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Fast key distribution with security from quantum-optical noise

(extended abstract)

Gabriel Almeida1, Geraldo A. Barbosa2, and Jeroen van de Graaf1

1Universidade Federal de Minas Gerais
2QuantaSec∗

Abstract

The quantum-mechanical description of coherent light, as produced by lasers, gives rise to
an intrinsic noise, known as quantum noise, optical noise or shot noise. Several protocols have
been proposed to exploit this physical phenomenon to obtain secure data encryption and key
distribution. Here we focus on the cryptographic aspects of Barbosa’s protocol[1] and propose
an improvement, which is inspired on the concept of a pool of randomness as used by random
bit generators in operating systems.

1 Introduction and outline

The quantum-mechanical description of coherent light, as produced by lasers, gives rise to an intrinsic
noise, known as quantum noise, optical noise or shot noise. This intrinsic noise is unavoidable for
an eavesdropper wishing to intercept the communication, but can be sidestepped by the legitimate
receiver if he knows the modulation bases used by the sender. Several protocols have been proposed
that explore this quantum-optical noise as a means to obtain unconditional security (see [2] for an
overview), but so far this work has attracted very little attention in the cryptographic community.
The protocol named AlphaEta was the first to translate this physical principle into a cryptographic
protocol for data encryption[3]. Later an improvement was proposed by Barbosa[1, 4].

Here we focus on the cryptographic description of the protocol proposed in [1], leaving out many of
the technical details. Then we propose a new approach: building on the ideas of pools of randomness
used by random bit generators in operating systems[5], we propose that A and B each maintain an
identical random pool, initiated by some pre-agreed, secret random string. To reseed the pool, A
generates fresh random bits using a physical bit generator. Sending those bits to B allows the latter
to maintain an identical copy. Subsequently both pools are updated using privacy amplification, and
then A and B extract some bits to be used as the one-time pad key stream z.

2 A description of Barbosa’s protocol

In Barbosa’s protocol (BP), photons are used to send bits using a laser beam. These bits come from
some source of randomness: in [4] they come from a linear shift feedback register, but in [1] they are
generated by a physical bit generator (PhRBG) based on quantum-optical fluctuations. The details
of this PhRBG are not essential to understanding the protocol; for the details we refer to [6].

In BP, s bits are sent in each round, which are used to create the key stream z to be xored with the
plaintext x. So we have that y = OTP(x, z) = x⊕ a and x = OTP(y, z) = y ⊕ a.

∗QuantaSec—Consulting, Projects and Research in Physical Cryptography Ltd., Av. Portugal 1558, Belo Horizonte
(MG), 31550-000 Brazil.
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In order to transmit random bits a to B, A will need to modulate the laser beam. The idea of the
protocol is that A and B share an initial secret, a, which is used to specify the modulation basis used
in the first round. Since B knows in which basis to measure, he can distinguish between a 0 and a 1
sent with almost perfection (bit error rates below 10−9).

However, E’s situation is completely different. Even generously supplying E with a perfect copy of
the quantum state of the pulse as sent by A, the adversary, unlike B, does not know the modulation
basis used by A, does not know in which basis to measure, and therefore its probability of error
is much higher. In particular, E’s measurement of the phase of the photons sent is subject to
the intrinsic phase uncertainty known as quantum-optical noise. By an appropriate choice of the
optical parameters, in particular 〈n〉, the average number of photons per pulse, and Δφ = π/M , the
difference in phase between a 0 and a 1, it is possible to assure that the standard deviation of E’s
phase noise straddles several multiples of Δφ, giving it very little information about the bit values
sent. Based on [1] and [7], we assume that the amount of information of information leaked to E
can be bounded by t bits per round.

Note that for the second and subsequent rounds the situation is somewhat different, since ms bits
are necessary for modulation, whereas only s fresh random bits are introduced in the system, so
the process is not able to sustain itself. Barbosa resolves this problem by sending m consecutive
pulses using the same transmission bases but using a decreased energy level, making the adversary’s
task harder. So the first round, b1 is determined by copying b0, that is, b1 = DetBases(b0). In all
subsequent rounds, bi is determined by taking the first m bits from ai−1 to define b[1] to b[s] thus
repeating the basis s times, then the next m bits from ai−1 are taken to define another set of s
bases, and so forth. In the next section we present another mechanism to deal with this problem.

Parameters
s the number of pulses sent in one round. For instance s = 128
〈n〉 average number of photons per pulse
M the number of bases used (usually a power of 2)
m = log2(M)

Variables
Symbols with primes ′ are those received by B

a, a′ ∈ {0, 1}s the sequence of bits sent by A / received by B
b, b′ ∈ {0..M -1}s the sequence of bases used by A / by B
a0 ∈ {0, 1}w an initial sequence shared by A and B, secret to E
z ∈ {0, 1}s output stream of the system, to be used with the One-Time Pad

Protocol

INITIALIZATION

Alice and Bob share b0 of size and entropy ms.

ALICE

1a ai = PhRBG() get bitstring from PhRBG
1b bi = DetBases(ai−1) determine modulation bases
1c SendOC(a1, b1) send bit sequence ai over the optical channel with

bases bi

BOB

1’a (has no matching protocol step compared to A)
1’b b′i = DetBases(a′i) determine demodulation bases
1’c a′1 = ReceiveQC(b′1) receive the bits on the quantum-optical channel)

2



Figure 1: The new protocol using randomness pools for A and for B, which are completely synchro-
nized. Reseeds come from PhRBG on A’s side, synchronicity is maintained by forwarding the bits to
B through the quantum-optical channel, and pool updates are based on privacy amplification. The
quantum-optical channel leaks some information to E; the classical channel leaks all information.

3 Using a randomness pool and privacy amplification

In order to provide operating system and its calling applications with good randomness, many random
bit generators maintain a pool of random bits. More sophisticated designs make even use of entropy
estimation, which are lower bounds on the amount of entropy certain processes are contributing to
the pool[5]. And each time a system process calls random bits from the randomness pool, it verifies
whether sufficient entropy is present; if not, the process blocks until sufficient entropy is present.

We can use the pool idea to redesign the protocol: we have a PhRBG at A which inserts randomness
into A’s pool. This fresh randomness is also forwarded to B over the quantum-optical channel, thus
ensuring the identical contents of pool A and pool B. Then A and B use identical techniques to
extract the random bits used for the encryption key stream.

In the previous section we saw that the optical communication channel between them leaks informa-
tion. However, as long as the amount of information that E gets out per round is less than s bits per
round (i.e. less than one bit of leaked information per bit sent), we have more entropy entering the
system than leaving it, so at least in principle we should be able to keep the pools full with entropy.
The question is how to design the system in such a way that its security is easy to prove and easy to
implement.

Here we propose a solution which we think is secure in an information-theoretical sense. The idea is
the following: we have a pool c0 which contains a number of random bits. First the pool will be used
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to extract ms random bits for the transmission bases. Then we apply Privacy Amplification (PA) to
the pool’s current state ci concatenated with the freshly generated random bit string ai, the result
will be the new pool state ci+1.

Privacy Amplification [8] is a general technique in which A and B, who share a random string a of
size s, suspect that the adversary can obtain at most t bits of shannon information about a. To
reduce E’s information, they enter in a public exchange of messages (to which, in principle, E can
have access), the result of which is a shorter string a′ of which E has exponentially little information.
The Privacy Amplification Theorem essentially says that s − s = t + λ, where t is A and B’s worst
estimate of the amount of information E has about s, and λ is a security parameter. Then after the
PA protocol E only has 1/ ln(2)2λ bits of information about s′.

Since we have s fresh bits coming in, and we lose t+ λ bits when updating the pool, the length of
the output stream z per round, s, cannot exceed s − t − λ bits if we don’t want to lose entropy in
the pool. Thus to ensure that after PA we end up with ms bits for the bases in the next round, plus
s− t−λ bits as net output of the process, the result of PA must yield ms+ s− t−λ bits. Whereas
the input must be of size ms + s bits. This means that we need a universal hash function f from
ms + s bits to ms + s − t − λ bits. For instance, using F = {f(x) = Ux + V }, where U, x, V
are elements in some large, suitably chosen Galois field, will do. In this case the numbers of bits to
describe f is slightly less than 2(m+ 1)s.

This gives us the following protocol.

INITIALIZATION

Alice and Bob share c0 of size and entropy ms+ s.

ALICE

1a ai = PhRBG() get bitstring from PhRBG
1b bi = ci−1[1,ms] get bases bits from initial pool value
1c SendOC(ai, bi) send over the quantum-optical channel

2 SendCC(f) send a description of an instance of a universal
hash function f from F to B (with a copy to E)

3a ci = f(ci−1||ai) Alice applies PA from ms+s bits to ms+s−t−λ
bits

3b zi = ci[ms+ 1,ms+ s− t− λ] Alice uses s = s − t − λ bits as bits for the key
stream z. In the Step 1b of the next round she will
use the remaining (first) ms bits to determine the
bases b.

BOB

1’a (has no matching protocol step compared to A)
1’b bi = ci−1[1,ms] get bases bits from initial pool value
1’c ai = ReceiveQC(bi) receive the bits on the quantum-optical channel

2’ ReceiveCC(f) receive a description of an instance of a universal
hash function f ∈ F

3’a ci = f(ci−1||ai) Bob applies PA from ms+s bits to ms+s− t−λ
bits

3b’ z′i = c′i[ms+ 1,ms+ s− t− λ] Bob uses s = s − t − λ bits as bits for the key
stream z′. In the Step 1b’ of the next round he
will use the remaining (first) ms bits to determine
the bases b′.
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4 Discussion

Protocols based on quantum optical noise appear to be a wonderful source of research questions:

• What is the practical value of the new protocol? Plans exist to implement this protocol, but
the universal hash function needs to be implemented at very high speeds for telecommunication
(1Gb/s and up). This may be a bottle-neck, so maybe pragmatic choices need to be made to
reach a protocol that can be implemented in practice. Also see Appendix B.

• What is the theoretical security of our protocol? We think we can prove it secure under a wide
class of very reasonable attacks, but we still cannot claim unconditional security. In this context
it is not clear what a general, global attack means. An attack can proceed several ways, and
we do not know how to encompass everyting in a single frame. In other words, even if one
could map, say, all the photons of a laser beam (say 1020 photons or more) in Hilbert spaces,
what mapping would be necessary to represent all possible physical actions on this beam or on
these individually treated photons? The number of physical actions possible is infinity.

• From a pragmatic point of view: even if the protocol can not be proven secure in the widest
possible model allowed by quantum mechanics, it may very well be secure making some addi-
tional assumption about time, or about E’s technical limitations, etc. After all, the algorithms
which are used in practice (RSA, AES) also make assumptions, and the security provided by
our protocol may be stronger and more adequate in certain situations. Applied cryptographers
do not care about the scientific beauty of a protocol, but whether it is secure in practice, and
efficient.

• In the wider context of cryptographic protocols our approach begs the following question: Can
quantum-optical noise be used to implement oblivious transfer, thus implying bit commitments
and multi-party computation? Since it is well-known that any kind of noisy channel can be
used to implement these primitives[9], the answer seems to be yes, but surprisingly nobody
has studied this question yet, as far as we know. Rephrasing a bit: does quantum mechanics
give us bit commitment? Oblivious transfer? We have the no-go theorems of Mayers and of
Lo and Chau related to quantum bit commitment[11, 12]. To what extend do they apply here?
Maybe these questions must be looked at again, though let it be said that the quantum theory
used to describe coherent states is somewhat different from the qubits used in quantum key
distribution à la Bennett et Brassard[10].

5 Conclusion

We presented a redesign of the cryptographic aspects of the protocol presented in [1] by introducing
pools of randomness for both A and B. The effect of this pool is smoothing of the entropy, and
hiding the relationship between bits sent over the optical channel and those used in the one-time
pad, implying a significant security improvement (and, we hope, a simpler security proof). This
5-page abstract presents research in progress, and more details will be added in future versions.
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[17] C. Crépeau. personal communication, March 2013.

A A crash course on quantum-optical noise

Unlike BB84, the AlphaEta protocol can, in some sense, be considered to be based on the Heisenberg
uncertainty relations. The (classical) harmonic oscillator is a precise mathematical description of the
phyical idea of a wave phenomenon: a particle with mass attached to a spring, a vibrating atom,
or light. The quantum extension of this model is called the quantum harmonic oscillator, which is
the way to describe an electro-magnetic field. One important consequence of this model, combined
with the postulates of quantum mechanics, is that energy can only assume discrete values, called
quanta. Another consequence is that light is described using quadratures, p and q. In another
context these variables would correspond to position and momentum, but in the case of photons the
notion of position has no physical meaning, only a mathematical one. However, p and q do satisfy
an uncertainy relation:

ΔpΔq ≥ 1/2.

This implies that p and q can never be 0, because this would violate this relation. The physical
meaning of this is that even in a vacuum the electro-magnetic field has a positive energy and oscillates.
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Observe that this oscillation is a result of the quantum mechanical description of the electro-magnetic
field; it has no classical equivalent. It is this intrinsic oscillation of the electro-magnetic field which
gives rise to quantum noise.

Light pulses produced by lasers are best described by coherent states, and it is well-known that the
amount of photons (quanta of energy) produced in each pulse follows a Poisson distribution with
parameter 〈n〉, where n is the photon number. It follows therefore that the stream of pulses sent by the
laser beam is subject to statistical fluctuations caused by “sampling” from the Poisson distribution,
known as quantum noise, optical noise or shot noise. This noise is not due to imperfections of
equipment, but can be considered intrinsically quantum. In fact, it can be shown that in an intense
coherent state the amplitude α and the phase θ obey the relation Δθ|α| ≥ 1/2, resulting in the
uncertainty relation

ΔθΔn ≥ 1/2.

These two quantities do have a physical meaning; in particular, the phase angle Δθ defines an upper
bound on the resolution with which E can perform its measuresments, which puts it at a disadvantage
in comparison to B. For the interested reader: Wikipedia’s entries for coherent state[13] and shot
noise[14] are very (if not too) informative. Additional explanations can be found in [15] and [7],
among others.

Instead of using quantum noise in data communication, one could even wonder whether such a
scheme could be implemented for storing information in encrypted form using different underlying
quantum “hardware”. If quantum noise exists in atoms (or other particles that are vibrating), then
one could imagine a service provider storing information without having access. Only the legitimate
user, who knows the right bases, can read the information.

B An alternative way to communicate the function f

A problem of the protocol presented is that needs a lot of bandwidth to send the universal hash
function f from A to B: for every s− t−λ bits of the streaming key, we need to send 2(m+1)s bits
to specify the f used for privacy amplification. This implies an expansion of at least a factor 2m+1
(where m is typically 10).

Instead of A generating f randomly and sending it over the public channel, which allows E to get a
copy too, we can imagine a different solution. The universal hash function f to be used in PA will
be generated pseudo-randomly by A and B who share an additional initial seed value e0 to this end.
In addition, we assume that E does not know this initial e0, and therefore E is kept in the dark about
the exact function f that A and B use for PA. The quality of the PRBG that is used for f can be
based on various assumptions.

The implicit claim of this construction is that E in the new situation(i.e. with f generated by a
PRBG whose values she does not know) is not better off than in the old situation (with f truly
random and known to E). This seems intuitively true, but maybe hard to prove. For that reason it
might be interesting to base the PRNG on some hard assumption: AES, SERPENT, an NP-Hard or
NP-Complete problem.

Another option would be to fix the function f forever and presume that E knows it too. This strategy
seems justified as long as we can assume that E cannot influence the noise[16, 17]. However, these
arguments have been made in the context of classical noise, and would have to be re-evaluated. In
our case E cannot really influence the noise, but has some influence on how it sees it since it can
choose which measurements to perform.
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Hardness Multipliers: Improving the Security of
Low-Entropy Physical-Layer Key Exchange

Dirk Achenbach, Jörn Müller-Quade, and Antonio Sobreira de Almeida
{achenbach,mueller-quade,almeida}@kit.edu

Karlsruhe Institute of Technology

1 Introduction

Secure communications have always been a concern in communication
systems. The need for the transmission of secret information resulted in
the development of private key cryptography, where both parties share a
common secret key. Security based on this type of cryptography requires,
therefore, that both parties, somehow, exchange this secret a priori. Public
key cryptography techniques can be used for solving the problem of key
distribution in the public channel. As they usually rely on computational
hardness assumptions however, they offer only relative security.

Communication secrecy has historically been delegated to the upper
levels of the protocol stack, where traditional cryptographic algorithms are
usually implemented. More recently, a few authors start focusing on the
potential the physical layer offers in terms of security and some complete
works have been elaborated on this subject [BB11]. In this approach, the
physical properties of the common channel between the legitimate parties
are explored in order to generate a secret key. Whereas public key cryp-
tography security strongly relies on computational hardness assumptions,
the physical layer can provide information-theoretical security. However,
this approach might yield keys with low entropy under certain physical
conditions. On the other hand, due to the increasing computational power
according to Moore’s law, breaking (few instances of) Computational Key
Exchange could become feasable in the close future.

Combining physical-layer key exchange and computationally-secure
key exchange to achieve higher security therefore seems a promising idea
to explore. Traditional combiners (XOR) do not suffice in this scenario,
because one could break the computational key exchange, and then quickly
search through the set of all possible keys if the physical-layer key has low
entropy. Robust Combiners for key exchange yield a secure key only if
one of the two protocols remains secure. In this work, we explore the case
where both key exchange protocols have weaknesses. The entropy of the



physical layer key is low, so it is feasible to search the key space. At the
same time the security of the computational key exchange protocol may
be weak, e.g. because of future algorithmic progress or too short keys. We
assume, however, that there is still a large effort necessary. It might be
feasible to break one instance of the computationally secure key exchange
within a few months, but we will assume that it is still infeasible to break,
say, one hundred or a thousand instances.

Our Contribution We propose a novel combiner to alleviate the problem.
Our type of combiner (henceforth called “Hardness Combiner”) forces
the adversary to break multiple instances of a computationally hard
problem, even for relatively low min-entropy of the physical layer key.
More precisely, let the min-entropy of the physical layer key exchange be k.
Then, given an adversary capable of breaking no more than l independent
random instances of a password-authenticated key exchange (PAKE), the
probability of breaking the combined key exchange is bounded by l

2k
.

We present our provably secure construction PLCoKE in the random
oracle model. This is nontrivial, as not every PAKE yields a secure key
exchange in this manner. The existence of Hardness Combiners (under
reasonable assumptions) in the standard model will be left an interesting
open question.

1.1 Related Work

Several approaches for security on the physical layer have been proposed
by different authors. Wireless key exchange is an information-theoretical
approach (e.g. relying on no computational assumptions) for the prob-
lem of key exchange. The key extraction is simply performed using the
wireless environment as a source of common randomness. This protocol
is based on two properties of the wireless channel: multipath interference
and reciprocity. While multipath interference in a complex environment
guarantees secrecy, reciprocity ensures that both parties will extract the
same key [HHY95]. Some practical implementations of this protocol have
already been tested, e.g. [MTM+08].

There is a rich body on literature on password-authenticated key
exchange dating back over twenty years. Bellovin and Murray [BM92] first
explored the idea of “password-protecting” a Diffie-Hellman key exchange
that they called encrypted key exchange (EKE). MacKenzie [Mac01]
provides a security analysis for the well-known SPEKE protocol [Jab97].

Asmuth and Blakley [AB81] originated the idea to combine two cryp-
tosystems to obtain a more secure cryptosystem. The concept of Robust



Combiners has since then been extended to various primitives such as
Oblivious Transfer [HKN+05], Private Information Retrieval [MP06], En-
cryption [Her07] and Hash Functions [BB06].

2 Hardness Combiners for Key Exchange

The intuition behind our definition of Hardness Multipliers is to “multiply”
the computational security of a password-authenticated key exchange with
the entropy gathered from a information-theoretically secure source.

Definition 1 (Security Game HardMultPAKE
A,k (n)).

– A outputs a distribution D with min-entropy k bit.
– ϕ is sampled from D.
– The password-based key exchange protocol PAKE with input ϕ is per-

formed, obtaining the shared secret κ. The adversary receives all mes-
sages sent by Alice and Bob.

– The experiment draws a bit b ← {0, 1} uniformly at random and
the adversary is given κ if b = 1 and a random value r ← {0, 1}|κ|
otherwise.

– The adversary outputs a bit b′.
– The result is 1 if b = b′, and 0 otherwise.

We can now define Hardness Multipliers.

Definition 2 (Hardness Multiplier). Assume an information-theore-
tically secure key exchange PLKE with a min-entropy of k bit. Further,
assume a password-authenticated key exchange PAKE that is computation-
ally secure relative to problem Prob. We call PAKE a Hardness Multiplier
for PLKE relative to a problem Prob iff every efficient adversary with
success probability ≥ 1

2+
l
2k

in Game HardMult yields an efficient algorithm
that solves at least l (possibly related) instances of Prob.

Our motivation for allowing the instances of Prob to be related will
become clear in the following section. We call the construction of perform-
ing a password-authenticated key exchange with randomness gathered
from a physical-level key exchange a Hardness Combiner if the PAKE is
Hardness Multiplier.

2.1 A Hardness Multiplier

We present our construction PLCoKE in this section. It is a variant of
the SPEKE protocol [Jab97] in the random oracle model. We show that
PLCoKE is a Hardness Multiplier relative to the Simultaneous CDH
Problem.



The Simultaneous CDH Problem Consider a variant of the Compu-
tational Diffie-Hellman (CDH) problem: Given a tuple (gx, g, gxy) in a
cyclic group, compute gy. We put forward the Relaxed Simultaneous CDH
Problem (RSCDH): Given the tuple (g, gxy) ∈ G2 in a cyclic group G and
a series of challenges gx1 , . . . , gxm , compute gy1 , . . . , gyl , with l ≤ m. We
say the challenges gx1 , . . . , gym are correlated.

Alice Bob

γ = HG(ϕ)
α ← Zq

γ = HG(ϕ)
β ← Zqγα

γβ

k := H′(γαβ) k := H′(γαβ)

Fig. 1. PLCoKE(ϕ). The parameter ϕ is the shared entropy between Alice and Bob.
G is a cyclic group of order q, HG is a Random Oracle that outputs a random element
of G, and H′ is a Random Oracle that outputs a random bit string of the length of the
security parameter n.

Our Construction Our construction PLCoKE is similar to the SPEKE
protocol, but uses two random oracles H and H′ to derive a shared key
between Alice and Bob (see Figure 1).

One of our results is that PLCoKE in conjunction with a wireless key
exchange protocol yields a Hardness Multiplier.

Claim. PLCoKE is a Hardness Multiplier relative to the Relaxed Simul-
taneous CDH Problem, i.e. any efficient adversary against PLCoKE with
a success probability of at least 1

2 +
l
2k

yields an efficient algorithm that
solves l out of Poly(n) correlated instances of the Relaxed Simultaneous
CDH problem.

Our proof is by reduction, transforming any successful adversary A
against HardMultPLCoKE

A,k (n) into an efficient algorithm to solve l correlated
challenges to the Relaxed Simultaneous CDH Problem. The main idea
is to program the random oracle H to output challenges of the RSCDH
problem to A. Then, by deriving possible keys through H′, A reveals
solutions to the RSCDH problem.



2.2 Not every PAKE is a Hardness Multiplier

Not every PAKEs is a Hardness Multiplier. Take for example a protocol
that requires a party to transmit an encryption of the physical-layer key.
Breaking the encryption once is sufficient to break the protocol. Further
investigating this issue is an interesting direction for future research.
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Abstract. Several cryptographic schemes require safe RSA moduli. These
are composite numbers of the form pq, where p and q are distinct safe
primes. Typically, a prime p is called safe, if it is of the form p = 2� + 1,
where � is prime as well. In that case � is called a Sophie-Germain prime.
Even though it is conjectured that many Sophie-Germain primes exist,
it is not even known whether there are infinitely many of them. Thus,
safe RSA moduli can only be generated conditionally. To close this gap,
von zur Gathen & Shparlinski (2013) suggest a new notion of “safe prime”
The resulting moduli can be generated unconditionally in polynomial
time and are suitable for all popular cryptographic applications, where
safe RSA moduli are required.
We study implementations of the suggested algorithms as well as reason-
able modifications. We discuss the generated output distributions and
the required costs. Finally, we compare timings for the generation of
industrial-size safe primes of the different notions.

Keywords: safe primes, Sophie-Germain primes, RSA integers, Public-key cryp-
tosystems, number theory, harmonic distribution

1 Introduction

Several cryptographic schemes require safe RSA moduli. These are composite
numbers of the form N = pq, where p and q are distinct safe primes. Typically,
a prime p is called safe, if it is of the form p = 2� + 1, where � is prime as well.
In that case � is called a Sophie-Germain prime and we denote by SG1 the set of
all 2� + 1, where � is a Sophie-Germain prime.

The use of RSA moduli in cryptosystems is naturally almost as old as the
advent of public key cryptography itself in the 1970s. A more recent example
is the celebrated encryption scheme by Hofheinz, Kiltz & Shoup (2011). They
“assume a PPT algorithm IGen that [. . . ] generates two random safe primes
P = 2p + 1 and Q = 2q + 1 with bitlength(p) = bitlength(q).” In this case, p and
q are Sophie-Germain primes. Although it is conjectured that sufficiently many
Sophie-Germain primes exist, no actual proof for this is known. In fact, we do
not even know, if there are infinitely many of them. Thus, the running time of
an algorithm as IGen above can only be given conditionally.



To close this gap, von zur Gathen & Shparlinski (2013) suggest a new notion of
“safe prime”, generalizing the previous ones, but preserving the good cryptanalytic
properties. Let SG2 denote the set of all primes of the form 2�0�1 + 1, where �0
and �1 are also prime. The authors provide an algorithm to sample safe primes
SG≤2 = SG1 ∪ SG2 efficiently. This leads to efficient unconditional sampling of
safe RSA moduli pq with p, q ∈ SG≤2.

In Section 2, we present the definitions and algorithms of von zur Gathen
& Shparlinski (2013). They suggest a significant speed-up which we discuss at
the beginning of Section 3. We have implemented all algorithms and compare
the timings for the generation of industrial-size primes (Table 1) as well as the
resulting output distribution (Figure 1). In Section 4, we conclude with the
consequences for the generation of safe RSA moduli.

2 Definitions, Algorithms, and Conjectures

We recall a straightforward sampling method for SG1, follow up with a possible
generalizations for sampling from SG2, and finally discuss necessary modifications
to ensure uniformity of the output. We define the following two subsets of all
primes up to some bound x ≥ 0.

SG1(x) = {prime p ≤ x : p = 2� + 1 with prime �},

SG2(x) = {prime p ≤ x : p = 2�0�1 + 1 with primes �0, �1 ≥ x1/4}.

The lower bound on �0 and �1 for p = 2�0�1 + 1 ∈ SG2 rules out small prime
factors in (p − 1)/2, one of the desired cryptographic properties, see Section 4.
The straightforward procedure to sample from SG1(x) is summarized in the
following two steps.

1. Choose � ≤ (x − 1)/2 uniformly at random.
2. If � and p = 2� + 1 are prime, then return p. Else goto Step 1.

Since � is chosen uniformly in Step 1, the output will be a uniform sample from
SG1(x). Hardy & Littlewood (1923) conjectured that SG1(x) contains about
2C2x/ ln2 x elements, where C2 ≈ 0.66 is the Twin Primes constant. No proof
for this or even the infinitude of Sophie-Germain primes exist. So, no uniform
sampling method for SG1(x) can be proven to run efficiently.

To sample a random element from SG2(x), we can use a similar approach.
We start by uniformly picking positive integers �0 and �1 of suitable size. The
resulting naive method is described by the following three steps.

1. Choose x1/4 ≤ �0 ≤ (x − 1)/2 uniformly at random.
2. Choose x1/4 ≤ �1 ≤ (x − 1)/(2�0) uniformly at random.
3. If �0, �1, and p = 2� + 1 are prime, then return p. Else goto Step 1.

But beware, the prime pairs (�0, �1) obtained in this fashion are not sampled
uniformly. Pairs with small prime �0 have a probability smaller than average
to be chosen, since more primes �1 are admissible as “partners.” To remedy



this defect, it is suggested to choose �0 with probability ∼ 1/�0, resulting in a
harmonic distribution of �0 in Step 1; see Knuth (1981), Section 3.4.1, for the
underlying inversion method. Leaving steps 2 and 3 unmodified, this leads to
uniformly sampled pairs (�0, �1). Von zur Gathen & Shparlinski (2013) give a
heuristic argument for the size of SG2(x), leading to the same asymptotics as the
Sophie-Germain conjecture, but with slightly larger constant. Still, no uniform
sampling method for SG2(x) can be proven to run efficiently.

However, the union SG≤2(x) = SG1(x) ∪ SG2(x) contains provably many
primes, see Chen (1973). Von zur Gathen & Shparlinski (2013) use a result
of Heath-Brown (1986), with tight bounds on the number of prime factors in
(p − 1)/2, to establish unconditionally a sufficiently large lower bound on the size
of SG≤2(x). This finally allows efficient sampling of safe primes by alternating
the choices and tests for SG1(x) and SG2(x), respectively, as described above.

3 Implementations, Timings, and Distributions

We have implemented the algorithms of von zur Gathen & Shparlinski (2013)
using Sage (Stein et al., 2013) and performed extensive experiments. We first
present timings for different approaches of sampling safe primes in general and
then conclude by studying the resulting distributions of SG2 primes in particular.

The expected cost for generating an element of SG2 in the previous section is
significantly higher than that for generating an element of SG1. To generate a
candidate for SG1(x), we have to find a single prime � with approximately log2 x
bits. Following the Prime Number Theorem in its most simple form, the expected
number of tries to find such � is around ln x. When generating a candidate for
SG2(x), we need two primes �0, �1, both having approximately log2 x/2 bits.
Hence, we need about ln2 x/4 repetitions to find a pair (�0, �1), where both �0 and
�1 are prime. This makes the generation of elements of SG2 primes impractically
slow, even though the SG2 primes may be more dense than the SG1 primes, as
discussed above.

We obtain a faster way of generating elements of SG2(x), by testing for
primality as early as possible and keeping our findings.

1. Choose x1/4 ≤ �0 ≤ (x − 1)/2 according to the harmonic distribution, until
�0 is prime.

2. Choose x1/4 ≤ �1 ≤ (x − 1)/(2�0) uniformly at random, until �1 is prime.
3. If p = 2�0�1 + 1 is prime, then return p. Else goto Step 1.

This speeds up the generation of SG2 primes significantly, as the primes �0 and
�1 have only half the bit-length of the prime � used in the SG1 generation. Hence,
for higher bit-sizes, SG2 primes can be generated even faster than elements of
SG1.

Table 1 summarizes the timings for generating primes of industrial-size bit-
length on an ordinary PC, confirming the above reasoning. As expected, the fast
generation of SG2 primes is asymptotically twice as fast as the generation of SG1
primes of equal size.



bit-length 128 256 512 1024 2048
SG1 0.2 s 1.1 s 12.6 s 298.1 s 5798.8 s
SG2 20.8 s 164.7 s 2582.5 s 31892.8 s 558600.2 s

SG2 (fast) 0.4 s 1.8 s 11.7 s 144.9 s 2147.5 s
Table 1. Time needed for finding a safe prime, depending on the bit-length of x.
(Average over at least 100 findings, except for SG2 of bit-lengths ≥ 1024; Hardware:
single core Intel Xeon, 3.00GHz)

As a drawback of the fast generation, we lose the uniformity of output. In
Figure 1, we visualize the different output distributions when sampling 1 000 000
primes from SG2(216) comparing all the three discussed methods. Figure 1(a)
shows the heavily biased output for uniform/uniform sampling, Figure 1(b) the
expected uniform distribution of prime pairs (�0, �1) resulting from harmonic/uni-
form sampling, and Figure 1(c) the output of the fast harmonic/uniform sampling.
The latter shows a noticeable bias towards prime pairs (�0, �1) with smaller �1.
Yet, as a comparison of the scales shows, this bias is by magnitudes smaller than
the one observed for the uniform/uniform sampling.

(a) Uniform �0 and �1. (b) Harmonic �0 and uniform
�1.

(c) Harmonic �0 and uniform
�1 (fast algorithm).

Fig. 1. Distribution of prime pairs (�0, �1) with 28 ≤ �0�1 < 215 for 1 000 000 samples
obtained from different sampling algorithms.

4 Conclusion

The methods above finally allow the unconditionally efficient generation of safe n-
bit RSA moduli. We set x = 2n/2 and sample distinct safe primes p, q ∈ SG≤2(x)
until pq has bit-length exactly n. This can be done efficiently, since



– SG≤2(x) has sufficiently many elements, and
– roughly half of the elements of SG≤2(x) have bit-length exactly n/2.

Such a safe RSA modulus N = pq from Gathen-Shparlinski primes SG≤2 enjoys
the same properties as required for safe RSA moduli from Sophie-Germain primes.
Von zur Gathen & Shparlinski (2013) show that

– N is a Blum integer,
– ϕ(N)/4 has only large prime factors, and
– the square of a random element in the residue ring ZN is a generator of the

subgroup of squares in the unit group Z
×
N with probability close to 1.

Our experiments show that these safe RSA moduli can be generated efficiently—
even faster than moduli from Sophie-Germain primes only.
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Abstract. We present a password-authenticated group key exchange
protocol where each user has his/her own password. Advantage of such
protocol is in short passwords, which can be easily memorized. On the
other hand these protocols face the low password entropy. We construct
MLHL (Multi-LHL) protocol, which is based on LHL protocol proposed
by Lee, Hwang and Lee. We prove that our protocol is secure authenti-
cated key exchange protocol with forward secrecy property and that the
protocol is resistant against attacks on LHL protocol.
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1 Introduction

With the explosion of its size, Internet became a major communication channel
among people. However, it is an inherently insecure channel. The essential part
of securing such channel is an exchange of cryptographically strong keys. People
are notoriously bad at remembering long (pseudo)random sequences and thus the
classical solution is to store the key on some device. Password authenticated key
exchange (PAKE) protocols were designed to alleviate this issue. They require a
human user to remember only a short (easily-memorable) secret password. The
original idea of PAKE protocol EKE [1] was designed only for two participants,
however PAKE protocols can be used to authenticate multiple parties as well [2,
3, 7]. As opposed to other cryptographic schemes, PAKE protocols contain one
weak link in their security and that is the user password. Therefore, they must
be guarded from a dictionary attack against known dictionary DICT of all pos-
sible passwords. The protocol can be easily protected against on-line dictionary
attacks by blocking the user access after some unsuccessful tries. On the other
hand the off-line dictionary attacks can (and should) be prevented by the PAKE
protocol itself.

Our contribution. We were inspired by the LHL (Lee-Hwang-Lee) protocol [2].
However in [3, 4] it is shown that this protocol is not secure. We propose a new
PGAKE protocol based on the LHL and prove that this protocol is secure in a
random oracle model and ideal cipher model under decisional Diffie-Hellmann
assumption and that it is secure against the attacks from [3, 4]. The security



model is adopted from [5–8]. Compared to LHL and the protocol suggested in
[3], the main advantage of our construction is that each user has his/her own
password and therefore, users do not need remember many passwords, when
they want communicate in many groups. Second, we avoid problems associated
with adding a new user to the group or in the case of corruption of user (in
both situations in shared password scenario we should distribute new common
password to each user in the group).

2 Security Model

Our security model is based on [6, 8], later extended in [5] and adapted for group
key exchange in [7]. An adversary controls whole communication. He can stop
sent messages, send arbitrary message M , deliver messages out of order and
intercept communication. His abilities are modelled using the following oracles:

– Send – sends the message M to the instance of participant Pi and returns
a reply of Pi (according to the execution of the protocol). This oracle query
simulates an active attack of the adversary.

– Execute – this oracle starts execution of the protocol among specified group
of participants. The result is a full copy of messages sent during execution of
the protocol. This query models a passive attack, where adversary eavesdrops
the execution of the protocol.

– Reveal – if the instance of participant Pi on which was the oracle called has
established session key sk, then the oracle returns sk, otherwise it returns
⊥. This oracle models scenario of session key leakage.

– Corrupt – this query returns the password pwi of participant Pi. Optionally
the query can replace server’s password pwS,Pi

by arbitrary password pw.
This oracle models forward secrecy.

– Test – this query can be used only on a fresh/fs-fresh instance (see [6, 8]) and

can be called only once. First a random bit b
$←− {0, 1} is chosen. If instance

of participant Pi has not established session key sk, then ⊥ is returned. If
b = 0, then the real session key sk is returned else (if b = 1) random string

sk′ $←− {0, 1}|sk| is returned.

Protocol is secure, if the adversary could not recognize which bit in Test oracle
was used (for more details see [5, 6]). Forward secrecy is security feature of a
protocol and it is defined by Corrupt queries on protocol. Informally, protocol
has forward secrecy property, if and only if revealing of a password or even all
passwords does not compromise previously established session keys.
Advantage of an adversaryAMLHL attacking a protocol MLHL in aforementioned
model without(with) forward secrecy and security parameter k is denoted as

Adv
AKE(-fs)
MLHL,AMLHL

(k).



3 MLHL Protocol

Our protocol works with a cyclic group G with generator g. We will use two pseu-
dorandom hash functions H and H′ (H : {0, 1}∗ → {0, 1}lH and H′ : {0, 1}∗ →
{0, 1}lH′ ). Every participant Pi has password pwi ∈ DICT , which is shared
with the server. We denote the identity of Pi as ID(Pi). To establish a secure
connection with the server, we use arbitrary secure 2PAKE protocol denoted
as 2P with the length of the session key lk. We assume a symmetric encryption
scheme modeled as an ideal cipher E = (G, E ,D) defined as E : G×{0, 1}lk → G,
D : G × {0, 1}lk → G and an existentially unforgeable under adaptive chosen-
message attack secure message authentication scheme M = (Gen,Mac,Vrf).

Protocol MLHL:

1. Each participant Pi establishes a key ski with the server S using 2P protocol.
2. Establish a temporary key Ki between each pair of neighbours:

(a) Each participant Pi chooses a random xi, computes zi = gxi and sends
to the server message Pi → S : ID(Pi), z

∗
i = Eski

(zi).
(b) Server decrypts z∗i and sends following messages to the participants Pi−1

and Pi+1:
S → Pi−1 : ID(S), ID(Pi), Eski−1

(zi)
S → Pi+1 : ID(S), ID(Pi), Eski+1(zi)

(c) Each Pi decrypts received messages to obtain values zi−1 and zi+1 and
computes Ki = H(zxi

i+1), Ki−1 = H(zxi
i−1).

3. Each participant Pi computes wi = Ki−1 ⊕ Ki, then he computes MAC
τi = GenKi

(ID(Pi)||wi) and broadcasts message (ID(Pi), wi, τi).
4. When Pi receives messages (ID(Pj), wj , τj) from all other participants, he

computesKj = H(gxj−1xj ) for all j ∈ {1, ..., n} using the values wj andKi−1,
in direction to the left (from Ki,Ki−1, . . . ,Ki+1). During this computation,
he verifies for received values ID(Pj) and wj their tags τj . For example, he
starts with computing K ′

i−2 = wi−1 ⊕Ki−1, VrfKi−1
(ID(Pi−1)||wi−1, τi−1)

and ends with K ′
i = wi+1 ⊕ Ki+1, VrfKi+1

(ID(Pi+1)||wi+1, τi+1). If all tag
values are correct, then Pi continues with the next step, otherwise termi-
nates.

5. Pi computes the session key sk = H′(K1‖K2‖ . . . ‖Kn).

The verification phase disables the adversary to change sent messages in the way,
that participants do not know about this change.

4 Security of Protocol

Let G be a cyclic group with generator g, for which the DDH assumption holds.
Let H and H′ be modeled as random oracles, where H : {0, 1}∗ → {0, 1}lH
and H′ : {0, 1}∗ → {0, 1}lH′ . Let 2P be an arbitrary secure 2PAKE protocol
with length of the session key lk, let E = (G, E ,D) be symmetric encryption
scheme defined as E : G × {0, 1}lk → G, D : G × {0, 1}lk → G and modeled



as an ideal cipher. Let M = (Gen,Mac,Vrf) be an existentially unforgeable
under adaptive chosen-message attack secure message authentication scheme.
Symbol ε denotes a negligible function, qE number of encryption queries, qD
number of decryption queries, qsend, qexecute, qreveal is number of Send, Execute,
Reveal queries the attacker makes in underlying 2P protocol during computing
the security of 2P. Polynomial p(·) denotes the oracle number of instances of
protocol MLHL executed through the Execute oracle or through the sequence
of Send queries. Symbol AX denotes adversary attacking construction X on its
security property. Running times of adversaries AMLHL, A2P, AM and ADDH

are denoted T, t, t′, t′′ and k is security parameter.

Theorem 1. Assume that every participant Pi has a secret key pwi ∈ DICT ,
which is shared with the server S. Then the advantage of the adversary AMLHL

in attacking protocol MLHL is

AdvAKE−fs
MLHL,AMLHL

(k, T ) ≤ 2

(
3(qE + qD)2

2|G| +
3p(k) · n · qD

2lk
+ 4AdvMAC−forge

M,AM
(t′)

+ p(k) · nAdvAKE
2P,A2P

(t, qexecute, qsend, qreveal) + 2ε

+
nq2MLHL

2lk+1
+ 5p(k) · n ·AdvDDH

G,ADDH
(t′′) + 8qE/2lk

)
.

We prove the theorem in three lemmas by sequence of games, starting with
the game simulating the real protocol. In these games we simulate participants
of the protocol and their behavior.
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Abstract. Yuan et. al recently introduced a Group Key Transfer (GKT)
protocol [5] that permits multiple entities to share a common secret key.
Starting from the original version of their protocol, we describe a chain
of alternating attacks and countermeasures. First, we present a replay
attack and indicate a possible fix, inspired by the analogous work of Nam
et. al [2] (applied to the similar protocol of Harn and Lin [1]). Second, we
review a successfully insider attack against the improved version that we
have revealed in a previous work [3]. Last, we introduce a countermeasure
that stands against the latter attack.

Keywords: group key transfer, insider attack, replay attack.

1 Introduction

A Group Key Transfer (GKT) protocol permits multiple entities to share a
common secret key. A privileged party called the Key Generation Center (KGC)
selects a fresh key (a uniformly random value that has not been used before) and
securely distributes it to the participants. Only the users within an authorized
set should be able to recover the key, while it must remain hidden for any other
party. The protocol may run for multiple times, called sessions and the subset
of authorized members may differ for distinct executions. A user is eligible to
participate to a protocol session if he is a valid member of the group, i.e. he had
previously registered to the KGC with whom he shares a long-term secret.

1.1 Our contribution

We review the GKT protocol that Yuan et. al recently introduced [5]. We have
mentioned in a previous work [3] its resemblance to Harn and Lin’s proposal [1]
and highlighted that the attack Nam et. al suggested against their protocol,
as well as the proposed countermeasure [2], may also apply to Yuan et. al’s
construction. However, we did not explain the analogous vulnerability nor the
improved version in detail. We accomplish this in the present paper.

In the same article, we have shown that the improved version remains sus-
ceptible to an insider attack [3]. Our current work introduces a countermeasure
that prevents this vulnerability. We do not claim that this second improved ver-
sion provides group key confidentiality (as it is not based on a formal security
proof), but we only affirm that is makes the proposed insider attack useless.



1.2 Outline

The full paper is organized as follows. Section 2 gives the preliminaries. Section
3 describes Yuan et. al’s protocol [5], which is based on Shamir’s secret sharing
scheme [4]. The following sections compose a chain of alternating attacks and
countermeasures: Section 4 presents a replay attack against the original protocol;
Section 5 indicates a possible fix; Section 6 exhibits an insider attack against the
improved version; Section 7 introduces a countermeasure. Last section concludes.

1.3 Further Remarks

We do not claim that the second adjustment is secure and therefore we consider
the chain expansion as a subject for future work.

We emphasize that Yuan et. al’s original construction, as well as the improved
versions skip formal security proofs, which makes them easily susceptible to
known attacks. We highlight the necessity of security proofs for practical GKT
protocols.
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Devices of extremely small computational power like radio frequency identification (RFID)
tags are used in practice to a rapidly growing extent, a trend commonly referred to as ubiq-
uitous computing. One of the major use-cases for such pervasive devices are authentica-
tion solutions, e.g., access control for buildings or cars, electronic passports or even human-
implantable chips providing sensitive medical information about a person. Consequently, the
search for lightweight authentication protocols became an important topic in cryptography
during the last years with high relevance for academia and industry.

Today, one can distinguish three main approaches for constructing lightweight authenti-
cation protocols:

1. protocols which use lightweight block ciphers like PRESENT [1], KATAN and KTANTAN
[2] as basic cryptographic operations,

2. protocols which employ the well-researched principle of adding biased noise to a secret
linear function (i.e., the LPN problem),

3. protocols which are based on the principle of random selection, being the most recent of
all three paradigms.

While almost all LPN-type protocols (approach 2) have eventually been shown to be
vurnerable w.r.t. active or passive attacks, the (n, k, L)-protocol introucuded in [4] and based
on approach 3 remains yet unbroken (see [3] for an in-depth security analysis) . However a
comparatively huge key length and the use of involved operations made a hardware-efficient
implementation a challenging task so far.

In this work we introduce the (n, k, L)80-protocol, a variant of linear authentication pro-
tocols which overcomes these problems, and analyze its security against all currently known,
relevant passive and active attacks. Moreover, we present an implementation of our protocol
for Field Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuits
(ASICs) using Verilog and discuss its efficiency w.r.t. generally accepted costs metrics. The
respective numbers show that the (n, k, L)80-protocol is a viable alternative to existing so-
lutions and is, for example, well suited for the implementation on passive RFID tags. In
particular, to our knowledge, this is the first lightweight authentication protocol which can
be realized at costs below 1,000 Gate Equivalents without succumbing to known active or
passive attacks.
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Abstract. Recently Trusted Boot with TPM is used to protect applica-
tions and their data. TPM calculates hash values of whole platform in-
cluding OS for authentication. However, OS is too complex to extinguish
vulnerability. In contrast, a secure processor can execute an application
without interference from OS but it cannot validate the application it-
self. We propose a system that authenticates an application by adding
minimal additional function to a secure processor. In order to authenti-
cate an application, we add a function to calculate the hash value of an
application on the memory to our secure processor. In our protocol, the
application publisher is able to verify the application.

Keywords: Interference fromOS, Secure Processor, TPM, Trusted Boot

1 Introduction

These days, open source software and reverse engineering technology are devel-
oped, so applications and OS can be modified unexpectedly. An application can-
not be trusted, because it has a risk of being modified by an attacker. Therefore
the application publisher needs to verify the application is correct by authentica-
tion. An authentication requires reliable infrastructure for measuring correctness
of an application. However, software such as an OS or application is capable of
modification, so software cannot be reliable infrastructure. On the other hand,
hardware is difficult tomodify aftermanufacture, so it is possible to check proper
hardware is being used by embedding a certificate at the manufacture. Thus au-
thentication needs to be based on the hardware reliability.

Trusted Boot with TPM [1] is an existing technology based on the reliabil-
ity of hardware to authenticate the client platform. Trusted Boot with TPM
calclulates the hash value of the entire platform including OS and if the hash
value is correct, the whole platform can be reliable. However, OS is too complex
to extinguish vulnerability, if there is vulnerability in the OS, also affect the
application.

In contrast, a secure processor can execute an application without interfer-
ence from OS but it cannot validate the application itself [2]. We propose a
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system that authenticates an application by adding minimal additional func-
tion to a secure processor. In order to authenticate an application, we add a
function to calculate the hash value of an application on the memory to our
secure processor. In our protocol, the application publisher is able to verify the
application.

2 Proposed Protocol

Our protocol is a system utilizing a secure processor, which authenticates an
application under the reliability of a secure processor. In order to authenticate
an application, we add a function to calculate the hash value of an application on
the memory to secure processor. In our protocol, an application has the public
key of the authentication server. Authentication flow is as follows.

Fig. 1. Authentication flow in proposal protocol.

1. An application A requests the one-way hash value hash(M) of A to the
processor P at boot time that M is the data of A on the memory, (1).

2. P returns hash(M) with the signature sig(hash(M)) of P , (2).
3. A generates a key k.
4. A encrypts hash(M), the public key pkP of P , and k with the built-in public

key pkX of the authentication server X and sends encpkX
(k, pkP , hash(A))

to X, (3).
5. X checks validity of P and hash(M) with P manufacturer’s public key pkM .
6. If hash(M) were correct, and then X sends OK or NOT that is encrypted

with k to A, (4).

3 Conclusion and Future Work

We proposed a protocol that protects applications and server-side generated
contents independent of the reliability of OS. However, protecting personal in-
formation that has been generated on the client side is required technology in
the future.
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Important practical characteristics of a stream cipher are its throughput and its hardware size.
A common hardware implementation technique for improving the throughput is pipelining where
computations within the cipher are parallelized. However it requires to store intermediate values,
making additional memory necessary which is the most expensive part in terms of the area size
and power consumption.

For stream ciphers with feedback shift registers (FSRs), we present an alternative approach
for parallelizing operations with almost no grow of the hardware size by cleverly re-using existing
structures. It is based on the fact that FSRs are usually specified in Fibonacci configuration,
meaning that at each clock all but one state entries are simply shifted.

Some interesting results were recently made on the methods for constructing so-called Galois-
configuration NLFSRs [2, 3, 4] where the separate feedback function can be connected to each
stage of a register, which can be considered as the generalisation of classical ones (of Fibonacci-
configuration). The advantage of such NLFSRs is that several feedback functions can be computed
in parallel which allows to generate the binary sequences faster, with no loss in security.

In this work we provide a technique how to integrate parts of the stream cipher outside of the
FSR, e.g., the output function, directly into the FSRs. The technique can be seen as a combina-
tion of the two approaches mentioned above (pipelining and FSR-transformation). The idea is to
parallelize the computation of the output function by integrating parts of it into several update
functions of the FSR. Of course care needs to be taken that this transformation of the cipher does
not alter its functionality. Thus the idea is to correct the changes made in the FSR at a later stage.

We formally describe the transformation and its preconditions and prove its correctness. More-
over, we demonstrate our technique on Grain-128 [1], one of the eSTREAM finalists with low
hardware size. Our technique allows an implementation, realized by the Cadence RTL Compiler
considering UMC L180 GII technology, where the throughput is increased in the initialization mode
by 18% and in the keystream generation mode by 24% (compared to a time-optimized implemen-
tation without any structural changes). As opposed to other solutions, no additional memory is
required. In fact the hardware size even decreased from 17876 μm2 to 16863 μm2.
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Abstract. In this paper we introduce MiniTrivium as a modified version of Trivium. In our work
we look for cubes in each round of MiniTrivium and count their number. The main goal is to
develop techniques for the estimation of the number of cubes first in MiniTrivium and later in
Trivium. The ultimate goal is to find a closed formula for their number to extrapolate them for
later rounds such as round 1153 in Trivium.

Keywords: Cryptanalysis, algebraic attacks, cube attacks, stream ciphers, Trivium

1 Introduction

We are interested in finding a method to estimate the number of cubes in Trivium. To this aim we
develop a smaller version of Trivium, denoted MiniTrivium and investigate the number of its cubes first.
Our ultimate goal is to predict the number of cubes in Trivium. However, this in ongoing research. In
this parer we search for cubes in each round of MiniTrivium and count their number according to their
dimension for each round (under the term ”dimension” of a cube we understand the degree of monomial
that represents this cube).

Outline. For our approach we give a short description of the Trivium stream cipher first. Then we
introduce MiniTrivium as modified version of Trivium. Next we give a short definition of cubes and after
that conduct a cube attack on MiniTrivium. Finally we show the results of our analysis on the number
of cubes per round for MiniTrivium.

1.1 Trivium

Trivium is a stream cipher that was introduced by C. D. Cannire and B. Preneel [1]. Trivium’s definition
is given below (see also [1] and [2]). Trivium consists of three non-linear feedback registers (NLFRs) with
a length of 93, 84 and 111 bits, respectively,. They correspond to the first, second and third NLFRs of
Trivium, also called register. Hence the internal state of Trivium consists of 288 bits.

To ease modelling, we introduce three infinite tuplesA = (a−92, a−91, a−90, . . . ),B = (b−83, b−82, b−81, . . . )
and C = (c−110, c−109, c−108, . . . ), those we use further to save the data of registers. We interpret for
a round r > 0 (and also for the beginning of the initialisation, where let r = 0) the first register
of Trivium as (ar, ar−1, . . . , ar−92), the second register as (br, br−1, . . . , br−83), the third register as
(cr, cr−1, . . . , cr−110). All ai, bj , ck, where −92 ≤ i, −83 ≤ j, −110 ≤ k, are elements of GF(2). The
operations over the elements of A,B,C are addition ”+” and multiplication ”*” over GF(2), which are
XOR and AND respectively. The number of key-variables and the number of IV (initialization vector)-
variables of Trivium is both equal to 80.

At the beginning of the initialisation the entries ak with k = 0,−1, . . . ,−79 of tuple A are replaced
by key-variables, the entries bk with k = 0,−1, . . . ,−79 of tuple B are replaced by IV-variables, the first
three entries of the tuple C are replaced by 1, the other entries of A,B,C are equal to 0 first.
We can describe these tuples A,B,C with formulas:

(a−92, a−91, . . . , a−80, a−79, a−78, . . . , a0, a1, a2, . . . ) = (0, 0, . . . , 0, k80, k79, . . . , k1, 0, 0, . . . )
(b−83, b−82, b−81, b−80, b−79, b−78, . . . , b0, b1, b2, . . . ) = (0, 0, 0, 0, IV80, IV79, . . . , IV1, 0, 0, . . . )

(c−110, c−109, c−108, c−107, c−106, . . . ) = (1, 1, 1, 0, 0, . . . )
(1)



It takes 4∗288 = 1152 rounds to initialise Trivium. Trivium has no output in these first 1152 rounds.
The output zr ∈ GF(2) of one round r > 1152 is calculated as:

zr = ar−66 + ar−93 + br−69 + br−84 + cr−66 + cr−111 (2)

For every round r > 0 we compute the three values ar, br, cr ∈ GF(2), that are calculated as non-linear
function:

ar = cr−66 + cr−111 + cr−109 ∗ cr−110 + ar−69

br = ar−66 + ar−93 + ar−91 ∗ ar−92 + br−78

cr = br−69 + br−84 + br−82 ∗ br−83 + cr−87

(3)

Thus for a round r > 0 the first register of Trivium is equal to (ar, ar−1, . . . , ar−92), the second
register is equal to (br, br−1, . . . , br−83), the third register is equal to (cr, cr−1, . . . , cr−110).

1.2 Mini Trivium

We propose a modified version of Trivium, called MiniTrivium. It has a similar structure as Trivium but
is far easier to analyse than Trivium. In particular, we shorten the length of registers of Trivium.

MiniTrivium consists of three NLFRs with a length of 13, 17 and 12 bits respectively corresponding
to the first, second and third NLFRs (also called register). Hence the whole internal state of MiniTrivium
consists of 42 bits. As for Trivium, we introduce three infinite tuples A = (a−12, a−11, a−10, . . . ), B =
(b−16, b−15, b−14, . . . ) and C = (c−11, c−10, c−9, . . . ), those we use further to save the data of registers.
We interpret for a round r > 0 (and also for the beginning of the initialisation, where r = 0) the first
register of MiniTrivium as (ar, ar−1, . . . , ar−12), the second register as (br, br−1, . . . , br−16), the third one
as (cr, cr−1, . . . , cr−11). All ai, bj , ck, where −12 ≤ i, −16 ≤ j, −11 ≤ k, are elements of GF(2). The
operations over the elements of A,B,C are addition ”+” and multiplication ”*”, which are XOR and
AND in GF(2) respectively. The number of key-variables and the number of IV-variables of Trivium is
both equal to N . This number N ≤ 13 can be varried to foster our analysis.

At the beginning of the initialisation the entries ak with k = 0,−1, . . . ,−N+1 of tuple A are replaced
by key-variables, the entries bk with k = 0,−1, . . . ,−N + 1 of tuple B are replaced by IV-variables, the
first three entries of the tuple C are replaced by 1, the other entries of A,B,C are equal to 0 first.
As above we can describe these tuples A,B,C with formulas:

(a−12, . . . , a−N , a−N+1, a−N+2, . . . , a0, a1, a2, . . . ) = (0, . . . , 0, kN , kN−1, . . . , k1, 0, 0, . . . )
(b−16, . . . , b−N , b−N+1, b−N+2, . . . , b0, b1, b2, . . . ) = (0, . . . , 0, IVN , IVN−1, . . . , IV1, 0, 0, . . . )

(c−11, c−10, c−9, c−8, c−7, . . . ) = (1, 1, 1, 0, 0, . . . )
(4)

In comparison to Trivium, MiniTrivium produces its output directly from the first round. The output
zr ∈ GF(2) of one round r > 0 is computed as:

zr = ar−9 + ar−10 + br−8 + br−12 + cr−8 + cr−10 (5)

Like Trivium we compute the three values ar, br, cr ∈ GF(2), that are calculated as non-linear func-
tions (for every round r > 0):

ar = cr−8 + cr−10 + cr−11 ∗ cr−12 + ar−13

br = ar−9 + ar−10 + ar−12 ∗ ar−13 + br−17

cr = br−8 + br−12 + br−14 ∗ br−15 + cr−12

(6)

Thus for a round r ≥ 0 the first register of MiniTrivium is equal to (ar, ar−1, . . . , ar−12), the second
register is equal to (br, br−1, . . . , br−16), the third register is equal to (cr, cr−1, . . . , cr−11).

Finally we compare MiniTrivium and Trivium step by step:

– the number of key-variables is equal to the number of IV-variables of both ciphers. But this number
is equal to 80 for Trivium and to N ≤ 13 for MiniTrivium. The latter allows easier analysis.

– they both contain three NLFRs to update their states (3) and (6). While both are based on primitive
polynomials with 5 terms over GF(2), their length is different in MiniTrivium / in Trivium are
different.
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– the initialisation of them both is made in the same way.

– output bit zr for the round r is calculated with the same rule although the tap-positions had to be
adapted.

As we see, the overall structure of MiniTrivium and Trivium are very similar although they differ in their
exact details.

1.3 Cube attacks

Cube attacks are a method of cryptanalysis that were introduced by I. Dinur and A. Shamir [3]. Among
others, cube attacks can be applied to steam ciphers that are based on low-degree NLFRs. For example
in [3] the authors applied this method to Trivium. For every round r of MiniTrivium the output-bit zr is
written as a polynomial expression (of a not large degree, over the field GF(2)) of key- and IV-variables.
This allows for easy analysis.

If the polynomial equations of the same key-variables but of another IV-variables are combined,
high degree terms cancel out and we can hopefully extract a low degree equation of the key-variables.
Collecting a large number of such equations allows to solve them for all key-variables and thus to break
a cipher.

In general the polynomial that is used to compute the output-bit zr of the round r, is not fully known.
In this case we speak ov a black box multivariate polynomial. It was discussed in [2] that cube attacks
can be used in this case too.

(a) N = 5 (b) N = 6

(c) N = 10 (d) N = 11

Fig. 1. Dependence between number of the round (horizontal axis) and number of cubes (vertical axis) in Mini-
Trivium for different N
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Denote by K = (k1, k2, . . . , kN ) the set of key-variables and as IV = (IV1, IV2, . . . , IVN ) the set of
IV-variables of MiniTrivium. Let f(K, IV ) be a polynomial of key- and IV-variables. It is well known
that the ANF (algebraic normal form) of a a function f(K, IV ) exists and for a maximal degree d ∈ N

can be found in O((|K|+ |IV |)d) computations. Further let I be a subset of indexes of IV-variables and
tI be a monomial of IV-variables with indexes from the subset I multiplied with each other. Then we
can write the polynomial f(K, IV ) in such form (see also [2] or [3]):

f(K, IV ) = tI ∗ p(K) + q(K, IV ) (7)

This polynomial p(K) is called superpoly, the subset I is called cube and the monomial tI is called mono-
mial of the cube I. The dimension of the cube I is equal to the degree of monomial tI .

2 Number of cubes as a function of rounds

In our work for counting the cubes of MiniTrivium we used techniques that were already described in
[2]. The diagram 1 shows that in general the number of cubes for very small and very big r is equal to
zero. So in a sense, it takes some time for cubes to develop. After they, they flourish just to cease after
some while. From the first time as at least one cube is found, there are also cubes in the next rounds. We
can see that the number of cubes cannot be described as a monotonic function, because the number of
cubes is neither decreases nor increases for all rounds. The diagram 1 shows also that for example from
the round r = 59 for N = 5 (from the round r = 60 for N = 6; from the round r = 66 for N = 10; from
the round r = 68 for N = 11) it exists no cubes more.

Below, we give a subsection cube numbers for different values of N .
r = 30 r = 31 r = 32 r = 33 r = 34 r = 35 r = 36 r = 37 r = 38 r = 39 r = 40 r = 41 r = 42

N = 5 0 0 1 4 6 2 3 1 0 0 0 3 4
N = 6 0 1 4 8 6 3 3 0 1 0 5 5 7
N = 10 9 9 7 4 6 1 6 11 20 20 8 18 33
N = 11 9 7 3 7 8 2 14 23 24 9 6 27 33

3 Conclusions

In this paper we introduced MiniTrivium as a modified version of Trivium. We gave the exact number of
cubes N = 5, 6, 10, 11 in each round of MiniTrivium. This was possible as MiniTrivium is made artificially
small so it will not even withstand a generic brute force attack on its key.

We plan to extend this technique to the full Trivium cipher. Therefore we hope to be able to predict
the number of cubes for very high rounds of Trivium and either proof or disproof that they exist at all
for round number higher than 1152.
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Abstract. We introduce a new compact algebraic representation of Trivium which allows to consider
more than one Trivium instance at the same time. We use linear algebra methods to reduce the number
of intermediate variables and produce a quadratic polynomial system to describe the key used by
Trivium instances with different IVs.

Trivium is a well-known cipher described in [CDC08]. It consists of three feedback shift register with
quadratic update functions. This simple structure makes it an attractive target for cryptanalysts.

In [SFP08] and [T+13] algebraic attacks against Trivium and its variants Bivium-A and Bivium-B are
presented. They use a algebraic representation first described in [Rad06]. Namely after the initialization phase
they set the whole internal state to symbolic values and introduce three intermediate variables every output
round. That gives a sparse polynomial quadratic system which can or cannot be solved using groebner-basis
techniques. This strategies have limited success as they broke Bivium-A and Bivium-B but have no chance
to break Trivium or round-reduced versions of Trivium.

In [T+13] and [TS12] they give some additional techniques for the attack related to the algebraic rep-
resentation in [Rad06]. They tested there ideas on Trivium-N, another variant of Trivium introduced in
[TS12].

All these attacks are related to the same algebraic representation of Trivium and were unable to break
even round-reduced versions of Trivium. We want present a different algebraic representation of Trivium.
We do not set the internal state to symbolic values but the key. Then we update Trivium a number N of
rounds generating intermediate variables whenever it is needed to have a quadratic system. This allows us
to generate many Trivium instances with the same key but with other IVs.

The downside of our strategy is the growing number of intermediate variables. Therefore we define similar
variables and use linear algebra techniques to minimize the number of variables.

Trivium is a well-known hardware oriented synchronous stream cipher presented in [CDC08] which gen-
erates up to 264 keystream bits from an 80-bit IV and an 80-bit key. Trivium consists of a initialisation phase
and a keystream generation phase.

The three shift registers A = [Ai, . . . , Ai−92], B = [Bi, . . . , Bi−83] and C = [Ci, . . . , Ci−110] will be
initialized with A0 = [k0, . . . , k79, 0, . . . , 0], B

0 = [i0, . . . , i79, 0, . . . , 0] and C0 = [0, . . . , 0, 1, 1, 1].
Then the shift registers will be updated 1152 rounds according to the following update function without

producing any output.
Bi = Ai−65 +Ai−92 +Ai−90Ai−91 +Bi−77

Ci = Bi−68 +Bi−83 +Bi−81Bi−82 + Ci−86

Ai = Ci−65 + Ci−110 + Ci−108Ci−109 +Ai−68

After this we produce output in every round with the function

zi = Ci−65 + Ci−110 +Ai−65 +Ai−92 +Bi−68 +Bi−83.

Our experiments are performed using round reduced versions of Trivium.
The approach from former algebraic attacks described in [SFP08],[Rad06], [TS12] and [T+13] using

modells from [Rad06]. In [Rad06] all state bits of one Trivium instance will set to symbolic variables after
the initilization phase.



In the first model they intoduce three new variables for Ai, Bi and Ci when the output is generated. So
they get a sparse quadratic equation system with 288 + 3 ∗ no variables in 4 ∗ no equations where no is the
number of output bits.

In the second model the authors of [Rad06] do not introduce any intermediate variables. Therefore the
equations are of much higher degree in the 288 state bits and the equation system is dense.

We want to propose a new representation of Trivium which is capable of handling more than one instance
of Trivium.

Let I ⊂ V be a subset of the IV variables. We consider the first no output bits of Trivium instances
defined by the same key and all combinations of 0/1 values in I.

The approach we are using is to set up Trivium instances with symbolic variables k0, . . . , k79 for the key
and set the IV variables corresponding to all 0/1 combinations in I. We initialize the instances of Trivium
for a given number of rounds N and introducing three new variables every round for Ai, Bi and Ci. This
produces a quadratic system with a large amount of variables. Therefore we show some methods to reduce the
number of variables. The reduction of the number of variables is important because groebner-bases algorithms
depending significantly on this number. First of all we consider one Trivium instance. The following lemma
holds.

Lemma 1. Let N > 238 and no � 66. Then we use 3N−522 intermediate variables to describe one Trivium
instance.

Proof. First of all we note that we do not have to introduce new variables in the first 66 rounds of output.
After the initialization phase we are just interested in output equations. The output function is a linear
one which uses at least 66 rounds old equations. This means while there are equations in the registers of
degree greater than two there are no such equations in the output. After that the following 66 equations
have maximal degree four and so on.

Now we are looking at the intermediate variables generated while modelling one Trivium instance. When-
ever we would get an equation of total degree greater than two we set the quadratic equation to a new
intermediate variable and continue the calculation with it.

At the begining the first register A contains the only symbolic values. In the 13th round the first quadratic
expression B12 = A−78 ·A−79+ · · · = k79 · k78+ · · · is produced. It takes 82 rounds till it will multiplied with
a linear element in C95 and the first intermediate variable will be introduced. After that there will be a new
variable in Ci every round.

The quadratic expression B12 will also be stored in register C in round 13 + 69 = 82 because of C80 =
B12 + · · ·. In round 191 this expression will be multiplied with an linear expression in A189 = C81 ·C80 + · · ·
and we have to introduce a new intermediate variable. After that there will be two new variables in each
round.

As mentioned above our quadratic expression B12 will stored in register C in round 82. After 66 more
rounds it is stored in A145 = C80 + · · ·. There it takes further 91 rounds until a new variable is required in
B236 = A146 ·A145 + · · ·. From round 291 on there will be three new variables in each round without further
reduction techniques.

So we have the following number of intermediate variables v:

v = (N − 94) + (N − 190) + (N − 238)
v = 3N − 522.

��

After this general observation for Trivium we introduce so-called similar variables.

Definition 1. Let R = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y ] be the Boolean Polynomial Ring in the key
Variables K and all intermediate variables Y .

We call two intermediate variables yi and yj similar iff yi + yj = p(K,Y ) where p(K,Y ) is a polynomial
with deg (p) � 1.
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Taking similar variables into account we can store a lot of intermediate variables. Whenever we want to
introduce a new intermediate variable we test if there exist a similar one. When there is a similar variable
we do not introduce a new variable but take yj + p(K,Y ) for further calculations.

Further more if we have the set F of polynomial equations in R introducing the intermediate variables,
the so-called set of system equations, we can generalize the definition above as follows:

Definition 2. Let R = F2[k0, . . . , k79, y0, y1, . . .] =: F2[K,Y ] be the Boolean Polynomial Ring in the key
Variables K and all intermediate variables Y and F the set of system equations.

We call the intermediate variable yi similar to the set F iff there exist a linear combination of already
introduced intermediate variables so that yi+

∑
k ckyk = p(K,Y ) where ck ∈ F2 and p(K,Y ) is a polynomial

with deg (p) � 1.

With similar variables we can store a lot more intermediate variables. In particular when we generate more
than one Trivium instance. In our experiments we use the set of indeces I = {0, . . . , k−1} for k ∈ {1, . . . , 80}.
Table 1 shows some experimental results on modelling Trivium for reduced number of rounds. The time and
memory measurement in the last two columns do not take into account that our attack can be divided in
a preparation phase, which consists of modelling the Trivium instances, and an online phase in which we
produce the output and solve the system.

N 3N − 522 #triv no v t in min mem in MB
400 678 8 66 530 2 136
450 828 16 33 879 9 197
500 978 64 66 1672 900 41047

In the first column is the number of initialization rounds for each Trivium instance. In the second one
is the number of variables used for one Trivium instance without similar variables. The following column
contains the number of Trivium instances. The number of output bits is denoted by no, the number of
intermediate variables which are used to describe the whole system is v.

As conclusion we can see that the similar variables greatly effect the number of variables. At some
point there is a saturation of variables so we can generate a instance of Trivium without introducing any
intermediate variables. This saturation occurs when we get higher Hamming Weight of the IVs generated
corresponding to subsets of I. The number of variables increases linearly when the used IVs have the same
Hamming Weight. When the Hamming Weight increases the number of variables increases slower until the
saturation. When this saturation is reached the output becomes more and more linearly dependent.

We want to end with some future work. The problem of our modell is the time and memory used to
generate the model for larger rounds and many instances of Trivium. So the next step is to divide the pure
model generation from producing the output and solving the system.
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1 Introduction

Statistical analysis of experimental data is the cornerstone of many research areas. Human error and
fraud, though, are common threats to the integrity of the statistical results [1]. In addition, verifica-
tion of such statistical results cannot be applied in a straight-forward manner, since in many cases the
underlying data has to remain confidential. To address this problem, we propose a privacy-preserving
verification procedure that allows a number of semi-honest verifiers to ascertain that statistical cal-
culations are consistent with the confidential data they are based on, without learning about the
underlying confidential data.

In medical research, it is common practice to give clinical researchers access to raw patient data.
This is necessary for researchers to determine the appropriate statistical analysis method for the
specific dataset in question. Patient privacy in that context is preserved by the researchers themselves,
who are bound by confidentiality agreements. Currently, only the most prestigious medical scientific
journals like Thorax [2] perform statistics verification on the clinical research results, prior to their
publication. This is a labor intensive task performed by expert statisticians. In addition, there is a
trade-off between patient privacy and thoroughness of the verification procedure. On the one hand,
the results can be partially checked, where thoroughness is sacrificed to preserve some privacy. On
the other hand, the results can be thoroughly checked by releasing all pateint data and thereby
compromising patient privacy. Note that current anonymization techniques have been shown insecure,
since anonymized data can be de-anonymized [3]. Thus, typically, disclosure of (anonymized) patient
information should not be allowed; not even to medical journals for verification.

Although hospitals have the confidential patient data used for the statistical analysis available in
the clear, they currently do not consider the verification of the statistics. This is because 1) hospitals
wish to avoid the additional workload brought by the verification; 2) clinical researchers are usually
employed by the same hospital that provides them with the data, where a conflict of interests might
arise; 3) on-site verification does not scale, since it is not possible to verify the results accruing from
datasets of different hospitals (i.e., in the case of a multi-center clinical research). In contrast, medical
journals are interested in the correctness of the results that they publish. Therefore, we propose that
journals outsource the verification of statistics to an independent group of (computing) servers, called
the verifiers, in a privacy-preserving manner. The fact that our approach can be fully automated
and does not require additional manpower to be employed, may well serve as a motivation for all
(medical) journals to implement this paradigm and integrate verification into their pre-publication
process. Concretely, we make the following contributions:
Enhance Privacy-Awareness in the Verification of Clinical Research. Patient data is con-
fidential and is only to be disclosed to (trusted) experts conducting the clinical research with the
patients’ informed consent. Other parties, such as medical journals, should not receive patient infor-
mation, even if it has been anonymized. In particular, no confidential data should leak to any external
party involved in the verification of clinical research.
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Enable Automated Privacy-Preserving Verification of Clinical Research. While the verifica-
tion of clinical research at the hospital site is unsuitable (for the aforementioned reasons), we propose
a mechanism that allows for the fully automated outsourcing of this verification to several semi-honest
verifiers without compromising the confidentiality of patient data. Our approach is based on secure
multi-party computation from Shamir’s secret sharing [4] and is proven secure in the semi-honest
model. For our scenario, it is realistic to assume the semi-honest model, as an independent service
provider for the verification has no motivation to pursue the non-trivial task of acting maliciously [5],
while it might be interested in collecting (private) information.

Demonstrate the Practicality of our Approach with Real Patient Data. We develop a set
of privacy-preserving algorithms, which allows the verification of the most commonly used statistical
operations in clinical research [6]: mean, variance, Student’s t-test, Welch’s t-test, ANOVA (F -test),
simple linear regression, χ2-test, Fisher’s exact test, and McNemar’s test. We test our algorithms on
a real medical dataset [7] and show their efficiency.

1.1 Related Work

In our application domain, related work is mainly concerned with the case where the verifier does
not wish to disclose information to the prover, while in our scenario this is the other way around. For
instance, privacy-preserving statistical analysis [8] deals with the computation of aggregated statistical
results among several parties, contributing their private inputs. However, in contrast to our work, the
attention of works in this area is focused on secure computation of certain statistics, where each party
involved in the computation provides its own private data. In our context, we look at the privacy-
preserving verification of such statistics, where the data to be processed is provided by a party not
involved in the actual verification process.

Another related area is verifiable computation [9], which allows a party (or set of parties) to
outsource computations to untrusted external parties, while maintaining verifiable results. The security
definitions of works in this area guarantee that the untrusted computing parties cannot cheat in
the computation. Some solutions additionally achieve input and output privacy with respect to the
computing parties. Besides having a significant computational overhead, these constructions do not
consider keeping the inputs private from the verifying parties.

Another recently emerged approach towards addressing the problem of privacy-preserving verifi-
cation is computing on authenticated data, which can be accomplished using homomorphic signatures
[10]. Recently, the application of homomorphic signatures was extended from treating only set op-
erations, to computation of functions on the signed data. Existing work, however, either provides
privacy of the underlying inputs on the cost of restricted functionality [11], or it provides sufficient
functionality on the cost of completely compromising privacy [12].

2 Privacy-Preserving Statistics Verification

Prior to the execution of each protocol, we assume that the hospital (playing the role of the dealer), se-
cret shares the original data used in the statistical analysis among the verifiers, according to Shamir’s
Secret Sharing scheme [4]. The main ingredients for the construction of these protocols are the Inner-
Pub(.) [13, Protocol 4.8] and the SumPub(.) sub-protocols. We focus on InnerPub(.) and SumPub(.),
because they are the only building blocks of our verification scheme, acting in the secret shared do-
main; the rest of the computations to complete verification are performed in the clear. The InnerPub(.)
protocol allows us to compute the inner product of two secret shared vectors and then reconstruct the
result of this computation in the clear. The SumPub(.) protocol allows us to compute the summation
of secret shared vector elements, by letting each verifier locally compute this sum (on the shares) and
then interactively reconstruct the result of the summation. Our approach takes advantage of the fact
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that all statistical results to be verified are public. Thus, we can let the verifiers recompute the statis-
tics in the secret shared domain, reconstruct the shared results, and compare them with the statistics
to be verified in the clear. In most cases, we also take advantage of intermediate public results.

We have designed protocols achieving privacy-preserving verification of the mean, variance, Stu-
dent’s and Welch’s t-tests, the F -test used in ANOVA (Analysis of Variance), simple linear regression,
Pearson’s χ2-test, Fisher’s exact test, and McNemar’s test. In these protocols, all sensitive operations
that have to be performed in the secret shared domain are implemented using the aforementioned
InnerPub(.) and SumPub(.) protocols. The verifiers initially act in the secret shared domain to pri-
vately compute intermediate public results, and then utilize these results in combination with all the
(public) arguments passed to the algorithm, to evaluate in the clear the statistical test in question.
Finally, the verifiers compare their result(s) with the value(s) received for verification, to designate
the verification successful or unsuccessful.

The χ2-test, Fisher’s exact test and McNemar’s test are all statistical tests meant to be used when
the data in question is categorical. This means that those tests examine the frequency distributions of
observations in a group, and record the observed frequencies in a table called the contingency table.
To enable privacy-preserving verification of such tests, a preprocessing is required, where the raw data
is encoded to its unary representation. The number of categories, in each dimension of the clinical
research, defines the number of bits of each entry in the table of raw data. For example, if we were
examining the effect of 3 different medications, the number of bits of each entry in the medication
column would have been also 3. After preprocessing, the hospital secret shares this data bitwise among
the verifiers, who then privately recompute and verify the frequencies in the contingency table. Then,
the statistic’s evaluation and comparison is performed in the clear to complete the verification.

3 Security and Performance

Our setting as a whole lies in the semi-honest model, meaning that the verifiers altogether as a group
are assumed to honestly follow the instructions mandated by the protocol, but they wish to learn
as much information as possible about the private inputs that the (trusted) dealer (i.e., the hospital
owning the data) possesses. In this model, the verifiers are allowed to know all the public inputs
given as arguments in the protocols and all the public results that they compute. However, they are
not allowed to learn anything more than the aforementioned, in addition to what can be inferred
by the results. Hence we need to protect the private inputs of the dealer. By employing Shamir’s
Secret Sharing scheme, we achieve information-theoretic security, as long as at least t ≥ n

2 verifiers are
honest and do not collude. We assume that there exist pairwise secure channels between the verifiers.
In a nutshell, the security requirement that we wish to satisfy is to preserve the confidentiality of
the private inputs of the dealer, while allowing a certain functionality of the verifiers, enabling the
verification of the result of a predefined function. We model security using the real vs. ideal paradigm.

Our performance analysis is based on a proof of concept implementation that we designed to
demonstrate the efficiency of our solution. We used real patient data [7] for our experiments to show the
applicability of our proposal in practical cases. The aforementioned data concerns patient compliance
in a tele-treatment application, where the patients were carrying a monitoring system, measuring
their activity and sending them back activity advice, in the form of feedback messages. This dataset
consists of 2370 feedback messages of 85 patients that have been analyzed. We have measured the
execution time of all our verification algorithms on an Intel(R) Core(TM) i3-2350M processor, at 2.3
GHz, with 4.00 GB RAM and Windows 7 64-bit operating system. We have conducted all tests on
localhost, with 3 verifiers, and the network latency has not been taken into account. The performance
of the verification algorithms basically dependents on the size of the dataset on which the statistics
have been computed. Our implementation is based on VIFF [14]; a Python framework for secure
multi-party computations. We have also doubled and tripled our dataset and timed the execution of
our algorithms again on these augmented datasets to show how our algorithms scale. The execution
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times of the algorithms on the previously discussed dataset range from 422 ms in the fastest case (a
verification of the mean age of 84 patients) to 1295 ms in the slowest case (a verification of the χ2-test
on 7110 messages). To demonstrate the efficiency of our approach, we present our performance results
in Figure 1, without further explanations on the actual statistics and dataset used. In our dataset,
there was a missing age value for one patient. For the statistical tests that depend on the age value, all
the information about this patient and the 94 feedback messages concerning him/her were excluded
from the dataset.

Mean Variance

84 patients 422 ms 546 ms
168 patients 546 ms 639 ms
252 patients 672 ms 858 ms

Chi-Squared McNemar’s

2370 msgs 1092 ms 858 ms
4740 msgs 1186 ms 983 ms
7110 msgs 1295 ms 1061 ms

Welch’s F -test

2370 msgs 889 ms 967 ms
4740 msgs 1108 ms 1154 ms
7110 msgs 1200 ms 1232 ms

Regression

2276 msgs 874 ms
4552 msgs 1076 ms
6828 msgs 1151 ms

Fisher’s test

85 patients 780 ms
170 patients 843 ms
255 patients 1029 ms

Fig. 1: Performance of Privacy-Preserving Verification Protocols
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Abstract

Anonymized releases of databases are increasingly available in public. The composition of two releases
does not necessarily fulfil any anonymity notion, even if the individual releases do fulfil that anonymity
notion on their own.

In this paper, we study composition scenarios and provide formalizations. We introduce a formal
framework to study the composition of databases on a structural level and show the equivalence of the
composition scenarios used in literature. We show that known attacks on anonymity notions can be
reduced to two simple properties and only need limited side information.

1 Introduction

Anonymity has been in focus of research on privacy-preserving database disclosure [1, 2, 3] over the past
years. The goal is to publish an anonymized database in order to allow others to analyze it while preserving
the privacy of the individuals represented in the database. Formal anonymity notions express the limitation
of information disclosure from the database or guarantee provided by the anonymization.

A huge challenge is that combination of two anonymized datasets does not necessarily fulfil any anonymity
notion [4, 1]. Nevertheless, multiple releases from different sources as well as different releases from the same
source are common in practice, e. g. census data and health records. This highlights the need to formally
define database composition in such a way that this problem can be considered in the design of anonymity
notions. No formal investigation of database composition, however, has been carried out. Additionally, there
are no results based on the structure instead of concrete attribute values.

Another challenge in privacy-preserving database disclosure is modeling background knowledge that an
adversary obtains independently from other data sources. Background knowledge can be modeled as a
database release. Therefore, many side-information attacks on the anonymity of database releases can be
considered composition attacks.

Our Contribution. In this paper, we provide the first formal definition of database composition that
covers all composition scenarios used in literature [1, 4, 5, 6, 7]. We prove that these scenarios can be
transformed into each other, thereby allowing for considering just one scenario during the design of anonymity
notions.

In order to control background knowledge in composition scenarios, we introduce the notion of symbolic
databases and show that, to the best of our knowledge, most composition attacks can be reduced to two
properties of anonymity procedures, namely Locatability and Exact Sensitive Value Disclosure (ESVD), first
proposed by Ganta et al. [4]. Locatability allows an attacker to determine a set of possible pre-images of an
anonymized value including the correct value, while ESVD means that the anonymization procedure does
not alter the sensitive values. We show that ESVD suffices to break k-anonymity on a structural level.

Related Work. In the context of database anonymization two lines of research have been established.
On the one hand partition based anonymity notions such as k-anonymity [8], l-diversity [6] and t-closeness [7],
have been thoroughly analyzed, including analysis of the complexity of the methods [9, 10, 11, 12] and
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proposed attacks [13, 7, 4]. The other line of research examines adding noise to databases [14, 15, 16, 17].
The main result is differential privacy [2]. There are several relaxations of this notion [18, 19, 20, 21] as well
as some variations [22, 21, 23]. Recently, Gehrke et al. [24] presented an attack against differential privacy.

Composition of anonymized databases has been investigated mainly in the context of differential pri-
vacy [25, 19, 4, 23], while partition based anonymity schemes are only explicitly considered by Ganta et
al. [4]. Nevertheless, attacks as presented by [6, 7, 5] also are composition attacks. Since differential privacy
is secure under arbitrary background knowledge [2, 4], modeling background knowledge has been mainly
examined in the area of partition-based anonymity schemes [26, 27, 28].

2 Preliminaries

In this section, we present definitions of the concepts used throughout this paper. After some notation we
give a definition of Differential Privacy as well as ESVD and Locatability.

Notation. Let a database d = {t1, t2, . . . , tn} be a set of tuples with attributes A = {A1, A2, . . . , Am}.
We denote the value of attribute Ai in tuple tj by tj [Ai]. Throughout this paper, we use the terms tuple
and row interchangeably. We call the set of all i-th elements of each tuple in d the i-th column of d and
|d| = n ∗m the size of d. A set of non-sensitive attributes Q = {Q1, . . . , Qw} ⊆ A is called a quasi-identifier
if these attributes serve to uniquely identify at least one individual in the database. Let S ⊂ A \ Q be the
set of sensitive attributes, w.l.o.g. we only consider the case of |S| = 1.

Throughout this work, we use the operators projection π and selection σ as follows: Let b = {b1, . . . , bl} ⊆
A, l ≤ m, be a set of attribute values of d. Then, π projects a database d to a database d′ that only contains
a subset of the attributes of d: πb(d) = ∪j=1..n(tj [b1], . . . , tj [bl]).

We abbreviate a probabilistic polynomial-time turing machine by PPT without explicitly describing the
random input. In order to capture deterministic anonymization functions as well as probabilistic anonymiza-
tion mechanisms, througout this paper, we talk about anonymization mechanisms. In the following we
assume an anonymity notion to state a form of guarantee P, which can be achieved by a (probabilistic)
anonymization mechanism f . We say f realizes Pk, or f ∈ Pk, where k is a privacy parameter or a set of
privacy parameters.

Differential Privacy. We will briefly review the definition of differential privacy, since we will later use
it to motivate our composition notions.

Definition 1 ([2]). A randomized function f gives ε-differential privacy if for all data sets d1 and d2 differing
on at most one element, and all S ⊆ Range(f),

Pr[f(d1) ∈ S] ≤ exp(ε) · Pr[f(d2) ∈ S]

Differential privacy can be achieved by adding noise the output, thereby hiding the true value. The noise
distribution has to be Laplacian with variance 1

ε .

Locatability and Exact Sensitive Value Disclosure. Locatability and Exact Sensitive Value Disclo-
sure were first presented by Ganta et al. [4]. While they use these notions only in the context of their
intersection attack, we will present a generalized definition of their notions.

Definition 2. Let f be an anonymization mechanism. Then we say f has Locatability iff there exists an
adversary A, a database d, a quasi-identifier Q and a tuple t ∈ d, such that A(πQ(t)) returns a strict subset
p of d′ = f(d) with f(t) ∈ p.

Locatability only improves an attack if the distribution of sensitive values in the resulting partition differs
from the distribution of sensitive values in the database. Consider a database that has t-closeness [7] with
t = 0 for every sensitive attribute, i.e. the distribution of every partition is the same as in the complete

2



database. Then Locatability is of no use to an adversary, however, achieving t = 0 in real databases is
virtually impossible. In contrast, in the case of k-anonymity, an adversary can always identify the bucket of
any individual.

The advantage of our generalization of Locatability from k-anonymity to general anonymity notions is
that it enables us to highlight the similarity of many known composition attacks [4, 24, 5].

We now define Exact Sensitive Value Disclosure (ESVD).

Definition 3. Let f be an anonymization mechanism. Then we say f has Exact Sensitive Value Disclosure
iff at least one sensitive value of d is contained in f(d). That is,

∃S ∈ S, ∃v : v ∈ πS(d) ∧ v ∈ πS(f(d))

3 The Symbolic Framework

It is difficult to model or control arbitrary side information of an adversary in the context of database
privacy [26, 27, 28]. Our approach to this problem first eliminates all side information and later adds the
information that cannot be hidden in the real world. Successfully performing an attack in our model yields a
successful attack in the real world. Thus, our ability to model ESVD and Locatability and to reduce known
attacks to these two properties in our framework also implies that these attacks use a quantifiable amount
of side information and otherwise only the structure of the combined data.

To illustrate the relevance of this framework, we derive the following results with symbolic databases: (a)
the composition notions presented in Section 4.1 can be proven as equivalent, (b) many composition attacks
can be simulated (cf. [4, 24, 1, 5]) and, therefore, (c) do only need limited side information quantifiable in
our model.

3.1 Representation of Databases

In order to study database composition on a structural level, we replace all attribute values with meaningless
symbols. This renders side information useless. Informally, structurally identical databases are a set of
databases that can all be projected onto the same symbolic database.

Definition 4. We define the set S(d) := {d′|∃wr : wr(d
′) = d} with wr being a wrapper function that

applies a bijective function wi to each column i of d. We call S(d) the databases structurally identical to d.

The function S implies an equivalence relation on databases. Instead of d′ ∈ S(d) we write d
S
= d′ and

call them structurally identical. Note that this notion also includes all permutations of a database, which is
due to the definition of a database as a set.

Now, we can replace the values of any representative of S(d) to create a symbolic database. The notion
of symbolic databases is defined w. r. t. an adversary. In the following experiment, the adversary tries to
relate a given symbolization of a database to one of two structurally identical databases she chose:

Definition 5. Let A be a PPT, d ∈ DB, i ∈ {0, 1}, Σ : DB → DB an injective function. The experiment

Symbi,ΣA (d) is defined as follows:
d0, d1 ← A(S(d))

d0
S

�= d1 : return ⊥
b ← A(Σ(di))
return b

Here Σ is a function that replaces the values of one of the two adversarially chosen databases with random
symbols. This function is not known by the adversary. Then the adversary has to guess the pre-image of
the symbolized database. With this experiment, we can define symbolic databases as follows:

3



Definition 6. Let Σ: DB → DB be a bijective function. We call Σ a database symbolization function iff
for all PPT A and for all d ∈ DB the following holds:∣∣∣Pr[Symb0,ΣA (d) = 1]− Pr[Symb1,ΣA (d) = 1]

∣∣∣ ≤ ε

for ε negligible in |d|. We call Σ(d) a symbolic database of d.

In order to allow for composition scenarios, we use the same function that replaces the attribute values
for corresponding columns in different databases. Note, that the definition of symbolic databases implies
that attribute names get symbolized as well. As an example for the symbolization, consider the databases
depicted in Figure 1. In this simplified example, values are mapped to letters of the alphabet.

130** < 30 * AIDS
130** < 30 * Heart Disease
130** < 30 * Viral Infection

(a)

a b e f
a b e g
a b e h

(b)

Figure 1: An example database (a) with attribute names omitted and a representative of its symbolic
databases (b): attribute values are replaced with symbols. The two databases have identical structure, but
the symbolic database is stripped of meaning.

3.2 Locatability and ESVD for Symbolic Databases

We introduced generalized definitions of Locatability and ESVD in Section 2. Since it is known that these
properties can be exploited for composition attacks, in order to study composition attacks on a structural
level, we need to be able to apply these properties to symbolic databases.

Locatability. An adversary can always execute the anonymization mechanism f on a number of quasi-
identifiers and compare the results to the anonymized database (although with new random coins, if the
mechanism is probabilistic). This might enable an adversary to locate subsets in the anonymized database
that relate to specific quasi-identifiers.

If we want an adversary to be able to do this with symbolic databases, we have to give her oracle access to
Σ◦f , where Σ is the symbolization and f the anonymization mechanism, since we do not want the adversary
to learn Σ. If f is probabilistic, the oracle has to use new random coins. Note that without the oracle, there
is no Locatability for symbolic databases. Otherwise, the adversary would be able to invert Σ and thus win
the game specified in Definition 5.

The construction of a Locatability oracle for an anonymity notion in the symbolic framework yields the
background information necessary to perform Locatability for this notion in the standard model. Thus the
designer of an anonymity notion can check if the Locatability information is available in her setting.

ESVD. If an anonymization mechanism has the ESVD property, this property is kept in the symbolic
framework, since we use one distinct symbolization for each column, and require that the same values in two
corresponding columns are mapped to the same symbolic value.

4 Results in the Symbolic Framework

In this section we present our main results. We prove the equivalence of the composition scenarios (cf. Sec-
tion 4.1) for symbolic databases, which translate straightforwardly to the plain model. Therefore, a proof
of (non-)composability of an anonymity notion for a single composability scenario suffices for a general
proof. We then give a short sketch of why known attacks only need ESVD and Locatability, where the side
information can be exactly quantified with our framework (by stating a Locatability oralce).
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4.1 Composition Scenarios for Anonymized Databases

By analyzing the attacks presented in literature, e. g. [1, 4, 2, 22], we derive two composition schemes, both of
which can be generalized to a third scheme. In the first composition scheme an adversary is given two excerpts
of different databases, which are anonymized by the same anonymization mechanism (cf. Figure 2(a)). The
second scheme represents the case where an adversary has access to two different anonymizations of the
same database, which are anonymized with different anonymization mechanisms (cf. Figure 2(b)). The third
approach is the direct generalization of both composition scenarios, where two (possibly) different tables
are anonymized by two (possibly) different anonymization mechanisms. This is depicted in Figure 2(c).
Obviously, this captures every possible form of composition.

d1

d2

τ1

τ2

f

f

(a) SC-ID

d

τ1

τ2

f1

f2

(b) SC-IA

d1

d2

τ1

τ2

f1

f2

(c) SC-IAD

Figure 2: The database composition notion Secure Composition under Independent Anonymizations and
Databases (SC-IAD) and its two specializations Secure Composition under Independent Databases (SC-ID)
and Secure Composition under Independent Anonymizations (SC-IA). In Section 4 we show that all three
definitions are equivalent.

We motivate our definitions for secure composition as follows. An adversary A tries to learn a predicate p
of the database d. For two anonymizations f1(d1) and f2(d2) all the adversary can learn without combining
both anonymizations is bounded by

max
i∈{0,1}

{Pr[A(fi(di)) = p(di)]}

Thus we have to define the security of a composition of anonymized databases with respect to what an
adversary can learn without composition. It is common knowledge that the release of anonymized data yields
some information to an adversary, because perfect anonymization leads to no utility (cf. e. g. [2]). To capture
this problem we introduce a degradation function κ which bounds the degradation of anonymity relative to
the privacy parameter.

We illustrate our approach by applying it to differential privacy. The composition of differential privacy
was shown among others in [19] and falls into the scenario SC-IAD. Here f1 and f2 represent anonymization
mechanisms for Pε1 and Pε2 , respectively. This example is highly simplified, but it illustrates the intuition
behind our definitions. The following has to hold for secure composition (cf. Definition 9):

Pr[A(f1(d1), f2(d2)) = p(d1 ∪ d2)] ≤ κ(ε1, ε2) · max
i∈{0,1}

{Pr[A(fi(di)) = p(di)]} (1)

The composition of differential privacy yields the privacy parameter ε1 + ε2 for the left hand side of 1, while
we can bound the other side by a privacy parameter max{ε1+ε2}. The highest probability of an adversaries’
guess can be substituted on both sides of the equation.

eε1+ε2 · 2 max
i∈{0,1}

{Pr[fi(di) ∈ S]} ≤ κ(ε1, ε2) · emax{ε1,ε2} · max
i∈{0,1}

{Pr[fi(di) ∈ S]}

⇔ 2eε1+ε2 ≤ κ(ε1, ε2) · emax{ε1,ε2}

This leads to a degradation function κ(ε1, ε2) = 2emax{ε1,ε2} and shows that the composition of differential
privacy can be intuitively expressed by our definition.

We now state the definitions for the secure composition of the above mentioned scenarios.
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Definition 7. A anonymity notion P composes securely under independent databases (SC-ID) iff for all
anonymization mechanisms f ∈ Pk there exists a degradation function κ such that for all adversaries A, for
all databases d1 and d2 and for all predicates p : {0, 1}∗ → {0, 1} the following holds:

Pr[A(f(d1), f(d2)) = p(d1 ∪ d2)] ≤ κ(k) · max
i∈{0,1}

{Pr[A(f(di)) = p(di)]}

Of course, composition is only a privacy threat if the databases d1 and d2 have some sort of correlation,
e. g. an overlap of individuals. By independent databases we mean that the two databases do not explicitly
cover the same population. If a database anonymity notion P is a property of the anonymization mechanism
(e. g. differential privacy), we have to extend the definition of P and quantify over pairs of anonymized
databases instead of single databases.

Definition 8. A anonymity notion P composes securely under independent anonymizations (SC-IA) iff for
all anonymization mechanisms f1 ∈ Pk1 and f2 ∈ Pk2 there exists a degradation function κ such that for all
adversaries A, for all databases d and for all predicates p : {0, 1}∗ → {0, 1} the following holds:

Pr[A(f1(d), f2(d)) = p(d)] ≤ κ(k1, k2) · max
i∈{0,1}

{Pr[A(fi(d)) = p(d)]}

Definition 9. A anonymity notion P composes securely under independent anonymizations and databases
(SC-IAD) iff for all anonymization mechanisms f1 ∈ Pk1

and f2 ∈ Pk2
there exists a degradation function

κ such that for all adversaries A, for all databases d1 and d2 and for all predicates p : {0, 1}∗ → {0, 1} the
following holds:

Pr[A(f1(d1), f2(d2)) = p(d1 ∪ d2)] ≤ κ(k1, k2) · max
i∈{0,1}

{Pr[A(fi(di)) = p(di)]}

Obviously, if an anonymity notion composes securely under independent anonymizations and databases
(SC-IAD), it also composes securely under independent databases (SC-ID) and under independent anonymiza-
tions (SC-IA). In Section 4.2, we will show that this also holds the other way round.

4.2 Equivalence of Composition Notions

Due to space limitations we will only state our main theorem and refer the interested reader to the full
version of this paper. We point out that although the theorem states only symbolic databases, this result
also extends to the plain model, where the equivalence is intuitively clear, but hard to prove.

Theorem 1. For symbolic databases, the composition scenarios SC-IAD, SC-ID, and SC-IA are equivalent
in terms of polynomial-time transformation, i. e. each instance of a composition scenario can efficiently be
simulated with an instance of a composition scenario of another class.

4.3 Structure-Based Attacks

Given that Locatability and ESVD can be achieved with symbolic databases, one can easily verify that
(a) the deanonymization of the Netflix dataset [5] as well as (b) the attack of Gherke et al. [24] and (c)
general attacks on k-anonymity and derivates as presented in [1] and [4] can all be carried out with symbolic
databases and thus are all attacks on a structural level.

Locatability in the Netflix dataset stems from the sparsity of the columns representing movies, such that
a set of movies identifies a set of individuals (cf. [5]). In the case of differentially private data [2], correlation
between the entries can lead to Locatability. Gehrke et al. [24] can locate an individual due to known
associations with other individuals in the dataset and then derive the sensitive value. Although they do not
use the term Locatability, their example is perfectly captured by our generalized definition.

Even worse, without privacy guarantees, partition-based anonymity notions like k-anonymity can be
applied incorrectly and thus directly yield the anonymized data without any background knowledge of an
adversary. For a detailed discussion about these attacks we refer to the full version of this paper.
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5 Summary and Future Work

In this paper, we presented a framework for studying the composition of anonymized database releases with
no or very limited background knowledge. We provided a formal definition of composition notions and
proved their equivalence. We provided strong evidence that Locatability end ESVD are the only necessary
properties to enable composition attacks by simulating them in our framework.

A possible extension of our framework is to model additional side information, e. g. relations of symbols.
This is a natural extension, since values related in the real world are symbolized differently. We deem it
significant to capture precisely the ratio of background information needed versus knowledge extracted from
a release.

The notion of symbolic databases can lead to anonymity notions more resilient to attacks involving
background knowledge and composition.
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Abstract. At CRYPTO 2011, Rivest presented “FlipIt: The Game of
Stealthy Takeover” as a model for systems under Advanced Persistent
Threats. The simple yet powerful model of FlipIt allows to describe
and evaluate a wide range of coping strategies.
In this work, we present DFlipIt a a variant of FlipIt and restrict
ourselves to a discrete, finite-time version of the game. This restrictions
assure the existence of a Nash equilibrium and allow a straightforward
implementation of the game for numerical analysis and simulations. Fur-
thermore, we present an equilibrium of mixed strategies which holds for
specific initial states of DFlipIt.

Keywords: FlipIt, game theory, security modeling, Advanced Persis-
tent Threats

1 Introduction

For individuals, small and large scale businesses and even whole nations, com-
puter security has evolved into a topic of high priority, as cyber attacks steadily
advance in frequency and sophistication. Even in large and highly secured sys-
tems, security breaches might occur at any time and remain undetected repeat-
edly. The attacker may be a highly resourced entity preparing the attack for
years, aiming at a large and very specific target and using a large set of means
(like social engineering, theft of certificates, zero-day exploits and many more).
Such scenarios are often called Advanced Persistent Threat scenarios (APTs).
FlipIt models these scenarios in a general and elegant way by using some key
aspects of APTs.

While the infinite game, presented by van Dijk, Juels, Oprea & Rivest (2012),
is based on a continuous time model, our model is restricted to a finite number
of rounds. Hence the famous theorem of Nash (1951) assures the existence of
an equilibrium of mixed strategies. The goal of this work is to find and analyze
these equilibria.

The contributions of this work are a discrete finite-time variant of FlipIt

called DFlipIt and a mixed strategy Nash equilibrium for DFlipIt with certain
conditions to the move costs of each player.
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2 Discrete FlipIt

This chapter explains the game DFlipIt and introduces the concept of Nash
equilibria. We refer to the game FlipIt as introduced by van Dijk et al. (2012)
and reuse their notation where applicable. The following modifications FlipIt
allow the application of Nash’s Theorem. In the original game, time is continu-
ous, each player can move at any time, and the game continues infinitely. The
modification DFlipIt uses a discrete time model and after each player moved
a finite number of rounds, we evaluate the result of the game. We take the lib-
erty to call the game DFlipIt in order to attribute that we are working over a
modification of FlipIt.

The most common solution concept in game theory is the Nash equilibrium.
We will define what an equilibrium is in terms of DFlipIt in section 3.

Theorem 1 (Nash 1951). Any game with a finite set of players and a finite
set of strategies has a Nash equilbrium of mixed strategies.

While Nash’s Theorem assures the existence of an equilibrium, it does not state
how to compute such equilibria. From a complexity theoretic point of view,
computing a Nash equilibrium can be a hard task. Even slight modifications can
impose the problem to become NP-hard.1

In the following paragraph an informal description of the game is presented.
The game DFlipIt is played by two players for N rounds. The player who
initially owns the resource is called the defender. His opponent is called the
attacker. Both players want to own or control the same resource. Ownership can
change in each round, depending on whether the defender or the attacker decide
to make a move. Each move is associated with a constant cost. After each round
we verify whether ownership has changed. The control of the resource changes
in a given round if and only if the player not in charge of the resource in the
previous round makes a move, and the player who was in charge in the previous
round does not move. During the game each player is unaware of the actions of
his opponent, and receives no feedback on who is in control of the resource. For
each player the goal of the game is to own the resource as long as possible, while
minimizing his total costs.

As a real world application, the resource could be large a computer system
which the defender tries to protect from system breaches.

2.1 Notation and Formal Game Definitions

Formally, the defender is called player 0 and the attacker is called player 1. Each
round is an integer time step j = 0, ..., N −1. We write C0(j) = 1 if the defender
is in control of the resource after the actions of round j have been executed
and C1(j) = 1 otherwise. The game starts at time step 0 with the defender in
control of the resource: C0(0) = 1. For symmetry we set C1(j) = 1 − C0(j)

1 Actually, computing Nash equilibria is PPAD-complete. For more information on
the complexity of computing Nash equilibria, see Nisan et al. (2007)



Discrete FlipIt: Experiments and Analysis 3

for j = 0, ..., N − 1. The game ends after the N rounds. Table 1 presents, how
ownership of the resource changes hands, by use of the notation defined above.

C0(j − 1) = 1 Pj Qj C0(j) C1(j)

0 0 1 0

0 1 0 1

1 0 1 0

1 1 1 0

C0(j − 1) = 0 Pj Qj C0(j) C1(j)

0 0 0 1

0 1 0 1

1 0 1 0

1 1 0 1

Table 1. Ownership of the resource in dependency of random variables. In the left
table the resource is in the hands of the defender, in the right table it is controlled by
the attacker in round j − 1. Change of hands is marked by a dashed line.

For each round j = 0, ..., N−1 the defender can choose an action Pj ∈ {0, 1},
where Pj = 1 if and only if the defender makes a move in round j. Analogously,
the attacker can choose an action Qj ∈ {0, 1}. If moving in round j, we write
Qj = 1 and Qj = 0 if he does not move. The number of moves made by player
i up to round j, is denoted by ni(j). For the total number of moves made by
player i at the end of the game the shorthand notation ni is used. Each move
is associated with move cost ki for player i = 0, 1. We remark that in our basic
model the costs ki for each player i stay constant in each round and are restricted
to ki ∈ ]0, 1[.

For each player i ∈ {0, 1}, the gain after l rounds is defined as Gi(l) =∑l
j=0 Ci(j) and the benefit as Bi(l) =

∑l
j=0 Ci(j)− kini(l) for l = 0, ..., N − 1.

Formally, the goal for each player i is to maximize his benefit Bi(N − 1). He
achieves this goal by maximizing the total number of rounds he is in control,
which equals his gain Gi(N − 1), while minimizing his total move costs, kini.

In a game theoretic context a player who plays according to a pure strategy
decides upfront whether to move or not, for each round. For DFlipIt we can
formalize a pure strategy for the defender as a vector of actions for each round
S0 = (P0, ..., PN−1) ∈ {0, 1}N and for the attacker as S1 = (Q0, ..., QN−1) ∈
{0, 1}N respectively.

Hence in a security context a pure strategy is not very useful. The opponent
could find out about the chosen strategy and react accordingly to maximize
his benefit. To circumvent this problem it is important to allow the players to
randomize over their possible set of actions in each round.

The probability that the defender moves at a time step j is denoted by pj .
Moreover, let p̄j = 1−pj be the probability that he does not move. Analogously,
the probability for the attacker to move in round j is defined as qj and the
probability for the complementary event is q̄j = 1 − qj . Therefor all sets of
possible action Pj , Qj and the state variables Ci(j) can be treated as random
variables with possible outcomes in {0, 1}.
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In game theory, strategies allowing randomization over the possible set of
strategies are called mixed strategies. Similar to pure strategies we can formal-
ize them as a vector containing the probabilities for each action in each round.
More precisely, a mixed strategy for the defender is a vector s0 = (p0, ..., pN−1) ∈
[0, 1]

N
. Analogously, s1 = (q0, ..., qN−1) ∈ [0, 1]

N
is a mixed strategy for the at-

tacker. Given mixed strategies si, the expected gain after round l is defined as
gi(s0, s1, l) =

∑l
j=0 prob{Ci(j) = 1}. Similarly, bi(s0, s1, l) =

∑l
j=0 prob{C0(j) =

1} − kipj denotes the expected benefit of player i after the l-th round.
A visualization of the game and the defined random variables is depicted in

figure 1.

P0 = 1

Q0 = 0

P1 ∈ {0, 1}

Q1 ∈ {0, 1}

P2 ∈ {0, 1}

Q2 ∈ {0, 1}

PN−1 ∈ {0, 1}

QN−1 ∈ {0, 1}

C0(0) = 1

prob{C1(1) = 1}

prob{C0(N − 1) = 1}

Fig. 1. The blue color marks the time between the first two rounds, in which by
definition the defender is in control. In the following rounds j = 1, ..., N − 1, the light
blue (light red) boxes surrounded by a dashed line, mark the time between two rounds
j and j + 1 in which the defender (the attacker) might be in control (depending on
pj , qj and who was in control after the preceding round j − 1).

3 Equilibrium for DFlipIt

Informally, a Nash equilibrium provides a strategy for each player, such that
none of the players has an incentive to deviate from this strategy.

Definition 1 (Nash Equilbrium for DFlipIt). A mixed strategy Nash equi-

librium for DFlipIt is a pair of mixed strategies s0, s1 ∈ [0, 1]
N

such that

b0(s0, s1, N) ≥ b0(s
′
0, s1, N), ∀s′0 ∈ [0, 1]

N
,

b1(s0, s1, N) ≥ b1(s0, s
′
1, N), ∀s′1 ∈ [0, 1]

N
.
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Since each player in an equilibrium chooses his probabilities, such that his op-
ponent is indifferent in choosing his action or probability we are able to compute
the following Nash equilibrium.

Proposition 1. For (k0, k1) ∈ C := {(x, y) ∈ ]0, 1[
2 | x ∈ ]0, 1[ \ {1

2} ∧ y ∈
]0, 1− x[} the following probabilities define a mixed strategy Nash equilibrium:

pj =
prob{C0(j − 1) = 1} − k1

prob{C0(j − 1) = 1} − prob{C1(j − 1) = 1} ,

qj =
prob{C1(j − 1) = 1} − k0

prob{C1(j − 1) = 1} − prob{C0(j − 1) = 1}
for j = 1, ..., N − 1.

The restriction of the costs k0, k1 to the set C ensures 0 < pj , qj < 1.

4 Outlook

To complete the analysis of DFlipIt, the model needs to be extended to general
costs k0, k1 > 0. In future work we will elaborate an analysis of how the presented
equilibria and other instances of DFlipIt evolve, if played for a large or infinite
number of rounds.

These results will be applied to several modifications and extensions of FlipIt.
We might re-contribute to the original continuous and non-finite FlipIt game
or at least to provide some conjectures for several open questions in this context.
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Extended Abstract
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Abstract. Mutually distrusting parties can evaluate a function on their
private data using secure multi-party computation protocols. In the stan-
dard multi-party computation setting we want to achieve a correct result,
while not revealing anything about the inputs. In this work we consider
the case that some parties have goals beyond correctness and privacy
and therefore might not follow the protocol honestly.
Non-cooperative computation considers players that wish to gain as much
information from the execution of a protocol as possible, while preventing
others from learning anything at all. In this work we formally introduce
the goals of such players. We show when it is an optimal strategy for all
players to input correct data and believe the return value. We generalize
the existing results on non-cooperatively computable Boolean functions
by presenting a theorem for non-cooperatively computable functions for
general functions.

Keywords: Multiparty-computation, non-cooperative computation

1 Introduction

In this work, we consider the non-cooperative computation game, where play-
ers possess individual types and want to evaluate a function f on these data.
Therefore, each player inputs a value to a trusted center which performs the
calculation of f and returns the result to each player. The players know only
their own types and receive only the output of the center. But with the help of
the center’s output, after the computation, each player tries to achieve the goals

Correctness: the player can compute the result of f correctly,
Exclusivity: other players cannot compute the correct result of f ,
Privacy: the type of a player remains secret,
Voyeurism: a player knows as many types of other players as possible.

We are interested in functions where submitting the correct type and believ-
ing the center’s output is optimal for all players, if all other players do so. Such
functions are called non-cooperatively computable (NCC).



2 Non-cooperative computation

The given problem, called non-cooperative computation, came up in secure
multi-party computation (MPC) where several players wish to evaluate a func-
tion on private data without revealing them. One of the first MPC problems, the
millionaires problem, and the term “MPC” were introduced by Yao (1982). Such
problems are well understood and several solutions are known. A major disad-
vantage of such protocols is the assumption that all players follow the protocol
honestly. Non-cooperative computation picks up the question what players can
achieve if they deviate. For this reason the non-cooperative computation game
were introduced by McGrew et al. (2003).

In the papers of McGrew et al. (2003), Shoham and Tennenholtz (2005)
and Raekow and Ziegler (2012) several solutions are already presented with
the restriction that f is Boolean. Furthermore, there is the assumption that
all players rank all goals (described above) and have the same ranking in their
goals (if Correctness is the most important goal for one player then it is the
most important goal for all other players).

In contrast to previous research, we consider the game with a general func-
tion f instead of only a Boolean function. We confine to one version of non-
cooperative computation which corresponds to the full-information gain setting
of McGrew et al. (2003), or the D-NCC of Shoham and Tennenholtz (2005).
Shoham and Tennenholtz (2005) considered only the two goals Correctness and
Exclusivity, but we consider additionally Privacy and Correctness as McGrew et
al. (2003). Furthermore, both paper assume that the players rank their goals in
the same order. We point out a theorem which includes the case where players
have different preferences.

2 Modeling MPC as a game

Let {1, . . . , n} be the set of players. Each player i gets a type ti of the set Ti.
This type ti is secret and only known by player i. We use t = (t1, . . . , tn) ∈ ΠiTi

to denote all players’ types. This vector t = (t1, . . . , tn) is selected from a joint
probability distribution P . We assume that P has full support, i.e. P (t) > 0 for
all t ∈ ΠiTi. To evaluate the function f : ΠiTi → T all players input data to
a trusted center which performs the computation of f and outputs the result y
to every player. In contrast to the correct types t = (t1, . . . , tn) we denote the
inputs of the players by t′ = (t′1, . . . , t

′
n) ∈ ΠiTi.

A possible action of a player splits in three parts. The first consists of what
players input to the center. A player i is allowed to submit all possible input
values, i.e. all elements of the set Ti. The input can depend on the type ti and
can be chosen at random. That means the first part of a player’s action is a
function bi mapping her type ti to a distribution ΔTi over Ti.

The second part consists of the belief about the center’s output. Since a player
can have doubts about the correctness of the center’s output (e.g. because she
inputted wrong data) the belief about the center’s output consists of a function

bfi mapping her type ti ∈ Ti, her input t
′
i ∈ Ti and the center’s output f(t′) ∈ T

to a possible result of f , an arbitrary element of T.
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The third part consists of the belief about other players’ types. Even if a
player learns only the result of the center she can have a belief about other
players’ types. So we need to describe also these beliefs of player i, which are
functions bji mapping her own type ti ∈ Ti, her own input t′i ∈ Ti and the centers
output f(t′) ∈ T to a possible type of player j, an element of Tj .

We summarize that an action of a player i is a tuple of several functions
(bi, b

f
i , b

1
i , . . . , b

n
i ). Some strategies have a special name:

Definition 1. A strategy of a player i is called straightforward if i plays only
actions where

(i) she inputs her correct type, i.e. for all ti ∈ Ti holds t′i = ti and Pr(bi(ti) =
ti) = 1.

(ii) she believes the center’s output, i.e. bfi is the projection to T.

Finally it remains to describe the utility of each player depending on the
actions of the players. A player i tries to achieve the following goals:

Correctness the player computes the result of f correctly; P(bfi (ti, t
′
i, f(t

′)) =
f(t)) = 1.

Exclusivity other players compute a wrong result; P(bfj (tj , t
′
j , f(t

′)) = f(t)) �= 1
for j �= i.

Privacy the player does not disclose her type to other players; P(bij(tj , t
′
j , f(t

′)) =
ti) �= 1.

Voyeurism the player knows the type of other players; P(bji (ti, t
′
i, f(t

′)) = tj) =
1.

We assume that each player has an order of these goals which we call preference.
For every player the most important is the primary goal of her preference. All
goals ranked below another are considerably less significant. That is, the utility
function of i is represented by ui = 23·pref1 +22·pref2 +21·pref3 +20·pref4 where
prefj is 1 if player i achieves the j-th goal in her preference and 0 otherwise.

Now, we are done with the definition of the non-cooperative computation
game. We continue by considering the role of the function f in the game.

Mechanism design

In mechanism design we consider the problem where we modify the rules of a
game such that a certain strategy vector is a Nash equilibrium. In the non-
cooperative computation game a central object to modify the game is the func-
tion f and interesting strategies are straightforward strategies.

Definition 2. A function f is called non-cooperatively computable (NCC) if
there is a Nash equilibrium where all players play straightforward strategies.

That means a function f is NCC if every player achieves the highest payoff
by inputting the correct type and believing the output of the center (assuming
all other players do so).



4 Non-cooperative computation

In this work we only consider mechanisms in one round even if the players
could need a lot more rounds to execute the game. The assumption of only one
round is a standard assumption in mechanism design and is justified by the
following theorem, which points out that the number of rounds does not matter.

Theorem 1. If there exists a mechanism for the center and the players in which
each player computes the correct value for the function, then there exists a truth-
ful direct mechanism in which each player accepts the center’s output and thereby
computes the correct value of the function.

3 Non-cooperative computation with non-Boolean
functions

As mentioned in the introduction, previous research considered the non-cooperative
computation game only with Boolean function. The next definition is a central
criterion for general functions to be NCC.

Definition 3. We call a function f transferable by player i if there are two
different types ti and t∗i such that the following condition hold:

The set Af,ti,t∗i defined by

Af,ti,t∗i :=
{(

f(t∗i , t−i), f(ti, t−i)
)
|t−i is a vector of types

}
(1)

is a function between the range of f when t∗i is fixed and the range of f when ti
is fixed.

And we call a function f non-transferable if such a pair does not exist.

Remark 1. In the definition of the property “transferable” we use the term func-
tion from a set theoretic point of view where all functions are sets. This allows
us to say that a set is a function. Furthermore, we can write Af,ti,t∗i (f(t

∗
i , t−i)).

We need additionally a definition which stem back to McGrew et al. (2003).
But we remark that the definition works also for non-Boolean functions.

Definition 4. (i) We say that a privacy violation for player i by player j occurs
if there exist a type tj ∈ Tj, an output of the center x ∈ T and a value y ∈ Ti

such that the following statement for all vectors of types t−j holds

(f(tj , t−j) = x) ⇒ (ti = y).

(ii) We define the function violate(i, j, tj , x) to be 1 if a privacy violation for
player i by player j occurs, and 0 otherwise.

With these properties we get a theorem for general functions which includes
all possible preferences (except the preference where Exclusivity is ranked over
Correctness).
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Theorem 2. Assume there is no player ranking Exclusivity over Correctness.
Then a function f is NCC if and only if the following three conditions hold

(i) f is non-transferable.
(ii) there are no privacy violations for players ranking Privacy over Correctness.
(iii) for all j ∈ N∗ we have that the following equation holds for every pair of

types tj , t
∗
j : ∑

i �=j

∑
t−j

P (t−j) · violate
(
i, j, tj , f(tj , t−j)

)
=

∑
i�=j

∑
t−j

P (t−j) · violate
(
i, j, t∗j , f(t

∗
j , t−j)

)
,

(2)

where N∗ is the set of all players who ranking Voyeurism over Correctness,
and P is the probability with which t−j is selected.

4 Conclusion

We have pointed out a theorem for general functions which are not necessarily
Boolean. Furthermore, this theorem includes the case where players have differ-
ent preferences. In the full paper we give also a rigorous proof for this claim.

McGrew et al. (2003) and Shoham and Tennenholtz (2005) used two prop-
erties to characterize NCC functions, instead of the property “transferable” of
definition 3. We show in the full paper how these properties are connected.

Raekow and Ziegler (2012) counted Boolean NCC functions to get an impress
of the existence and the order of magnitude. We continue their work with new
experimental results for non-Boolean NCC functions.
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Abstract. We perform a game-theoretic analysis of Yao’s Millionaires’
Problem, introduced in 1982. We show how much privacy the millionaires
loose, after the execution of a secure multi-party protocol that evaluates
who is richer. For our analysis we only rely on information that is known to
the players after a regular execution of a cryptographic protocol, we do not
use any side-channels that a specific implementation of a protocol might
provide. We show that for a large class of players, truthful participation
in a multi-party computation for the Millionaires’ Problem constitutes
a Nash equilibrium. For another class of players, we give necessary and
sufficient conditions.

Keywords: cryptographic protocols, multi-party computation, game theory, dis-
crete probability distributions, Yao’s Millionaires’ Problem

1 Introduction

Yao (1982) introduces the Millionaires’ Problem as follows: “Two millionaires wish
to know who is richer; however, they do not want to find out inadvertently any
additional information about each other’s wealth. How can they carry out such a
conversation?” The Millionaires’ Problem initiated the area of secure multi-party
computation and an abundance of protocols have been proposed, see for example
Goldreich, Micali & Wigderson (1987), Gordon, Hazay, Katz & Lindell (2011),
and Garg & Sahai (2012). The ultimate goal of protocols for secure multi-party
computation is that participating parties do not learn anything beside their own
private input and the result of the computation. In this work we analyze if the
parties do actually learn additional information based on the output they receive.
In order to analyze the information gain that the parties obtain after an execution of
a secure multi-party computation protocol for the Millionaires’ Problem we employ
a game-theoretic approach. Halpern & Teague (2004) and Shoham & Tennenholtz
(2005) were the first to apply game-theoretic considerations to cryptographic
multi-party computations. Their work has been extended by McGrew, Porter &
Shoham (2003) and Raekow & Ziegler (2013). How cryptography in general can
benefit from game theory and vice versa is discussed e.g. by Katz (2008) and by
Dodis & Rabin (2007).



We assume that parties participating in the protocol are interested in executing
the protocol in order to obtain the correct result and in addition they do not want
to leak anything about their actual wealth. However, some information is always
obtained: Say we have a finite interval for the wealth of the players and Alice wealth
is around the median. The result of the multi-party computation is that Bob has
less money than Alice, then Alice learns that Bob’s wealth must be between the
minimum value in the interval and the median, and therefore doubles her chances
when guessing Bob’s wealth. We show that if the amount of money of Alice and
Bob is selected from a finite interval, then they will not always have an incentive
to participate in the protocol, because they might reveal information about the
amount of money they own. On the other hand we consider the case where the
wealth is in an infinite interval. We show how much entropy is lost after execution of
a secure multi-party computation protocol in comparison to if the protocol had not
been executed at all. A game in the sense of game theory always requires a utility
function that describes the benefit for the participating parties. In order to model
this utility function for a cryptographic problem, we need to specify cryptographic
preferences. In this work we consider the preferences correctness, i.e. Alice and
Bob wish to obtain the correct result and privacy, i.e. Alice and Bob do not wish
to leak any information about their private inputs. In this paper we consider the
two party case of the Millionaires’ Problem. The contribution of this paper is the
transformation of the Millionaires’ Problem into a two player game with incomplete
information. Furthermore, we present Nash equilibria for the resulting game and
finally we analyze the loss of privacy that is introduced, if players only know their
private inputs and the outcome of the function. The paper is structured as follows: In
Section 2 we specify the Millionaires’ Problem in a game, using notation from game
theory. In Section 3 we will show the Nash equilibria and discuss the loss of privacy.

2 Yao’s Millionaires’ Problem as a game

In this section we describe the Millionaires’ Problem and then recast it to obtain
a game with independent private types and incomplete information. We follow
the definitions given in (Nisan, Roughgarden, Tardos & Vazirani, 2007, 9.6). To
facilitate our discussion, we assume that the computation is done in the ideal world,
by a trusted center Charlie, we stress that our results are also applicable to any
multi-party computation executed via a suitable cryptographic protocol.

The financial assets of Alice and Bob are discrete random variables X and Y ,
respectively, with values in Z. The corresponding discrete probability distributions
are publicly known and denoted DX and DY , respectively. Given samples x

$←X

and y
$←Y , Alice and Bob want to evaluate the millionaires’ function

fmill : Z×Z→{Alice,Bob}, (a,b) 
→
{

Alice if a≥b,
Bob otherwise,

at (x,y). Our bias towards Alice in the case of a draw is a convention to simplify
the further analysis.



So, the trusted center Charlie receives integer values a and b from Alice and
Bob, respectively. He then returns the value c=fmill(a,b).

From now on, we refer to Alice and Bob simply as players. The game they
play is the following:

Step 1 Alice and Bob privately receive their wealths x
$←X and y

$←Y , respectively.
Step 2 They submit x′,y′ ∈Z, respectively, to Charlie using a secure channel.
Step 3 Charlie publicly announces z′ =fmill(x′,y′).
Step 4 Based on their private and public information, each player makes a guess zA

and zB , respectively, about who is actually the richer z =fmill(x,y).

Fig. 1. The Millionaires’ game.

Now we provide for each player strategies as a description of the alternatives
to act, and utilities as a measure to rank/compare the (expected) outcomes of the
protocol.

Strategies for Alice are determined by two choices.

1. Submission function: Given the true wealth x, decide on a value x′ to submit
in Step 2 of the Millionaires’ game (Figure 1), i.e. g : Z→Z, x 
→x′.

2. Interpretation function: Given the public and private history after Steps 1–3,
guess in Step 4 of Figure 1 who is richer, i.e. h : Z×Z× {Alice,Bob} →
{Alice,Bob}, (x,x′,z′) 
→zA.

Analogously, we define the above functions for Bob. A strategy is a pair of functions
as described above. We are particular interested in the straightforward strat-
egy given by a truthful submission (g(x) = x) and belief in Charlie’s output
(h(x,x′,z′) = z′). A strategy for Alice combined with a strategy of Bob (each
comprised of two functions g and h) determines the expected flow of the protocol.

Each player evaluates a strategy pair based on two goals. In the following we
do this exemplary for Alice, all definitions apply equally to Bob.

– Correctness is the probability cA that zA =z.
– Privacy is the remaining relative entropy pA.

Finally, Alice assigns utilities u : Ω →R≥0 to the possible outcomes to reflect
her preferences. We give three examples.

– The strict utility is (cA,pA) 
→ 2 · [cA = 1] + 1 · [pA = 0], where [S] for a
statement S evaluates to 1 if the statement is true and to 0 if it is false.

– The semi-strict utility is (cA,pA) 
→2·[cA =1]+pA.
– The linear utility is (cA,pA) 
→α·+pA for some α>0.

Alice prefers outcomes with higher utility and is indifferent towards outcomes
with equal utility. In particular, with a strict or semi-strict utility, a situation with



perfect correctness (cA =1) is always preferred to a situation without that property,
regardless of the privacy. For the linear utility, we may say that Alice is indifferent
towards exchanging 1 percent of correctness for α percent of privacy.

3 Conditions for non-cooperative computation

In this section, we state the condition, when the millionaires’ function should
be called non-cooperatively computable. Then, we give necessary and sufficient
conditions for fmill to satisfy this requirement.

Definition 1 (Non-cooperatively computable). The function fmill is non-
cooperatively computable (NCC), if Alice and Bob playing the straightforward
strategy in the Millionaires’ Problem (Figure 1) are in a Nash equilibrium.

In other words, given that Alice and Bob play according to the straightforward
strategy, neither has an incentive, as described by their utilities, to deviate.

For players with strict utility, this is always the case.

Theorem 1. For players with strict utility, fmill is always NCC.

For players with semi-strict utility, we provide necessary and sufficient condi-
tions.

Theorem 2. For players with semi-strict utility, fmill is NCC if and only if the
supports of both distributions have neither minimal nor maximal element.

4 Conclusion

We introduced the Millionaires’ game, which is a game-theoretic description of the
Millionaires’ Problem. We defined corresponding strategies for Alice and Bob

and the utility functions. We argued that for finite intervals the straight forward
strategy is not a Nash Equilibrium. However, we found that for infinite intervals
it is a Nash Equilibrium to play straight forward. In addition we analyzed the
implications that an execution of the Millionaires game has on the entropy of the
distribution over the private values of the players. The preferences exclusivity and
voyeurism will be addressed in the full version.
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Abstract. This paper studies diffusion and confusion in a single primitive: large bijective substitution
boxes (S-boxes). As an application of independent interest, if the S-box dimensions match the block
size of a (hypothetical) block cipher, then we obtain full block-wise diffusion and confusion in every
round, without Maximum Distance Separable (MDS) codes. Moreover, any attack on r rounds will have
necessarily to activate r S-boxes, making, for instance, the differential probability and linear correlation
of the corresponding distinguisher so small that the corresponding attacks are averted.

Keywords: S-box, differential and linear profiles, branch number, confusion and diffusion.

1 Introduction

Modern cryptographic algorithm designs follow Shannon’s principles of confusion and diffusion [18] as se-
curity guidelines. These principles are materialized in the form of substitution boxes (S-boxes) and affine
transformations, respectively, which are applied alternately in a series of rounds. Looking closely, one observes
that S-boxes provide not only confusion, through nonlinear Boolean functions, but also (local) diffusion in
the sense that each of its output bits depend on all input bits. This simple fact motivated the following
reasoning: what if the S-box was large enough to include all bits in a block? In other words, an n × n-bit
bijective S-box for a cipher operating on n-bit blocks. Therefore, the local diffusion property, limited to the
S-box input and output bits, would become global, that is, diffusion would apply to all n bits in a block.
Consequently, conventional diffusion performed by MDS codes [6] would not be necessary since diffusion
would already be performed by the S-box. We study the consequences of this simple design decision for block
ciphers whose round structure consists of a key mixing and a single (key-independent) S-box. Concerning
side-channel analysis, previous research indicates that larger S-boxes provide better protection against such
kinds of attacks [8].

This paper is organized as follows: Sect. 2 lists our contributions; Sect. 3 provides background on S-boxes
that are relevant for our analyses; Sect. 4 presents new cipher designs; Sect. 4.2 describes the X16 cipher as
an example, along with the S16 S-box whose diffusion power (branch number) is compared to that of MDS
codes; Sect. 5 concludes the paper.

2 Contributions

The contributions of this paper include:

– the fact that both efficient confusion and diffusion can be performed by a single n×n-bit bijective S-box.
Therefore, a hypothetical n-bit block cipher design using such S-boxes, would not need MDS codes [6] for
diffusion. Moreover, complete diffusion and confusion would be achieved bitwise in every round because
the S-box size matches the cipher’s block size. As proofs-of-concept, we propose experimental ciphers:
X16, X32 and X64, where the suffix indicates the block size in bits1 .

1 We suggest up to 64-bit block due to the wide dissemination of 64-bit processors, such as Intel Sandy bridge and
Ivy bridge.



– another consequence of the large S-boxes is that any cryptanalytic distinguisher covering r rounds nec-
essarily have to activate r S-boxes, since the S-box covers an entire n-bit block. With properly designed
S-boxes, the probability (or bias) of distinguishers decrease exponentially fast with increasing number
of rounds, therefore, countering differential (DC) and linear (LC) cryptanalytic attacks. More extensive
analysis will be described in the full paper.

– we extend the 8×8-bit S-box of Rijndael/AES to larger dimensions. The differential and linear profiles of
the larger S-boxes remain as strong as in AES, as well as nonlinearity and other relevant cryptographic
properties [6]. Also, we experimentally verified that the branch number of a 16 × 16-bit S-box S16 (for
X16 cipher) is comparable to that provided by an MDS code [12].

– interleaved with the S-box are key-mixing (KM) layers based on the FL function of the Camellia cipher
[1]. This KM layer is a bitwise, key-dependent transformation that have efficiently countered attacks
against Camellia, such as DC. The reason is that keys in the KM layer are combined via bitwise-AND
and bitwise-OR operations, making (xor-based differences) key dependent.

3 Background on S-boxes

An n × m-bit substitution box (S-box) is a nonlinear vectorial Boolean mapping S : GF (2)n → GF (2)m

that typically provides the confusion property [18] in cryptographic primitives such as hash functions, and
block and stream ciphers.

Concerning differential cryptanalysis (DC), a relevant property is the differential uniformity of an S-box.
Let δS(a, b) = 2−n#{x ∈ GF (2)n : S[x ⊕ a] ⊕ S[x] = b}, where ⊕ denotes bitwise exclusive-or. The value
S[x ⊕ a] ⊕ S[x] is called the output xor-difference to the S-box S, and a is the input difference. The value
δS ·2n = maxa �=0,bδS(a, b) is the differential uniformity of S, and measures the most probable difference (a, b)
that can propagate across S. An extensive listing of S[x⊕a]⊕S[x], for 0 ≤ a < 2n and for a given difference
operator such as ⊕, is called Difference Distribution Table (DDT) [3, 16] of S. For the AES cipher, its S-box
is differentially 4-uniform, ie. δS = 4/28 = 2−6.

Concerning linear cryptanalysis (LC), a relevant property is the linear profile of the S-box [13]. Let <
a, x > denote the dot product between two bit strings a, x ∈ GF (2)n, that is,< a, x >=< x, a >= ⊕n−1

j=0 xj ·aj ,
where · · · is bitwise-AND. Let γS(a, b) = #{x : 0 ≤ x < 2n, < x, a >=< S[x], b >}−2n/2, where a ∈ GF (2)n

and b ∈ GF (2)m. When γS(a, b) is nonzero, there is a correlation between a linear combination of a input
bits and b output bits. The value γS = 2−n ·maxa �=0,b �=0γS(a, b) indicates a most probable approximate linear
relation across S. The value γS · 2n is the linear uniformity. An extensive listing of γS(a, b) · 2n values for
all possible a, b is called the Linear Distribution Table (LAT) of S [13]. For the AES ciphers, its S-box has
|γS | = 2−4.

4 New Designs

As potential applications of large S-boxes, we suggest new cipher designs with increasing block sizes (indicated
by the suffix): Xn for n ∈ {16, 32, 64} . These designs are iterated ciphers whose round structure consists
of a single bijective n × n-bit S-box, called Sn, followed by a key mixing layer. The key size is 128 bits.
Table 1 shows general parameters of the S-boxes and of the Xn ciphers. Storing the S-box as a truth table
is not an option since it is equivalent to storing the full codebook for each cipher. In fact, table look-up is
even more expensive, taking encryption and decryption into account, and the fact that the S-boxes are not
involutory: Sn �= S−1

n . Efficient methods for S-box computations are discussed in Sect. 4.1. The new S-boxes
are extended versions of the AES S-box [6]: combining inversion in the finite fields GF(2n) [16] followed by an
affine transformation. Consequently, the new S-boxes inherit the strong differential and linear profiles from
the AES S-box, and have a compact representation in GF(2n). The inverse S-box is also a composition of the
inversion mapping plus an affine transformation: y = Sn[x] = A.(1/x) + c thus, x = S−1

n [y] = 1/A−1(y + c),
so the inverse S-box shall be (efficiently) computed as well. The δS and |γS | values in Table 1 imply that
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Table 1. New ciphers and S-boxes’ properties and parameters compared to AES.

Cipher Block Size Key size #rounds S-box S-box δS |γS | Finite Storage
(bits) (bits) Dimensions Field (bits)

AES 128 128;192;256 10;12;14 — 8× 8 2−6 2−4 GF(28) 211

X16 16 128 7 S16 16× 16 2−14 2−8 GF(216) 220

X32 32 128 7 S32 32× 32 2−30 2−16 GF(232) 237

X64 64 128 7 S64 64× 64 2−62 2−32 GF(264) 270

three rounds is enough to counter conventional differential and linear attacks. We set seven rounds as a
margin of security.

In all Xn ciphers there are key-mixing transformations, denoted KM, consisting of a 3-round Feistel
Network, whose round functions consist of either a bitwise-AND (∩) or a bitwise-OR (∪) with subkeys,
followed by bitwise rotation (≪). The key-dependent, nonlinear, bitwise KM operation is based on the FL

function of the Camellia cipher [1]: KM : ZZn
2 × ZZ

3n/2
2 → ZZn

2 , KM((XL, XR), (K1,K2,K3)) = (YL, YR),
where YR = XR ⊕ (((((XR ∩K1) ≪ 1) ⊕XL) ∪K2) ≪ 3) and YL = ((YR ∩K3) ≪ 1) ⊕ ((XR ∩K1) ≪
1) ⊕ XL. Consequently, KM−1 : ZZn

2 × ZZ
3n/2
2 → ZZn

2 , KM((YL, YR), (K1,K2,K3)) = (XL, XR), where
XR = YR ⊕ (((((YR ∩K3) ≪ 1)⊕ YL) ∪K2) ≪ 3) and XL = YL ⊕ ((YR ∩K3) ≪ 1)⊕ ((XR ∩K1) ≪ 1).
The motivations for using KM to mix subkeys instead of exclusive-or are: (i) to avoid detaching the affine
transformation from the S-box and apply it to the following S-box across the subkey layer; in other words,
KM and the affine transformation in the S-box do not commute; (ii) to avoid dual ciphers operating under
other irreducible polynomials and other affine transformations, leading to dual encryption transformations
[2]; (iii) to disrupt the algebraic structure of inversion in GF(28); (iv) both KM and xor are invertible
and efficiently implementable (essentially bitwise transformations); (v) KM allows subkeys larger than the
block size; (vi) KM is similar to its inverse, which is relevant for the decryption operation; (vii) to counter
differential attacks: it is widely believed that the difference operator in DC is chosen according to the group
operation that is used to mix subkeys into the internal cipher state [11]. For instance, if f(X) = X⊕K, then
f(X)⊕ f(X ⊕ΔX) = X ⊕K ⊕ (X ⊕ΔX ⊕K) = ΔX. Thus, if subkeys were xored with the cipher state,
then, exclusive-or would be the preferred difference operator because differences would propagate independent
of the subkey. Moreover, exclusive-or is an involution, i.e. it is its own inverse transformation. In KM,
though, subkeys are mixed via both bitwise-AND and bitwise-OR, which imply the difference operator to be
either bitwise-AND, bitwise-OR or a hybrid of the two. But, neither of these operators has an inverse nor
would the resulting difference be independent of the subkeys. For example, if g(X) = (X ∪K1) ∩K2, then
g(X)∪ g(X ∪ΔX) = ((X ∪K1)∩K2)∪ ((X ∪ΔX ∪K1)∩K2) = (X ∪ΔX ∪K1)∩K2 �= ΔX. Even though
g(X) is not KM, the example demonstrates the problem of using a difference operator that is incompatible
with the operation used to mix subkeys into the cipher state. The fact remains that neither bitwise-AND
nor bitwise-OR would be appropriate to allow input differences ΔX to propagate across KM and still be
independent of the subkeys embedded in KM.

4.1 Division and Inversion in GF(2n)

To motivate the efficiency of S-box (and cipher) computations, we list several techniques for computation of
inversion in finite fields:

– discrete exponentiation and discrete logarithm tables: let g be a generator of GF(2n) = GF(2)[x]/(p(x)),
where p(x) is an irreducible binary polynomial of degree n. For all x ∈ GF(2n), create two tables,
exp(x) = gx mod p(x), with exp(0)=0, and log(x) = logg x mod p(x), with log(0) = log(1) = 0. Then,
for a, b ∈ GF(2n)/ {0} there exist y, z ∈ ZZ2n such that a = gy mod p(x) and b = gz mod p(x). For
multiplication, if a and b are nonzero, then a ∗ b = gy ∗ gz = gy+z = glogg a+logg b. Analogously, for
division, a/b = gy/gz = gy−z = glogg a−logg b. Inversion is a particular instance of division: 1/a = 1/gy =
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g0/gy = g0−y. A reduction modulo 2n − 1 in the exponent may be needed to keep the exponent in the
proper range. This solution requires two precomputed tables, each storing 2n values, for a total of n ·2n+1

bits. It is only worthwhile for small values of n.
– using the extended Euclid’s algorithm both polynomial multiplication and inversion can be performed in

O(n2) operations in GF(2n) according to [14][chap.2]. Division costs O(n) operations in GF(2n). This
solution requires negligible storage (only for temporary variables).Inversion in GF(2n), using polynomial
basis, is well described in Chap.2 of [9][p.58].

– multiplication in GF(2n) can be performed stepwise using successive multiplication by 2, as in AES

through the xtime operation. Given a, b ∈ GF(2n), let b =
∑n−1

i=0 bi · 2i, where bi ∈ {0, 1}. Then, a ∗ b =
a ∗∑n−1

i=0 bi · 2i =
∑n−1

i=0 a ∗ (bi · 2i), that is, successively multiplying a by powers of two according to
the binary decomposition of b. This solution does not require table look-up. Division can be reduced to
multiplication: a/b = a ∗ b−1, but requires inversion.

– Fermat’s little theorem: for a nonzero a, we have a2
n−1 = a ·a2n−2 ≡ 1 over GF(2n). Hence, a−1 = a2

n−2

for a ∈ GF (2n)/ {0}. To compute a2
n−2, one can use a square-and-multiply algorithm at a cost of at

most n−1 squarings and n−2 multiplications [14]. This method has a higher computational cost than the
extended Euclidean algorithm. For fields of characteristic two, GF(2n), the use of addition chains allows
to dramatically reduce the number of multiplications, although not the number of squarings, needed for
computing the exponentiation to the 2n − 2-th power. This method is called Itoh-Tsujii inversion [10].

4.2 X16

We now describe only X16 as an example. Xn, for n ∈ {32, 64} and their key schedule algorithms are similar
to that of X16, but have larger block size. We will describe them in the full paper.

The X16 cipher encrypts 16-bit blocks under a 128-bit key. The round function contains a single, bijective
16 × 16-bit S-box called S16, and a key-mixing layer (KM) with a round subkey. There is a pre-whitening
layer with the round subkey k0: KM(P, k0), where P is a plaintext. S16 consists of inversion in GF(216)=
GF(2)[x]/(p16(x)), with p16(x) = x16 + x5 + x4 + x3 + x2 + x + 1 a primitive polynomial, followed by an
affine transformation.

The i-th round of X16, i ≥ 1, is denoted τi : ZZ
16
2 × ZZ24

2 → ZZ16
2 and τκi

(X) = KM(S16[X], κi), where κi

stands for the subkeys in KM. The inverse operation is τ−1
κi

(X) = S−1
16 [KM−1(X,κi)].

For completeness purposes, in the key schedule of X16, the 128-bit key K is denoted K = (k−8, k−7,
k−6, k−5, k−4, k−3, k−2, k−1), where ki ∈ ZZ216 . Each KM layer uses three 8-bit subkeys (K1,K2,K3), as
described in Sect. 4. Initially, 16-bit subkeys are computed as follows:

ki = ((((((ki−8 � ki−7)⊕ ki−6)� ki−5) ≪ 11⊕ ki−4)� ki−3)⊕ ki−2) ≪ 7� ki−1 � ci, (1)

for i ≥ 0 and the ci ∈ ZZ216 are constants. Further, consecutive 8-bit bytes are extracted from ki and assigned
as subkeys for each KM. For instance, the first KM uses (K1,K2,K3) = (msb8(k1), lsb8(k1),msb8(k2)); the
second KM uses (K1,K2,K3) = (lsb8(k2),msb8(k3), lsb8(k3)) and so on, where msbj(x) means the j most
significant bits of x, and lsbj(x) stands for the j least significant bits of x. The rationale for the key schedule
are: (i) fast addition-rotation-xor (ARX) design; (ii) no key overlapping; (iii) efficient key diffusion; following
(1), all round subkeys starting from k1 already depend on all 16-bit words of K. The 16-bit ci’s are derived
from the binary expansion of the golden ratio:c0 = 19e3x, c1 = 779bx, c2 = 97f4x, c3 = a7c1x, c4 = 5f39x,
c5 = cc06x, c6 = 05cex, c7 = dc83x, c8 = 4108x, c9 = 2276x, c10 = bf3ax and c11 = 2725c.

To compare the (local) diffusion in S16 with that of an MDS code requires some abstraction about word
sizes. The natural word sizes for S16 are either 16 bits or a single bit. Nonetheless, for an initial comparison,
let us group consecutive bits into bytes, so that we can compare the diffusion provided by S16 to that of a
2× 2 MDS matrix over bytes. Using the DDT of S16, even though the input/output are both 16 bits wide,
we can group 16-bit differences into two types: (1) 1-byte differences where only a single byte is active such
as a‖0 and 0‖b, where a, b ∈ ZZ8

2 − {0}, and (ii) 2-byte differences where both byte differences are active
such as a‖b, where a, b ∈ ZZ8

2 − {0}. This way, we have four difference classes taking into account both
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input and output differences. Computing the probability of each kind of difference across2 S16, we got the
results in Table 2. Comparatively, a 2× 2 MDS matrix, with branch number 3, would have a byte-difference

Table 2. Probability of xor-byte-difference propagation across S16.

probability # nonzero input byte differences
1 2

#nonzero output 1 0.00006037 0.007721
byte diff’s 2 0.00772160 0.984481

propagation according to Table 3. Both S16 and a 2 × 2 MDS matrix diffuse bytes very well, with most of
the differences accounting for a two-active input byte difference to a two-active byte output difference. These
numbers provide evidence that byte-diffusion across S16 is comparable to that provided by a 2 × 2 MDS
matrix over bytes. Taking into account that the KM transformation operates over bytes, the comparison

Table 3. Probability of xor-byte-difference propagation across a 2× 2 MDS matrix.

probability # nonzero input byte differences
1 2

#nonzero output 1 0 2−7 = 0.0078125
byte diff’s 2 1 1− 2−7 ≈ 0.992187

between diffusion in Tables 2 and 3 are the most relevant. Nonetheless, we can also compare the diffusion
of 4-bit (nibble) differences in S16 (Table 4) with the diffusion provided by a 4 × 4 MDS matrix (Table 5)
also operating over 4-bit nibbles, even though operations in X16 are not over nibbles since 4-bit differences
would not be aligned properly with KM nor X16 itself. Again, in both S16 and in a (hypothetical) 4×4 MDS

Table 4. Probability of xor-nibble-difference propagation across S16.

prob. # nonzero input nibble differences
1 2 3 4

#nonzero 1 2−20.205 2−15.687 2−12.368 2−10.466

output 2 2−15.691 2−11.202 2−7.880 2−5.973

nibble 3 2−12.371 2−7.881 2−4.558 2−2.651

differences 4 2−10.465 2−5.973 2−2.651 2−0.744

matrix, most of the nibble differences (a, b, c, d) → (e, f, g, h) for a, b, c, d, e, f, g, h ∈ ZZ8
2 − {0} with nonzero

probability are concentrated around difference patterns with the least number of zero nibble differences.
This finding means that even 4-bit differences are adequately diffused by S16, in a similar way as a 4 × 4
MDS matrix would do. Moreover, note that S16 performs nonlinear diffusion (this would become clearer by
viewing the internal operations in S16 over GF(24) instead of over GF(216)), while MDS codes perform a
linear transformation.

2 For ex., the top leftmost entry corresponds to the fraction of differences of the form (a, 0) → (b, 0), (a, 0) → (0, b),
(0, a) → (b, 0) and (0, a) → (0, b) out of 232 − 216 possible nontrivial differences across S16, with a, b �= 0.
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Table 5. Probability of xor-nibble-difference propagation across a 4× 4 MDS matrix.

prob. # nonzero input nibble differences
1 2 3 4

#nonzero 1 0 0 0 4 · 2−3·8 = 2−22

output 2 0 0 6 · 2−16 ≈ 2−13.415 6 · 2−16 ≈ 2−13.415

nibble 3 0 4 · 2−8 = 2−6 4 · 2−8 = 2−6 4 · 2−8 = 2−6

differences 4 1 1− 2−6 ≈ 2−0.02272 2−0.0228 2−0.0228

5 Conclusions

We study confusion and diffusion in a single primitive: a large (bijective, key-independent) S-box. As proof-
of-concept applications, we suggested cipher designs using such S-boxes and that do not need separate
linear transformations for diffusion such as MDS codes. Table 1 summarizes the main S-box parameters.
We extended the 8 × 8-bit AES S-box to larger dimensions, and for the 16 × 16-bit case, we compared the
diffusion power of this S-box to that provided by 2× 2 and 4× 4 MDS codes. This experiment was possible
because this 16× 16-bit S-box is small enough. We expect the same behavior for the larger S-boxes. Cipher
resistance to a number of cryptanalytic attacks is based on the differential and linear profiles of the S-box,
the key-mixing (KM) layer, and the key schedule, as described in Sect.s 3,4. Square/multiset attacks [5] do
not apply to Xn ciphers since λ-set would involve the full n-bit input to the S-box. Therefore, λ-sets would
require the full codebook, and the output λ-set would always be active because Xn is a permutation for any
fixed key and any number of rounds. Other attacks will be described in the full paper.
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Abstract. In this paper, we find estimations of the number of rounds for
which there are impossible differentials for generalized Feistel schemes.
As it turned out the generalized Feistel scheme is easily represented as a
directed graph. This representation allows us to get the estimations.
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Many block ciphers are based on the classical Feistel scheme and its
different generalizations, for example DES, Camellia, GOST 28147-89,
Blowfish, RC5, CAST-256, MARS, SMS4, CLEFIA, Piccolo, HIGHT, etc.
While the classical Feistel scheme partitions an input into two subblocks,
generalized Feistel schemes (GFS) partition it intom subblocksm is called
the partition number). Generalizations are usually conducted by increas-
ing the number of cells of the shift register and a selection of cells whose
contents are changed by nonlinear functions. Different generalizations of
the classical Feistel scheme have been considered and analyzed [1–14].

We will use the following notations: N is the set of all natural numbers;
N0 = N

⋃{0}; m, d, c ∈ N; n = d · m; c ∈ {1, ...,m}; Vq = {0, 1}q;
B× = B\{0}; A = (A,A′) is a partition of the set {1, ...,m} into two
subsets A,A′; A(m) is the set of all ordered partitions of the set {1, ...,m}
into two subsets; P (B) is the set of all subsets of B; S(B) is the set of all
permutations on B, k = (k1, ..., kc) ∈ V c

d ; fi : V
2
d → Vd, fi,ki(α) = fi(α, ki)

for all α ∈ Vd, i = 1, ..., c; F
(c)
d =

{
(f1, ..., fc) |fi : V 2

d → Vd, i = 1, ..., c
}
;

⊕ is the bit-wise XOR operation; β1⊕ ...⊕βt =
⊕t

i=1 βi, βi ∈ Vq; 0̃ is the
zero vector of Vd.

In this paper, we consider a family of GFSs defined by: the number c,

the partition A = (A,A′) ∈ A(m), the mappings χ : A′ → P (A),f ∈ F
(c)
d ,

and the bijective mappings ρ ∈ S ({1, ...,m}), ϕ : X(A′) → {1, ..., c},
where X(A′) =

⋃
i∈A′ χ(i).



Consider the transformations vρ, hk ∈ S(V m
d ) such that

vρ : (α1, ..., αm) �→
(
αρ−1(1), ..., αρ−1(m)

)
,

hk : (α1, ..., αm) �→ (α′
1, ..., α

′
m),

where

α′
i =

{
αi, if i ∈ A,
αi ⊕

⊕
j∈χ(i) fϕ(j),kϕ(j)

(αj), if i ∈ A′.

GFS is defined by gk ∈ S(V m
d ), where gk = vρ ◦ hk is a round func-

tion of a block cipher based on the described construction. The l-round
encryption function under the key k = (k(1), ..., k(l)) ∈ (V c

d )
l is equal to

gk(l) ...gk(1) .
The family of GFS with a fixed set (A, χ, ϕ, ρ)c will be called (A, χ, ϕ, ρ)c-

family. Each specific block cipher from the (A, χ, ϕ, ρ)c-family is given by

fixing f ∈ F
(c)
d and called (A, χ, ϕ, ρ, f)c-cipher. Let Gc(A, χ, ϕ, ρ) be the

set of all (A, χ, ϕ, ρ, f)c- ciphers.
We will write g ∈ Gc(A, χ, ϕ, ρ) if g is a round function of the (A, χ, ϕ, ρ, f)c-

cipher. The notation gk(i) indicates that g depends on the specific round
key k(i).

Note that a lot of GFSs are based on the described construction and
ρ−1 is often equal to (1, 2, ...,m). For 1-type GFS [7], [8], we have

gk : (α1, ..., αm) �→ (α2 ⊕ f1,k1(α1), α3, ..., αm, α1),

where c = 1, A′ = {2}, A = {1, ...,m}\{2}, χ(2) = {1}, ϕ(1) = 1 and
ρ−1 = (1, 2, ...,m). For 2-type GFS [9] with even m, we have

gk : (α1, ..., αm) �→ (α2 ⊕ f1,k1(α1), α3, α4 ⊕ f2,k2(α3), α3, ..., αm, α1),

where c = m/2, A′ = {2i|i ∈ {1, ...,m/2}}, A = {1, ...,m}\A′′, χ(2i) =
ϕ(2i) = {i}, i ∈ {1, ...,m/2} and ρ−1 = (1, 2, ...,m). For m = 4 and
ρ−1 = (1, 2, 3, 4), various GFSs were classified in [1].

Note that permutations ρ−1 can be different from (1, 2, ...,m). Such
permutations have been considered in [3], [2]. For example, the permuta-
tion ρ−1 = (1, 3, 5, 7)(2, 8, 6, 4) is used in the Piccolo block cipher [2].

In this paper, we consider an arbitrary (A, χ, ϕ, ρ)c-family. For δ ∈
V ×
n we have found upper and lower bounds of the number of rounds

r = rA,χ,ϕ,ρ(δ) satisfying the following conditions:

1. For any g ∈ Gc(A, χ, ϕ, ρ), (k(1), ..., k(r)) ∈ (V c
d )

r there exist α(0) ∈ Vn,
δ′ ∈ V ×

n such that

gk(r) ...gk(1)(α0)⊕ gk(r) ...gk(1)(δ ⊕ α0) �= δ′.



2. There exist g ∈ Gc(A, χ, ϕ, ρ), (k(1), ..., k(r+1)) ∈ (V c
d )

r+1, α(0) ∈ Vn,
δ′ ∈ V ×

n such that

gk(r+1)gk(r) ...gk(1)(α0)⊕ gk(r+1)gk(r) ...gk(1)(δ ⊕ α0) = δ′.

Let rA,χ,ϕ,ρ = max {rA,χ,ϕ,ρ(δ)|δ ∈ V ×
n } and l be an arbitrary number,

l > rA,χ,ϕ,ρ. Then rA,χ,ϕ,ρ is the largest number of rounds such that any
l-round (A, χ, ϕ, ρ, f)c-cipher does not have impossible differentials. So all
elements of its differential matrix are nonzero.

Some (A, χ, ϕ, ρ)c-families have impossible differentials for any num-
ber of rounds l ∈ N. It means that for any g ∈ Gc(A, χ, ϕ, ρ), l ∈ N,

(k(1), ..., k(l)) ∈ (V c
d )

l there exist (δ, δ′) ∈
(
V ×
d

)2
, α(0) ∈ Vn such that

gk(l) ...gk(1)(α0)⊕ gk(l) ...gk(1)(δ ⊕ α0) �= δ′.

To get upper and lower bounds of rA,χ,ϕ,ρ, we consider an additive com-
mutative semigroup (D,⊕) defined on D = {γ,Δ, 0̃} in the following
way

⊕ γ Δ 0̃

γ Δ Δ γ

Δ Δ Δ Δ

0̃ γ Δ 0̃

Proposition 1. For an arbitrary (A, χ, ϕ, ρ)c-family, i, j1, j2 ∈ {1, ...,m},
j1 �= j2,and

δ = (0̃, ..., 0̃, δi, 0̃, ..., 0̃), δ
′ = (0̃, ..., 0̃, δ′j1 , 0̃, ..., 0̃, δ

′
j2 , 0̃, ..., 0̃),

where δi, δ
′
j1
, δ′j2 ∈ V ×

d , we have rA,χ,ϕ,ρ(δ
′) ≥ rA,χ,ϕ,ρ(δ).

We use the semigroup (D,⊕) to prove Proposition 1. We can also
apply Proposition 1 to find rA,χ,ϕ,ρ. For example,

1. rA,χ,ϕ,ρ = 12 if gk : (α1, α2, α3, α4) �→ (α2, α3 ⊕ f1,k(α4), α4, α1),
2. rA,χ,ϕ,ρ = 7 if gk : (α1, α2, α3, α4) �→ (α2, α3, α4, α1 ⊕ f1,k(α4)).

We consider a directed labeled graph ΓA,χ,ϕ,ρ = (X,Y ) with the set
of vertices X and the set of arcs Y corresponding to the (A, χ, ϕ, ρ)c-
family. The lower and upper bounds of rA,χ,ϕ,ρ depend on properties of
ΓA,χ,ϕ,ρ, which are connected with properties of some numerical semi-
groups. In particular, the lower and upper bounds of rA,χ,ϕ,ρ dependent
on the Frobenius number of a numerical semigroup, i.e. the largest pos-
itive integer which does not belong to the semigroup. We have proved
that rA,χ,ϕ,ρ is finite iff the digraph ΓA,χ,ϕ,ρ is primitive. So if the di-
graph ΓA,χ,ϕ,ρ is imprimitive then the (A, χ, ϕ, ρ)c-family has impossible
differentials for any round’s number l ∈ N.
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Abstract. The main contributions of this paper are distinguishing attacks against block ciphers that
are conventionally modeled as pseudorandom permutations (PRP). Formally, block ciphers operate on
fixed-length blocks of n bits, for example, n = 128 for the Advanced Encryption Standard (AES).
Our analysis takes place in the setting in which the messages are m bits long, representing the entire
input plaintext, where m is unrelated to n. We show distinguishing attacks for any n-bit block cipher
in the standard modes of operation for confidentiality: ECB, CBC, CFB, OFB, CTR and XTS. We
demonstrate that in all these 1-pass modes any n-bit block cipher leaves ’footprints’ that allows an
adversary to efficiently distinguish them from a random permutation. We suggest that two passes (in
opposite directions) over the m-bit message, with text-dependent feedback (chaining) and in streaming
modes are sufficient to counter all the attacks described.

Keywords: left-to-right diffusion, distinguishing attacks, modes of operation, PRP, SPRP.

1 Introduction

Block ciphers are length-preserving cryptographic primitives that operate on finite, fixed-length text blocks.
More precisely, block ciphers are keyed permutations, denoted EK : ZZn

2 → ZZn
2 , where n is a fixed integer

denoting the size of one text block, and the secret key K is chosen uniformly at random from a sufficiently
large key space K. In general, n is a small value such as n = 32 for KATAN32, n = 64 for DES or n = 128
for the AES. Larger values such as n = 4096 were adopted by the Mercy cipher [6]. We assume the size of
the key K to be large enough, say |K| ≥ 128 bits, and subkeys to be generated efficiently and securely. Our
analysis is independent of the key size or its value.

Traditionally, secure n-bit block ciphers are modeled as pseudorandom permutations (PRP) [13]. It means
that computationally bounded adversaries A, allowed a polynomial number q of queries (known or chosen
plaintext), may distinguish a given block cipher from a random permutation π, chosen uniformly at random
from the set RPn of 2n! permutations, with negligible advantage given by

AdvA(q) = |Pr(k $← K : AEK = 1)− Pr(π
$← RPn : Aπ = 1)|,

where y
$← Y means y is selected uniformly at random from the set Y, and AX returns ’1’ if A believes it is

dealing with oracle X; otherwise, A returns ’0’. If the advantage is negligible even if the adversary is allowed
decryption queries then, the block cipher is called a strong pseudorandom permutation (SPRP).

In practice, real messages are m bits long, with m unrelated to n, which represents the majority of the
cases. A naive solution to provide confidentiality in all cases would be to have block ciphers defined for every
possible value of m, but this is not realistic. Rather, modes of operation [15] are defined to extend the domain
of application of EK from ZZn

2 (one text block) to ZZm
2 (the full message), where m may be arbitrarily large

but is always finite. Standard (confidentiality) modes of operation include: Electronic CodeBook (ECB),
Cipher Block Chaining (CBC), Output FeedBack (OFB), Cipher FeedBack (CFB), Counter (CTR) and
XEX Tweakable block cipher with ciphertext Stealing (XTS) [7].

We abstract random permutations as operating directly on m-bit strings and not n-bit wise like EK ,
whether n is even, odd, a power of two, a divisor of m or otherwise. Moreover, random permutations are
not structured transformations that require modes of operation or Feistel or SPN structures like EK . We



denote a random permutation as πm : ZZm
2 → ZZm

2 , a mapping that is selected at random from the set
RPm = {πm

i : 1 ≤ i ≤ 2m!}. In this paper, instead of forcing random permutations to operate on n-bit
strings, abiding to a block cipher domain size, we look at how block ciphers fare when forced to operate on
m-bit strings for arbitrary m which is unrelated to n. In other words, instead of ’downsizing’ the random
permutation to always operate on fixed n-bit blocks, we work the other way around: we operate on m-bit
blocks from the start because m represents the real size of an entire input message. Consequently, the queries
made by an adversary are m bits long, which may be smaller, equal or larger than n bits.

In a block cipher setting, both an n-bit block and a full m-bit message are usually called plaintext. To
make the distinction clear for our attacks, n is bound to a block cipher domain space, like n = 64 bits for
the DES, while m is bound to a full input text message, for instance, the Project Gutenberg copy of the King
James Bible is 4.13 Mbytes or m = 34, 663, 312 bits long. To avoid extreme cases such as m = O(2n), we
restrict our analysis to m being a polynomial in n: m = O(nt) for t a fixed constant unrelated to n.

This paper is organized as follows: Sect. 2 lists our contributions; Sect. 3 describes distinguishing attacks
in a PRP setting that apply to any block cipher; Sect. 4 lists the final conclusions.

2 Contributions

Our contributions address real limitations/shortcomings of standard single-pass confidentiality modes of
operation in a PRP setting. We describe attacks that

(i) work in a black-box setting, which in our case means the attacks work for any block cipher and any key
schedule algorithm,

(ii) are very efficient concerning time, data and memory complexities, and thus violate any reasonable security
thresholds whether in theory or in practice,

(iii) have very high success rate and advantage,
(iv) do not depend on (and cannot be countered by changing) the key size, key value, number of rounds, IV

or nonces.
(v) can be prevented by 2-pass modes, using text-dependent chaining, in streaming mode.

3 Distinguishing Attacks

The weakest goal of an adversary is to be able to distinguish a ciphertext from a random string. If a cipher
does not leak information on the plaintext through to the ciphertext, then adversaries cannot distinguish the
given cipher from a random permutation (over the same plaintext space). In this paper, we focus exclusively
on this type of distinguishing attack. A modern trend is to add authentication along with confidentiality,
such as in IACBC (Integrity-Aware CBC) and IAPM (Integrity Aware Parallelizable Mode) [11]. There are
several authenticated-encryption (AE) modes such as CCM (CBC-MAC with Counter Mode) [17], EAX (uses
OMAC) [4], CWC (Carter-Wegman-Counter) [12] and GCM (Galois-Counter Mode) [14]. They perform two
(or more) passes over the input message, but one pass is for encryption while the other pass(es) are for
computing an authentication tag. Our focus is on confidentiality modes only.

Our attacks deal with the dichotomy n versus m, that is, the fact that block ciphers EK are inevitably
bound to operate on n-bit blocks, for fixed n, while random permutations can freely operate on m bits,
without need to partition the plaintext in n-bit (or smaller) pieces. Our attacks use very few known- or
chosen-plaintext (KP or CP) queries and are independent of the key size, the number of rounds, the block
size n and the internal cipher components of EK . The classical case n = m has already been treated [3, 2]. The
motivation to move beyond the setting n = m is that it allows us to view the interaction between different
n-bit encrypted blocks. The setting n �= m is powerful since it allows us to exploit peculiar behaviors of block
ciphers (padding, blockwise operation, IV, poor diffusion) that set them apart from random permutations
when operating on arbitrary-sized plaintext messages. We focus our attention to two cases:
(i) n > m: in this case, for ECB, XTS and CBC modes, some padding scheme is needed because EK
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necessarily operates blockwise and cannot be applied to less than n bits. On the other hand, πm operates
smoothly on m-bit inputs without padding, and generates an m-bit output. For EK , even ciphertext stealing
[8] is not an option since there are no previous ciphertext block to steal bits from. Even if bits are stolen
from an initial value (IV) or from the key K, the end result is ciphertext expansion: while the input block
has m bits, the ciphertext output has necessarily n > m bits for EK . Moreover, the excess n−m bits cannot
be removed otherwise decryption will not work. Therefore, the lenght of the ciphertext alone indicates if EK

or πm was used, and the advantage in distinguishing between the two will be 1. In the XTS and CBC modes,
different messages may use different initial values (IVs), but this is not an issue in our attacks. Exceptionally,
in this case, we only need a single known-plaintext query.

In OFB and CTR modes, only m key-stream bits are enough to encode an m-bit message. These stream
modes have the same bitwise diffusion of the One-Time-Pad (OTP): if a single bit of the ciphertext flips, only
the corresponding bit of the plaintext flips (after decryption). We query a single known m-bit message P and
obtain the corresponding ciphertext C. Next, we flip a single bit of C to get C ′ and ask for its decryption. In
both OFB and CTR modes, the corresponding plaintext P ′ from C ′ will differ in a single bit compared to P
and in the same position of bit change in C. For πm, the entire plaintext will be garbled, and the probability
that a single bit flip in C leads to a single bit flip in P is 1/2m−1 since m−1 bits have to be common to both
P and P ′. The advantage in this case is 1 − 21−m. The larger m is, the larger the advantage becomes. To
achieve an even larger advantage, another bit of C could be flipped, leading to C ′′, and the attack repeated.
In CTR mode the counter is the IV.

In b-bit CFB mode, typically b = 1 or b = n, but let us assume b = m is allowed. Then, the attack
is similar to the one in OFB and CTR modes. Let P be a known message with |P | = m bits. The m-bit
ciphertext is C = P ⊕EK(IV). Notice that since the message is smaller than a single block there is no chance
of ciphertext feedback, since there is no initial ciphertext, just the IV. Thus, the effect is just like in OFB
and CTR modes because EK(IV) is text-independent. If b = 1, then we encrypt P as before and get C.
Next, we flip the last bit of C to get C ′, and ask for its decryption. The flipped bit of C ′ will be fedback into
the state at the latest and the corresponding plaintext P ′ will differ from P only in the last bit under EK .
The probability for this single bit difference in πm is 1/2m−1 i.e. m− 1 bits will have to be equal under πm.
The advantage is 1− 21−m.

(ii) n < m: there are two subcases to consider

– m ≡ 0 mod n: the ECB mode is easy to distinguish. Just ask a query of repeated blocks (P, P, P ) and
observe if the ciphertext is a repeated sequence (C,C,C). If so, then the adversary identified a block
cipher EK , otherwise, a random permutation πm. The advantage is 1− 2−n.
In CBC mode, the adversary asks two queries (P1, P2, P3) and (P ′

1, P2, P3) such that P1⊕ IV = P ′
1⊕ IV′,

where IV and IV’ are the corresponding initial values [2]. Thus, C1 = EK(P1⊕IV) = EK(P ′
1⊕IV′) = C ′

1.
Since the remaining blocks are the same for the rest of the message, and the first ciphertext block fedback
in CBC mode is the same in both messages, the remaining ciphertext blocks are also identical for EK .
For a random permutation on m bits, this collision will never happen since πm is a permutation. The
advantage is 1. If (ever) the IV happens to be the same, then we query two messages (P1, P2, P3) and
(P1, P2, P

′
3) such that P3 �= P ′

3. Since the (ciphertext) chaining in CBC is from left-to-right1, only C3

will differ: C1 and C2 will be the same for both messages since the IV is the same. For πm, in this case,
the probability is 2−2n for two consecutive n-bit blocks to be equal, and the advantage is 1− 2−2n. For
EK and the given messages, the two n-bit ciphertext blocks C1 and C2 will always be the same.
In OFB, XTS and CTR modes, we make a message query P and obtain C. Further, we flip a single bit
of C to get C ′, and ask for its decryption. For EK , just a single bit of the resulting plaintext P ′ will
differ from P like in a One-Time Pad (OTP). For πm, the probability of observing a 1-bit difference in
two m-bit plaintexts is 1/2m−1, and the advantage is 1 − 21−m. Note that in this case the adversary
is making an adaptively chosen-ciphertext query, and the decrypted ciphertext results in a meaningfull
plaintext (except, eventually, for the garbled bit position). Again, notice that in OFB, XTS and CTR

1 Left-to-right chaining means that Pi is processed before Pj for i < j. In summary, Pi blocks are encrypted for
increasing values of i starting with i = 1. Therefore, Pj depends on Pi for all i < j, but not the other way around.
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modes there is no plaintext-dependent chaining. Likewise, for b-bit CFB mode, the attack proceeds just
like as for OFB since the diffusion is in the left-to-right direction only.

– m �≡ 0 mod n: this case is similar to the case n > m, and the focus is on the last message block that
contains only m mod n bits. The treatment of these tail bits by each mode of operation allows the
adversary to detect whether EK or πm was used. For ECB, XTS and CBC modes, ciphertext stealing
could be used, and our previous argument in the case n > m do not apply. For ECB and XTS modes,
the adversary queries two messages (P1, P2, P3) and (P1, P2, P

′
3) where |P3| = |P ′

3| = m mod n, but
P3 �= P ′

3. For CBC mode, the messages are (P1, P2, P3) and (P ′
1, P2, P

′
3) where |P3| = |P ′

3| = m mod n,
but P3 �= P ′

3. P1 and P ′
1 are such that P1 ⊕ IV = P ′

1 ⊕ IV′, so C1 = C ′
1.

In ECB, XTS and CBC modes, after padding, only C3 and C ′
3 will differ while Ci = C ′

i for i < 3 whatever
EK is used. If the same IVs are ever used, we can just choose different P3 and P ′

3. Thus, the adversary
can distinguish between EK and πm with advantage 1− 2m mod n−m for m-bit messages, since only the
last m mod n bits differ in both messages.
For OFB, CTR and CFB modes there is no padding, but the same strategy as in the OTP also apply:
we exploit the bitwise diffusion.

In our attacks, we exploited the following facts that are inherent to any block cipher EK using a confi-
dentiality mode of operation:

– padding and ciphertext stealing: in ECB, XTS and CBC modes, the size of each text block has to be at
least n bits, because EK cannot operate on smaller blocks. To fill in the missing bits, padding is needed.
It does not matter which padding scheme is used since there will be ciphertext expansion anyway, and
this fact alone is enough to detect that EK was used instead of πm. Notice that random permutations
πm never need padding.

– left-to-right (L2R) diffusion and one pass over the message: CBC and CFB modes applied to a message
(P1, P2, P3, . . .) chains values in left-to-right order (and never the other way around), ie. Ci depends on Cj

and (indirectly) on Pj for j ≤ i, but Ci is independent of Cl and Pl for l > i. This unidirectional diffusion
is due to the design of these modes: only a single pass over the message due to efficiency and buffering
reasons. We exploited precisely this weakness to construct our message queries and attacks. Notice that
the attacks work independently of the underlying block cipher EK or the key size. In comparison, for πm

there is full diffusion across an entire m-bit string. Moreover, the avalanche effect holds for πm: changing
a single bit in any of the m input bits implies all output bits change with 50% chance. For EK over
m-bit messages, the avalanche effect does not hold.

– plaintext-independent chaining: in ECB, XTS, OFB and CTR modes, the dependence between consecutive
n-bit blocks (if ever) depends on the key, the tweak or the IV but not on the plaintext nor the ciphertext.
This feature is motivated by parallel processing capabilities of these modes to speed-up encryption. In
πm, we expect full text-dependent diffusion across the entire m-bit string.

– bitwise diffusion in OTP: in streaming modes such as OFB and CTR, the key bitstream generated simulates
a One-Time-Pad in the sense that the ciphertext is simply the message xored to a plaintext-independent
key stream. This fact means that diffusion is worse than the left-to-right diffusion pointed out for the
CBC and CFB modes: if only a limited set of bits change in the message, the very same isolated set
of bits will change in the ciphertext (and vice-versa). This is extremely unlikely to be observed for a
random permutation πm operating on the whole m bits at once, and this phenomenon can be detected
for EK with only two queries: one encryption and one decryption.

In summary, all the modes analysed previously leaves footprints of their presence in the ciphertext,
independently of which block cipher E and key K are used. For instance, a random permutation πm provides
full diffusion across an m-bit string as a monolithic transformation. On the other hand, all modes of operation
mentioned necessarily work piecewise, n bits at a time, and in the left-to-right direction, i.e diffusion is
unidirectional. Thus, the avalanche effect is compromised.

To fix these problems, we suggest that:

– to achieve complete diffusion, modes of operation should perform two passes over the m-bit message in
both left-to-right (L2R) and right-to-left (R2L) directions. L2R is the natural order in which Pi blocks
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are presented in the input: Pi before Pj for i < j. Therefore, L2R difusion means that Pj depends on Pi

for j > i, but not the other way around. R2L means the opposite, ie. block Pi is processed before Pj

for i > j. In both cases, diffusion is unidirectional. Therefore, separately, L2R and R2L are weak, but
combining L2R and R2L results in much stronger diffusion.
A drawback with two passes over the message is buffering: the intermediate data processed in the first
pass should be securely stored for the second pass before ciphertext is output. Well-known modes of
operation such as PEP [5], CMC [9] and EME [10] already required buffering due to multiple passes over
the data. The buffering issue is less critical in settings such as in disk-sector encryption since only 512
bytes need to be stored, which is a small amount and is known beforehand. In general, though, the total
size of the input, m, is not known in advance. If the intermediate data, for example, Xi = EK(Pi⊕Xi−1)
in 2-pass CBC, is leaked, then the n-bit secret cipher state Xi from the middle of the double encryption
scheme, say Ci = EK(Xi ⊕ Ci+1), is exposed and security may be compromised [1], for example, by a
meet-in-the-middle attack.

– modes should use chaining that is either plaintext or ciphertext dependent, such as in CBC and CFB
modes. Multiple passes, in opposite directions, over the data for modes such as ECB, OFB and CTR
are void, since these modes have no text-dependent feedback (or chaining). For instance, 2-pass CTR
mode (with or without the same IV or key) still does not counter the attacks described previously since
xoring two key streams (under different counters) are equivalent to applying two OTP keystreams in
succession. In other words, diffusion remains bitwise in both 1-pass and 2-pass CTR because the key
streams are independent of plaintext and ciphertext. In fact, for any number of passes of CTR mode.
The same reasoning applies to ECB and OFB modes. A consequence of our recommendation is that
(chained) modes become non-parallelizable due to text-dependent chaining. Also, the text-dependent
chaining causes infinite error propagation across the entire m-bit ciphertext. This effect simply means
complete diffusion was achived.

– finally, to deal with both the cases n < m and n > m the mode should generate a random bit stream. For
n < m, there are padding schemes, but for n > m there is no way out for modes that operate blockwise,
such as ECB and CBC.

These claims are aimed to make the modes behave closer to a random permutation over m-bit strings.

4 Conclusions

In this paper, we argue about the limited diffusion in standard confidentiality modes of operation: ECB,
CBC, OFB, CFB, CTR and XTS, that perform a single pass over the input message. A pervasive problem is
unidirectional diffusion or only bitwise diffusion (in stream modes). Similar conclusions hold for the inverse
of these modes. To compound the problem, only CBC and CBF modes have text-dependent chaining. Con-
sequently, these modes behave significantly worse than a random permutation over message spaces larger or
smaller than a single n-bit block. Therefore, the 1-pass modes cannot properly model a random permutation
over message spaces composed of m-bit strings.

The distinguishing attacks described in this paper can be countered by processing the entire message
in two passes in opposite directions: left-to-right and right-to-left, to provide full diffusion across the m-bit
input. Moreover, this countermeasure only works for chained modes whose chaining is text dependent. Also,
to account for the case n > m, streaming modes are necessary, since any padding would cause ciphertext
expansion. This combination of double-pass and text-dependent chaining guarantees complete diffusion just
as random permutations πm do and as would be expected of a block cipher aimed at mimicking the behaviour
of πm over large m-bit strings.

Table 1 summarizes the results in this paper.
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