
Rapid Prototyping of a
Frequency Hopping Ad Hoc Network System

Martin Braun, Nico Otterbach, Jens Elsner, and Friedrich K. Jondral
Communications Engineering Lab, Karlsruhe Institute of Technology (KIT), Germany

D-76128 Karlsruhe, Germany
martin.braun@kit.edu, nico.otterbach@student.kit.edu, jens.elsner@kit.edu, friedrich.jondral@kit.edu

Abstract—Wireless networks in-the-loop is a method to develop
software radio systems which operate in networks. It eliminates
the gap between simulations and live testing by allowing the
developer to use the same code for both types of testing. This
allows the parallel development of signal processing and protocols
in a network context without having to use intermediary tools.
We demonstrate this concept using the example of frequency
hopping ad hoc networks, which are both challenging on the
signal processing side as well as on the network side.

Index Terms—Software Radio, GNU Radio, Ad hoc networks

I. INTRODUCTION

The concept of Software Radio has changed the domain of
radio technology development: A radio transceiver can now be
represented entirely in software, with some generic interfaces
for I/Q data and control signals (e.g. for centre frequency,
bandwidth or analog gain settings).

Ideally, an SDR developer would never have to touch a
piece of hardware when developing a radio system: The
specifications could be formatted as a set of (software) unit
tests, and once these pass, the SDR code is uploaded to its
target device.

For wireless networks, and ad hoc networks in particular,
this is not sufficient, as it is not only necessary to test indi-
vidual nodes, but also how they interact in different network
scenarios.

Wireless networks in-the-loop is a method to test networks
of SDR nodes without leaving the software domain. Essen-
tially, it models the distortions caused by the radio hardware
as well as the propagation channels and makes sure signals
are exchanged between nodes correctly. We first introduced
the concept in [5].

Alternatively, wireless networks in-the-loop provides a sim-
ple way to distribute the SDR code among hardware nodes to
perform over-the-air measurements. Channels can be sounded
to repeat the measurements in a simulated (software-only)
environment. These iterations – switching seamlessly between
real and simulated radio environments – are the central el-
ements of the development “loop”. Because the same code
is used for both modes, no additional development steps are
necessary, thereby reducing development time.

Our wireless networks in-the-loop implementation uses
GNU Radio for node development and radio propagation mod-
elling. The interfaces provided for the node implementations
are compatible to the USRP Hardware Drivers (UHD).

In the following section, we describe frequency hopping ad
hoc networks, which are a type of radio system which benefits
a lot from this kind of development. Section III describes
our implementation in further detail. We then demonstrate
the utility of wireless networks in-the-loop in Section IV, by
applying the concept to frequency hopping ad hoc networks.
Finally, Section V concludes.

II. FREQUENCY HOPPING AD HOC NETWORKS

In scenarios where randomly distributed radio nodes need
to form robust communication links, frequency hopping ad
hoc networks are a viable option. By using frequency hopping
(FH), nodes can both reduce collisions and interference due to
spatial re-use of frequencies (internal interference) as well as
the impact of third-party systems (external interference) [1].

However, the development of such systems is very complex:
From PHY layer issues, such as synchronization, to MAC pro-
tocol design (e.g., how are hop sets exchanged?) a multitude
of problems has to be dealt with. A challenging task is to
organize parallel data transmission on several channels in an ad
hoc network. Several classes of multi-channel medium access
protocols exist [2] that all have their strengths and weaknesses.

Theoretical approaches only give very limited insight into
the expected performance. To get a basic understanding of the
underlying trade-offs in wireless networks, simplified models
are employed. If an abstraction level is chosen that still
allows the application of semi-analytical tools, the results have
very limited applicability. For the analysis of interference in
wireless networks, such a tool is stochastic geometry that can
be used for interference modeling and yields spatially averaged
interference estimates [3]. On the MAC layer, simple Markov-
based models find widespread application [4].

Theoretical evaluation of all aspects of complex wireless
systems that are necessary to realistically evaluate the network
is plainly impossible. The resulting complexities of frequency
hopping and the complex network structure make frequency
hopping ad hoc networks an ideal candidate for testing our
wireless networks in-the-loop implementation.

A. Analysis of a specific node parametrization

In the following, we will analyse a network of nodes with
the following specifications:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197545635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1: Flow diagram of the node initialization sequence

a) Modulation: We use GMSK modulation with a bit
rate of 200 kbps. Available frequencies are spaced 1MHz
apart, every hop has a duration of 50ms, including a guard
time of 8ms. Data transmission occurs in bursts of variable
lengths (but never exceeding one hop).

b) Node addressing: Every node is dynamically assigned
a network address, which is used for point-to-point transmis-
sion. Upon activation, a node observes the spectrum to detect
other nodes (neighbourhood discovery). After a certain period
of time, the node assigns itself the lowest free network address
available. If no nodes are detected, it assigns itself address 1
(i.e., the lowest address possible).

Once a node has an address, it transmits a beacon packet
in random intervals, but with a fixed average repetition rate
(e.g. one beacon packet per 50 hops) on a hop set reserved for
broadcast signals (the broadcast channel). These beacons are
used by new nodes to identify the available network addresses.

After identifying other nodes and synchronizing with the
hopping sequence, a node waits a random time to avoid
simultaneous synchronisation with another new node.

Fig. 1 illustrates the addressing and synchronisation se-
quence.

c) Point-to-point data transmission: Every node has its
own hop sequence for data transmission, which is defined
by its network address. When one nodes wants to transmit
to another, it sends a request-to-send (RTS) packet to the
destination node. If this node is not occupied, it answers with
a clear-to-send (CTS) packet. The transmitting node can then
transmit the data packets.

If no CTS packet is received, it retries the process after a
random duration which increases with every try. After a certain
number of tries, the receiving node is assumed to be no longer

Fig. 2: Flow diagram of a point-to-point data transmission

Fig. 3: Example of a channel access by three nodes.

available, and it is removed from the list of neighbours, as
shown in Fig. 2.

Fig. 3 shows an example of three nodes accessing four
channels in total. First, node 1 attempts to transmit to node
2, receives a CTS signal and transmits. The same happens
between nodes 1 and 3. Nodes 3 and 2 also send out a beacon
signal (BCN) on the broadcast channel (BCST).

III. WIRELESS NETWORKS IN-THE-LOOP

A method to speed up development time and remove
the gap between simulation and implementation is Wireless
Networks in-the-loop. The principle is simple: Instead of
alternating between simulations (e.g. using Matlab) and testing
live implementations, a radio system is directly developed
using a software radio framework. In order to transmit and
receive, such radio systems are connected to some kind of
RF hardware, which performs the necessary steps to convert
between passband and complex baseband signals (frequency



(a) Software Radio nodes operating with RF hardware

(b) Software Radio (SR) nodes operating in a virtual environment. A dispatch
and control process (DCP) controls the individual nodes.

Fig. 4: The two modes of the wireless networks in-the-loop:
Real and simulated environments

mixing, filtering, rate conversion etc.). The communication
between the SR and the hardware usually consists of I/Q
samples as well as control signals, such as the choice of the
centre frequency, bandwidth or gain settings.

A wireless networks in-the-loop system can understand
these data flows between SR and hardware and redirect them
to an internally processed wave propagation model. Here,
signals are passed between nodes digitally, including signal
impairments caused by the hardware, such as I/Q imbalance
or thermal noise, and of course the influence of the wireless
channels, such as path loss and fading.

Fig. 4 illustrates the principle. Either the nodes operate with
attached hardware, or within the simulated environment. For
the individual nodes, it is irrelevant in which mode they are
operating: From the software’s perspective, they receive and
transmit I/Q samples, regardless if they were physically trans-
mitted or not. The typical workflow with such a system would
be to quickly iterate between simulated and real measurements,
thereby improving the quality of the SR node in every step.
Because there is only one code base to work on, there is no
friction when switching between simulation and live testing.

The three major challenges for developing a wireless net-

Fig. 5: The typical development cycle using wireless networks
in-the-loop

works in-the-loop environment are:
1) Abstracting the hardware layer in software, which in-

cludes emulating the device drivers and distorting the
signal in the same way the hardware does.

2) Modelling the wireless propagation channels between
nodes, including fading and path loss.

3) Controlling the SR processes and connecting them either
to virtual or real RF hardware, depending on the mode
of operation.

A. Implementation details

For our implementation, we chose to limit the software
available for the nodes to GNU Radio and the hardware to
UHD-compatible1 devices. GNU Radio is a free software
library for developing software radio applications [6], and its
open source nature gives us great flexibility. Also, it is easily
portable to a large variety of platforms.

Our implementation includes:
• Connectivity to UHD. In particular, virtual interfaces to

the hardware are provided, which allow switching be-
tween virtual and real hardware from outside the software
radio node process.

• A subsystem to connect multiple SR nodes virtually in a
wave propagation model.

• A dispatch and control process (DCP), which controls the
individual nodes and connects them in the virtual wave
propagation model when running in simulated mode.

• A simple channel sounding tool to measure channels in
real mode for further use in simulated mode.

B. Developing SR-based networks

So how can this method be used to develop radio systems?
The first step is to develop a prototype for a single node, which
is not difficult if an established SR framework such as GNU
Radio is utilized. During this step, all the standard tools of
software development, such as unit testing, can and should be
applied.

As soon as a first prototype is ready for a network operation
test, it can be tested using the wave propagation model. First, a
scenario is defined, which specifies the number of participating
nodes, their position (these might also be generated randomly),
the type of fading channels between the nodes and sources of
external interference.

1USRP Hardware Drivers, an open source driver suite for devices by Ettus
Research LLC.



Fig. 6: The test setup for the first live testing, using four USRP
N210

To test the prototype, a supervising process dispatches
an instance of the SR node for every time it appears in
the scenario, as well as another process which connects the
individual nodes by simulated fading channels. This simulation
can be repeated with several different scenarios.

By logging relevant metrics such as packet loss, bit error
rate etc., the performance of the individual node can be
evaluated in a simulated environment. These results can then
be used to further develop the SR implementation.

Once the network simulation works satisfactorily, we can
deploy real hardware and live-test the network. It is likely
that this test will expose new problems. Before returning to
the simulated environment, it is possible to perform channel
sounding measurements, such that the simulated measurements
are similar to those in the real scenario.

The key point is that the code base for the SR nodes stays
the same during all of these iterations. This eliminates any
friction typically involved when switching between simula-
tions and live measurements. Also, simulations and live tests
both have their specific advantages and disadvantages, e.g.,
simulations can easily produce many different, but repeatable
scenarios, where as live tests are per definition realistic. Only
when the underlying code of the SR node is the same in both
tests can results from one be transferred to another.

IV. CASE STUDY: DEVELOPING AND TESTING IN THE
LOOP

The frequency hopping ad hoc networks from Section II
were used to test the current state of our wireless networks
in-the-loop implementation. In the first step, we created a
node with the specifications from Section II-A using GNU
Radio. This prototype is kept very simple, but it includes
functionalities to test packet error rates, which we will use
as a first performance metric.

Our hardware test bed consists of four USRP N210, as can
be seen in Fig. 6, so first tests are run using four nodes to
be able to compare the results between simulation and live
testing.

Due to the simplicity of the individual node, it is possible to
run four nodes in real time on one computer, which simplifies
the testing. All USRPs are connected by Ethernet over a switch
and can thus be controlled from a single machine. Also, the
switching between live tests and simulations is simple and
seamless.

0.0s 100.0 ms 200.0 ms 300.0 ms 400.0 ms 500.0 ms

314.0 MHz

315.0 MHz

316.0 MHz

317.0 MHz

Fig. 8: Visualization of data exchange between two nodes.

To prove the concept of our implementation, a specific
scenario is repeated both in the simulation and over the air.
Fig. 7 shows how the nodes are communicating with each
other (see Section II for a closer description).

When using the USRPs, a fifth device is used to observe
the spectrum (see the waterfall diagram in Fig. 8). During
simulations, the spectrum can be observed directly from the
wave propagation model.

The network behaves similarly in both cases. As an exam-
ple, the neighbourhood discovery takes the same amount of
time regardless of the operation mode, which shows us that
the testing of the network aspect is functional.

The packet error rates are different when switching between
the modes, though: In simulated mode, we have a packet error
rate below 1%, which increases to 2-5% in the live mode,
depending on how the transmitters are positioned relative to
each other. This difference is to be expected: In our current
implementation, the hardware influences are not correctly
modelled yet, which means the signal reaching the individual
node is less distorted than in reality. By reconfiguring the
signal processing of the virtual RF hardware, this can be
changed to more accurately reflect the true values.

Now we know the simulation and the live testing results are
comparable, we can start developing in the simulation mode
(since it requires less hardware), but can continue to switch
between modes in order to get more information about the
nodes true performance. In simulation mode, we can add nodes
without having to purchase additional hardware, knowing that
the results will still reflect reality.

V. CONCLUSION

Wireless networks in-the-loop is a powerful tool for devel-
oping and testing SR-based networks. Using the example of
frequency hopping ad hoc networks, we could demonstrate the
capabilities of wireless networks in-the-loop and demonstrate
how it can be used to reduce development time.



Fig. 7: Example for a data transmission between two nodes.

While our implementation still has some missing features,
it is already able to show that network operation testing
is possible, regardless of the mode. This allows developing
nodes with a complex physical and network layer and produce
realistic test results, which could not be generated with other
tools which abstract the PHY layer of receivers when testing
networks.

REFERENCES

[1] J. Elsner, “Interference Mitigation in Frequency Hopping Ad Hoc
Networks,” Forschungsberichte aus dem Institut für Nachrichtentechnik
des Karlsruher Instituts für Technologie, vol. 29, 2012. [Online].
Available: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000031465

[2] J. Mo, H.-S. W. So, and J. Walrand, “Comparison of Multichannel MAC
Protocols,” IEEE Transactions on Mobile Computing, vol. 7, no. 1, pp.
50–65, Jan. 2008.

[3] F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wireless
networks, volume 1+2: Theory and applications,” Foundations and Trends
in Networking, 2009.

[4] J. Mo, “Performance Modeling of Communication Networks with Markov
Chains,” Synthesis Lectures on Communication Networks, 2010.

[5] J. Elsner, M. Braun, S. Nagel, K. Nagaraj, and F. K. Jondral, “Wireless
Networks In-the-Loop: Software Radio as the Enabler,” Software Defined
Radio Forum Technical Conference, Washington DC, 2009.

[6] “GNU Radio website.” [Online]. Available: www.gnuradio.org


