed equals an average wave speed.

Characteristics may also behave completely opposite: they can run away from each
other causing a rarefaction wave. Consider again Burgers equation (3.9), but with initial
condition

u0(x)=
{
−1 x < 0,
0 x ≥ 0.

(3.12)

We now see in figure 3.2 that the characteristics leave room for more than one solution.
From the Rankine-Hugoniot condition we find

−1 1

1

x

t

Figure 3.2: Characteristics forming a rarefaction in the inviscid Burgers equation

u(x, t)=
{
−1 x <−1

2 t
0 x ≥−1

2 t

to be a weak solution.
Note that if u is a weak solution of (3.5), then so is uα := u(αx,αt) for all α > 0.

This is called the similarity solution. Hence we try to find a weak solution of the form
u(x, t)= w(x/t) and obtain

− x
t2 w′

( x
t

)
+ 1

t
f ′

(
w

( x
t

))
w′

( x
t

)
= 0

⇔ ξ= x
t

and
(−ξ+ f ′(w(ξ))

)
w′(ξ)= 0.
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3 Hyperbolic Conservation Laws

Because f ′(u)= u, this is met by w(ξ)= ξ. This yields another solution to the given initial
value problem for Burger’s equation,

u(x, t)=


−1 x ≤−t
x
t −t < x < 0
0 x ≥ 0.

Solutions of this form are called rarefaction waves. We can take this even further and
have infinitely many solutions by

u(x, t)=


−1 x < smt
um smt ≤ x ≤ umt
x
t umt < x < 0
0 x ≥ 0

with sm = 1
2 (−1+um) for some um ∈ (−1,0).

An initial value problem with two constant values or states as initial condition as in
(3.12) is called Riemann problem. We have seen two possibilities to connect those states
uL and uR . We can have a shock with shock speed S = f (uL)− f (uR )

uL−uR
or a rarefaction wave

u(x, t)= w(x/t) with f ′(w(ξ))= ξ.

3.1.4 Viscosity Solutions

How can we decide, which of those infinitely many solutions is the one we are looking
for, the physically correct one? In the derivation of the conservation law, friction has not
been considered, but this is a force always present in nature, so f is substituted by

f̃ (u(x, t)) := f (u(x, t))−ε∇u(x, t)

for some ε> 0, since it is well-known that friction is proportional to −∇u. This is called
Fick’s law (cf. [LeV11, chapter 2]). The differential equation then becomes

∂tuε+∇· f (uε)= ε∆uε on Rd ×R+.

The inner friction of a fluid is called viscosity, which is why the above equation is called
viscosity approximation of the conservation law.

Consider now the scalar Cauchy problem

∂tuε+∂x f (uε)= ε∂2
xuε on R×R+

uε(x,0)= u0 on R
(3.13)

with u0 ∈ L1(R)∩L∞(R). We want to know if the viscosity solution uε somehow converges
to a weak solution of the conservation law. To state the answer in theorem 3.4, we need
some definitions first.

Definition 3.3. For v ∈ L1(Rd), let

[v]BV (Rd) := sup
{
−

∫
Rd

v∇·Φdx : Φ ∈ C∞(Rd)d,‖Φ‖L∞(Rd)d = 1
}

and
BV (Rd) :=

{
v ∈ L1(Rd) : [v]BV (Rd) <∞

}
.
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With the norm
‖v‖BV (Rd) := ‖v‖L1(Rd) + [v]BV (Rd),

BV (Rd) is a Banach space, the space of functions of bounded variation on Rd.
If v ∈ C1(Rd) with ‖∇v‖L1(Rd) <∞, we obtain

[v]BV (Rd) = sup
{∫
Rd
Φ ·∇v dx : Φ ∈ C∞(Rd)d,‖Φ‖L∞(Rd)d = 1

}
=

∫
Rd

‖∇v‖dx

if we choose a sequence {Φk} with Φk ∈ C∞(Rd)d and Φk → ∇v
‖∇v‖ in L1(Rd)d.

The following theorem is a statement on convergence of the viscosity solution.

Theorem 3.4. Let u0 ∈ L1(R)∩L∞(R) and f ∈ C2(R). Then the sequence of solutions {uεk }k
of (3.13) for any null sequence {εk}k converges to a uniquely defined weak solution of the
conservation law. This solution is called viscosity solution of the conservation law and
for all t1, t2 with 0< t1 < t2, the following estimates hold:

‖u‖L∞(R×R+) ≤ ‖u0‖L∞(R),

‖u(·, t2)‖L1(R) ≤ ‖u(·, t1)‖L1(R) ≤ ‖u0‖L1(R).

In particular, for any two viscosity solutions u,v with initial data u0,v0 and t > 0, the
estimate

‖u(·, t)−v(·, t)‖L1(R) ≤ ‖u0 −v0‖L1(R)

holds. This property is called L1-contractivity. If in addition, u0 ∈ BV (R), then

‖u(·, t2)‖BV (R) ≤ ‖u(·, t1)‖BV (R) ≤ ‖u0‖BV (R)

holds.

This theorem and its proof can be found in [Dö12] and in parts in [Lax73], [Kro97,
theorem 2.1.7] and [Kru70].

Remark 3.5.

1. With the maximum principle for parabolic equations it actually follows that

u∗ :=min
x∈R

u0(x)≤ u(x, t)≤max
x∈R

u0(x)=: u∗

for all t > 0 (cf. [Daf72, p. 36]).

2. If f is Lipschitz continuous with Lipschitz constant K on [u∗,u∗], then for t > 0 and
x1 < x2

‖u(·, t)‖BV ([x1,x2]) ≤ ‖u0‖BV ([x1−K t,x2+K t])

holds. The same holds for the L1-norm.

If we have two sets of initial data u0, v0 ∈ L1(R)∩L∞(R), then we get

‖u(·, t)−v(·, t)‖L1([x1,x2]) ≤ ‖u0 −v0‖L1([x1−K t,x2+K t])

for the corresponding solutions u and v (cf. [Daf72, p. 36]).

3. The theorem shows that u0 ∈ BV (R) implies u(·, t) ∈ BV (R) for all t > 0. Lax showed
that for strictly convex f , even u0 ∈ L1(R)∩L∞(R) implies u(·, t) ∈ BV (R). If there
exists at least one z ∈ [u∗,u∗] with f ′′(z) = 0, then this statement is wrong, see
[Che83] and the references therein.
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3 Hyperbolic Conservation Laws

3.1.5 Entropy

Unfortunately, it is hardly possible to obtain the correct weak solution by means of
theorem 3.4 in practice, so we are looking for a different characterization of our unique
solution.

Let U ∈ C2(R) be a strictly convex function with U(0)= 0. Then define

F(z) :=
z∫

0

U ′(ζ) f ′(ζ)dζ.

(U ,F) is called an entropy pair. Let uε be a solution to the viscosity approximation. Now
we multiply (3.13) by U ′(uε) and obtain

U ′(uε)∂tuε+U ′(uε) f ′(uε)∂xuε = εU ′(uε)∂2
xuε = ε∂x(U ′(uε)∂xuε)−εU ′′(uε)(∂xuε)2.

The chain rule and the definition of F yield

∂tU(uε)+∂xF(uε)= ε∂2
xU(uε)−εU ′′(uε)(∂xuε)2

as ∂xF(uε)= F ′(uε)∂xuε. The weak formulation of this is∫ T

0

∫
R

U(uε)∂tφ+F(uε)∂xφdx dt+
∫
R

U(u0)φ(0)dx

=−ε
∫ T

0

∫
R

U(uε)∂2
xφ−U ′′(uε)(∂xuε)2 dx dt.

Now let φ ≥ 0 and φ(·,0) = 0. For ε→ 0, we have uε(·, t) → u(·, t) in L1(R) for fixed t > 0.
Hence for ε→ 0 we obtain ∫ T

0

∫
R

U(u)∂tφ+F(u)∂xφ dx dt ≥ 0

for all φ ∈ C∞
0 (R×R+) with φ≥ 0. This is the weak form of the differential inequality

∂tU(u)+∂xF(u)≤ 0. (3.14)

This inequality is called entropy inequality. The jump condition for the entropy inequality
reads

S
(
U(uL)−U(uR)

)≤ F(uL)−F(uR).

Note that before, we had U(z) = z and F(z) = f (z). For the derivation, we needed U ∈
C2(R), but the result can also be shown for the following type of convex functions (cf.
[Kru70]). For a ∈R consider

Ua(z) := (z−a)+ =max{z−a,0},

then
Fa(z)= ( f (z)− f (a))χ{z≥a}.

Assuming uR < a < uL, it follows that

S(uL −a)≤ f (uL)− f (a).
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The Rankine-Hugoniot condition (3.11) now yields

f (uR)− f (uL)
uR −uL

(uL −a)≤ f (uL)− f (a)

and

f (a)≤ f (uL)− uL −a
uR −uL

(
f (uR)− f (uL)

)
=

(
1+ uL −a

uR −uL

)
f (uL)− uL −a

uR −uL
f (uR)

=
(
1− uL −a

uL −uR

)
f (uL)+ uL −a

uL −uR
f (uR)

for all a ∈ [uR ,uL], which is a convex combination. For uL < uR , we obtain the opposite
inequality.

What this means geometrically is that if uR < uL (uL < uR), there exists a shock
between uL and uR if f is less (greater) than its linear interpolant on [uR ,uL] ([uL,uR]).
This is called Oleinik’s entropy condition E (cf. [Ole64]).

Formulated in terms of slopes, if uR < uL, there exists a shock between uL and uR if

f ′(uR)≤ S ≤ f ′(uL).

For uL < uR it reads f ′(uL) ≤ S ≤ f ′(uR). This is called the Lax entropy condition (cf.
[Lax73]). Illustratively, this means there can only be a shock between two states if the
characteristics run into it from both sides.

Remark 3.6. If the conservation law is multiplied by U ′(u), we obtain

∂tU(u)+∂xF(u)= 0

which does not need to hold for non-regular weak solutions. If we multiply Burgers
equation by u, we formally obtain

∂t(u2)+∂x

(
2
3

u3
)
= 0.

The jump condition, however, tells us that these two problems are not equivalent because
the shock speed is different (cf. [LeV11, chapter 11.12]).

The conservation law and the entropy condition can be combined in a definition of
admissible weak solutions. This is due to Hopf (cf. [Hop70]):

Definition 3.7. u ∈ L∞(R× [0,T]) is a weak entropy solution if for all non-increasing
functions h :R→R and non-negative φ ∈ C∞

0 (R× [0,T))

∫ T

0

∫
R

U(u)∂tφ+F(u)∂xφ dx dt+
∫
R

U(u0)φ(·,0)dx ≥ 0

where
U(z) :=

∫ z

0
h(ζ)dζ, F(z) :=

∫ z

0
h(ζ)d f (ζ).
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3 Hyperbolic Conservation Laws

For h ≡±1, this yields definition 3.1.
After establishing uniqueness of the viscosity solution, we can cite a result on the

uniqueness of the entropy solution (cf. [Eva10, chapter 3, theorem 3]):

Theorem 3.8. Assume f is convex and smooth. Then there exists — up to a set of measure
zero — at most one entropy solution of (3.5).

For convex f , it is even possible to explicitly state the solution u of the conservation
law for u0 ∈ L1(R)∩L∞(R). This theorem goes back to Peter Lax (cf. [Lax73, theorem 3.2
and §4]).

Theorem 3.9. Let f ∈ C2(R), f (0)= 0, be strictly convex and u0 ∈ L1(R)∩L∞(R). Since f ′

is monotone, its inverse exists and we define

a(z) := f ′(z)

b(z) := a−1(z)

g(z) := zb(z)− f (b(z))

v0(x) :=
∫ x

−∞
u0(y)d y

for all x, z ∈R. For (y, x, t) ∈R×R×R+, we define

G(y, x,0) := v0(y)

G(y, x, t) := v0(y)+ tg
( x− y

t

)
for all t > 0. Then

u(x, t)= b
(

x− y(x, t)
t

)
= u0(y(x, t)),

where y= y(x, t) is given by

G(y(x, t); x, t)=min
z∈R

G(z; x, t)

for almost all (x, t) ∈R×R+, is well-defined and is the uniquely defined viscosity solution
of the conservation law (3.5). u has at most countably many points of discontinuity at all
times.

This result is known as Lax representation formula.

3.1.6 Systems of Conservation Laws

Most of the above results can be carried over to hyperbolic systems. Consider the linear
system

∂tu+∂x f (u)= 0 (3.15)

for u :R×R+ →Rm and f (u)= Au with A ∈Rm,m. By definition of hyperbolicity, there is
a matrix R ∈Rm,m such that

A = RDR−1,

where D = diag(λ1, . . . ,λm) and λ1 ≤ ·· · ≤ λm are the eigenvalues of A, and R contains
the eigenvectors rl , l = 1, . . . ,m. Now we can conduct a transformation of variables via
v := R−1u to obtain

∂tv+D∂xv= 0,
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a system of scalar advection equations

∂tvl +λl∂xvl = 0, l = 1, . . . ,m,

with solution
vl(x, t)= v0

l (x−λl t)

where v0 = R−1u0 and u0 = u(x,0) is the initial condition. We recover the solution to the
original system (3.15) by

u(x, t)=
m∑

l=1
vl(x, t)rl =

m∑
l=1

v0
l (x−λl t)rl .

The curve t 7→ x0 +λl t is called the lth characteristic. The coefficient vl is constant along
this line.

To understand Riemann problems for linear systems, consider a strictly hyperbolic
problem with initial condition

u0(x)=
{

uL x < 0
uR x > 0.

Now decompose the two states into an eigenbasis

uL =
m∑

l=1
αlrl , uR =

m∑
l=1

βlrl .

In the lth component we have

v0
l (x)=

{
αl x < 0
βl x > 0,

which leads to the solution

vl(x, t)=
{
αl x−λl t < 0
βl x−λl t > 0.

This yields

u(x, t)=
∑

x−λl t>0
βlrl +

∑
x−λl t<0

αlrl . (3.16)

As an illustration, consider an example taken from [LeV06, chapter 6.5] shown in figure
3.3. In this example, v1 = β1 while v2 = α2 and v3 = α3. Note that the solution at any
point in the wedge between the first and the second characteristic is

u(x, t)=β1r1 +α2r2 +α3r3.

As we cross the lth characteristic, the value of x−λl t passes through zero and the
corresponding vl jumps from αl to βl while the other coefficients remain constant.

The solution is constant in each of the wedges shown in figure 3.4. Denote by

[u]γl
= (βl −αl)rl

the jump across the lth characteristic γl . The jump condition for our system then reads

[f (u)]γl
=λl[u]γl
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x−λ3t
(v3 =α3)

x−λ2t
(v2 =α2)

0 x−λ1t
(v1 =β1)

u(x, t)=β1r1 +α2r2 +α3r3

Figure 3.3: Construction of solution to Riemann problem at (x, t)

0

ẋ =λ2ẋ =λ1 ẋ =λ3

α1r1+α2r2+α3r3

β1r1+α2r2+α3r3 β1r1+β2r2+α3r3

β1r1+β2r2+β3r3

Figure 3.4: Solution in x-t-plane

and λl is precisely the propagation speed of this jump. We can alternatively write the
solution in (3.16) in terms of these jumps as

u(x, t)= uL +
∑
λl< x

t

(βl −αl)rl = uR +
∑
λl≥ x

t

(βl −αl)rl .

Unless uR−uL is an eigenvector of A, the jump cannot propagate as a single discontinuity
with any speed without violating the Rankine-Hugoniot condition. An interpretation of
the solution of the Riemann problem is finding a decomposition of jumps

uR −uL =
m∑

l=1
(βl −αl)rl .

Each of these can propagate at an appropriate speed λl while satisfying the Rankine-
Hugoniot condition.

The question arises, which uR can be reached from a fixed uL by one shock? We
consider a system of two equations for simplicity. A discontinuity with left and right
states uL and uR can propagate as a single discontinuity only if uR−uL is an eigenvector
of A, so the line segment connecting both states in the phase plane must be parallel to
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uL

r2

r1 u1

u2

Figure 3.5: The Hugoniot locus of uL consists of all states that can be reached from uL by a scalar
multiple of r1 or r2

r1 or r2. These lines yield the so-called Hugoniot locus, the set of all points that can be
connected to uL in the described way.

For a general Riemann problem with arbitrary states uL and uR , the solution consists
of two discontinuities traveling with velocities λ1 and λ2. In between, there is a new
constant state

uM =β1r1 +α2r2

so that uM −uL = (β1 −α1)r1 and uR −uM = (β2 −α2)r2.

uL uM

uR

u1

u2

uR

uM uL

u1

u2

Figure 3.6: The new state uM arising in the solution to the Riemann problem for two different
choices of uL and uR

Nonlinear Systems

Until now, we have considered linear systems of conservation laws. If f in (3.15) in
nonlinear, the system can be written in quasilinear form

∂tu+ A(u)∂xu = 0

with A(u)= f ′(u) (cf. [LeV06, chapter 6.4]). The system is hyperbolic if and only if A(u)
is diagonalizable and has m real eigenvalues λ1(u) ≤ ·· · ≤ λm(u) for all values of u, at
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least in some range where the solution is known to lie, and strictly hyperbolic if the
eigenvalues are distinct, which we will assume here.

The lth characteristic is defined as the solution to the ordinary differential equation

ẋ(t)=λl
(
u(x(t), t)

)
x(0)= x0,

where the eigenvalues now depend on the solution u, which changes in all but the lth
component, so ẋ is not constant anymore. Hence it is quite complicated to determine
characteristics globally. We can, however, use a local approach, which still yields valuable
information about the solution. If we linearize the problem about a constant state ū, we
obtain a constant coefficient linear system. Assume an expansion of the solution of the
form

uε(x, t)= ū+εu(1)(x, t)+O (ε2)

for small ε. This yields

∂tuε+ A(uε)∂xuε =
(
∂tu(1) + A(ū)∂xu(1)

)
ε+O (ε2)= 0.

For small ε and short times t ¿ 1
ε

we find that u(1) satisfies

∂tu+ A(ū)∂xu = 0.

Thus, small disturbances propagate approximately along characteristic curves of the
form xl(t) = x0 +λl(ū)t. Of course, retaining more terms in the expansion yields higher
order corrections for nonlinear problems.

As opposed to the linear case where discontinuities propagate only along characteris-
tics, for nonlinear systems we need again the jump condition

f (uL)− f (uR)= S(uL −uR)

with the shock velocity S. For weak shocks, however, some linear theory is still applicable.
Suppose ‖uL −uR‖ ≤ ε then

f (uL)= f (uR)+ f ′(uR)(uL −uR)+O (ε2).

With the Rankine-Hugoniot condition we obtain

f ′(uR)(uL −uR)= S(uL −uR)+O (ε2).

Thus, as ε→ 0, the normalized vector 1
ε
(uL − uR) must approach an eigenvector v of

f ′(uR)= A(uR), say v= rl(uR), with S approaching the corresponding eigenvalue λl(uR).
But what about the general nonlinear case? For a fixed state uL, we seek all u

that can be connected to uL by a discontinuity. Of course, the Rankine-Hugoniot jump
condition

f (u)− f (uL)= S(u−uL)

has to be satisfied for some S ∈ R. That makes m+1 unknowns (u and S) in a system
of m equations, so we should expect a one parameter family of solutions. If we denote
this parameter by ζ and the parametrized solutions by u(ζ) and S(ζ) with u(0)= uL, the
jump condition reads

f (u(ζ))− f (uL)= S(ζ)(u(ζ)−uL).
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Differentiating with respect to ζ and setting ζ= 0 yields

f ′(uL)u′(0)= S(0)u′(0)

so u′(0) has to be a scalar multiple of some eigenvector rl(uL) of f ′(uL) and S(0)=λl(uL).
Hence the curve u(ζ) is tangent to rl(uL) in uL. This fits with the linearized approach
for weak shocks. By strict hyperbolicity, there are m such linear independent directions.
From the implicit function theorem we obtain local existence of these solution curves in a
neighborhood of uL. Refer to [Lax73] for more details. These curves are called Hugoniot
curves and the set of all points on these curves is often called the Hugoniot locus for the
point uL. Solving a Riemann problem for sufficiently small ‖uL −uR‖ then works the
same as in the linear case: we draw the Hugoniot locus for both states and look for the
intersections where the intermediate state uM lies. Recall that we have to follow the
path in increasing order of the eigenvalues, just like in the linear case. In general, we
cannot hope to get more than this local result.

Recall from the scalar case the concept of entropy conditions and viscosity solutions.
We have to think about how we can transfer these concepts to the system case. Until
now we have ignored entropy conditions for nonlinear systems. We have only ensured
the jump condition, but do not know if the shocks are admissible and could thus exist in
a viscosity solution. We also have not discussed rarefaction waves, which were contained
in the viscosity solution of scalar equations.

Recall the Lax entropy condition in the scalar case

f ′(uL)> S > f ′(uR).

This can be generalized to genuinely nonlinear systems. The lth characteristic field is
said to be genuinely nonlinear if

∇uλl(u) · rl(u) 6= 0 for all u

where ∇u is the gradient with respect to u. For m = 1, this reduces to the requirement
f ′′ 6= 0 for all u — a convexity requirement. For a genuinely nonlinear field, Lax’s entropy
condition says that a direct jump from uL to uR is only allowed if

λl(uL)> S >λl(uR).

Characteristics of the lth family disappear into the shock just as in the scalar case.
For the discussion of rarefaction waves, recall the special solutions w(ξ) we considered

for scalar equations. We differentiate u(x, t)= w(x/t) and obtain

∂tw(ξ)=− x
t2 w′(ξ)

∂x f (w))= f ′(w)w′(ξ)
1
t
.

The conservation law then yields

0= 1
t

(−ξw′(ξ)+ f ′(w(ξ))w′(ξ)
)

or
f ′(w(ξ))w′(ξ)= ξw′(ξ),
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so w′(ξ) must be some eigenvector rl(w(ξ)) of f ′(w(ξ)) to the eigenvalue ξ. Hence the
values w(ξ) all lie along some integral curve of rl . This is a curve for rl(u) whose tangent
at any point u is parallel to rl(u). The states uL and uR can be connected by a rarefaction
wave if they lie on the same integral curve and if

λl(uL)<λl(uR).

Refer to [LeV06] for a more thorough discussion of hyperbolic systems of conservation
laws and examples from isothermal gas dynamics.

3.2 Numerical Solution of Conservation Laws

Now let us discuss some techniques that are commonly used for the approximate solution
of conservation laws. A thorough discussion of this topic can be found in [Kro97] or
[LeV11], for example.

We consider one-dimensional problems

∂

∂t
u+ ∂

∂x
f (u)= 0 on Ω×R+ (3.17)

for some interval Ω⊂R for the course of this section.
From the previous section on the theory of hyperbolic conservation laws we know

about the difficulties we have to deal with. Especially the formation of shocks is a big
issue. When the solution becomes discontinuous, Taylor series expansions and the order
of accuracy are no longer an adequate tool for the analysis of numerical schemes.

The simplest approach for the approximation of partial differential equations is using
finite differences. Since we are concerned with conservation laws, a different class of
methods is suited much better to accomplish this task.

3.2.1 Finite Volume Methods

For the derivation of finite volume methods, we consider the one-dimensional conserva-
tion law in integral form (3.1)∫

I

(
∂tu(x, t)+∂x f (u)

)
dx = 0 for all I ⊂Ω. (3.18)

If Ω=R we can avoid boundary conditions altogether, but have to restrict our computa-
tional domain. Hence, we assume Ω⊂ R to be bounded. For simplicity, we use periodic
boundary conditions because we are not interested in any effects at the boundaries. Of
course, even if the problem is defined for all t > 0, we can only simulate finite time
intervals [0,T]⊂R+.

We divide the domain Ω into so-called cells D j = (x j− 1
2
, x j+ 1

2
) such that

⋃
j D j =Ω and

D j1 ∩D j2 =; for j1 6= j2. The time domain is divided into 0 = t0 < t1 < . . . < tM = T with
step size ∆tn = tn − tn−1. For ease of notation, we assume ∆tn ≡∆t, for all n = 1, . . . , M, so
tn = n∆t.

With I = D j in (3.18), integrating in time yields∫
D j

u(x, tn+1)dx−
∫

D j

u(x, tn)dx =
∫ tn+1

tn

f
(
u(x j− 1

2
, t)

)
dt−

∫ tn+1

tn

f
(
u(x j+ 1

2
, t)

)
dt,
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3.2 Numerical Solution of Conservation Laws

which — assuming constant mesh size
∣∣D j

∣∣=∆x j ≡∆x and x j = j∆x for ease of notation
— leads to

1
∆x

∫
D j

u(x, tn+1)dx = 1
∆x

∫
D j

u(x, tn)dx

− 1
∆x

∫ tn+1

tn

[
f
(
u(x j+ 1

2
, t)

)− f
(
u(x j− 1

2
, t)

)]
dt.

The conservation property tells us that∫
Ω

u(x, t)dx =
∫
Ω

u0(x)dx,

so it suggests itself to approximate the cell averages

un
j ≈

1
∆x

∫
D j

u(x, tn)dx, u0
j := 1

∆x

∫
D j

u0(x)dx, x ∈ D j

in the numerical scheme.
Now we need an approximation for the integrals of f ,

g(un
j ,un

j+1)≈ 1
∆t

∫ tn+1

tn

f
(
u(x j+ 1

2
, t)

)
dt.

Definition 3.10. A function g :R2 →R is called numerical flux to f :R→R if g(z, z)= f (z)
for all z ∈R and for some constant K

|g(v,w)− f (z)| = |g(v,w)− g(z, z)| ≤ K max{|v− z| , |w− z|}.

The first property is called consistency.

If a wider stencil is desired, the number of arguments of g can be increased accord-
ingly.

Definition 3.11. Let g be a numerical flux to f and u0
j as defined above. Then we call

the scheme
un+1

j = un
j −λ

(
F j+ 1

2
−F j− 1

2

)
(3.19)

with λ := ∆t
∆x and F j+ 1

2
:= g(un

j ,un
j+1) to be in conservation form.

The specific method obtained depends on the choice of the numerical fluxes F j+ 1
2
.

The term to be in conservation form is explained by their mimicking the conservation
property: Assume we have N cells D j, j = j1, . . . , jN . If we sum up (3.19) over all those
cells,

jN∑
j= j1

un+1
j =

jN∑
j= j1

un
j −λ

jN∑
j= j1

(F j+ 1
2
−F j− 1

2
)=

jN∑
j= j1

un
j −λ(F jN+ 1

2
−F j 1

2
)

where only the fluxes at the boundaries of Ω remain in the telescopic sum. Since we
assume periodic boundary conditions, these just cancel out and we have

jN∑
j= j1

un+1
j =

jN∑
j= j1

un
j ,
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3 Hyperbolic Conservation Laws

which corresponds to the conservation property

1
∆x

∫
Ω

u(x, tn+1)dx = 1
∆x

∫
Ω

u(x, tn)dx.

The above methods can also be interpreted as finite difference approximations to
(3.17). Denote by v∆ the functions that are piecewise constant on D j × [tn, tn+1), j ∈
{ j1, . . . , jN }, n ≥ 0. Then let un

∆(x) = u∆(x, tn) and build a vector Un = (un
j ) j with un

j =
un
∆(x j)= u∆(x j, tn+1). The scheme (3.19) then can be written as Un+1 = H(Un).

By applying a conservative method, we hope to correctly approximate discontinuous
solutions of the conservation law. The Lax-Wendroff theorem (cf. [Kro97, theorem 2.3.1]
or [LeV11, theorem 12.1]) tells us just that:

Theorem 3.12. Consider sequences ∆t, ∆x → 0, u∆ a family of approximate solutions
discretized in conservation form and

sup
∆

‖u∆‖L∞(R×R+) ≤ K1

sup
n,∆

‖un
∆‖BV (R) ≤ K2

for positive constants K1 and K2 and u∆ → u almost everywhere for some u : R×R+ → R.
Then u is a solution of the weak conservation law.

We do not get convergence out of this theorem, but it tells us that if we have con-
vergence, it is towards a weak solution. It is, however, important that the method is
in conservation form. Refer to [HL94] for a detailed error analysis of nonconservative
schemes.

3.2.2 Stability

We have already seen how difficult the analytical solution of hyperbolic conservation
laws is. The numerical solution of partial differential equations is no easy task, either,
especially when we have to meet the requirements derived from the theoretical aspects.
Before we start thinking about how we can fulfill any entropy conditions, let us start
with the classical approach and consider (linear) stability.

Consider a numerical scheme of the form

Un+1 = H(Un). (3.20)

Now we cite the definitions of consistency and convergence from [Kro97, section 2.4] for
all t ≤ T for some fixed T:

Definition 3.13. A scheme (3.20) is said to be consistent of order (q, p) with respect to
the norm ‖ ·‖ if the local error satisfies

‖u(·, tn+1)−H(u(·, tn))‖ =O (∆tq+1)+O (∆xp∆t)

for any smooth solution u.

Definition 3.14. Let u be the exact, u∆ the discrete solution. The scheme (3.20) converges
with respect to the norm ‖ ·‖ if

‖u−u∆‖→ 0 for ∆t,∆x → 0.
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3.2 Numerical Solution of Conservation Laws

It is convergent of order (q, p) if

‖u(·, tn)−un
∆‖ =O (∆tq)+O (∆xp)

uniformly for all n ∈N.

For linear problems, i.e., linear f and hence linear H, we call (3.20) stable if ‖Hn‖ ≤ C
for all n ∈ N and a constant C that does not depend on ∆t or ∆x. That means the nth
power of the operator H is uniformly bounded. This form of stability is sometimes called
Lax-Richtmyer stability (cf. [LeV11, section 8.3.2]). If ‖H‖ ≤ 1+α∆t for some constant
α that is independent of ∆t as ∆t → 0, we can take C = eαT . Furthermore, we have the
famous Lax equivalence theorem (cf. [RM67]):

Theorem 3.15. Given a well-posed initial value problem and a consistent finite difference
approximation to it, stability is necessary and sufficient for convergence.

Remark 3.16 (Order of convergence). More specifically, if ‖u0
∆ − u0‖ = O (∆xp), then a

stable and order (q, p) consistent scheme is convergent of order (q, p), i.e., ‖u(·, tn)−un
∆‖ =

O (∆tq)+O (∆xp) uniformly for all n ≤ T
∆t .

Von Neumann Analysis

How can we find out if a method is stable? For stability in the 2-norm, a very powerful tool
for the analysis of numerical schemes is the Fourier analysis. Refer to [Str04, chapter
2] for a detailed introduction. We consider the linear advection equation (3.4) and a
numerical scheme (3.20).

Suppose that un
j is bounded so we can apply the inverse Fourier transform

un
j =

1p
2π

∫ π
∆x

− π
∆x

eiξ j∆xûn(ξ)dξ.

Substituting this into the linear finite difference method for Un typically yields an ex-
pression of the form

un+1
j = 1p

2π

∫ π
∆x

− π
∆x

eiξ j∆x g(ξ,∆x,∆t)ûn(ξ)dξ

with some function g. Comparing this to the Fourier inversion formula for un+1,

un+1
j = 1p

2π

∫
− π
∆x

eiξ j∆xûn+1(ξ)dξ,

and using the uniqueness of the Fourier transform, we obtain

ûn+1(ξ)= g(ξ,∆x,∆t) ûn(ξ).

This shows that advancing the solution of the scheme by one time step is equivalent
to multiplying the Fourier transform of the solution by the amplification factor G(ξ) :=
g(ξ,∆x,∆t), so we see

ûn(ξ)=G(ξ)nû0(ξ)

and |G(ξ)| ≤ 1 is a sufficient condition for stability.
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3 Hyperbolic Conservation Laws

The most famous example of an unstable method is the so-called FTCS (forward in
time, centered in space) scheme

un+1
j = un

j −
∆t

2∆x
( f j+1 − f j−1)

i.e., F j+ 1
2
= 1

2 ( f j+1+ f j) with f n
j = f (un

j ). For the linear advection equation (3.4), this reads

un+1
j = un

j −
λ

2
a(un

j+1 −un
j−1),

where
λ= ∆t

∆x
,

so we have
G(ξ)= 1− λ

2
aeiξ∆x + λ

2
ae−iξ∆x = 1− iλasin(ξ∆x)

by Euler’s relation. Then we see

|G(ξ)|2 = |1− iλasin(ξ∆x)|2 = 1+ (λa)2 sin2(ξ∆x)≥ 1,

so the amplification factor is greater than unity and the scheme blows up in finite time,
i.e., is unstable. Since we never have G(ξ)< 1, FTCS is unconditionally unstable.

A first order scheme for the advection equation ut +aux = 0 is the upwind method,
which is defined by

Fup
j+ 1

2
=

{
aun

j+1 a < 0

aun
j a ≥ 0.

(3.21)

Applying von Neumann analysis to the upwind method for a ≥ 0,

un+1
j = un

j −λa(un
j −un

j−1)

we obtain
G(ξ)= 1−λa+λaeiξ∆x = 1−λa+λa

(
cos(ξ∆x)+ isin(ξ∆x)

)
and

|G(ξ)|2 = (
1−λa+λacos(ξ∆x)

)2 +sin2(ξ∆x)= 1−2λa(1−λa)
(
1−cos(ξ∆x)

)
and thus |G(ξ)| ≤ 1 if and only if

2λa(1−λa)≥ 0

or
0≤λa ≤ 1

which is the Courant-Friedrichs-Lewy (CFL) condition. We also see here why taking the
upwind side is important: For a < 0, this method is unstable for all ∆t, ∆x!

Another famous method is the Lax-Friedrichs scheme. It uses the flux

FLF
j+ 1

2
= 1

2
( f n

j+1 + f n
j )− 1

2λ
(un

j+1 −un
j ). (3.22)

The scheme then reads

un+1
j = 1

2
(un

j+1 +un
j−1)− λ

2
( f n

j+1 − f n
j−1)

= 1
2

(un
j+1 +un

j−1)− λ

2
a(un

j+1 −un
j−1)
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3.2 Numerical Solution of Conservation Laws

for the linear advection equation, so it can be interpreted as a modified FTCS scheme.
For the Lax-Friedrichs scheme, we find the sufficient stability condition

|λa| ≤ 1.

While FTCS is second order accurate in space, we pay the stability of the Lax-Friedrichs
method with an order reduction — like the upwind method, it is only first order accurate
in space.

The physical interpretation of the stability condition is that the numerical speed of
propagation ∆x

∆t is greater than or equal to the propagation speed of the physical problem
|a|, i.e., the numerical domain of dependence is greater than the physical.

3.2.3 Nonlinear Stability

For the nonlinear effects in hyperbolic conservation laws (3.17), we need a more detailed
analysis since order of accuracy is deceiving near steep gradients and shocks. Thus for the
nonlinear case, which we are interested in, a different approach is needed. The theoretical
concepts of weak solutions, viscosity approximations and entropy conditions we have
discussed in section 3.1 shall help us understand the discrete case. [Kro97], [LeV06]
and [LeV11] are extensive resources for this topic.

Definition 3.17. Let (U ,F) be an entropy pair as defined in section 3.1.5 and G a numer-
ical flux to F as in definition 3.10. Then

U(un+1
j )≤U(un

j )−λ(
Gn

j+ 1
2
−Gn

j− 1
2

)
(3.23)

is called the discrete entropy condition.

With this definition, we obtain a discrete entropy solution:

Theorem 3.18. If under the assumptions in theorem 3.12, u∆ satisfies the discrete entropy
condition (3.23), then u∆ converges to a weak solution that fulfills the entropy inequality
(3.14).

The proof can be found in [Kro97, theorem 2.3.4]. Again, we only know that in case
of convergence, our scheme converges to the entropy solution, but we do not know if it
converges at all. To establish that, we need another property.

Definition 3.19. The discrete solution is called BV-stable or total variation bounded
(TVB) if there is a constant R > 0 such that

‖un
∆‖BV (R) ≤ R

for all ∆. A method is called total variation diminishing (TVD) if

‖u∆(·, tn+1)‖BV (R) ≤ ‖u∆(·, tn)‖BV (R)

for all n ≥ 0.

The BV-norm measures total variation, so the condition for BV-stability means bound-
edness of the total variation while for TVD, the total variation of the discrete solution
does not increase.

Finally, we can state a result on convergence (cf. [Kro97, theorem 2.3.9]):
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3 Hyperbolic Conservation Laws

Theorem 3.20. If a method is BV-stable, then there exists a function u ∈ L1
loc(R×R+), for

which u∆ → u almost everywhere. The requirements of theorem 3.12 imply that u is a
weak solution, those of theorem 3.18 imply that u is the unique weak entropy solution.

Of course, these requirements are hard to ensure in practice, so one might not be able
to make use of the theorem and thus other notions of nonlinear stability were explored.
Until today, there are many different definitions of stability for nonlinear problems. Most
of them have their origin in some kind of behavior that is expected or desired of the
solution to the problem at hand. The following definitions all refer to the Cauchy problem
to the conservation law (3.17).

When we are dealing with mass and density, the most fundamental physical property
is non-negativity. This leads to

Definition 3.21. A numerical method is called positivity preserving if for non-negative
initial data u0

∆ ≥ 0, the solution remains non-negative, un
∆ ≥ 0 for all n ≥ 0.

The slight inconsistency in nomenclature results from the need to allow the solutions
to be zero in the simulation of laser-plasma interaction like in a vacuum-plasma tran-
sition. In the literature, the case u∆ = 0 is often omitted from the definition because it
can be problematic numerically. A value that is greater than zero is less likely to become
negative in finite precision arithmetic.

One major problem is the formation of spurious oscillations near discontinuities. We
will discuss this in more detail later. An important property that addresses this issue is
given by

Definition 3.22. A method (in conservation form) is called monotonicity preserving if
the monotonicity (either non-increasing or non-decreasing) of the initial data u0

∆ implies
the same property for un

∆ for n > 0, i.e., u0
j ≥ u0

j+1 implies un
j ≥ un

j+1 and u0
j ≤ u0

j+1 implies
un

j ≤ un
j+1

Since the Riemann initial data are monotone, oscillations cannot appear near an isolated
propagating discontinuity with monotonicity preserving methods. Also, it is easy to see
that oscillations increase the total variation and therefore TVD methods are monotonicity
preserving (cf. [Kro97, lemma 2.3.13]).

For the advection equation, we can write the method as

un+1
j =

∑
m
γmun

j+m

where the summation is carried out over the finite set of indices m ∈Z that are needed
for the stencil of the scheme. Monotonicity preservation is then equivalent to γm ≥ 0 for
all m and TVD is equivalent to γm ≥ 0 for all m and

∑
mγm ≤ 1 (cf. [Wes01, section 9.2]).

Obviously this is a sufficient condition for positivity preservation.
Another simple way to check if a method is TVD is shown by Harten’s lemma (cf.

[Har83]):

Lemma 3.23. A method that can be written as

un+1
i = un

i +D+
i+ 1

2
(un

i+1 −un
i )−D−

i− 1
2
(un

i −un
i−1)

with D+
i+ 1

2
≥ 0, D−

i− 1
2
≥ 0 and D+

i+ 1
2
+D−

i+ 1
2
≤ 1 is TVD.
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3.2 Numerical Solution of Conservation Laws

This is often used as a definition for TVD even though it is a stronger requirement.
But, of course, it is usually easy to check.

Now remember from theorem 3.4 the L1-contractivity property,

‖u(·, t2)−v(·, t2)‖L1(R) ≤ ‖u(·, t1)−v(·, t1)‖L1(R)

for any two entropy solutions of the same scalar conservation law (possibly with different
initial data) and t1 < t2. The discrete analogon to this is given by

Definition 3.24. A method is called L1-contractive if for any two grid functions un
∆ and

vn
∆, for which un

∆−vn
∆ has compact support, un+1

∆ = H(un
∆) and vn+1

∆ = H(vn
∆) satisfy

‖un+1
∆ −vn+1

∆ ‖L1(R) ≤ ‖un
∆−vn

∆‖L1(R).

We know from [LeV06, theorem 15.4] that L1-contractive methods are TVD. We also
find that the Lax-Friedrichs method is L1-contractive provided that the CFL condition∣∣λ f ′(u)

∣∣≤ 1 is satisfied for all min
j

(un
j ,vn

j ) ≤ u ≤ max
j

(un
j ,vn

j ). For the also L1-contractive

upwind scheme and monotonically increasing f , the CFL condition is 0≤λ f ′(u)≤ 1.3

Looking again at the weak entropy solution, we find another useful property. For
any two sets of initial data u0 and v0 with v0(x)≥ u0(x) for all x, the respective entropy
solutions satisfy v(x, t)≥ u(x, t) for all x, t.

Definition 3.25. A numerical method is called monotone if un
∆ ≥ vn

∆ implies un+1
∆ ≥ vn+1

∆

for all n ≥ 0.

To prove that a method Un+1 = H(Un) is monotone, it suffices to check that

∂

∂Un
i

H j(Un)≥ 0.

This is easily done for the Lax-Friedrichs method, provided the CFL condition is satisfied.
Finally, it is known (cf. [LeV06, theorem 15.5]) that monotone methods are L1-

contractive.
In the linear case, monotonicity preserving methods are monotone, so the hierarchy

of properties collapses to one single class.
Most importantly, we can now state a strong result on convergence:

Theorem 3.26. Let {u∆}∆ be a sequence of numerical solutions computed from initial
data u0 ∈ BV (R) with a consistent monotone or L1-contractive method. Assume ∆x, ∆t → 0
with ∆t

∆x ≤λ0 for some λ0 > 0. Then the sequence of discrete solutions converges in L1
loc to

the unique entropy solution.

The proof can be found in [Kro97, theorem 2.3.19] where we also find the following
error estimate in theorem 2.3.23:

Theorem 3.27. Let u0 ∈ L1(R)∩L∞(R)∩BV (R) and u be the entropy solution. If g is a
monotone numerical flux, ∆t

∆x ≤ λ0 for some constant λ0, then for any
p
∆t ≤ t ≤ T, the

estimate
‖u(·, t)−u∆(·, t)‖L1(R) ≤ ‖u(·,0)−u∆(·,0)‖L1(R) + ct‖u0

∆‖BV (R)
p
∆t

holds for the numerical solution u∆.
3Note that the conditions for nonlinear stability are the same as for linear stability. In particular, this

means that for nonlinear problems, we cannot avoid the CFL condition by using implicit methods as we
would with parabolic or ordinary differential equations.
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3 Hyperbolic Conservation Laws

Unfortunately, there is a great restriction on the class of monotone methods (cf.
[LeV06, theorem 15.6]):

Theorem 3.28. A monotone method is at most first order accurate in space and time.

Now remember that we do not need a monotone scheme to avoid spurious oscillations.
In fact, even TVD might be too restrictive in some applications. But even for monotonicity
preserving schemes we are disappointed by Godunov’s order barrier theorem (cf. [Wes01,
theorem 9.2.2]):

Theorem 3.29. Linear one-step second order accurate numerical schemes for the linear
advection equation ut +aux = 0 cannot be monotonicity preserving, unless |a|λ ∈N.

This restriction is quite severe because we usually need |λa| ≤ 1 for stability. Also, it
covers only the linear case. Often, Godunov’s theorem is formulated in a slightly different
way, namely that linear monotonicity preserving methods are at most first order accurate.

This is actually a simple corollary to theorem 3.28 since we know that monotonicity
preserving schemes are monotone in the linear case.

3.2.4 Modified Equations

The proof of the unfruitful result of theorem 3.28 relies on the modified equation for the
monotone method. By considering the local truncation error and Taylor series expan-
sion, it can be shown that the numerical solution is actually a second order accurate
approximation to the solution v = v(x, t) to a modified equation

∂tv+∂x f (v)=∆x∂x(b(v)∂xv) (3.24)

where b is a function of v that depends on the derivatives of the scheme’s function H
with respect to each argument (cf. [HHLK76]). If H is written in terms of a numerical
flux g(v,w), we can express b via

b(z)= 1
2

(
∂1 g(z, z)−∂2 g(z, z)−λ f ′(z)2)

.

(3.24) is an advection-diffusion equation, somewhat similar to the viscosity approxima-
tion (3.13). Assuming H describes a monotone method, it can be shown that b > 0. The
modified equation (3.24) is an O (∆t) perturbation of the original conservation law, so the

With this knowledge, we have a better understanding of the monotone Lax-Friedrichs
method, which can be written as

un+1
j = 1

2
(
un

j+1 +un
j−1

)− λ

2

(
f
(
un

j+1
)− f

(
un

j−1
))

= un
j −

λ

2

(
f
(
un

j+1
)− f

(
un

j−1
))+ 1

2
(
un

j+1 −2un
j +un

j−1
)
.

This last term can be interpreted as artificial viscosity, which establishes the tie to the
mentioned advection-diffusion equation. We obtain

b(z)= 1
2λ

(1+λ2 f ′(z)2).

For simplicity, let us consider the linear case f (u)= au, a ∈R. The modified equation for
the Lax-Friedrichs method then reads

ut +aux =
∆x
2λ

(
1− (λa)2)

uxx.
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3.2 Numerical Solution of Conservation Laws

For the upwind scheme and a ≥ 0, the modified equation is

ut +aux =
a
2
∆x (1−λa)uxx.

Take, for example, a = 1 and λ = 1
2 . Then the diffusion coefficient for the Lax-

Friedrichs scheme is 3
4∆x, but 1

4∆x for the upwind scheme, so the numerical diffusion
of the Lax-Friedrichs scheme is much stronger than that of the upwind method. This
can bee seen in figure 3.8 where the smearing of both the continuous and discontinuous
solution is a lot weaker than in figure 3.7. In both cases, the initial data was advected
by the length of the domain Ω = (0,1) assuming periodic boundary conditions. So the
exact solution is just the initial data. As such, we chose a Gaussian and a square wave
to compare a smooth and a discontinuous case.
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Figure 3.7: Lax-Friedrichs method (blue) and exact solution (black)
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Figure 3.8: Upwind method (blue) and exact solution (black)

We also see the relation to stability here: a negative diffusion coefficient yields an
unbounded solution. So for stability, the non-negativity condition for the diffusion coef-
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3 Hyperbolic Conservation Laws

ficient yields the stability conditions we saw earlier for these methods. It also confirms
the instability of the FTCS method, whose modified equation reads

ut +aux =−a2∆t
2

uxx

with a negative diffusion coefficient.
Modified equations are not only a tool to evaluate the schemes we already know, but

they are also a starting point to create new methods. To get rid of the diffusion that the
Lax-Friedrichs and the upwind method produce, the modified equations can be used to
find a method that does not have any numerical diffusion. This is how the Lax-Wendroff
method

un+1
j = un

j −
λa
2

(
un

j+1 −un
j−1

)
+ λ2a2

2

(
un

j+1 −2un
j +un

j−1

)
has been derived for the advection equation. The numerical flux in the general case is

FLW
j+ 1

2
= 1

2

(
f (un

j )+ f (un
j+1)

)
− λ

2

∣∣∣∣∣ f (un
j+1)− f (un

j )

un
j+1 −un

j

∣∣∣∣∣
2

(un
j+1 −un

j ).

Lax-Wendroff is second order accurate for the advection equation (and thus not monotone)
and third order accurate on

ut +aux =
a∆x2

6
(
λ2a2 −1

)
uxxx =:µuxxx, (3.25)

which is a dispersive equation (cf. [LeV06, section 11.1]). The meaning of this becomes
clearer when we look at the Fourier series solution to this equation,

u(x, t)=
∫ ∞

−∞
û(k, t)eikx dk.

By linearity, it suffices to consider solutions of the form

u(x, t)= eikx−iωt,

i.e., one wave number at a time. Substituting this into (3.25) yields the dispersion relation

ω= ak+µk3.

The phase velocity is
cp = ω

k
= a+µk2,

which is only close to the original propagation speed a for sufficiently small wave numbers
k. The group velocity

cg =
dω
dk

= a+3µk2

looks even worse. What happens is that components with different wave numbers prop-
agate at different speeds, i.e., they disperse. For discontinuous initial data (like a step
function), the Fourier coefficients only decay like 1

k as |k|→ 0 instead of 1
km in case of Cm

functions. Wave number k will be predominantly visible at x = cg t at time t, so the most
oscillatory components are farthest away from the correct location x = at. For |λa| < 1
and a > 0 we have cg < a for all k, so all components travel too slowly and there are
oscillations behind the discontinuity.
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3.2 Numerical Solution of Conservation Laws

0.2 0.4 0.6 0.8 1

−0.02

0.02

0.04

0.06

0.08

0.1

0.12

x

y

Figure 3.9: Lax-Wendroff method (blue) and exact solution (black)

Figure 3.9 shows the solution to the same problem as above, but instead of the diffu-
sion of the upwind and Lax-Friedrichs method, we now observe the predicted oscillations.

This effect is not restricted to the Lax-Wendroff method, but it is the widely known
Gibb’s phenomenon (cf. [Car30]). The peak will rise to a certain level and then it will stay.

Of course, oscillations like these show that the method cannot be monotonicity pre-
serving. Therefore, it also is neither TVD nor BV-stable, but at least for the linear
equation, there is a stability result (cf. [Kro97, lemma 2.5.2]:

Theorem 3.30. In the linear case f (z) = az, the Lax-Wendroff method is stable in the
sense

‖un
∆‖L2(R) ≤ C(T)eβ

tn
T ‖u0

∆‖L2(R)

provided that |a|λ< 1, for some β> 0 and C(T)> 0.

In contrast to the Lax-Wendroff method, oscillations in the FTCS scheme will grow
unboundedly. For sufficiently small time steps, however, it produces a numerical solution
somewhat similar to the Lax-Wendroff approximation. Better results can be obtained by
its fourth order counterpart,

FH4
j+ 1

2
= 7

12

(
f (un

j+1)+ f (un
j )

)
− 1

12

(
f (un

j+2)+ f (un
j−1)

)
,

which is used by Zalesak in [Zal79]. Figure 3.10 shows the result to the above test
problem with λ= 1

20 , so even though these central schemes are easy to implement, they
are highly ineffective.

Having understood the behavior of the different methods, the question arises, how
we can modify existing methods like Lax-Wendroff to better suit our needs. Godunov’s
theorem tells us that a linear correction term like the artificial viscosity in Lax-Friedrichs
will not work here. That is why we will consider nonlinear corrections in chapter 5.
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3 Hyperbolic Conservation Laws
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Figure 3.10: Fourth order method (blue) and exact solution (black)
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4 Physical Models and Methods

In chapter 2, we have already discussed the well-known Maxwell’s equations and their
numerical solution. Some other techniques in computational physics shall be presented in
the following. The standard approach to (laser-)plasma simulations are so-called particle-
in-cell (PIC) codes. The first such simulations were published in [Bun59] and [Daw62].
A classical monograph on the topic is [BL91] while [Puk99] describes a widely known
implementation. Instead of trying to simulate each single particle (like electrons and
ions), they are grouped into macro-particles. These represent a large number of particles,
which is still small, though, compared to the total number of particles. This greatly
reduces the computational cost compared to a full kinetic description of a plasma. But
even with this trick, those simulations are very expensive in terms of resources and time.
Also, a major problem with PIC codes is the amount of noise they produce (cf. [Oku72]).

We are not interested in effects at the boundaries of the computational domain, so we
will assume periodic boundary conditions. Mathematically, this means we consider all
our equations on some torus T⊂Rd+1 instead of the actual domain Ω⊂Rd for d ∈ {1,2,3}.

We will follow standard notation in physics: The dyadic product of two vectors a ∈Rm

and b ∈Rn is the m×n matrix

ab ≡ a⊗b ≡ abT = (
aib j

)
i=1,...,m
j=1,...,n

while a ·b = aT b denotes the scalar product. The divergence of a tensor ab is

∇· (ab)= (∇·a)b+ (a ·∇)b.

4.1 Plasma Formulation via the Vlasov Equation

Our goal is the simulation of laser-plasma interaction. To understand the governing
equations, we have to understand what a plasma is in the first place. Most people
are familiar with the three states of aggregation: solid, liquid and gaseous. A very
nice every-day example is water: it is liquid at room temperature, but it can freeze to
solid ice and boil to steam. This can be done to any material, but the temperatures, at
which the transitions occur, are very different, of course. Plasma is sometimes called
the fourth state of aggregation. It forms when a gas is heated so much that the atoms
ionize. So simply speaking, a plasma is a gas, in which the atoms are split into electrons
and ions and thus electric fields induce electric currents within the plasma. The most
common examples of plasmas in our daily lives are the sun, fluorescent lamps and plasma
televisions.

The derivation of the fluid description of a plasma can be found, e.g. in [Kru03].
Consider a collisionless plasma and the single particle distribution function fα(x,v, t).
This characterizes the location of the particles of species α in phase space as a function
of time. We will mainly consider the electrons (α= e) and sometimes also the ions (α= i)
inside a plasma. The Vlasov equation for particle species α reads

∂ fα
∂t

+v ·∇ fα+
qα
mα

(
E+ v

c
×B

)
·∇v fα = 0,

where ∇v = (∂vx ,∂vy ,∂vz )
T . This equation tells us that the phase space density is conserved

following a dynamical trajectory because fα(x(t),v(t), t) is constant.
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Together with Maxwell’s equations, the Vlasov equation is a complete description
of a collisionless plasma, the Vlasov-Maxwell system.4 Under certain assumptions, the
Cauchy problem to the Vlasov-Maxwell system has a unique C1-solution for all times
t ≥ 0 (cf. [Gla96]). The numerical simulation, however, turns out to be quite cumbersome
(see e.g. [CK76] or [SRBG99]) because of the additional derivatives with respect to v. The
general single particle phase-space is six-dimensional. If we assume all quantities to
vary spatially only along one dimension, the phase-space is reduced to four dimensions.
Making use of a symmetry of the 1D Vlasov-Maxwell system (conservation of the canoni-
cal momentum) allows a further reduction down to two dimensions. Still, the solution of
the Vlasov equation to find f (x,vx, t) can be far from trivial.

Therefore, a different set of equations, which is easier to deal with, is derived by
taking different velocity moments of the Vlasov equation (cf. [Kru03]). Particle density
n and mean velocity v̄ are determined by averaging the moments of the phase space
distribution function over velocities

n =
∫
R3

f (x,v, t)dv

nv̄=
∫
R3

v f (x,v, t)dv,

where we dropped the subscript α for readability. Now we average the Vlasov equation
over velocity ∫ (

∂ f
∂t

+v ·∇ f + q
m

(
E+ v

c
×B

)
·∇v f

)
dv= 0

and after some calculations obtain the continuity equation for the particle density
∂n
∂t

+∇· (nv̄)= 0. (4.1)

The next moment of the Vlasov equation∫
v

(
∂ f
∂t

+v ·∇ f + q
m

(
E+ v

c
×B

)
·∇v f

)
dv= 0

yields the equation of motion for the charged fluid
∂

∂t
(nv̄)+∇· (nv̄v̄)= qn

m

(
E+ v̄

c
×B

)
. (4.2)

For a detailed derivation, see [Kru03]. Note that (4.2) only holds for so-called cold plas-
mas, which means that temperature is neglected in the derivation of the model equations.
Although this sounds contradictory, the assumption is justified because the effect of
pressure is negligible in the cases we are interested in.

So now we have two fluid equations (4.1) and (4.2) for the description of density and
momentum of each particle species in the plasma. Combining these with Maxwell’s
equations

1
c
∂E
∂t

=∇×B− 4π
c

j

1
c
∂B
∂t

=−∇×E

∇·E = 4πρ

∇·B = 0

4If collisions between plasma particles shall be modeled, there is an additional term on the right hand
side of the Vlasov equation. Comparisons to the influence of the external fields and time scales considered
show, however, that neglecting collisions does not have much impact on the simulation (cf. [Taj89]).
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4.2 Boris Push

where ρ =∑
α nαqα and j =∑

α nαqαv̄α, we have a full description of a collisionless plasma.
If we consider a mobile species, the electrons, and an immobile, neutralizing species, the
ions, then ρ = qn and j = ρv̄. In our case, this mobile species will be the electrons. Since
they are much lighter than ions (by a factor of 1836 in case of hydrogen plasma, which
contains the lightest possible ions), which leads to higher inertia and reaction time, ion
motion is often neglected to save computational cost.

4.2 Boris Push

We already know how to approximate the solution to Maxwell’s equations and to conser-
vation laws without sources. To treat particle motion due to the Lorentz force

FL = q (E+v×B)

numerically, we consider the electric and the magnetic term separately. The electric
update is straightforward as a simple forward Euler step is used. To treat the vector
product as accurately as possible, we analyze it from a geometric point of view. We will
see that the product is a rotation,5 so we can find its angle and use that knowledge
to correctly follow the path of this rotation. This method is called Boris push after its
inventor Jay P. Boris (cf. [Bor70], [BL91]).

To derive the Boris push, consider the particle equations of motion under the Lorentz
force,

m
dv
dt

= q(E+v×B)

dx
dt

= v.

Centered finite differences lead to

vn+ 1
2 −vn− 1

2

∆t
= q

m

(
En + vn+ 1

2 +vn− 1
2

2
×Bn

)
(4.3a)

xn+1 − xn

∆t
= vn+ 1

2 . (4.3b)

The averaging of the velocity on the right hand side of (4.3a) is necessary since using
the old value vn− 1

2 results in a wrong particle motion (cf. [BL91]). Instead, we need the
velocity at the same time tn as B and E, which is approximated by the mean value of
vn− 1

2 and vn+ 1
2 . Solving this implicit set of equations as they are stated above does not

respect the rotational movement. A finite difference approach yields a straight instead
of a circular path, so a different approach is necessary.

The electric and magnetic forces are to be separated. To achieve this, substitute

vn− 1
2 = v−− qEn

m
∆t
2

(4.4)

vn+ 1
2 = v++ qEn

m
∆t
2

(4.5)

into (4.3a), which cancels out the electric field completely and leaves

v+−v−

∆t
= q

2m
(v++v−)×Bn. (4.6)

5This is a well-known fact in physics. The rotational nature of the Lorentz force is widely used, for
example in mass spectrometry or television tubes.
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4 Physical Models and Methods

So now we get from vn− 1
2 to v− via (4.4), then obtain v+ from (4.6) and finally add the

remaining half of the electric push in (4.5) to reach vn+ 1
2 . The electric updates are

unproblematic, but to do the magnetic part right, we have to take a look at the problem
from a geometric point of view. Equation (4.6) is a pure rotation6, so this knowledge
should be made use of. Figure 4.1 shows that the angle of rotation satisfies

v+

v−

v+−v−

v++v−
θ

Figure 4.1: This diagram depicts the plane perpendicular to B and shows the rotation in (4.6).

∣∣∣∣tan
θ

2

∣∣∣∣= ‖v+−v−‖
‖v++v−‖ = q‖Bn‖

m
∆t
2

.

To perform the v×B rotation properly, it is split into two steps. First, define a vector v′

v+

v−

v′

v−× t

v′× s

θ

Figure 4.2: The rotation from v− to v+, again in the plane perpendicular to B.

that is orthogonal to v+−v− and B,

v′ = v−+v−× t

for some t that is parallel to B. The angle between v− and v′ is just θ
2 , so t= q∆t

2m B. Finally,
v+−v− is parallel to v′×B, so

v+ = v−+v′× s

with some s that is parallel to B. The requirement ‖v+‖ = ‖v−‖ yields

s= 2t
1+‖t‖2

The Boris push is a widely used tool in computational physics as it reproduces the
correct rotational particle movement, while finite difference approaches literally throw
the particles off their path. The Boris push makes use of the knowledge about rotational
movement and therefore keeps the particles on a circular path (cf. [BL91]).

6The scalar product with v++v− yields ‖v+‖ = ‖v−‖
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4.3 Units and Dimensionless Equations

4.3 Units and Dimensionless Equations

In all previous sections, we have stated the equations in cgs units, which is one of the
most widely-used unit systems in plasma physics. In many applications it is common
and useful to scale equations to some convenient unit system. This can be another
international unit system like mks or SI, but it can also be a custom unit system, which
eliminates units altogether by measuring everything in problem specific quantities.

cgs Units

The cgs system is one of the most common unit systems in plasma physics. It is based on
centimeters, grams and seconds as base units — hence the name cgs. Another interna-
tional standard is SI, which is the abbreviation for the French term système international
d’unités. It is the modern form of the metric system and is based on meters, kilograms
and seconds like mks.

Our goal is the simulation of laser-plasma interaction. A laser pulse is an electromag-
netic wave. Those waves are described in general by Maxwell’s equations. Recall from
chapter 2 the formulation for homogeneous media

∇·E = 4πρ (4.7a)

∇·B = 0 (4.7b)
1
c
∂B
∂t

=−∇×E (4.7c)

1
c
∂E
∂t

=∇×B− 4π
c

j (4.7d)

where c is the speed of light and
j =

∑
α

qαnαvα

the current density with charges qα for particle species α. We consider only electrons
(α = e) for now, so qe = −e and j = −env. v is the particle velocity and ρ = −ne is the
electric charge density with electric charge e and the particle-number density n.

The plasma description consists of an equation for the density and one for the mo-
mentum density as discussed in section 4.1:

∂n
∂t

+∇· (nv)= 0 (4.8a)

∂(nv)
∂t

+∇· (nvv)=− en
m

(
E+ v

c
×B

)
(4.8b)

where m is the mass of the particle.
Depending on the application, it makes sense to scale the above quantities by some

physical quantities. We say we make them dimensionless.

Laser Units

In the laser (-plasma) physics community, laser-related quantities are often preferred for
the conversions, such as the wavelength λ0 or frequency ω0 of the laser. They are related
via λ0 = 2π c

ω0
. The factor 2π can be included into the conversions or not, depending on

one’s preferences.
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4 Physical Models and Methods

The theoretical physicists we are collaborating with choose to measure time in T0 = ω0
2π

and space in λ0, so the conversions to be made are

tL =ω0t

xL = 1
λ0

x

nL = n
n0

vL = v
c

jL = j
en0c

EL = e
ωpemc

E

BL = e
ωpemc

B

That way, we get for (4.7a)

∇·E = 4πρ

⇐⇒ ω0

2πc
∇L · ω0mc

e
EL =−4πen0nL

⇐⇒ ∇L ·EL =−2πnL

ω2
0

4πn0
e2

m
=−2π

ω2
pe

ω2
0

nL =−2πñnL

with ωpe =
√

4πn0e2/m. Then for (4.7c) we have

1
c
∂B
∂t

=−∇×E

⇐⇒ 1
c
ω0

2π
∂

∂tL

(ω0mc
e

BL

)
=− ω0

2πc
∇L ×

(ω0mc
e

EL

)
⇐⇒ ∂

∂tL
BL =−∇L ×EL

and for (4.7d)

1
c
∂E
∂t

=∇×B− 4π
c

j

⇐⇒ 1
c
ω0

2π
∂

∂tL

(ω0mc
e

EL

)
= ω0

2πc
∇L ×

(ω0mc
e

BL

)
− 4π

c
en0c jL

⇐⇒ ∂

∂tL
EL =∇L ×BL −4πn0

e2

m
2π
ω2

0
jL =∇L ×BL −2π

ω2
pe

ω2
0

jL.

The fluid equations (4.8) become

∂n
∂t

+∇· (nv)= 0

⇐⇒ ω0

2π
∂

∂tL
(n0nL)+ ω0

2πc
∂

∂xL
(n0nLvLc)= 0

⇐⇒ ∂

∂tL
nL + ∂

∂xL
(nLvL)= 0
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4.4 Relativistic Models

and
∂(nv)
∂t

+∇· (nvv)=− en
m

(E+ v
c
×B)

⇐⇒ ω0

2π
∂

∂tL
(n0nLvLc)+ ω0

2πc
∂

∂xL
(n0nLvLvLc2)=−n0nLe

m
ω0mc

e
(EL +vL ×BL)

⇐⇒ ∂(nLvL)
∂tL

+∇L · (nLvLvL)=−2πnL(EL +vL ×BL)

So dropping the subscripts L, we end up with

∇·E =−2π
ω2

pe

ω2
0

n (4.9a)

∇·B = 0 (4.9b)
∂B
∂t

=−∇×E (4.9c)

∂E
∂t

=∇×B−2π
ω2

pe

ω2
0

j (4.9d)

∂n
∂t

+∇· (nv)= 0 (4.9e)

∂(nv)
∂t

+∇· (nvv)=−2πn(E+v×B). (4.9f)

Plasma Units

If our main focus is on the plasma, a possible choice is to measure everything in terms
of plasma related quantities. Let ωpe be the plasma frequency. For plasma units, we use
tP =ωpe t and xP = ωpe

c x with ωpe =
√

4πn0e2/m. Using all of the above to transform our
set of equations in (4.7) and (4.8), we obtain — dropping again the subscripts P —

∇·E =−n (4.10a)

∇·B = 0 (4.10b)
∂B
∂t

=−∇×E (4.10c)

∂E
∂t

=∇×B− j (4.10d)

∂n
∂t

+∇· (nv)= 0 (4.10e)

∂(nv)
∂t

+∇· (nvv)=−n(E+v×B). (4.10f)

These are particularly nice to read and to work with because there are no factors left in
front of any of the terms. That is why we will use plasma units for the description of
equations from now on.

When we compare our numerical simulations in chapters 6 and 7 to those of es-
tablished codes, we have to switch between laser and plasma units. The conversions
are quite easy, once there is agreement on what systems to use and what the original
equations looked like in cgs units.

4.4 Relativistic Models

Everything discussed so far in this section was non-relativistic. We are going to be
considering laser-plasma interaction with large particle velocities. If the velocities of the
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4 Physical Models and Methods

plasma particles are small compared to the speed of light, the non-relativistic models
work fine, but for greater velocities, this model is no longer adequate. Refer to [Ger10,
chapter 13] for a thorough introduction into relativistic physics. We have to substitute
relativistic velocities

v= p
mγ

where p is the relativistic momentum and

γ= γ(p)= 1√
1−

(
‖v‖

c

)2
=

√
1+

(‖p‖
mc

)2

is the so-called relativistic γ-factor or Lorentz-factor, m is the rest mass of the particle
and c the speed of light. Relativistic effects can be neglected for small velocities: If the
velocity is small compared to the speed of light, ‖v‖¿ c, then γ≈ 1. The speed of light is
very high, c ≈ 2.9979 ·108 m

s , so for our daily life, the approximation that γ be one is often
justified. We are, however, interested in high velocities and the relativistic effects in the
simulation of laser-plasma interaction, so we need to adjust our equations accordingly.

For Maxwell’s equations, the current density becomes

j =
∑
α

nαqαvα =
∑
α

nαqα
pα

mαγα

where γα = γα(pα). The propagation speed of the electromagnetic waves is already the
speed of light c.

For the derivation of the relativistic continuity and momentum density equation, we
have to consider the relativistic Vlasov equation (cf. [BGB+99])

∂ f
∂t

+ p
mγ

·∇ f + q
m

(
E+ 1

c
p

mγ
×B

)
·∇p f = 0

for each particle species to obtain the relativistic fluid equations

∂n
∂t

+∇· (nv)= 0

and
∂

∂t
(np)+∇· (npv)= nq

m

(
E+ v

c
×B

)
.

Note that we will usually not use the particle density n in our simulations of a one-
species plasma, but the electric charge density ρ. These only differ by the factor of the
electric charge, q, which is ±1 in the dimensionless units we are using. This eliminates
a variable from our setting and avoids confusion with the superscript n that we use to
indicate the time step in numerical schemes.
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5 Flux-Corrected Transport Algorithms

In the numerical simulation of partial differential equations like the continuity equation,
the values of the numerical solution can become negative due to the oscillation effect
mentioned in section 3.2.4. Density and pressure are examples of quantities that are not
allowed to be negative from the physical and/or mathematical point of view. Those nega-
tive values can cause severe instabilities, since the system may become non-hyperbolic
and therefore ill-posed. Just cutting off the negative part is a bad idea since this changes
the overall density and therefore violates the conservation of mass. We have seen that
high order methods produce spurious oscillations and monotonicity preservation is lim-
ited to first order schemes — as long as we consider linear methods. The idea now is to
combine high accuracy with the desirable properties of first order methods. Flux-limiter
methods are the most widely-known approach to combine a high and a low order flux in
a nonlinear way to elude Godunov’s theorem (cf. [LeV11, chapter 6]). In a nutshell, we
want to use the high order method where the solution is smooth and switch to a monotone
method near sharp gradients.

5.1 Deriving the Algorithm

Probably the first class of methods that combines high accuracy with non-negativity was
introduced at a conference in 1971 (cf. [Bor71]) and published in 1973 by Boris and Book
in [BB73]. They called these schemes Flux-Corrected Transport (FCT) algorithms. The
key idea is to correct the flux from one cell to another, such that the density will not
become negative and use high order as much as possible. This section will describe the
class of flux-corrected transport algorithms in detail.

We consider one-dimensional partial differential equations in conservation form

∂tu(x, t)+∂x f
(
u(x, t)

)= 0 (5.1)

on some bounded domain Ω ⊂ R for t ≥ 0, subject to appropriate initial and periodic
boundary conditions, with functions u and f of independent variables x and t. The
one-dimensional continuity equation

∂ρ

∂t
+ ∂(ρv)

∂x
= 0 (5.2)

has this form. All of the following can be generalized for systems — that is, vector valued
functions u and f — without major changes. For ease of notation, however, we stick to
scalar equations here.

We recall from section 3.2 the approximation in conservation form of equation (5.1),

un+1
j = un

j −
∆t
∆x

(
F j+ 1

2
−F j− 1

2

)
(5.3)

where un
j ≈ u(x j, tn) with tn = n∆t and x j = j∆x, j = j0, . . . , jN , such that ∪N

l=1[x jl−1 , x jl ] =
Ω. The choice of the numerical flux F j+ 1

2
defines the integration scheme. The goal is to

combine the benefits from both low and high order methods into a new scheme. Note that
we only consider uniform meshes for ease of notation. All of the following can easily be
done for non-uniform grids, as well.

Boris and Book described their scheme as a predictor-corrector method: First use a
low order predictor, like the upwind scheme. They called this the transport stage. Since



5 Flux-Corrected Transport Algorithms

this introduces a lot of numerical diffusion, the corrector stage is called the anti-diffusive
stage where as much high order correction as possible is added to the predictor without
generating new extrema or introducing negativity. Their approach was revolutionary,
yet highly heuristic, especially in the choice of the transport scheme, which they based
on the Lax-Wendroff method. In fact, the whole scheme was very rigid as they built
it around their particular choice of fluxes. Some years later, Zalesak generalized the
concept of flux-corrected transport in [Zal79] for use with arbitrary schemes and also to
multidimensional problems. The latter had been an open problem in the tight Boris and
Book setting and thus a major drawback of the original approach.

The generalized flux-corrected transport algorithm of Zalesak (cf. [Zal79]) is stated in
algorithm 5.1.

Algorithm 5.1 FCT algorithm after Zalesak
for n = 0, . . . , M−1 do

1. Compute low order (positivity preserving) fluxes FL
j+ 1

2

2. Compute high order fluxes FH
j+ 1

2
3. Define "anti-diffusive fluxes"

A j+ 1
2
= FH

j+ 1
2
−FL

j+ 1
2

4. Compute low order update, the "transported and diffused" solution

utd
j = un

j −λ
(
FL

j+ 1
2
−FL

j− 1
2

)

5. Limit anti-diffusive fluxes such that no new extrema are created in step 6:

AC
j+ 1

2
= C j+ 1

2
A j+ 1

2
, 0≤ C j+ 1

2
≤ 1

6. Compute new solution with limited anti-diffusive fluxes:

un+1
j = utd

j −λ
(
AC

j+ 1
2
− AC

j− 1
2

)
end for

So we have again a predictor-corrector scheme, but with great flexibility as to the
choice of methods. Inserting utd

j from step three into the update in the last step, we see
that the scheme has conservation form (5.3) with numerical flux

FFCT
j+ 1

2
= C j+ 1

2
FH

j+ 1
2
+ (1−C j+ 1

2
)FL

j+ 1
2
,

which is a convex combination of the low and high order fluxes. The only unknown step
above — and the most critical as well — is the fifth, which computes the limiting factors
C j+ 1

2
. In the original paper [BB73], Boris and Book used the minmod limiter, which

chooses the smallest argument in absolute value if they have the same sign and zero if
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the signs are different,

minmod(a1, . . . ,as)=


max

j
a j if a j > 0 for all j

min
j

a j if a j < 0 for all j

0 otherwise.

For their so-called SHASTA scheme, which was designed with fixed high and low order
fluxes, the corrective fluxes in flux-limiter notation (cf. [LeV06, chapter 16]) read

AC
j+ 1

2
= 1

8
φn

j+ 1
2

(
utd

j+1 −utd
j

)
where

φn
j+ 1

2
=minmod

(
1,8rn

j ,
8

rn
j+1

)

with

rn
j =

utd
j −utd

j−1

utd
j+1 −utd

j

.

The factor 8 comes from their very own upwind scheme, which yields

λA j+ 1
2
= 1

8

(
utd

j+1 −utd
j

)
.

The minmod limiter is known to be TVD (cf. [LeV11, chapter 6]), so in particular, it
is monotonicity and positivity preserving. Moreover, it has been shown in [IN79] that
SHASTA is stable in the L∞-sense and has a convergent subsequence to a weak solution
in the L1

loc-sense, while

inf
x∈Ω

u0(x)≤ un
j ≤ sup

x∈Ω
u0(x)

holds for any j and n ≥ 0.
For the generalized Zalesak scheme with arbitrary high and low order fluxes, the

anti-diffusive fluxes after Boris and Book can be written as

AC
j+ 1

2
=minmod

(
utd

j −utd
j−1, A j+ 1

2
,utd

j+2 −utd
j+1

)
.

However, as Zalesak pointed out in [Zal79], the Boris and Book scheme is bound to
cause a phenomenon he calls “clipping”: peaked profiles will be flattened due to the above
limiter.7 The problem lies in artificial diffusion and the fact that the Boris and Book
method does not remember the values from the previous time step and hence cannot
correctly reproduce existing extrema. Instead, the limiting process is applied even where
it is not necessary. In other words: TVD can be too severe a restriction if positivity
preservation is really all we need. Therefore, Zalesak proposes an alternative that also

7This holds for many other flux limiters since TVD methods degenerate to first order accuracy at extreme
points (cf. [OC84]).
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takes into account the previous time step for upper and lower bounds on the new solution
un+1

j . He first defines

ua
j =max

(
un

j ,utd
j

)
umax

j =max
(
ua

j−1,ua
j ,u

a
j+1

)
ub

j =min
(
un

j ,utd
j

)
umin

j =max
(
ub

j−1,ub
j ,u

b
j+1

)
to consider extrema of both the predictor approximation and the previous time step, and
then the sum of all anti-diffusive fluxes into grid point j,

P+
j =max

(
0, A j− 1

2

)
−min

(
0, A j+ 1

2

)
and further

Q+
j =

(
umax

j −utd
j

)
λ−1

R+
j =

{
min

(
1,Q+

j /P+
j

)
if P+

j > 0,

0 if P+
j = 0.

Since umax
j ≥ utd

j , none of the above quantities is negative, and R+
j is an upper bound

for the fraction, by which the anti-diffusive fluxes into grid point j are multiplied to
guarantee that no new maximum is created. The corresponding quantities regarding
minima are defined analogously as

P−
j = sum of all anti-diffusive fluxes away from grid point j

=max
(
0, A j+ 1

2

)
−min

(
0, A j− 1

2

)
Q−

j =
(
utd

j −umin
j

)
λ−1

R−
j =

{
min

(
1,Q−

j /P−
j

)
if P−

j > 0

0 if P−
j = 0.

Now umin
j ≤ utd

j , so R−
j is a lower bound on the fraction, by which the anti-diffusive

fluxes away from grid point j are multiplied to guarantee that no new minimum is
created.

All fluxes are directed from one grid point into a neighboring one. So the limiting of
the anti-diffusive fluxes has to prevent undershoot in the source and overshoot in the
destination point. To accomplish both, the minimum is taken:

C j+ 1
2
=

min
(
R+

j+1,R−
j

)
if A j+ 1

2
≥ 0

min
(
R+

j ,R−
j+1

)
if A j+ 1

2
< 0.

(5.4)

It is claimed by Zalesak in [Zal79] that FCT is positivity preserving, but a detailed
proof is not to be found anywhere in the literature. Hence we have to check the positivity
preservation of the FCT scheme ourselves.

Lemma 5.1. FCT is positivity preserving.
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Proof. Since the low order method is assumed to preserve positivity, we only have to
consider the corrected fluxes AC

j+ 1
2
. The new approximation is

un+1
j = utd

j +λ
(
C j− 1

2
A j− 1

2
−C j+ 1

2
A j+ 1

2

)
.

If both fluxes are directed out of cell j, i.e., when A j− 1
2
< 0 and A j+ 1

2
> 0, there is the

largest possibility to obtain a negative value for un+1
j . In case both fluxes have the same

sign, it is still possible to have negative values if more flows out of the cell than into
it. The calculations for those cases can, however, be reduced to the formerly mentioned
worst case, so we will omit those considerations here.

It is clear that we cannot exceed umax
j in this case. To see that we will also not fall

below umin
j , we have to go through some lengthy calculations. According to the definition

of C in (5.4), we have C j+ 1
2
=min(R+

j+1,R−
j ) and C j− 1

2
=min(R+

j−1,R−
j ). We can ignore the

case C ≡ 1 because this is just the high order case and only comes into play for quotients
of Q and P that are greater than one. That leaves four cases we have to check.

Case I: C j+ 1
2
= C j− 1

2
= R−

j

un+1
j = utd

j +
(utd

j −umin
j )

A j+ 1
2
− A j− 1

2

(A j− 1
2
− A j+ 1

2
)= utd

j − (utd
j −umin

j )= umin
j .

Case II: C j+ 1
2
= R+

j−1, C j− 1
2
= R+

j+1

un+1
j = utd

j +
(

umax
j−1 −utd

j−1

max(0, A j− 3
2
)− A j− 1

2

A j− 1
2
−

umax
j+1 −utd

j+1

A j+ 1
2
−min(0, A j+ 3

2
)
A j+ 1

2

)

≥ utd
j +

(
umax

j−1 −utd
j−1

−A j− 1
2

A j− 1
2
−

umax
j+1 −utd

j+1

A j+ 1
2

A j+ 1
2

)
= utd

j − (umax
j−1 −utd

j−1)− (umax
j+1 −utd

j+1)

and using again the definition of the C-factors and R−
j ,

≥ utd
j −

utd
j −umin

j

A j+ 1
2
− A j− 1

2

(A j+ 1
2
− A j− 1

2
)= umin

j .

Case III: C j+ 1
2
= R+

j−1, C j− 1
2
= R−

j

un+1
j = utd

j +
(

umax
j−1 −utd

j−1

max(0, A j− 3
2
)− A j− 1

2

A j− 1
2
−

utd
j −umin

j

A j+ 1
2
− A j− 1

2

A j+ 1
2

)

≥ utd
j +

(
umax

j−1 −utd
j−1

max(0, A j− 3
2
)− A j− 1

2

A j− 1
2
−

umax
j+1 −utd

j+1

A j+ 1
2
−min(0, A j+ 3

2
)
A j+ 1

2

)
≥ umin

j (see case II).
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Case IV: C j+ 1
2
= R−

j , C j− 1
2
= R+

j+1

un+1
j = utd

j +
(utd

j −umin
j )

A j+ 1
2
− A j− 1

2

A j− 1
2
−

umax
j+1 −utd

j+1

A j+ 1
2
−min(0, A j+ 3

2
)
A j+ 1

2

≥ utd
j +

(utd
j −umin

j )

A j+ 1
2
− A j− 1

2

A j− 1
2
−

utd
j −umin

j

A j+ 1
2
− A j− 1

2

A j+ 1
2

= umin
j .

All possibilities are covered now and in all cases we found that un+1
j ≥ umin

j , which in
turn has to be greater than zero if the initial data was nonnegative and if the low order
scheme is positivity preserving. Then we have shown that Zalesak’s FCT scheme is in
fact positivity preserving.

Overall, the weak nonlinear stability condition

umin
j ≤ un+1

j ≤ umax
j

holds. The second part of the inequality is shown analogously to the calculations above.
The only thing left now is the definition of the numerical fluxes. In this thesis, for the

high order flux the simple second order flux

F j+ 1
2
= 1

2
( f j+1 + f j), (5.5)

the fourth order scheme

F j+ 1
2
= 7

12
( f j+1 + f j)−

1
12

( f j+2 + f j−1), (5.6)

as in [Zal79] are used as well as the Lax-Wendroff method from chapter 3.2. Surprisingly,
numerical experiments show that the fact that the first two schemes are unstable when
used on their own is irrelevant in most applications with FCT. The limiting process seems
to compensate a lot, so we can employ the computationally easier flux. However, this is
just an observation. A detailed analysis of the amplification factor cannot support this
for a fact for arbitrary limiting factors C j+ 1

2
.

For the low order scheme, we use the Lax-Friedrichs flux

F j+ 1
2
= 1

2
( f j+1 + f j)−

1
2λ

(
un

j+1 −un
j

)
(5.7)

or the upwind method.

Dispersion

We have reviewed numerical dispersion of the Yee scheme and of several classical con-
servative methods. The topic has not been addressed, however, for FCT schemes in the
literature. So let us look at it in some detail.

For the dispersion error, we would expect a combination of the dispersion of the two
schemes used. And this is exactly what happens. Whenever only the high order scheme
is used, we obtain the dispersion relation of the high order scheme. Where only the low
order scheme is used, the dispersion relation becomes that of the low order scheme.

Let us look at the combination of the Lax-Friedrichs scheme (5.7) with the fourth
order flux (5.6) as an example to gain some insight into numerical dispersion of the FCT
scheme.
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Lemma 5.2. For FCT with Lax-Friedrichs and fourth order central fluxes, the dispersion
relation yields

Im(ω)≈ (
1−cos(k∆x)

)( 1
∆t

−
C j+ 1

2

2∆t
−

C j− 1
2

2∆t

)
+ (

1−cos(2k∆x)
)(

C j+ 1
2

a
12∆x

−C j− 1
2

a
12∆x

)
.

Proof. Inserting eikx−iωt into the FCT scheme for the linear advection equation yields
the dispersion relation

eiω∆t = 1−λC j+ 1
2

a
12

(
e−ik∆x +1− e−2ik∆x − eik∆x

)
− 1

2
C j+ 1

2

(
e−ik∆x −1

)
+ 1

2
C j− 1

2

(
1− eik∆x

)
+λC j− 1

2

a
12

(
1+ eik∆x − e−ik∆x − e2ik∆x

)
− λa

2

(
e−ik∆x − eik∆x

)
+ 1

2

(
e−ik∆x −2+ eik∆x

)
= 1−λC j+ 1

2

a
12

(
1−cos(2k∆x)+ isin(2k∆x)−2isin(k∆x)

)
− 1

2
C j+ 1

2
(cos(k∆x)− isin(k∆x)−1)+ 1

2
C j− 1

2

(
1−cos(k∆x)− isin(k∆x)

)
+λC j− 1

2

a
12

(
1−cos(2k∆x)− isin(2k∆x)+2isin(k∆x)

)
+λaisin(k∆x)+ (cos(k∆x)−1).

So by Taylor series expansion of the exponential eiωt = 1+ iωt+O (∆t2), we can approxi-
mate the imaginary part of ω by

Im(ω)≈ (
1−cos(k∆x)

)( 1
∆t

−
C j+ 1

2

2∆t
−

C j− 1
2

2∆t

)
+ (

1−cos(2k∆x)
)(

C j+ 1
2

a
12∆x

−C j− 1
2

a
12∆x

)
.

C ≡ 1 means that only the fourth order scheme is used, and as expected we have
Im(ω)= 0. C ≡ 0 means that only the Lax-Friedrichs scheme is used and we obtain

Im(ω)≈ 1
∆t

(
1−cos(k∆x)

)
,

the dispersion relation of the Lax-Friedrichs scheme. For other values of C, i.e., when
we cannot use all of the high order flux, but do not need to drop down to the first order
scheme entirely, we have something new: If all our C’s take the same value, the new
second term vanishes and we have a fraction of the Lax-Friedrichs dispersion left — the
smaller C, the higher the dispersion. If the C’s are different — which will usually be the
case — the last term does not vanish. But if two neighboring C’s are close — which is
usually the case — it is rather small. In any case it is roughly of the same order as the
Lax-Friedrichs term.

A similar analysis of the dispersion relation of FCT can be carried out for any other
combination of two schemes. The results are similar to what we have seen here.

To see how FCT compares to the separate schemes, we consider again the classical
test of advecting a square wave. In this example, we use Lax-Friedrichs and the fourth
order flux. Recall from section 3.2 that the diffusion of the Lax-Friedrichs scheme will
smear out the square wave and a high order scheme produces spurious ripples or even
instabilities. FCT on the other hand, preserves the square shape nearly perfectly, see
figure 5.1.
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Figure 5.1: FCT with Lax-Friedrichs and fourth order flux

5.2 Multidimensional Flux-Corrected Transport

The Zalesak method of flux correction explained above can easily be generalized to higher
dimensions. Let us consider a two-dimensional system of conservation laws

∂tu(x, y, t)+∂x f (u, x, y, t)+∂y g(u, x, y, t)= 0.

If we work on a finite volume coordinate-aligned mesh, we can define our two-dimensional
FCT algorithm as

un+1
i j = un

i j −λ
[
Fi+ 1

2 , j −Fi− 1
2 , j +G i, j+ 1

2
−G i, j− 1

2

]

where in this case, λ= ∆t
∆V and the transportive fluxes F and G are basically computed

as before. The full procedure is listed in algorithm 5.2.

Again, we need to specify the limiting step 5. This is completely analogous to the
one-dimensional case:

P+
i j = sum of all anti-diffusive fluxes into grid point (i, j)

=max
(
0, A i− 1

2 , j

)
−min

(
0, A i+ 1

2 , j

)
+max

(
0, A i, j− 1

2

)
−min

(
0, A i, j+ 1

2

)
Q+

i j =
(
umax

i j −utd
i j

)
λ−1

R+
i j =

{
min

(
1,Q+

i, j/P
+
i j

)
if P+

i j > 0

0 if P+
i j = 0
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Algorithm 5.2 Multidimensional FCT
for n = 0, . . . , M−1 do

1. Compute the fluxes FL
i+ 1

2 , j
and GL

i, j+ 1
2

by a low order monotonic scheme

2. Compute the fluxes FH
i+ 1

2 , j
and GH

i, j+ 1
2

by a high order scheme

3. Define the "anti-diffusive fluxes"

A i+ 1
2 , j = FH

i+ 1
2 , j −FL

i+ 1
2 , j

A i, j+ 1
2
=GH

i, j+ 1
2
−GL

i, j+ 1
2

4. Compute the low order update, the "transported and diffused" solution

utd
i j = un

i j −λ
[
FL

i+ 1
2 , j −FL

i− 1
2 , j +GL

i, j+ 1
2
−GL

i, j− 1
2

]

5. Limit the anti-diffusive fluxes

AC
i+ 1

2 , j
= Ci+ 1

2 , j A i+ 1
2 , j, 0≤ Ci+ 1

2 , j ≤ 1

AC
i, j+ 1

2
= Ci, j+ 1

2
A i, j+ 1

2
, 0≤ Ci, j+ 1

2
≤ 1

6. Compute the new solution with the limited anti-diffusive fluxes:

un+1
i j = utd

i j −λ
[

AC
i+ 1

2 , j
− AC

i− 1
2 , j

+ AC
i, j+ 1

2
− AC

i, j− 1
2

]
end for
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and

P−
i j = sum of all anti-diffusive fluxes away from grid point (i, j)

=max
(
0, A i+ 1

2 , j

)
−min

(
0, A i− 1

2 , j

)
+max

(
0, A i, j+ 1

2

)
−min

(
0, A i, j− 1

2

)
Q−

i j =
(
utd

i j −umin
i j

)
λ−1

R−
i j =

{
min

(
1,Q−

i j/P
−
i j

)
if P−

i j > 0

0 if P−
i j = 0

and the limiting factors are

Ci+ 1
2 , j =

min
(
R+

i+1, j,R
−
i j

)
if A i+ 1

2 , j ≥ 0

min
(
R+

i j,R
−
i+1, j

)
if A i+ 1

2 , j < 0

Ci, j+ 1
2
=

min
(
R+

i, j+1,R−
i j

)
if A i, j+ 1

2
≥ 0

min
(
R+

i j,R
−
i, j+1

)
if A i, j+ 1

2
< 0.

The upper and lower bounds for the computation of Q±
i j now contain four neighbors,

ua
i j =max

(
un

i j,u
td
i j

)
umax

i j =max
(
ua

i−1, j,u
a
i+1, j,u

a
i j,u

a
i, j−1,ua

i, j+1

)
ub

i j =min
(
un

i j,u
td
i j

)
umin

i j =max
(
ub

i−1, j,u
b
i+1, j,u

b
i j,u

b
i, j−1,ub

i, j+1

)
.

This completes the description of multidimensional flux-corrected transport.

Numerical Tests in Two Dimensions

Unfortunately, as DeVore pointed out in [DeV98], the independence of the numerical
fluxes into different directions allows the creation of new ripples. Zalesak himself noted
this, too, but was not too concerned about the effects as they did not show up in his tests.
They can be shown, however, by a simple transport example: Consider linear advection in
two dimensions with constant velocities in x and y-direction. Figure 5.2 shows the initial
profile that is to be transported to the lower right. Figure 5.3 shows the advected profile
with dimensionally applied FCT as described above. The ripples that form perpendicular
to the direction of propagation are clearly visible.

The remedy suggested by both authors is to use the original Boris and Book limiter
along each coordinate direction before the actual limiting procedure in step 5:

A′
i+ 1

2 , j =minmod
(
utd

i j −utd
i−1, j, A j+ 1

2 , j,u
td
i+2, j −utd

i+1, j

)
A′

i, j+ 1
2
=minmod

(
utd

i j −utd
i, j−1, A i, j+ 1

2
,utd

i, j+2 −utd
i, j+1

)
and continue with A′ instead of A.

If we use this pre-limiting step in the above example, we see significant improvement
in figure 5.4.
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Figure 5.2: Initial data for multidimensional linear advection
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Figure 5.3: Dimensionally applied FCT for linear advection
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Figure 5.4: Multidimensional FCT with prelimiting for linear advection

To properly test FCT in the multidimensional case, we have to consider something
more than just constant velocity advection. One of the most widely used examples to test
multidimensional algorithms is the rotating cylinder: Consider

∂tu+∂x(uvx)+∂x(uvy)= 0 on (0,1)2

for vx =−Ω(y− y0), vy =Ω(x− x0) with some angular frequency Ω and the axis of rotation
in (x0, y0) ∈ (0,1)2.

This is somewhat similar to linear advection. The velocity is still constant in time,
but not in space anymore. The initial profile is a cylinder whose values range from the
bottom plateau at z = 1 to the top at z = 3. To be able to observe more effects, the cylinder
has a slot through the middle (see figure 5.5). This way we can observe not only the
advection of the initial data, but also how well its shape is preserved.

With a monotone scheme there is already a lot of diffusion after a quarter revolution
in figure 5.6 not only for the cylinder as a whole, but also for the slot, which changed its
shape. After a full revolution, the cylinder is unrecognizably diffused (see figure 5.7).

Using the simple second or fourth order scheme is impossible because of their insta-
bility. The spurious oscillations are so strong that the cylinder is gone before a quarter
revolution. The Lax-Wendroff method, however, works well here and is stable, but as
expected, it suffers from oscillations due to Gibb’s phenomenon.

With multidimensional FCT, we have a fairly good preservation of the shape in figures
5.10 for the quarter and in figure 5.11 for the full revolution. There is a little diffusion,
but there are no spurious oscillations and the maximum value still lies at z = 3.00..
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Figure 5.5: Initial data for the rotating cylinder — values ranging from z = 1 to z = 3

Figure 5.6: Rotating cylinder after a quarter revolution (rotated view for better comparison) with
a low order scheme — the maximum now only lies at z = 2.79

Figure 5.7: Rotating cylinder after a full revolution with a low order scheme — the maximum
now only lies at z = 2.38
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Figure 5.8: Rotating cylinder after a quarter revolution (rotated view for better comparison) with
the Lax-Wendroff scheme

Figure 5.9: Rotating cylinder after a full revolution with the Lax-Wendroff scheme

Figure 5.10: Rotating cylinder after a quarter revolution (rotated view for better comparison) with
FCT
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Figure 5.11: Rotating cylinder after a full revolution with FCT

5.3 Higher Order Time Discretization — SSP Runge-Kutta Methods

For most time-dependent partial differential equations, a method-of-lines approach is
used. That is, a semi-discretization of the spatial derivatives is performed to obtain a
system of time-dependent ordinary differential equations. Recall the one-dimensional
scalar conservation law

∂tu+∂x f (u)= 0

for a space- and time-dependent function u = u(x, t). The method-of-lines approach then
yields a system of ordinary differential equations in the time variable t

∂u∆

∂t
= L(u∆) (5.8)

where u∆ denotes the spatially discretized solution and L denotes the spatial discretiza-
tion operator. For ease of notation, let us rewrite (5.8) as a scalar equation for u,

∂u
∂t

= L(u). (5.9)

We now need a time integrator for (5.9). Until now, we have only considered forward
Euler, as it is in any aspect the easiest method for temporal discretization. For general
ODEs, we can use, for example, higher order Runge-Kutta methods. However, for nonlin-
ear hyperbolic conservation laws, we need to ensure nonlinear stability. All nonlinearly
stable methods we have discussed so far are based on the forward Euler method. It is not
clear a priori if and how this stability can be conserved when using a different time inte-
grator. Refer to [GKS11] and the references therein for various examples of higher order
Runge-Kutta methods that fail to maintain the nonlinear stability properties introduced
by the spatial discretization.

That is why we consider a special class of Runge-Kutta methods first introduced by
Shu in [Shu88] and by Shu and Osher in [SO88]. They considered mainly total variation
stability (TVD) and therefore called the methods TVD Runge-Kutta methods. The more
general name now is strong stability preserving (SSP) Runge-Kutta methods.

Definition 5.3. A Runge-Kutta method applied to (5.8) is strong stability preserving
(SSP) with SSP coefficient C if for time steps ∆t ≤C∆tFE it holds that

‖un+1‖ ≤ ‖un‖
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in some (semi-)norm ‖ ·‖ whenever

‖u+∆tL(u)‖ ≤ ‖u‖ for 0≤∆t ≤∆tFE, for all u.

SSP Runge-Kutta methods are based on the forward Euler method because of its
stability properties. Assuming that the forward Euler time discretization is stable for
time steps up to ∆tFE under a certain (semi-)norm, ‖un+1‖ ≤ ‖un‖, then SSP methods
should maintain this stability under a suitable time step restriction.

Algorithm 5.3 shows an explicit Runge-Kutta method with s stages in so-called Shu-
Osher form (cf. [GKS11, chapter 2]):

Algorithm 5.3 SSP Runge-Kutta methods
for n = 0, . . . , M−1 do

Set u(0) = un

for i = 1, . . . , s do

u(i) =
i−1∑
j=0

(
αi ju( j) +∆tβi jL(u( j))

)
end for
Set un+1 = u(s)

end for

Consistency requires that
∑i−1

j=0αi j = 1. Of course, SSP Runge-Kutta methods in Shu-
Osher form can easily be transformed into the more widely used Butcher array form, but
we will shortly see why the Shu-Osher form is more advantageous here.

First note that for non-negative coefficients αi j and βi j, the scheme can be rewritten
as convex combinations of forward Euler steps with a modified time step. This motivates

Theorem 5.4. If the forward Euler method applied to (5.9) is strongly stable under the
time step restriction ∆t ≤∆tFE, i.e., if

‖u+∆tL(u)‖ ≤ ‖u‖ for 0≤∆t ≤∆tFE for all u,

and if αi j, βi j ≥ 0, then the solution obtained by an SSP Runge-Kutta method satisfies the
strong stability bound

‖un+1‖ ≤ ‖un‖, (5.10)

under the time step restriction
∆t ≤C (α,β)∆tFE

where C (α,β)=mini, j
αi j
βi j

and the ratio is understood infinite if βi j = 0.

Proof. With the non-negativity of the coefficients and the consistency property
∑i−1

j=0αi j =
1, we see that

‖u(i)‖ =
∥∥∥∥∥i−1∑

j=0

(
αi ju( j) +∆tβi jL(u( j))

)∥∥∥∥∥
=

∥∥∥∥∥i−1∑
j=0

αi j

(
u( j) +∆t

βi j

αi j
L(u( j))

)∥∥∥∥∥
≤

i−1∑
j=0

αi j

∥∥∥∥u( j) +∆t
βi j

αi j
L(u( j))

∥∥∥∥
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Since each ‖u( j) +∆tβi j
αi j

L(u( j))‖ ≤ ‖u( j)‖ as long as βi j
αi j
∆t ≤∆tFE, we can deduce — using

again consistency — that ‖u(i)‖ ≤ ‖un‖ for each stage as long as βi j
αi j
∆t ≤∆tFE for all i and

j, so in particular, ‖un+1‖ ≤ ‖un‖.

Remark 5.5. Note that this proof only holds for non-negative coefficients α,β. SSP meth-
ods can, however, also be constructed for negative βi j using convex combinations of
forward and backward Euler. Due to the somewhat more complex structure, both sets
of coefficients are sometimes required to be non-negative in the definition of SSP Runge-
Kutta methods (cf. [GKS11]).

Theorem 5.4 provides a sufficient time step restriction for the solution to satisfy the
strong stability bound (5.10). We do not know, however, if it is also necessary nor how
to find any SSP Runge-Kutta methods or identify the ones with largest possible SSP
coefficient C .

To be able to make sensible statements on the SSP coefficient C , let us only consider
irreducible methods, i.e., those that cannot be represented by an equivalent method with
fewer stages. But even then, the representation of a method is not unique. Consider the
the second order Runge-Kutta method, based on the trapezoidal rule,

u(1) = un +∆tL(un)

un+1 = un + 1
2
∆tL(un)+ 1

2
∆tL(u(1)).

In this form, we obtain C (α,β) = 0 because α21 = 0 while β21 = 1
2 . However, the method

can be rewritten as

un+1 = 3
4

un + 1
4
∆tL(un)+ 1

4
u(1) + 1

2
∆tL(u(1)),

which yields C (α,β)= 1
2 , while

un+1 = 1
2

un + 1
2

u(1) + 1
2
∆tL(u(1))

yields C (α,β)= 1. All three variants are equivalent representations in Shu-Osher form
of the same method. Of course, we are interested in the largest possible SSP coefficient
for a given method. To do so, a unique representation of any given method is needed.
For irreducible methods, the Butcher form is in fact unique, but does not help us find
the SSP coefficient. Therefore, a canonical Shu-Osher form has been derived to uniquely
represent any method and determine its SSP coefficient. We refer to [GKS11] for the
details of this unique representation and how to compute the SSP coefficient and derive
methods with optimal SSP coefficients. For the scope of this thesis, we will content
ourselves with what we know so far and citing the concerning methods and coefficients.

For the above second order method, C (α,β)= 1 is optimal. The most commonly used
SSP Runge-Kutta method is the third order three stage method, which is often called the
Shu-Osher method. It reads

u(1) = un +∆tL(un)

u(2) = 3
4

un + 1
4

u(1) + 1
4
∆tL(u(1))

un+1 = 1
3

un + 2
3

u(2) + 2
3
∆tL(u(2))
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and is optimal with C (α,β)= 1, so it can be used with the same time step restriction as
forward Euler. We found this method to work really well in our numerical experiments,
which makes it our method of choice throughout this thesis.

Note that the strong stability property also includes positivity preservation in that a
convex combination of positivity preserving Euler steps will still preserve positivity.

Improving Flux-Corrected Transport

Now that we have established some theoretical background on SSP Runge-Kutta meth-
ods, we would like to use them in our FCT framework.

From the integral form of our conservation law (3.1) and the derivation of finite
volume methods we know that

u′
j(t)=− 1

∆x

(
F j+ 1

2
−F j− 1

2

)
, j = j1, . . . , jN ,

so we have a formulation we can use to apply a Runge-Kutta method.
So now we want to look at a comparison of classical FCT with forward Euler time

discretization and FCT combined with the Shu-Osher method. Since the order of the
spatial discretization drops down to first order at steep gradients, we cannot gain much
from a very high order time integration. Numerical experiments show, however, that this
third order method still yields better results than one with second order. To be able to
actually observe order, we cannot take the square wave example here. Instead, we use
the Gaussian wave test with periodic boundary conditions as an example. The initial
data, a Gaussian, is advected by exactly one interval length. The exact solution is hence
equal to the initial data. For this experiment, we chose λ= ∆t

∆x = 1
2 .

Figure 5.12 shows the result with classical FCT. There is some diffusion and the
numerically computed pulse leans somewhat to the left.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1
Euler
exact

Figure 5.12: Classical FCT scheme

Now, we run the same test again, but this time using the third order Shu-Osher
method, see figure 5.13. Note how much influence the higher order method has even on
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the shape of the Gaussian in figure 5.14. Both do suffer some diffusion, but not nearly as
badly as with upwind or Lax-Friedrichs alone.

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1
Shu Osher
exact

Figure 5.13: Shu-Osher scheme with FCT flux
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Figure 5.14: Direct comparison of the Euler and Shu-Osher scheme, both with FCT flux
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In chapter 3, we have discussed how hyperbolic conservation laws may have discontinu-
ous solutions despite smooth initial data. This poses a major problem for the numerical
solution. Linear methods of order higher than one produce spurious oscillations. Espe-
cially undershoots can be problematic when they lead to negative values of the numerical
solution.

In this thesis, we want to simulate a relativistic vacuum-plasma transition of a laser
pulse. In the simulation of laser-plasma interaction, we are dealing with plasma density,
which cannot be negative physically. Classical schemes, however, cannot guarantee non-
negativity, which is why we will be using the FCT scheme from chapter 5.

6.1 Equations

We want to model a laser pulse that starts in a vacuum and enters a plasma. In the
one dimensional case, the domain Ω⊂R is simply some interval. We are not interested
in boundary effects, so we are going to use periodic boundary conditions for an easy
implementation.

In most simulations, the equations are scaled by quantities of the problem setting. In
this case, measuring everything in terms of the plasma yields the “nicest” equations, as
we have seen in chapter 4.

For the laser, we have Maxwell’s equations

∂E
∂t

=∇×B− j (6.1a)

∂B
∂t

=−∇×E, (6.1b)

see chapter 2.
We start by considering the one-dimensional case, i.e., derivatives with respect to y

and z are set to zero, which yields ∂tBx = 0 and hence Bx ≡ 0. Thus, (6.1) read

∂Ex

∂t
=− jx

∂E y

∂t
=−∂Bz

∂x
− j y

∂Ez

∂t
= ∂By

∂x
− jz

∂By

∂t
= ∂Ez

∂x
∂Bz

∂t
=−∂E y

∂x
.

For the plasma, we use the fluid formulation we have introduced in chapter 4. In the
one-dimensional case, they read

∂ρ

∂t
+ ∂

∂x
(ρvx)= 0 (6.2a)

∂(ρp)
∂t

+ ∂

∂x
(ρpvx)= ρ(E+v×B) (6.2b)

where ρ is the density, v the velocity and p the momentum. All quantities except ρ are
three-dimensional functions; subscripts indicate the component.
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Needless to say, we need appropriate initial conditions to all equations for unique
solutions.

6.2 The YeeFCT Algorithm

We have a large amount of equations that need to be solved. We have discussed the
numerical solution of Maxwell’s equations in chapter 2 and of hyperbolic conservation
laws in section 3.2. We even elaborated the Boris push for the correct handling of the
rotational Lorentz force. We will now show how to combine them.

To solve (6.1) and (6.2) numerically, we will use a symmetric splitting technique. For
our case, we will have three components. First, there are Maxwell’s equations without
the current j,

∂E
∂t

=∇×B (6.3a)

∂B
∂t

=−∇×E (6.3b)

whose numerical flow we will denote by φ[1]. Its exact definition will be explained later
on. For now, we only want to discuss the structure of the splitting, for which we do not
yet need to define the flows. φ[2] describes the numerical flow for the right hand side in
(6.2b),

∂(ρp)
∂t

= ρ(E+v×B). (6.4)

Finally, we have the plasma equations (6.2a) and (6.2b) without the Lorentz force on the
right hand side plus the Maxwell part with only the current j = ρv,

∂ρ

∂t
+ ∂

∂x
(ρvx)= 0 (6.5a)

∂(ρp)
∂t

+ ∂

∂x
(ρpvx)= 0 (6.5b)

∂E
∂t

=− j (6.5c)

for which we use the numerical flow φ[3].
Of course, we could simply combine into a Lie-Trotter splitting by solving one after

the other as in equation (2.15). But as we have seen in section 2.2, a symmetric Strang
splitting as in equation (2.16),

φ[1]
∆t/2 ◦φ

[2]
∆t/2 ◦φ

[3]
∆t ◦φ[2]

∆t/2 ◦φ
[1]
∆t/2 (6.6)

might be better.
Our inner step consists of the plasma equations (6.5). This is the computationally

most challenging part.
The first and last step are Maxwell’s equations (6.3) without the current j, which has

already been taken care of in the inner step. In between, we use a Boris push to treat the
particle motion due to the Lorentz force in (6.4),
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The system in the one-dimensional case now reads

∂By

∂t
= ∂Ez

∂x
∂Bz

∂t
=−∂E y

∂x
∂Ex

∂t
=− jx

∂E y

∂t
=−∂Bz

∂x
− j y

∂Ez

∂t
= ∂By

∂x
− jz

∂ρ

∂t
+ ∂

∂x
(ρvx)= 0

∂(ρp)
∂t

+ ∂

∂x
(ρpvx)= ρ(E+v×B)

where the colors indicate the splitting, which is carried out according to (6.6). Note
that both the Yee scheme and the Boris push are splitting schemes themselves, so the
algorithm as a whole consists of several sub-algorithms.

To explicitly state our algorithm, we first have to define a grid and the position of all
quantities on this grid. To solve Maxwell’s equations, we need a staggered grid. Without
loss of generality, assume Ω= (0,L). We divide Ω into subintervals D j = [x j, x j+1] where
x j = j∆x such that Ω=⋃N−1

j=1 D j. In accordance to the projection of a three-dimensional
Yee-cell onto the real line, we approximate the y- and z-components of the magnetic field
and the x-component of the electric field on the interfaces, while the y- and z-components
of the electric field and the density, velocity and momentum are measured in the middle
of each interval, i.e., at x j+ 1

2
. See figure 6.1 for a schematic view. Recall that Bx ≡ 0 in

the one-dimensional case, otherwise it would also be approximated in the cell middle.

x j

Ex

x j+1

By,z

x j+ 1
2

E y,z

ρ
p

Figure 6.1: Placement of variables on the one-dimensional grid

The approach for solving the Maxwell part is the Yee scheme from chapter 2 where
half steps for the magnetic fields were combined with whole steps for the electric fields.
Since we are doing only half a step of this procedure, the steps reduce to ∆t

2 and ∆t
4 . Thus,

the first half step with Maxwell’s equations looks as follows.
First, a quarter time step with the magnetic fields is performed,

B
n+ 1

4
y, j = Bn

y, j +
∆t

4∆x

(
En

z, j+ 1
2
−En

z, j− 1
2

)
B

n+ 1
4

z, j = Bn
z, j −

∆t
4∆x

(
En

y, j+ 1
2
−En

y, j− 1
2

)
.
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Next, we use those magnetic updates to compute a half time step for the electric fields,

E−
x, j = En

x, j

E−
y, j+ 1

2
= En

y, j+ 1
2
− ∆t

2∆x

(
B

n+ 1
4

z, j+1 −B
n+ 1

4
z, j

)
E−

z, j+ 1
2
= En

z, j+ 1
2
+ ∆t

2∆x

(
B

n+ 1
4

y, j+1 −B
n+ 1

4
y, j

)
and finally, these are plugged into another quarter step for the magnetic fields,

B
n+ 1

2
y, j = B

n+ 1
4

y, j + ∆t
4∆x

(
E−

z, j+ 1
2
−E−

z, j− 1
2

)
B

n+ 1
2

z, j = B
n+ 1

4
z, j − ∆t

4∆x

(
E−

y, j+ 1
2
−E−

y, j− 1
2

)
.

Our next inner step is the Boris push we discussed in section 4.2. This is itself a
splitting scheme, which separates the magnetic and electric update in (6.4). We proceed
first with an electric update

(ρp)−j+ 1
2
= (ρp)n

j+ 1
2
+ ∆t

2
ρn

j+ 1
2
E−

j+ 1
2

for all three components. Of course, we have to interpolate Ex to the half positions via
Ex, j+ 1

2
= (Ex, j+1 +Ex, j)/2. The magnetic part of the push takes two sub-steps, for which

we define two quantities

t= B
γ

∆t
4

s= 2t
1+‖t‖2 .

The latter are supposed to live on the half positions like γ, so we interpolate again to
get our magnetic field onto the correct grid positions via B j+ 1

2
= (B j+1 +B j)/2. Then we

perform two sub-steps for the cross product v×B, which are

(ρp)′ = (ρp)−+ (ρp)−× t
(ρp)+ = (ρp)−+ (ρp)′× s.

Component-wise, these read

(ρpx)′j+ 1
2
= (ρpx)−j+ 1

2
+ (ρpy)−j+ 1

2
tz, j+ 1

2
− (ρpz)−j+ 1

2
ty, j+ 1

2

(ρpy)′j+ 1
2
= (ρpy)−j+ 1

2
− (ρpx)−j+ 1

2
tz, j+ 1

2

(ρpz)′j+ 1
2
= (ρpz)−j+ 1

2
+ (ρpx)−j+ 1

2
ty, j+ 1

2

and

(ρpx)+j+ 1
2
= (ρpx)−j+ 1

2
+ (ρpy)′j+ 1

2
sz, j+ 1

2
− (ρpz)′j+ 1

2
sy, j+ 1

2

(ρpy)+j+ 1
2
= (ρpy)−j+ 1

2
− (ρpx)′j+ 1

2
sz, j+ 1

2

(ρpz)+j+ 1
2
= (ρpz)−j+ 1

2
+ (ρpx)′j+ 1

2
sy, j+ 1

2
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in the one-dimensional case.
Now we have reached our inner fluid full step. Equations (6.5) read

∂ρ

∂t
+ ∂

∂x
(ρvx)= 0 (6.7a)

∂

∂t
(ρp)+ ∂

∂x
(ρpvx)= 0 (6.7b)

∂E
∂t

=−ρv=−ρp
γ

. (6.7c)

Equations (6.7a) and (6.7b) are approximated by an FCT scheme. So we obtain ρn+1
j+ 1

2

from ρn
j+ 1

2
and (ρp)++

j+ 1
2

from (ρp)+
j+ 1

2
For the low order flux, we use the Lax-Friedrichs

scheme and the central fourth order flux for the high order part. Numerical experiments
indicated that this is the best possible combination of all methods discussed here.

We will state the following part of the algorithm with forward Euler for simplicity. In
practice, we perform the time integration of the fluid equations by an SSP Runge-Kutta
method (cf. section 5.3) to improve accuracy.

For (6.7c), we obtain

E+
j+ 1

2
= E−

j+ 1
2
−∆t

(ρp)+
j+ 1

2

γ+
j+ 1

2

for the y- and z-components. For Ex, we interpolate the right hand side to whole positions
via

p j =
p j+ 1

2
+ p j− 1

2

2

γ j =
√

1+
∥∥p j

∥∥2
2

(ρp)x, j =
(ρp)x, j+ 1

2
+ (ρp)x, j− 1

2

2

and obtain

E+
x, j = E−

x, j −∆t
(ρp)+x, j

γ+j
.

The remaining part is quite obvious, i.e., magnetic push, electric push and Maxwell’s
equations. Each time we use the latest approximation we have obtained in a previous
splitting step as initial value for the next step. So we obtain (ρp)∗

j+ 1
2

from (ρp)++
j+ 1

2
in the

magnetic push, (ρp)n+1
j+ 1

2
from (ρp)∗

j+ 1
2

in the electric push, and En+1 and Bn+1 from E+

and Bn+ 1
2 in the second half step with the Yee scheme.

Dispersion

We have already looked at dispersion for FCT alone. Now we have a much more complex
setting that we wish to analyze. To do so, we make some simplifying assumptions. We
only consider the non-relativistic case, i.e., γ ≡ 1. In this case, the magnetic part of
the Lorentz force is negligible because the velocity v is small, ‖v‖ ¿ c and we assume
B ≡ 0. This makes the Yee part of our algorithm superfluous because the derivatives of
the magnetic field components that are needed for the electric updates are zero as well.
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The algorithm then reduces to half an electric push, fluid step, and another half step
of the electric push. With γ ≡ 1, we have p ≡ v. Finally, we assume vx to be constant8

and constant density ρ, which eliminates another equation. The field components are
approximated on different places on the grid, so we cannot carry out the calculations
for all three components at once. Hence, we consider the y- or z-component where we
need no interpolation. For ease of notation, we drop the component subscripts for the
dispersion considerations.

Lemma 6.1. Under the above simplifying assumptions, the numerical dispersion relation
for the one-dimensional YeeFCT scheme with Lax-Friedrichs and central second order
fluxes in the FCT algorithm reads

eiω∆t = 1
2

(
C j+1 +C j −∆t2ρ

)+ ∆t
4

ρ∆t

1− ∆t2

2 ρ− eiω∆t

(
2+C j+1 +C j −∆t2ρ

)
+

(
1
2
+ ∆t

4
ρ∆t

1− ∆t2

2 ρ− eiω∆t

)(
e−ik∆x(1−C j+1 −λv)+ eik∆x(1−C j +λv)

)
.

Proof. To derive the numerical dispersion relation, we first have to plug everything into
the last half electric push, which computes

ρpn+1
j+ 1

2
= ρp++

j+ 1
2
+ ∆t

2
ρE+

j+ 1
2

where ρp++
j+ 1

2
denotes the fluid step with FCT. Sticking to forward Euler in time and using

the calculations from chapter 5 with Lax-Friedrichs and the central second order flux, we
obtain

FFCT
j = ρ

2

(
vp−

j+ 1
2
+vp−

j− 1
2

)
− (1−C j)

ρ

2λ

(
p−

j+ 1
2
− p−

j− 1
2

)
,

where v denotes the x-component of the velocity, which we assumed to be constant. Hence
we have

ρp++
j+ 1

2
= ρp−

j+ 1
2
−ρv

λ

2

(
p−

j+ 3
2
− p−

j− 1
2

)
+ ρ

2

(
p−

j+ 3
2
−2p−

j+ 1
2
+ p−

j− 1
2

)
− ρC j+1

2

(
p−

j+ 3
2
− p−

j+ 1
2

)
+ ρC j

2

(
p−

j+ 1
2
− p−

j− 1
2

)
.

To derive the complete formula for ρpn+1, we have to substitute the update for the electric

8Note that when considering the x-component of the equation, this is no longer a valid assumption since
vx = px in the non-relativistic case, so we have to cope with a quadratic term, which complicates things even
further.
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field, E+ = En −∆tρp−, and the electric push ρp− = ρpn + ∆t
2 ρEn, which yields

ρpn+1
j+ 1

2
= ρp++

j+ 1
2
+ ∆t

2
ρ(En

j+ 1
2
−∆tρp−

j+ 1
2
)

= ρp−
j+ 1

2
−ρv

λ

2

(
p−

j+ 3
2
− p−

j− 1
2

)
+ ρ

2
(p−

j+ 3
2
−2p−

j+ 1
2
+ p−

j− 1
2
)

− ρC j+1

2
(p−

j+ 3
2
− p−

j+ 1
2
)+ ρC j

2
(p−

j+ 1
2
− p−

j− 1
2
)+ ∆t

2
ρ(En

j+ 1
2
−∆tρp−

j+ 1
2
)

= ρpn
j+ 1

2
+ ∆t

2
ρEn

j+ 1
2
− λ

2
ρv

(
pn
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2
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2
En
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2
− pn

j− 1
2
− ∆t

2
En

j− 1
2

)
+ ρ

2

(
pn
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2
+ ∆t

2
En

j+ 3
2
−2

(
pn

j+ 1
2
+ ∆t

2
En

j+ 1
2

)
+ pn

j− 1
2
+ ∆t

2
En

j− 1
2

)
− ρC j+1

2

(
pn

j+ 3
2
+ ∆t

2
En

j+ 3
2
− pn

j+ 1
2
− ∆t

2
En

j+ 1
2

)
+ ρC j

2

(
pn

j+ 1
2
+ ∆t

2
En

j+ 1
2
− pn

j− 1
2
− ∆t

2
En

j− 1
2

)
+ ∆t

2
ρ

(
En

j+ 1
2
−∆tρ

(
pn

j+ 1
2
+ ∆t

2
En

j+ 1
2
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.

After some simplifications, we obtain

ρpn+1
j+ 1

2
= 1

2
ρpn

j+ 1
2

(
C j+1 +C j −∆t2ρ

)+ ∆t
4
ρEn

j+ 1
2

(
2+C j+1 +C j −∆t2ρ

)
+ 1

2
ρpn

j+ 3
2
(1−C j+1 −λv)+ 1

2
ρpn

j− 1
2
(1−C j +λv)

+ ∆t
4
ρEn

j+ 3
2
(1−C j+1 −λv)+ ∆t

4
ρEn

j− 1
2
(1−C j +λv).

Inserting p = p0eiωt−ikx and E = E0eiωt−ikx now yields

p0eiω∆t = 1
2

p0
(
C j+1 +C j −∆t2ρ

)+ ∆t
4

E0
(
2+C j+1 +C j −∆t2ρ

)
+

(
1
2

p0 +
∆t
4

E0

)(
e−ik∆x(1−C j+1 −λv)+ eik∆x(1−C j +λv)

)
.

(6.8)

To obtain the numerical dispersion relation, we also have to consider the electric
update

En+1
j+ 1

2
= E+

j+ 1
2
= En

j+ 1
2
−∆tρp−

j+ 1
2
=

(
1− ∆t2

2
ρ

)
En

j+ 1
2
−∆tρpn

j+ 1
2
.

Inserting the harmonic wave solution yields

E0eiω∆t =
(
1− ∆t2

2
ρ

)
E0 −∆tρp0,

which we solve for E0. Inserting this into (6.8) yields

eiω∆t = 1
2

(
C j+1 +C j −∆t2ρ

)+ ∆t
4

ρ∆t

1− ∆t2

2 ρ− eiω∆t

(
2+C j+1 +C j −∆t2ρ

)
+

(
1
2
+ ∆t

4
ρ∆t

1− ∆t2

2 ρ− eiω∆t

)(
e−ik∆x(1−C j+1 −λv)+ eik∆x(1−C j +λv)

)
.
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6 Relativistic Laser-Plasma Interaction in 1D

If we multiply this equation by the denominator 1− ∆t2

2 ρ− eiω∆t, we obtain an ex-
pression in η := eiω∆t. For fixed ∆t, ∆x, ρ, k and C, we can interpret the expression
as a problem of finding the roots of a polynomial of degree two in η. For C ≡ 1, which
corresponds to using only the second order flux in the FCT scheme, we obtain

η1,2 =−α
2
±

√
α2

4
−1−β

with
α=∆t2ρ−2+β, β= iλvsin(k∆x).

The high order flux is the simplest case. Also, it covers only one choice of fluxes in the
FCT scheme. Therefore and because of all the simplifying assumptions we made in the
beginning, we are not in the position to make any general statements about the numerical
dispersion of the YeeFCT algorithm. The following numerical examples illustrate the
practical performance.

6.3 Numerical Experiments

Having stated the algorithm to our governing equations, we can study some numerical
experiments. We want to look at a vacuum-plasma transition, which is a complex example
that is hard to handle. In vacuum, the density is zero, which poses the first major problem
for most numerical schemes. Somewhere inside this vacuum there will be an area where
the plasma is placed and the density is set to one (or some other value). The transition
from vacuum to plasma can be modeled linearly or even smoothly by applying a Gaussian
at the edges. A jump is also possible numerically, but in reality there will always be some
transition area, so we model it with Gaussian edges. All velocities — and therefore also
momenta — are set to zero initially.

Now let us go on to the laser. In Maxwell’s equations, E y is interleaved with Bz, while
the other couple of equations contains Ez and By. Ex is only changed through currents
in the one-dimensional case, so we set it to zero initially.

The initial values of the other field components are sine and cosine waves enclosed
by a Gaussian, i.e.,

E0
y = e−

(x−xm )2

σ2 cos(k0x)

B0
z = e−

(x−xm )2

σ2 cos(k0x)

E0
z =−e−

(x−xm )2

σ2 sin(−k0x)

B0
y = e−

(x−xm )2

σ2 sin(−k0x)

where k0 = ω0 in vacuum.9 The quotient 1
ω2

0
= ρ

ρc
=: ρ̃ indicates how close we are to the

critical plasma density ρc.
If the plasma is over-dense, i.e., ρ̃ > 1, the pulse is reflected by the plasma. For low

densities, the laser pulse will move through the plasma without exciting it or changing
its own shape. We are mainly interested in cases of under-dense plasmas, which do cause
visible laser-plasma interaction.

The initial data for ω0 = 3 (ρ̃ ≈ 0.11) and Gaussian plasma edges can be seen in
figure 6.2.

9The relation is ck0 =ω0, but in the units used here, c = 1.
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Figure 6.2: Initial configuration for ω0 = 3

To apply the above YeeFCT algorithm, we have to calculate also the relativistic factor

γ=
√

1+ p2
x + p2

y + p2
z

and the velocities v= p
γ

. For the division of ρp by ρ, we assume the momenta be zero in
(or near) vacuum.

The grid has constant step size ∆x = 0.1. After 250 time steps of ∆t = ∆x
2 , the pulse

has reached the ramp and we can see the first effects in figure 6.3. The plasma is quite
dense, so there is a slight deformation of the pulse and the momenta are starting to grow.

If we look a little further, after 500 time steps, the pulse has fully immerged into the
plasma and has excited it. The movement is shown in figure 6.4.

In figure 6.5 we see how the pulse is just leaving the plasma. The momenta in y-
and z-direction have gone down again while the plasma is still in motion due to the
momentum ρpx.

As a further comparison, let us look at different values for ω and compare them at
time t = 50T0, which corresponds to 500 steps in the above example. In all figures, we
scale the density to 1 for easier comparison.

Note that for ω = 10, we only have 1% critical density. The pulse goes through the
plasma almost unharmed and the plasma does not move much, either (see figure 6.6).
ω= 5 shows a little more interaction (figure 6.7), while for ω= 2 (figure 6.8) or even ω= 1.2
(figure 6.9), we are getting closer to critical density and the pulse deforms completely and
is even partially reflected.

The simulations are remarkably good and show the expected behavior for the various
parameters. Densities stay non-negative and the whole procedure remains stable dur-
ing the vacuum-plasma transition, which is usually the point of failure in this kind of
simulation — especially for small ω, which corresponds to a high density.
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Figure 6.3: Simulation after 250 steps
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Figure 6.4: Simulation after 500 steps
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Figure 6.5: Simulation after 750 steps
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Figure 6.6: Simulation with ω= 10 after 500 steps
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Figure 6.7: Simulation with ω= 5 after 500 steps
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Figure 6.8: Simulation with ω= 2 after 500 steps
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Figure 6.9: Simulation with ω= 1.2 after 500 steps

Comparison with Existing Codes

In the following, we compare the results of our code to those of a well-established Vlasov-
simulation (see for example [CK76], [SRBG99], [BGB+99] or [GHB03]). Most of these use
laser units, i.e., the quantities are measured in laser rather than plasma wavelengths
and frequencies. So to be able to compare, we have to rescale the results obtained with
the plasma units equations according to section 4.3 by dividing any spatial values by
the laser wavelength λ0 = 2π

k0
and the times by T0 = 2π

ω0
. For this test, we use a circularly

polarized laser pulse with

B0
y =

k0

2
p

2
e−( x−xm

σ )2
sin(−k0x)

B0
z =

k0

2
p

2
e−( x−xm

σ )2
cos(−k0x)

E0
y =

ω0

2
p

2
e−( x−xm

σ )2
cos(−k0x)

E0
z =− ω0

2
p

2
e−( x−xm

σ )2
sin(−k0x)

so compared to the tests above, the initial values are slightly different — the amplitudes
are scaled here. We compare our results to those of a Vlasov simulation carried out by Dr.
Götz Lehmann of Heinrich-Heine-Universität Düsseldorf.

Test Case 1: Low Density

We want to look at the case ρ̃ = 0.04, which means ω0 = 5. We choose σ such that the full
width at half maximum (FWHM) of the Gaussian is 2π in plasma units. Note that the
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6 Relativistic Laser-Plasma Interaction in 1D

Vlasov simulation took a mesh size of ∆x = 0.005, while we used ∆x = 0.05 for YeeFCT —
ten times that of the Vlasov code. The simulation worked fine even for ∆x = 0.1, but
then the emerging peaks are not resolved well enough. For the time step ∆t, we have to
make sure it satisfies the CFL condition. Since we normalized our velocities such that
the speed of light is one in our units, the absolute value of any velocity is bounded by one
and so λ= 1 satisfies the CFL condition of any method we considered.

Let us take a look at the numerical results at a few points in time. Figures 6.10
through 6.15 show the density and some of the field components from both simulations,
which compare really well. The spatial discretization is fine enough to resolve all peaks,
but still ten times bigger than what the Vlasov code had to use.

0 2 4 6 8 10 12 14 16 18 20 22

0

0.01
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Figure 6.10: Density with YeeFCT and the reference Vlasov simulation at t ≈ 5T0

Since we are dealing with conservation laws, YeeFCT should conserve the total mass.
It turns out that this is the case, as can be seen in figure 6.16. The errors are very close
to machine precision, so using a conservative method really paid off.

Another important quantity is energy. The conservation of mass and energy is a fun-
damental principle in physics. Since YeeFCT does not incorporate any energy conserving
techniques — except for the symmetric splitting —, we cannot hope for the conservation
of energy to be as neat as the conservation of mass. The total energy W within a given
volume V is

W = 1
2

∫
V

B2 +E2 +2ρ(γ−1)dV .

What we observe is that once the pulse enters the plasma, the error in energy increases.
But even then, the relative error in this simulation does not grow beyond 10%, see
figure 6.17. This is not overwhelming, but better than we have hoped for. Of course,
the results are a lot better if we refine our grid. Figure 6.18 shows the relative error in
energy at the final time for different ∆x. The error decreases with decreasing mesh size
roughly like O (∆x).

If we take another moment of the Vlasov equation and do not neglect pressure and
temperature like in section 4.1, we end up with an equation for the energy (and a modified

90



6.3 Numerical Experiments

0 2 4 6 8 10 12 14 16 18 20 22

0

0.01

0.02

0.03

0.04

x/λ0

Yee-FCT
Vlasov

Figure 6.11: Density with YeeFCT and the reference Vlasov simulation at t ≈ 10T0

equation for the momentum density). That way we could have much better conservation
of energy. FCT would be perfectly suited to numerically solve this equation, as well. On
the other hand, we would have to deal with yet another equation and more variables.
Since energy conservation already works sufficiently well without the additional equation,
it might be more sensible to stick to what we have. This is always a decision between
accuracy and efficiency.
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Figure 6.12: Electric field component E y with YeeFCT and Vlasov simulation at t ≈ 10T0
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Figure 6.13: Density with YeeFCT and the reference Vlasov simulation at t ≈ 15T0
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Figure 6.14: Magnetic field component By with YeeFCT and Vlasov simulation at t ≈ 15T0
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Figure 6.15: Density with YeeFCT and the reference Vlasov simulation at t ≈ 20T0
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Figure 6.16: Relative error in total mass
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Figure 6.17: Relative error in energy
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Figure 6.18: Order plot of the relative error in energy
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Test Case 2: High Density

For the second test, we use the same setting, except that we increase the density to
ρ̃ = 0.6 — more than half the critical density. The Vlasov code used ∆x = 0.0025, so we
choose ∆x = 0.025 — again ten times the Vlasov mesh size.
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Figure 6.19: Density with YeeFCT and the reference Vlasov simulation at t ≈ 5T0

Figures 6.19 through 6.24 show the same comparisons as in the first test. The plasma
response is much more violent and the simulations do not agree in all details anymore.
The qualitative behavior, however, is captured really well again by YeeFCT.

The conservation of mass is also remarkably strong. The relative error of total mass
is only about ten times machine precision.

The conservation of energy is similar to the previous example (see figure 6.26), but
altogether, the error is bigger now. Figure 6.27 shows an order plot, which again shows
order one.

The snapshots of the two simulations show how well the YeeFCT combination works.
We can make much larger steps than the Vlasov code and still obtain very accurate
results. Only at peaks, the resolution is, of course, not quite as good. Also the comparison
of computation time is impressive: Since the Vlasov code is basically two-dimensional, it
takes about 80 times longer than YeeFCT!

In summary, we conclude that YeeFCT does have a little weakness in energy conser-
vation, but is more than competitive in all of accuracy, computational cost and time. The
qualitative behavior of both the laser and the plasma is reproduced really well — even
for high densities.
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Figure 6.20: Density with YeeFCT and the reference Vlasov simulation at t ≈ 10T0
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Figure 6.21: Comparison of the magnetic field component E y with YeeFCT and the reference
Vlasov simulation at t ≈ 10T0
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Figure 6.22: Density with YeeFCT and the reference Vlasov simulation at t ≈ 15T0
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Figure 6.23: Comparison of the magnetic field component By with YeeFCT and the reference
Vlasov simulation at t ≈ 15T0
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Figure 6.24: Density with YeeFCT and the reference Vlasov simulation at t ≈ 20T0
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Figure 6.25: Relative error in total mass
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Figure 6.26: Relative error in energy
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Figure 6.27: Order plot of the relative error in energy
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7 Relativistic Laser-Plasma Interaction in 2D

After we have taken the first step by successfully applying the presented YeeFCT scheme
to the one-dimensional vacuum-plasma transition of a laser pulse, we now want to
achieve another important goal — the two-dimensional case. A lot of things that work in
1D are not transferable to the multidimensional case. Recall from chapter 5 that we had
to introduce a further limiting step because applying FCT to both coordinate directions
simply was not enough. But this problem has been solved successfully. The Yee scheme
is well-known to work just fine in the multidimensional case. That leaves the Boris push,
but that was constructed for the fully three-dimensional case and adjusted from there to
1D. Now we adjust it to 2D. So we are all set to take the step into the second dimension.

7.1 Equations

The setting is the same as in the previous chapter. We still consider a vacuum-plasma
transition of a laser pulse. Think of the domain Ω⊂ R2 as some rectangle. This is easy
to implement together with periodic boundary conditions, so we do not have to deal with
other difficulties than the ones already at hand.

In the two-dimensional case, only derivatives with respect to z are set to zero. So now,
Maxwell’s equations read

∂Ex

∂t
= ∂Bz

∂y
− jx

∂E y

∂t
=−∂Bz

∂x
− j y

∂Ez

∂t
= ∂By

∂x
− ∂Bx

∂y
− jz

∂Bx

∂x
=−∂Ez

∂y
∂By

∂t
= ∂Ez

∂x
∂Bz

∂t
= ∂Ex

∂y
− ∂E y

∂x

and the two-dimensional plasma equations are

∂ρ

∂t
+ ∂

∂x
(ρvx)+ ∂

∂y
(ρvy)= 0

∂(ρp)
∂t

+ ∂

∂x
(ρpvx)+ ∂

∂y
(ρpvy)= ρ(E+v×B).

7.2 The YeeFCT Algorithm

There is not much change in the structure of the algorithm compared to the previously
discussed one-dimensional case. We take the above equations and split them in the same
way as before,

φ[1]
∆t/2 ◦φ

[2]
∆t/2 ◦φ

[3]
∆t ◦φ[2]

∆t/2 ◦φ
[1]
∆t/2
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where red stands for Maxwell’s equations without current j,
∂E
∂t

=∇×B

∂B
∂t

=−∇×E,

then green for the Boris push in

∂(ρp)
∂t

= ρ(E+v×B),

and finally blue for the fluid equations

∂ρ

∂t
+ ∂

∂x
(ρvx)+ ∂

∂y
(ρvy)= 0

∂(ρp)
∂t

+ ∂

∂x
(ρpvx)+ ∂

∂y
(ρpvy)= 0

∂E
∂t

=− j.

We solve these equations on a rectangular finite difference grid. We choose constant
mesh sizes ∆x and ∆y such that Ω = ⋃

i, j D i j where D i j = [xi, xi+1]× [yj, yj+1] and xi j =
(i∆x, j∆y)T .

If we project the three-dimensional Yee-cell onto R2, we see the placement of the field
components in figure 7.1. The density, velocities and momenta are again assumed at the
middle of each cell, i.e., at xi+ 1

2 , j+ 1
2
.

(i, j) (i+1, j)

(i+1, j+1)(i, j+1)

E y

Bx

Ex By

Bz

ByEx

Bx

E y
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Figure 7.1: Schematic view of a 2D Yee cell

The numerical procedure is the same as in the one-dimensional case. We only have
to adjust the equations. First, a quarter time step with the magnetic fields is performed,

B
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4
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2 , j

= Bn
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−En
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)
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(
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)
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then we use those magnetic updates to compute a half time step with the electric fields

E
n+ 1

2

x; i, j+ 1
2
= En

x; i, j+ 1
2
+ ∆t

2∆y

(
B

n+ 1
4

z; i, j+1 −B
n+ 1

4
z; i, j

)
E

n+ 1
2

y; i+ 1
2 , j

= En
y; i+ 1

2 , j
− ∆t

2∆x

(
B

n+ 1
4

z; i+1, j −B
n+ 1

4
z; i, j

)
E

n+ 1
2

z; i+ 1
2 , j+ 1

2
= En

z; i+ 1
2 , j+ 1

2
+ ∆t

2∆x

(
B

n+ 1
4

y; i+1, j+ 1
2
−B

n+ 1
4

y; i, j+ 1
2

)
− ∆t

2∆y

(
B

n+ 1
4

x; i+ 1
2 , j+1

−B
n+ 1

4

x; i+ 1
2 , j

)
and finally, these are plugged into another quarter step for the magnetic fields
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x; i+ 1
2 , j

− ∆t
4∆y

(
E

n+ 1
2

z; i+ 1
2 , j+ 1

2
−E

n+ 1
2

z; i+ 1
2 , j− 1

2

)
B

n+ 1
2

y; i, j+ 1
2
= B

n+ 1
4

y; i, j+ 1
2
+ ∆t

4∆x

(
E

n+ 1
2

z; i+ 1
2 , j+ 1

2
−E

n+ 1
2

z; i− 1
2 , j+ 1

2

)
B

n+ 1
2

z; i, j = B
n+ 1

4
z; i, j +

∆t
4∆y

(
E

n+ 1
2

x; i, j+ 1
2
−E

n+ 1
2

x; i, j− 1
2

)
− ∆t

4∆x

(
E

n+ 1
2

y; i+ 1
2 , j

−E
n+ 1

2

y; i− 1
2 , j

)
.

Our next step is the Boris push. We proceed first with the electric update

(ρp)−i+ 1
2 , j+ 1

2
= (ρp)n

i+ 1
2 , j+ 1

2
+ ∆t

2
ρn

i+ 1
2 , j+ 1

2
En+ 1

2

i+ 1
2 , j+ 1

2

for all three components. Of course, we have to interpolate Ex and E y to the half positions
via

Ex; i+ 1
2 , j+ 1

2
=

Ex; i+1, j+ 1
2
+Ex; i, j+ 1

2

2
and

E y; i+ 1
2 , j+ 1

2
=

E y; i+ 1
2 , j+1 +E y; i+ 1

2 , j

2
.

For the magnetic part of the push we define again the two quantities

t= B
γ

∆t
4

s= 2t
1+‖t‖2

for which we interpolate the magnetic field onto the grid positions required for the vector
products via

Bx; i+ 1
2 , j+ 1

2
=

Bx; i+ 1
2 , j+1 +Bx; i+ 1

2 , j

2

By; i+ 1
2 , j+ 1

2
=

By; i+1, j+ 1
2
+By; i, j+ 1

2

2

Bz; i+ 1
2 , j+ 1

2
= Bz; i+1, j+1 +Bz; i+1, j +Bz; i, j+1 +Bz; i, j

4
.

The two sub-steps for the cross product v×B are

(ρp)′ = (ρp)−+ (ρp)−× t
(ρp)+ = (ρp)−+ (ρp)′× s,
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which — dropping the spatial indices i+ 1
2 , j+ 1

2 for better readability — read component-
wise

(ρpx)′ = (ρpx)−+ (ρpy)−tz − (ρpz)−ty

(ρpy)′ = (ρpy)−+ (ρpz)−tx − (ρpx)−tz

(ρpz)′ = (ρpz)−+ (ρpx)−ty − (ρpy)−tx

and

(ρpx)+ = (ρpx)−+ (ρpy)′sz − (ρpz)′sy

(ρpy)+ = (ρpy)−+ (ρpz)′sx − (ρpx)′sz

(ρpz)+ = (ρpz)−+ (ρpx)′sy − (ρpy)′sx.

The inner step solves the fluid equations

∂ρ

∂t
+ ∂

∂x
(ρvx)+ ∂

∂y
(ρvy)= 0 (7.2a)

∂

∂t

 ρpx
ρpy
ρpz

+ ∂

∂x

 ρpxvx
ρpyvx
ρpzvx

+ ∂

∂y

 ρpxvy
ρpyvy
ρpzvy

= 0 (7.2b)

∂E
∂t

=−ρp
γ

. (7.2c)

For (7.2a) and (7.2b), we use FCT, while for (7.2c), we compute

En+1
i+ 1

2 , j+ 1
2
= En+ 1

2

i+ 1
2 j+ 1

2
−∆t

(ρp)n+1
i+ 1

2 j+ 1
2

γn+1
i+ 1

2 , j+ 1
2

or the appropriate approximation with an SSP Runge-Kutta method. Recall that we have
already interpolated all electric fields onto the half-half positions in the electric update
of the Boris push, so we can reuse them here as well as for the other half of the electric
push before transforming back to the regular positions in the Yee cell for the Maxwell
part.

7.3 Numerical Experiments

Now that we have shortly reviewed our equations and discussed the algorithm in 2D,
we are ready for some numerical examples. Both the Yee scheme and multidimensional
FCT have been tested on their own. We have already seen in chapter 5 that the rotating
cylinder was simulated successfully and the performance of the Yee scheme is widely
known (cf. [TH05]).

We consider two examples similar to what we have seen in the previous chapter in 1D.
The plasma now lies almost like some brick inside our computational domain. The laser
pulse starts again in vacuum, traveling towards and into the plasma. All calculations
and pictures are in laser units.

We compare our results to those of a PIC code by Götz Lehmann of Heinrich-Heine-
Universität Düsseldorf. For this kind of simulation, PIC codes are the standard method
of choice.
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Figure 7.2: Initial data for Ex

For better comparison with the PIC code, we extract the initial values of the fields
from there. For the PIC code, the pulse is introduced through so-called emitting boundary
conditions, so our starting point is some time into the PIC simulation — 12.5T0 to be
precise. The PIC simulation time goes up to 50T0 and we compare at PIC times. The PIC
data are only available every 2.5T0.

Test Case 1: Low Density

We start out with the lower density case where the density ρ maxes at 0.04ρc, that is 4%
critical density. Figures 7.2, 7.3 and 7.4 show the initial data for Ex, E y and Bz. Figure
7.5 shows a slice along the x-axis of all non-zero initial data. Note how this slice compares
to the 1D setting from the previous chapter, except that we are now using sharp edges
for the density profile instead of smoothing them by a Gaussian.

The PIC results were obtained by mesh sizes ∆x = 0.006 and ∆y = 0.039, while we
used ∆x = 0.02 and ∆y= 0.03 for YeeFCT. Remember that we can take time steps as big
as the CFL limit ∆xp

2
because our velocities are bounded by one, which is the speed of light

in our units.
To compare the results of both methods, we use again a slice along the x-axis and plot

the graphs into the same figure.
Figure 7.6 shows the densities computed with both methods at time t ≈ 15T0. This

is the first comparison after taking the initial data from the PIC simulation. Note how
much noise the PIC code has already produced in the density profile. Then in figure 7.7,
we see both densities at time t ≈ 20T0. Of course, YeeFCT does not reproduce the noise —
just as we want. The movement at the left slope where the pulse hits, fits almost perfectly
with what PIC did. The results for the electric and magnetic components E y and Bz at
the same time are shown in figures 7.8 and 7.9. Note how well YeeFCT reproduces the
shape of the pulses. Only the resolution of peaks is not quite as good due to the bigger
mesh size. The differences in peak height are roughly O (∆x).
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Figure 7.3: Initial data for E y
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Figure 7.4: Initial data for Bz
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Figure 7.5: Slice of initial data including plasma ramp
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Figure 7.6: Comparison of YeeFCT and PIC for the density at t/T0 ≈ 15
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Figure 7.7: Comparison of YeeFCT and PIC for the density at t/T0 ≈ 20
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Figure 7.8: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 20
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Figure 7.9: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 20

Figures 7.10, 7.11 and 7.12 show the same comparison at time t ≈ 30T0. The waves
that are excited in the plasma are reproduced very accurately by YeeFCT in spite of the
noise in the PIC results. Only the narrow peaks are again not resolved perfectly on the
coarser mesh.

0 5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

YeeFCT
PIC

Figure 7.10: Comparison of YeeFCT and PIC at t/T0 ≈ 30

In figure 7.13 at t ≈ 40T0, we see some diffusion effects for the density from the FCT
part of our algorithm. The pulse still looks pretty good.

At the final time t ≈ 50T0, the pulse in figures 7.17 and 7.18 looks good again. The
waves inside the plasma are reproduced quite well by YeeFCT, except for some diffusion.
But recall that by means of standard methods, we could not have hoped to achieve any of
this. A simple upwind or Lax-Friedrichs scheme would have produced a lot more diffusion
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Figure 7.11: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 30
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Figure 7.12: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 30
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Figure 7.13: Comparison of YeeFCT and PIC at t/T0 ≈ 40
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Figure 7.14: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 40
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Figure 7.15: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 40

while a higher order method like Lax-Wendroff would have introduced spurious ripples
even worse than the noise from the PIC code.
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Figure 7.16: Comparison of YeeFCT and PIC at t/T0 ≈ 50

To compare the fully two-dimensional results, see figures 7.19 and 7.20. The noise
makes the PIC image look somewhat smoother than the YeeFCT. But comparing to the
slice plot in figure 7.16, we see that YeeFCT actually produced a much smoother density
profile. However, we can still conclude that both images of the 2D results are very similar
and that YeeFCT worked really well here.

Let us look again at the conservation of mass. In this experiment, the relative error
stayed well below 10−6. Figure 7.21 shows a semilogarithmic plot of the relative error in
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Figure 7.17: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 50
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Figure 7.18: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 50
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Figure 7.19: Final density profile with YeeFCT
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Figure 7.20: Final density profile with PIC
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Figure 7.21: Relative error in total mass with YeeFCT

total mass for the above simulation.
The other important quantity is energy. We have already found in the one-dimensional

case that energy conservation was not optimal. What we observe is that once the pulse
enters the plasma, the error in energy increases. But even then, the relative error in this
simulation does not exceed 10%, see figure 7.22.
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Figure 7.22: Relative error in energy with YeeFCT

Test Case 2: High Density

Now, let us carry the high density example with ρ̃ = 0.6 from the previous chapter into
two dimensions. Like in the one-dimensional case, we reduce the step sizes to ∆x = 0.015
and ∆y= 0.02. Figures 7.23 et seqq. show the same snapshots we had for the comparison
in the low density case. Like in 1D, the curves do not fit as well as for low density, but
qualitatively, the results are very good again.

When it comes to computational time, YeeFCT, which is programmed in MATLAB,
takes less than an hour on a dual core desktop PC to achieve some decent results. The
computations shown here only took a few hours. The results from the C-programmed
PIC simulation, however, took a few days on a cluster of 190 processors! Of course, the
hydrodynamic model has its limits10, but as long as we are only interested in hydro-
dynamic effects, we can have even better results in terms of noise and such by using
YeeFCT for the simulation. And we should not forget that we are comparing a MATLAB
implementation with a highly optimized and parallelized C code. A halfway decent C
implementation of YeeFCT should give enough speedup to use a grid that is fine enough
to eliminate the remaining diffusion effects.

10wave-breaking is an example of what cannot be done using a hydrodynamic model
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Figure 7.23: Comparison of YeeFCT and PIC for the density at t/T0 ≈ 20
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Figure 7.24: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 20
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Figure 7.25: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 20
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Figure 7.26: Comparison of YeeFCT and PIC for the density at t/T0 ≈ 30
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Figure 7.27: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 30
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Figure 7.28: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 30
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Figure 7.29: Comparison of YeeFCT and PIC for the density at t/T0 ≈ 40
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Figure 7.30: Comparison of YeeFCT and PIC for E y at t/T0 ≈ 40
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Figure 7.31: Comparison of YeeFCT and PIC for Bz at t/T0 ≈ 40
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Figure 7.32: Relative error in total mass with YeeFCT
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Figure 7.33: Relative error in energy with YeeFCT
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8 Conclusions and Outlook

Knowing that the solution of hyperbolic conservation laws is quite tricky, the goal to
accurately simulate relativistic laser-plasma interaction — especially near vacuum — is
ambitious. We have to deal with two conservation laws for the plasma and additionally
some equations and terms for the laser.

The electromagnetic laser waves are described by Maxwell’s equations, for which the
Yee scheme from chapter 2 works really well. In section 3 we learned about the difficulties
with nonlinear hyperbolic conservation laws and discussed some classical approaches to
their numerical solution and the stability of those methods in section 3.2. The momentum
density equation contains a source term — the Lorentz force. In section 4.2, we examined
the nature of this force and introduced the Boris push for a correct rotational particle
movement. Finally, we presented the flux-corrected transport algorithm in chapter 5,
which is constructed to preserve the positivity of the numerical solution of nonlinear
conservation laws.

Now we had the ingredients for the numerical solution to every single part of our
equations, but the question remained how to combine them to find a numerical solution
to the whole set of equations. FCT does not involve source terms and coupling it with
the Yee scheme is not straightforward, either. We had to resort to yet another field
of numerical analysis and found an appropriate tool in symmetric splitting techniques.
That way we were able to combine the famous Yee scheme for Maxwell’s equations and
the Boris push for the Lorentz force with a positivity preserving FCT scheme into an
efficient algorithm for the numerical simulation of relativistic laser-plasma interaction.
The numerical results excellently reproduced what established codes like Vlasov or PIC
simulations showed, while YeeFCT is much faster — hours on a desktop PC versus days
on a cluster with a few hundred cores.

We also addressed the analysis of the scheme, which is somewhat difficult because
we do not know the values of the limiting factors as they depend on the solution at a
given time step. It might be interesting, though, to further examine the stability and
convergence properties. Maybe the knowledge about the properties of the underlying
high and low order schemes allows some conclusions about YeeFCT.

One important step towards improving YeeFCT lies in the implementation. While
MATLAB offers great possibilities for developing new methods in a comfortable environ-
ment, this comes at the price of a huge amount of overhead. A simple C or C++ imple-
mentation would eliminate this problem and would lead to an enormous speedup in com-
putation time. This would be a great opportunity especially for fully three-dimensional
simulations or in high density simulations where small time steps are required to resolve
the formation of large peaks.

The next obvious improvement would be variable step sizes. Adaptive time stepping
seems the easy part here since there are very good strategies for Runge-Kutta methods.
Adaptive mesh refinement, however, is usually quite complicated, especially in the mul-
tidimensional case. As a first step, non-uniform meshes without adaptive refinement
should be considered. In the vacuum-plasma transitions discussed in this thesis, it is
clear that the plasma ramp is where a finer grid is most necessary while in vacuum, a
coarser mesh is sufficient. The theory is easily adapted to non-uniform meshes, so it
would be interesting to see the influence on the numerical experiments.

The goal of this thesis was the simulation of a hydrodynamic model for relativistic
laser-plasma interaction, which is quite a complex field. The simulation of a kinetic model
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with PIC codes works, but takes a lot of time. For the application of a vacuum-plasma
transition, the YeeFCT scheme brought a huge speedup with very good results. This
advance marks the achievement of this thesis.
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