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Zusammenfassung

Motivation

Immer wenn Optimierungsverfahren eingesetzt werden um Lösungen für
reale Probleme zu finden, ist es sehr wahrscheinlich, dass die vorliegenden
Daten und Modelle unsicher oder gestört sind. Um die gefundenen Lösun-
gen dennoch ex ante robust gegen Unsicherheiten zu machen, ist es notwen-
dig, die Unsicherheiten bei der Optimierung bereits zu berücksichtigen. In
dieser Arbeit werden daher verschiedene Optimierungsverfahren mit Un-
sicherheiten betrachtet und auf die Koordination in Multiagentensystemen
angewendet. Diese Anwendung hat die Eigenschaft, dass sie hochgradig
nicht-konvex sein kann. Beispielsweise ist der Fall, wenn zwei Agenten
gleichzeitig eine Ressource nutzen wollen, auf die aber jeweils nur einer
der Agenten zugreifen kann, eine „entweder-oder“ Entscheidung. So ei-
ne Entscheidung kann durch ein diskrete Entscheidungsvariable modelliert
werden, die den Wert „0“ annimmt, wenn der eine Agent auf die Ressour-
ce zugreifen darf und den Wert „1“, wenn der andere Agent Zugriff be-
kommt. Diese Eigenschaft ist der Grund dafür, dass in großen Teilen der
vorliegenden Arbeit Optimierungsprobleme betrachtet werden, die sowohl
kontinuierliche als auch diskrete Entscheidungsvariablen haben.

Optimale Bewegungsplanung unter Unsicherheit

Als erstes wird die optimale Bewegungsplanung in einem Multiagentensys-
tem mit unsicheren Zuständen der Agenten und Nebenbedingungen an die
Wahrscheinlichkeit einer Kollision von Agenten mit Hindernissen oder an-
deren Agenten betrachtet. Die stochastischen Unsicherheiten können eine
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unsichere Lokalisierung der Agenten oder exogene Störungen modellieren,
die auf die Bewegung der Agenten wirken. Die Nebenbedingungen an Kol-
lisionswahrscheinlichkeiten sind in der Regel nicht geschlossen lösbar, da
für ihre Berechnung in allen außer den einfachsten Fällen multivariate Inte-
grale über nicht-konvexe Gebiete bestimmt werden müssen. Um das Bewe-
gungsplanungsproblem (BPP) dennoch numerisch handhabbar zu machen,
wird zunächst eine Approximation der Zufallsgrößen durch Stichproben
und die daraus resultierende empirische Approximation der stochastischen
Nebenbedingungen betrachtet. Der signifikante Nachteil dieser Approxi-
mation ist der aus ihr resultierende sehr große Anteil an diskreten Entschei-
dungsvariablen. Dieser kann zu hohen Laufzeiten führen. Es wird deshalb
eine effizientere Approximation basierend auf der Idee von Regionen mit
erhöhter Aufenthaltswahrscheinlichkeit betrachtet: dies sind Regionen, für
die sichergestellt ist, dass die Wahrscheinlichkeit, dass ein Agent sich au-
ßerhalb der Region aufhält, kleiner ist als eine vorgegebene Schranke. Das
Optimierungsproblem wird dann so formuliert, dass die Regionen disjunkt
von den jeweiligen Regionen der anderen Agenten sind.

Konvexe Programme mit Zufälligen Nebenbedingungen

Im zweiten Teil der Arbeit werden sogenannte Random Convex Programs

(RCPs) betrachtet. Dies sind konvexe Optimierungsprobleme mit diskreten
und kontinuierlichen Entscheidungsvariablen und einer festen Anzahl an
zufällig gezogenen Nebenbedingungen. Die Realisierungen der Nebenbe-
dingungen können zum Beispiel wie im ersten Teil der Arbeit aus Stich-
proben oder aus gegebenen historischen Daten stammen. Da die Neben-
bedingungen zufällige Realisierungen sind, ist die optimale Lösung eines
RCPs eine Zufallsvariable, die von den gezogenen Realisierungen abhängt.
Wir beweisen für RCPs mit diskreten und kontinuierlichen Entscheidungs-
variablen, dass ihre optimale Lösung mit hoher Wahrscheinlichkeit immer
noch optimal sein wird für die nächste zufällige Realisierung der Neben-
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bedingungen. Dies ist eine entscheidende Eigenschaft von RCPs, da sie
garantiert, dass die optimale Lösung mit hoher Wahrscheinlichkeit auf zu-
künftige, zum Zeitpunkt der Optimierung noch unbekannte, Realisierungen
der Nebenbedingungen generalisiert. Neben anderen klassischen Proble-
men der Entscheidungstheorie, wenden wir die in diesem Kapitel gewon-
nenen Erkenntnisse auf das BPP in einem Multiagentensystem an. Im ers-
ten Teil der Arbeit wurden unter anderem Aussagen über die Zulässigkeit
von optimalen Lösungen im Grenzwert gemacht, also wenn die Anzahl der
Realisierungen der Zufallsvariablen gegen unendlich geht. Im Unterschied
dazu liegt der Schwerpunkt der theoretischen Untersuchungen in diesem
Teil der Arbeit auf den Eigenschaften von optimalen Lösungen, die unter
einer endlichen Anzahl von Realisierungen gefunden wurden.

Verteilte Koordination unter Unsicherheit

Vorteilhafter als zentralisierte Architekturen sind in Multiagentensystemen
oft Algorithmen zur verteilten Entscheidungsfindung. Deshalb wird im drit-
ten Teil der Arbeit ein verteilter Algorithmus zur Koordination in Mul-
tiagentensystemen vorgeschlagen. Der Algorithmus nutzt das Modell der
dezentralen partiell beobachtbaren Markov Entscheidungsprozesse (Dec-
POMDPs). Das grundlegende Merkmal in diesem Modell ist, dass bereits
während der Optimierung berücksichtigt wird, dass in der Zukunft neue
unsicherheitsbehaftete Informationen (z.B. in der Form von Sensormes-
sungen) über die Zustände der Agenten vorliegen werden. Gesucht wer-
den dann optimale Strategien, die abhängig von zukünftigen, zum Opti-
mierungszeitpunkt noch unbekannten Informationen, die jeweils beste zug-
hörige Handlung bestimmen. Da es nachweislich NEXP komplex ist, op-
timale Lösungen für Dec-POMDPs zu finden selbst wenn nur zwei Agen-
ten betrachtet werden, wird ein suboptimaler Algorithmus vorgeschlagen.
Hier tauschen die Agenten alternierend vereinfachte Strategievorschläge
aus und bestimmen, basierend auf den gegenwärtigen Vorschlägen der an-
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deren Agenten, eine beste Antwort auf diese. Es werden ein Beweis über
die endliche Konvergenz und die Komplexitätsreduktion gegenüber dem
gegenwärtigen Stand der Technik erbracht und die empirische Auswertung
in Simulationen in einem BPP und einem Sensor-Netzwerk Szenario.
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Abstract

Motivation

Whenever optimization techniques are employed to find solutions to real
world problems it is very likely that the data and models at hand are uncer-
tain or disturbed. In order to make the solutions robust against these un-
certainties, and to assure they do not violate unanticipated constraints, the
uncertainties have to be accounted for in the optimization process. In this
thesis different methods for optimization under uncertainty are considered
and applied to multi-agent coordination. This application has the particular
property that coordination problems can be highly non-convex. Consider
for example the case when two agents plan to simultaneously utilize an
indivisible resource. The decision on which agent may use the resource
becomes an “either-or” decision which is usually modeled through a dis-
crete decision variable that is equal to zero if one agent is granted access
to the resource and equals one if the other agents gets access. This spe-
cial property is the motivation why in this thesis there is a strong emphasis
on optimization problems that have continuous as well as discrete decision
variables.

Optimal Motion Planning Under Uncertainty

First, we consider optimal motion planning in multi-agent systems in which
the states of the agents are uncertain and there are constraints on the prob-
ability of a collision of agents with obstacles or with other agents. The
uncertainty in this scenario can be used to model uncertain localization or
exogenous disturbances that interfere with the motion of the agents. In
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general for the constraints on the collision probabilities there will be no
closed form solution since in all but the simplest cases the probabilities
are given by integrals of multivariate state distributions over complex non-
convex regions. In order to make the motion planning problem numerically
tractable we first consider an empirical approximation of the probabilistic
collision avoidance constraints obtained from samples drawn from the ran-
dom variables modelling the uncertain states of the agents. The fundamen-
tal drawback of this constraint approximation is that it leads to a high ratio
of discrete decision variables and, hence, possibly high run times. There-
fore a more efficient reformulation of the collision avoidance constraints
based on regions of increased probability of presence is considered: these
are regions for each agent for which it can be guaranteed that the probabil-
ity that the agent is outside of its region is below a given threshold. The
multi-agent coordination problem is then formulated in such a way that the
regions are disjoint from the respective regions of other agents. The theo-
retical results in this chapter show that the resulting plans are feasible for
the motion planning problem with constraints on the collision probabilities
or will converge for increasing numbers of samples in the approximation.

Mixed-Integer Random Convex Programs

In the second part of this thesis Mixed-Integer Random Convex Programs

(MI-RCPs) are considered. MI-RCPs are convex optimization problems
with discrete and continuous decision variables and a fixed number of ran-
domly drawn constraints. The realizations of the constraints could for in-
stance stem from samples of a random variable like in the first part of the
thesis, or from given historical data. Since the constraints are random, the
optimal solution of an MI-RCP is a random variable depending on the re-
alizations of the constraints. We prove for MI-RCPs that their optimal so-
lution will remain optimal for the next random constraint realization with
high probability. This is an essential property of MI-RCPs since it guar-
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antees that their optimal solution will with high probability generalize to
further yet unknown random constraint realizations. Besides classical de-
cision theoretic problems we apply the results of this chapter to the motion
planning problem in a multi-agent system. In the first part of this thesis,
results on the feasibility and optimality of solutions with approximations
of probabilistic constraints, when the number of samples used in these ap-
proximations goes to infinity are obtained. In contrast, the focus of the
theoretical considerations in this section lies on the feasibility and optimal-
ity of solutions found under a finite number of samples.

Distributed Optimization Under Uncertainty

In general, algorithms for distributed decision making are more beneficial
in multi-agent systems than centralized architectures. Therefore, in the
third part of this thesis a distributed algorithm for coordination in a multi-
agent system is proposed. The algorithm is based on the model of decentral-
ized partially observable Markov decision processes (Dec-POMDPs). The
signature property of this model is that the fact that updated information
(e.g. in the form of sensor measurements) will be available at future time
instances is explicitly accounted for during optimization. Since the search
for optimal solutions of Dec-POMDPs is provably NEXP complex even if
only two agents are considered, a suboptimal algorithm is proposed. In it
the agents exchange simplified solution proposals in an alternating fashion
and each determines its own best response to the current proposals of the
other agents. A proof of the finite convergence of this algorithm as well as
a proof of the complexity reduction are provided together with empirical
evaluations of the algorithm in a multi-robot motion planning and a sensor
network problem.
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Notation

x,y,u,a,b, . . . Scalar or vector variable.
x(i) The i-th component of vector x.
> Transpose of a vector or a matrix.
x,δ ,ν ,v,w,ω Random variable or random vector.
A,B,V,Σ,Λ . . . Real-valued matrix.
N Number of realizations of a random variable

of random vector.
M Number of agents.
γ,γ i, j,γ i, j

t Chance constraint bounds.
T Length of planning horizon for model predic-

tive control.
t Index referencing considered time step.
1 : T Short for enumeration 1,2, . . . ,T .
xi Superscript identifies the agent this variable

refers to.
∨ Logical “or”.
EX{g} Expectation of function g w.r.t. random vec-

tor X .
1E Indicator function of a set E.
P Probability measure on a space Ω with σ -

algebra F .
PN Empirical probability measure on Ω.
P

N Product probability measure on the product
space ΩN with product σ -algebra.
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1. Motion Planning in Multi-Agent Systems
with Chance Constraints

1.1. Introduction

In this chapter, we propose several approaches to formulate stochastic
model predictive control for multi-agent systems (MA-MPC) with chance
constraints on the probability of inter-agent collisions as a mixed-binary
linear program (MBLP). Chance constraints are user-defined upper bounds
on the probability that the uncertain states of the agents violate state con-
straints and their application in model predictive control has received great
interest in the recent past. MBLPs are well-understood optimization prob-
lems that can be solved efficiently for moderate problem sizes and find
many applications in robot planning, flight control, and receding horizon
control (see for example [115, 132]).

Example 1.1: Air Tra�c Control

Consider a controlled airspace at an airport in which an air tra�c control

(ATC) center is responsible for ensuring that the aircraft in the airspace

are �separated�, i.e., have su�cient spatial and temporal clearance, and

that the aircraft can land on an airstrip. See Figure 1.1 for a simple

illustrative example.

In this example, both aircraft want to land on the airstrip and the task

of the ATC is to �nd fuel optimal landing trajectories for both aircraft,

depicted as dashed lines in Figure 1.1. In addition to constraints given by

the motion model of the aircraft, further constraints are given through a

no-�y zone that the aircraft have to avoid and the fact that a collision of

1



1. Motion Planning with Chance Constraints

No-Fly Zone

Airstrip

Plane A

Plane B

Planned Trajectory

Planned Trajectory
Wind Field

Figure 1.1.: Path Planning for Air Traffic Control.

both aircraft has to be avoided. Furthermore, wind disturbance, as de-

picted by the gray arrow at the top left in Figure 1.1, acts on the aircraft

and, hence, the trajectories will be disturbed and it is not guaranteed

that the aircraft will be able to exactly follow the planned trajectories.

An important question in this scenario is to �nd the right tradeo�

between short and, hence, fuel optimal and safe trajectories. When the

trajectories are in such a way that the aircraft pass each other with very

little clearance, under strong wind gusts it can happen that a collision

occurs. If, on the other hand, the trajectories are such that the air-

craft have to make detours to keep a large separation, excessive fuel

will be spent on the detour and delays in the schedule of the airport

will occur. The algorithms presented in this chapter allow to solve this

problem e�ciently and to precisely control how cautious or risk-taking

the trajectories will become. �

There are many applications, in which the deployment of multiple air-
craft, robots or UAVs is prevalent or can be advantageous for the comple-

2



1.1. Introduction

tion of a mission as in the air traffic control example from above. Also, the
search for a target with multiple UAVs [77] or localization of an odor source
with multiple robots [73] have been studied in the past. Further applications
that have been studied are cooperative load transportation with multiple
UAVs [85], the cooperative inspection of airplane turbines with miniature
robots [56] and simultaneous localization and mapping in a multi-robot
system [50]. Another topic that received attention are driver assistance sys-
tems for cooperative cognitive vehicle systems [67]. For example, braking
and evasion assistants in a vehicle autonomously make decisions, possi-
bly after communicating with other vehicles, in order to avoid collisions in
traffic situations. In all of these applications, path planning, obstacle avoid-
ance, and collision avoidance with other members of the system also play
an important role, since without path planning and collision avoidance, the
successful completion of the task at hand and the physical intactness of the
aircraft, robots or UAVs cannot be warranted. We will from now on not fur-
ther distinguish between an aircraft, a robot, a UAV, or a ground vehicle and
will therefore call the entity making path planning decisions an “agent”.

Noisy sensor measurements for localization and imprecise models of the
motion dynamics can lead to uncertain estimates of the pose of the agents.
Additionally the motion of the agents can be affected by exogenous distur-
bances like wind. When these uncertainties and disturbances are ignored
by the path planning algorithm, a failure of the mission through collisions
with obstacles or other agents is likely to occur and, hence, it is crucial to
account for them while planning.

In order to account for uncertainties and disturbances in this chapter all
system states of the agents will be modeled as random variables and the
constraints on the states will be formulated as probabilistic chance con-
straints. Probabilistic chance constraints are constraints on the probability
that the agents are in states that could cause a failure of the mission, i.e., a
collision with obstacles or with each other [36,107,117]. Constraints on the
probability that system states violate state bounds are in all but the simplest

3



1. Motion Planning with Chance Constraints

cases given by integrals of multivariate state distributions over complex
non-convex regions [107]. Particularly chance constraints on the probabil-
ity of a collision of two agents, whose study is the focus of this chapter,
lead to complex and non-convex constraints. For example two agents can
not pass through the same location in space at the same time, so the deci-
sion which agent will be allowed to pass is a non-convex “either-or” deci-
sion. The main challenge in chance constrained control is therefore to make
the chance constraints computationally tractable while keeping the assump-
tions on state distributions and state constraints as general as possible.

Another factor that increases safety and optimality of planning is plan-
ning model predictively. In model predictive control (MPC) the controller
uses a model of the agents dynamics to extrapolate the agents’ states under
candidate control sequences several time steps into the future. The con-
troller then chooses the control sequence that is not only optimal for the
current states but also for the extrapolated states. In general, the agent then
applies only the first control in this sequence, possibly updates the estimate
of its uncertain state and then replans an optimal control sequence based
on the updated information. MPC enables the agents to plan pro-actively
to avoid obstacles or other agents, since conflicts or possible collisions are
detected earlier and the agents can react more quickly and more efficiently
to avoid them. However, stochastic MPC has the drawback that the plan-
ning problem can become very complex and consequently it is vital to pay
attention to real-time capabilities of planning.

In order to formulate an efficient algorithm for the MA-MPC problem
with chance constraints, we first study a sample average approximation
of the collision probabilities and use this approximation to formulate con-
straints for the stochastic control problem. We show that optimal controls
found with the sample average approximation will converge against con-
trols that are optimal for the MA-MPC problem without approximation of
the chance constraints. However, the computational complexity of the re-
sulting optimization problem is so high that this approach proves unsuitable

4



1.1. Introduction

for the control of large multi-agent systems under real-time requirements.
To alleviate the computational burden we propose several approaches

that all determine regions of increased probability of presence (RPP) for
each agent, i.e., regions in state space in which the agent’s true state will lie
with a certain, prespecified probability. Then, we formulate constraints for
the control problem that guarantee that these regions do not overlap for dif-
ferent agents. The main distinctive feature in these approaches is how the
RPP is obtained: First we use probabilistic Chebychev inequalities to obtain
these confidence regions and show for the resulting constraints that they are
conservative for the original problem with probabilistic constraints. This
means that every control feasible under these constraints will also satisfy
the original chance constraints. This is a remarkable property of the con-
struction, since it guarantees feasibility for the original problem while at
the same time we do not have to evaluate the complex inter-agent collision
chance constraints. The second approach is to find empirical RPPs for a
sample approximation of the agents uncertain states, i.e., these are regions
in state space in which the agent’s state lies with a certain, prespecified
empirical probability. We show that controls found with these empirical
RPPs will converge against controls that are conservative for the original
MA-MPC problem in the same sense as above, as the number of samples
goes to infinity.

Since we employ a sample approximation of the agents’ uncertain states
and the probabilistic bounds we use for the RPP regions hold for arbitrary
random variables, we do not have to make any assumptions (such as being
Gaussian) on the nature of the occurring noise or disturbances. Also in our
approach we do not have to assume that the chance constraints are given
by linear inequalities only (as is frequently done in the literature) and thus,
are able to model the more complex and inherently non-convex coupling
constraints on the states of the agents.

To the best of our knowledge this is the first time a practical approach
for the control of a multi-agent system with chance constraints on the prob-
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1. Motion Planning with Chance Constraints

ability of a collision of the agents is proposed. Existing work on chance
constrained control either deals with planning for single agent systems or
for systems without coupling chance constraints on joint states of different
agents. The only other work that also considers coupling state constraints
in a slightly different setting is our own work [8]. The sample average
approximation of collision probabilities and the results on RPPs in two-
dimensional state space were published in [11, 12]. Novel contributions
are that we establish convergence of the sample average approximation, the
extension of the RPP approach to collision avoidance in state spaces with
arbitrary dimension and the results on empirical RPPs.

The chapter is structured as follows. In Section 1.4, we formally define
the general problem of model predictive control for a multi-agent system
with chance constraints. In Section 1.5 we introduce some preliminar-
ies on the agents’ linear and time invariant dynamics and sample-based
chance constrained control for single-agent systems. In Section 1.6, we
approximate the collision avoidance constraints directly with samples. In
Section 1.7 and Section 1.8, we introduce the RPP approaches and prove
their feasibility for the original problem. In Section 1.9, we study UAV
path planning scenarios with non-Gaussian wind turbulence models. Sec-
tion 1.10 concludes the chapter.

1.2. Related Work

The body of work on interactions of agents in multi-agent systems is im-
mense for an introduction on how they are treated in artificial intelligence
see [120] and the references therein. We focus here on recent results on
chance constrained control and robust control of single and multi-agent sys-
tems.
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Chance Constrained Optimization and Control

Chance constrained problems were introduced in [53] and have received
interest in several different fields of research such as chemical process con-
trol [74,90,117], portfolio optimization [42,103], call center staffing under
uncertain demands [71], water management [63], control [55], and blending
problems [103]. For more recent work on the theory of chance constrained
programming see the monographs [36, 107, 119]. Convergence properties
of sample average approximations in chance constrained programming are
studied under varying assumptions in [20, 93, 103, 109, 112, 116].

Most recent work on chance-constrained MPC for linear systems can
roughly be classified into three parts: conservative approximations [126],
conservative control of systems with Gaussian disturbance [39, 41, 61, 101,
128], and sample-based techniques [38, 40].

The authors of [126] approximate chance constraints by conservative

constraints stating that certain confidence ellipsoids are completely con-
tained in the feasible region. Computational comparisons in [101] and [39]
indicate that, albeit being fast, this approach introduces a high degree of
sub-optimality through its conservativeness.

For systems where the disturbance distributions are assumed to be Gaus-

sian, [39,41,101] propose that instead of enforcing that all state constraints
are satisfied with a certain probability at the same time, each linear state
constraint should be considered separately and the probability of violating
this constraint be enforced separately. Utilizing a probabilistic inequality
it can then be guaranteed that the controls found will be feasible for the
chance constrained problem with the joint state constraints.

The authors of [102] extend these approaches to the control of multi-
agent systems. However, without considering coupling constraints on the
states of the agents that are necessary for modeling collision avoidance. In-
stead, the goal of that work is to propose an algorithm for the decentralized
distribution of the overall amount of the chance constraint risk among the

7



1. Motion Planning with Chance Constraints

agents.
In [40], the authors propose to approximate the probabilities for colli-

sions with obstacles for the single agent case by sample-based methods.
They transform the search for an optimal solution to the stochastic single
agent control problem under chance constraints to finding a solution of a
mixed-binary linear program (MBLP). This approximation has the advan-
tage that almost arbitrary state and noise distributions can be treated. How-
ever, the considerations in [40] are restricted to chance-constrained control
of a single agent.

Robust Optimization and Control

In robust approaches the aim is to find a solution that is optimal for “all”
uncertainty realizations bound to lie in a compact and convex set. For ref-
erences on general robust optimization and applications please see the in-
troduction of Chapter 2 in Section 2.1 and Section 2.5.1.

Robust control has also been applied to single- and multi-agent path plan-
ning problems in several works [86–88, 110, 111]

1.3. Notation and Conventions

The probability that a multivariate random variable x with probability den-
sity function (pdf) f (x) takes values in a set E is denoted by P{x ∈ E} and
is the multivariate expectation

P{x ∈ E}=
∫

E
f (x)dx =

∫
1E(x) f (x)dx , (1.1)

where 1E is the indicator function of E, i.e., 1E(x) equals one if x ∈ E and
zero otherwise. Cov(x) denotes the covariance E

{
(x−E{x})(x−E{x})>

}

8



1.4. General Problem Formulation

of the random vector x, which is a matrix for multivariate random variables.
Analogously

Cov(x,y) := E

{
(x−E{x})(y−E{y})>

}
(1.2)

is the covariance between the random vectors x and y [104]. We define the
Manhattan-norm as ‖x‖1 := ∑k |xk|, the Euclidean norm through ‖x‖2 :=√

∑k x2
k and the maximum norm as ‖x‖ := maxk |xk| for real vectors x =

[x1,x2, . . . ,xn]
>.

1.4. General Problem Formulation

The general multi-agent model predictive control (MA-MPC) problem we
want to solve is as follows: For M agents i = 1, . . . ,M with discrete-time
stochastic system models in state space form, we plan over a horizon of
length T in order to minimize the sum of the agents’ expected cumulative
cost functions. This minimization is subject to the probabilistic constraints
that the probabilities of inter-agent collisions and the probability of agents
leaving the feasible region are kept below certain user-defined thresholds.
The formal formulation of this problem is

MA-MPC : minimize
ui

1:T , i=1,...,M

M

∑
i=1
Exi

0:T

{
hi(xi

0:T ,u
i
1:T )
}

(1.3)

s.t. for all agents i = 1, . . . ,M : (1.4)

ui
1:T ∈ F i

u (1.5)

∀t=1,...,T xi
t = f i

t (x
i
0,u

i
1:t ,ν

i
1:t) (1.6)

P
{

xi
1:T /∈ F i}≤ γ

i (1.7)

∀ j=1,...,M, j 6=i P

{
(xi

1:T ,x
j
1:T ) /∈ F i, j

}
≤ γ

i, j (1.8)

E
{

xi
1:T ∈ G

}
. (1.9)

9



1. Motion Planning with Chance Constraints

The decision variables ui
1:T = [(ui

1)
>,(ui

2)
>, . . . ,(ui

T )
>]> are the control

inputs to agent i each confined to lie in a compact, and convex polytope
F i

u ⊂ Rdu,i . The function hi is the control objective and rates how desirable
certain states of the agents are. In this chapter, we assume that each function
hi is piecewise linear and convex both in the controls ui

1:T as well as in the
state trajectories xi

1:T . It depends on the control inputs and the system states
of the agents. The system state of agent i over the planning horizon is mod-
eled as a random vector and is denoted by xi

0:T = [(xi
0)
>,(xi

1)
>, . . . ,(xi

T )
>]>.

The notation xi
t is an abbreviation in the sense that

xi
t = f i

t
(
xi

0,u
i
1:t ,ν

i
1:t
)
, (1.10)

i.e., the random state of agent i at time step t depends on the control in-
puts ui

1:t up to t, the initial random state xi
0, and the disturbances ν i

1:t up
to time step t. The functional relation between these quantities is given by
the model of the dynamics f i

t . We assume throughout the chapter that the
dynamics are linear and time-invariant, see Section 1.5.2 for more details.
The xi

t are multivariate random vectors, hence they lie in some Rdi .
The stochastic disturbances ν i

t are used to account for possible errors in
the dynamic model or exogenous disturbances that act upon the systems,
such as wind turbulence on UAVs. They can also account for uncertain-
ties in the initial state estimate xi

0 and how those are carried forward and
possibly increased over time through state prediction with the model f i

t .
We assume here that the second central moments of the disturbances ν i

t ,
i.e., the covariances, and the prior state distributions xi

0 are known. Even
if there is no analytic knowledge about the second central moments, since
we will assume in later sections that we can draw samples from these dis-
tributions, it should be possible to obtain good estimates of these quantities
through the sample covariance [37].

We assume all random vectors to be stochastically independent for dif-
ferent agents i0 6= i1 and we also assume that the system disturbance is
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1.4. General Problem Formulation

independent of the control inputs. Since the states are modeled as random
vectors, we take the expectation of the objective hi(xi

0:T ,u
i
1:T ) with respect

to the agents’ state distributions in (1.3).
F i is the feasible region for the states of an agent i and P

{
xi

1:T /∈ F i
}

is the probability that the states of agent i leave the feasible region. The
feasible region can for example model an area the agents are not supposed
to leave or obstacles the agents have to avoid.
P

{
(xi

1:T ,x
j
1:T ) /∈ F i, j

}
specifies the probability that agent i and agent j

do not meet the coupling state constraints defined by the feasible region
F i, j that controls the interaction among agents. We understand these con-
straints as collision avoidance constraints, i.e., constraints on the distance
of the states of agents i and j. For notational simplicity we assume that the
coupling constraints are consistent for all agents, i.e., there is a feasible set
Fc such that Fc = F i, j for all agent pairings. We will formally define Fc in
the next section.

We assume that all probabilities involving the state random variables are
understood as actually conditioned on a concrete control sequence, i.e. we
write for example P

{
xi

1:T ∈ F i
}

as shorthand term for

P
{

xi
1:T
(
xi

0,u
i
1:T ,ν

i
1:T
)
∈ F i | ui

1:T
}

(1.11)

the probability that the state trajectory

xi
1:T
(
xi

0,u
i
1:T ,ν

i
1:T
)

:= [(xi
0)
>,(xi

1)
>, . . . ,(xi

T )
>]> (1.12)

(1.13)

is inside the feasible region given control inputs ui
1:T . We will use the ab-

breviated notation throughout this chapter.
The upper bounds 0≤ γ i,γ i, j ≤ 1 on the probability that the agents’ states

leave their own feasible region F i or the joint feasible regions Fc character-
ize the chance constraints on the failure of planning [36, 107, 117]. These
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1. Motion Planning with Chance Constraints

chance constraint bounds are specified by the user and can be used to adjust
how cautious or risk taking the agents’ controls will become: If the chance
constraint bounds are chosen “large”, i.e., close to one, the agents will be
allowed to carry out motion controls that have a high probability of them
violating state constraints. If the bounds are small (e.g. γ i = γ i, j = 10−4)
then the probabilities of constraint violation will be enforced to be almost
zero and the agents will plan very cautiously and conservatively.

The constraint E
{

xi
1:T ∈ G

}
can be used to model a terminal constraint

on the mean state trajectory for example for ensuring stability of the system.

1.5. Preliminaries

In this section we will define the probability of a collision of states of two
agents, study linear time-invariant system dynamics and their impact on the
random variables xi

t .

1.5.1. Definition of Inter-Agent Collision Probability

In this section we define our notion of a collision of the states of two agents,
the resulting collision avoidance coupling constraints on the states, and the
probability of a collision.

Let ε > 0 be the prespecified minimum distance between the states of
two agents for collision avoidance, for instance we could set ε to be twice
the diameter of a robot or twice the wingspan of a fixed-wing UAV. Let
x1

t and x2
t denote the d1-dimensional and d2-dimensional states of agents 1

and 2 in Rd1 and Rd2 respectively at a time step t. Since we formulated the
coupling constraints as pairwise constraints on the states of two agents, in
the following we will only consider two agents numbered by one and two.

12



1.5. Preliminaries

Definition 1.1 (Collision of Two Agents’ States) Given an ε > 0 and t ∈
{1, . . . ,T}, we define the event of a collision as

‖Π1 (x1
t
)
−Π

2 (x2
t
)
‖< ε , (1.14)

i.e., the event that two agents’ states are closer than the minimum clearance
ε . Here,

Π
i : Rdi → R

d̂ (1.15)

projects the state variable xi
t ∈ Rdi of agent i onto a subspace Rd in which

the collision avoidance constraints are formulated.

For example in the simulations in Section 1.9 we will consider path plan-
ning for UAVs where the state of an UAV is modeled as six-dimensional
variable but collision avoidance is formulated in three-dimensional space.
For notational simplicity we will omit the mapping Πi in the other sections
and assume that it is inserted where necessary.

Definition 1.2 (Feasible Region for Joint States) The feasible region

Fc ⊂ Rd1 ×Rd2 (1.16)

for joint states of two agents is the set of joint states that have a distance
greater or equal than ε:

Fc := {(x1,x2) ∈ Rd1 ×Rd2 : ‖Π1 (x1
t
)
−Π

2 (x2
t
)
‖2 ≥ ε} . (1.17)

Definition 1.3 (Probability of Collision) The probability of a collision of
two agents’ states is the probability that the uncertain states of the agents
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are not in Fc

P
{
(x1

t ,x
2
t ) /∈ Fc}= P

{
‖Π1 (x1

t
)
−Π

2 (x2
t
)
‖2 < ε

}
= E

{
1CFc

(
Π

1 (x1
t
)
,Π2 (x2

t
))}(

=
∫ ∫

1CFc
(
Π

1 (x1
t
)
,Π2 (x2

t
))

gx1
t
(x1

t )gx2
t
(x2

t )dx1
t dx2

t

)
,

(1.18)

where

1CFc
(
Π

1 (x1
t
)
,Π2 (x2

t
))

=

1, if ‖Π1
(
x1

t
)
−Π2

(
x2

t
)
‖< ε

0, otherwise
(1.19)

is the indicator function of the complement of Fc and gx1
t
(x1

t ) and gx2
t
(x2

t )

are the probability density functions of the state estimates of the agents if
they exists, i.e. if the random variables x1

t and x2
t have a probability density

function.

Since in practical applications, the uncertain initial states and the system
disturbances will be given by some stochastic model, it is safe to assume
that all random variables have a probability density function. However, the
sample-based approaches for approximating collision probabilities and the
conservative approximations presented in this chapter will not need this as-
sumption so we will require it only when necessary. If the random variables
have density functions, the integral (1.18) that determines the probability of
a collision is the integral of multivariate density functions multiplied by the
indicator function 1CFc . For general density functions this integral will
have no closed-form solution because of the possibly complex structure of
the densities. Even for multivariate Gaussian distributions it will become
difficult to evaluate the integral since the indicator function is a non-convex
and nonlinear function and there are no known closed form expressions to
evaluate this integral. Even if the integral (1.18) was given by a closed-
form representation, it is not guaranteed that the resulting constraints on
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the probability of an inter-agent collision would be tractable for an opti-
mization algorithm.

This renders the chance constraints numerically intractable if one wants
to directly pose them as constraints to the MA-MPC problem: Given a set of
joint controls for the agents, checking if these controls are feasible for the
chance constraints would require the application of numerical quadrature
methods in order to evaluate the multivariate expectation in 1.18. When
trying to find optimal controls for the multi-agent systems a plethora of
possible controls will have to be checked for feasibility in order to find an
optimal solution. Due to these numerical difficulties we will in this chapter
present approximations and conservative reformulations of the constraints
on the probability of a collision of agents.

We conclude this section with two remarks.

Remark 1.1 Recall that the inter-agent collision avoidance constraints in
Section 1.4 were formulated for state trajectories over the complete plan-
ning horizon T in the form

∀i, j=1,...,M,
j 6=i

P

{
(xi

1:T ,x
j
1:T ) /∈ F i, j

}
≤ γ

i, j (1.20)

and the definition we gave in this section is for one time step t only. How-
ever the generalization from the constraints on the states in one time step to
the states over the whole planning horizon is straight forward: Define

Fc
1:T :=

{(
x1

1:T ,x
2
1:T

)
∈ RT d1 ×RT d2 : ‖Π1

(
x1

t

)
−Π

2
(

x2
t

)
‖ ≥ ε, t = 1, . . . ,T

}
(1.21)
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and the probability of a collision as

P

{
(x1

1:T ,x
2
1:T ) /∈ Fc

1:T

}
= P

{
∃t0∈{1,...,T} : (x1

t ,x
2
t ) /∈ Fc

}
= P

{
(x1

1,x
2
1) /∈ Fc∨ (x1

2,x
2
2) /∈ Fc∨·· ·∨ (x1

T ,x
2
T ) /∈ Fc

}
= P

{
T⋃

t=1

{
(x1

t ,x
2
t ) /∈ Fc

}}
.

(1.22)

So from Definition 1.2 the probability of a collision over the complete plan-
ning horizon can be derived. In this chapter we will adopt the more conve-
nient notation that we write (x1

1:T ,x
2
1:T )∈Fc but actually mean (x1

1:T ,x
2
1:T )∈

Fc
1:T .

In the next remark we will demonstrate how the probability of a collision
over the complete planning horizon, i.e., for all time steps t = 1, . . . ,T , is
related to the probabilities of collision in a single time step.

Remark 1.2 From Boole’s inequality for finite unions [108]

P

{⋃
i

Ai

}
≤∑

i
P{Ai} (1.23)

we can deduce for (1.22)

P
{
(x1

1:T ,x
2
1:T ) /∈ Fc

1:T
}
= P

{
T⋃

t=1

{
(x1

t ,x
2
t ) /∈ Fc}}

≤
T

∑
t=1

P
{
(x1

t ,x
2
t ) /∈ Fc} (1.24)

and, hence, if

T

∑
t=1

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ γ

1,2 (1.25)
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then also P
{
(x1

1:T ,x
2
1:T ) /∈ Fc

1:T
}
≤ γ1,2. We will use this fact in later sec-

tions when we consider efficient conservative reformulations of the inter-
agent collision avoidance chance constraint.

1.5.2. Systems with Linear Time-Invariant Dynamics

In this section we will first briefly introduce linear time-invariant system
dynamics, describe how with these dynamics samples from the random
variables xi

t can be generated and reference prior work on MPC with chance
constraints in linear time-invariant systems for a single agent.

For arbitrary system dynamics f i
t the MA-MPC problem will be a non-

linear and non-convex optimization problem and computationally demand-
ing global optimization algorithms would have to be employed to solve it
with local minima being prevalent [79]. Additionally the collision avoid-
ance constraints are nonlinear and will be formulated as mixed-binary lin-
ear (MBL) constraints in the next sections so that MA-MPC problem would
in fact become a nonlinear non-convex optimization problem with discrete
and continuous decision variables.

Instead, we consider here the more simple case of linear system dynam-
ics and piecewise linear and convex objective functions and, hence, the
optimization problem that has to be solved to find an optimal solution to
the MA-MPC problem is a mixed-integer linear problem (MILP). Still the
theoretical complexity of MILPs is high, but there are powerful commercial
solvers available for these problems that are very fast for moderate problem
sizes.

We assume in this chapter that the stochastic discrete-time dynamic state
space model of each agent i = 1, . . . ,M is given by the linear time-invariant
system equation

xi
t+1 = Aixi

t +Biui
t +ν

i
t , t = 1, . . . ,T −1 . (1.26)
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Here xi
t is the uncertain state of agent i modeled as a random variable, ui

t is
the deterministic control input and ν i

t is the stochastic system disturbance
and with time-invariant matrices Ai ∈Rdi×di and Bi ∈Rdi×du,i . For the linear
system dynamics (1.26) the mapping xi

t = f i
t (x

i
0,u

i
1:t ,ν

i
1:t) that determines

how the agent’s state depends on the initial state xi
0 and behaves under con-

trol inputs ui
1:t , is linear in the control inputs and can be stated as

xi
t+1 = (Ai)txi

0 +
t

∑
s=1

(Ai)t−s−1(Bui
s +ν

i
s) , (1.27)

where

(
Ai)t

= AiAi · · ·Ai︸ ︷︷ ︸
t times

. (1.28)

This can be checked by iteratively applying the dynamics (1.26) t times.
In this case the mapping xi

t = f i
t (x0,u1:t ,ν1:t) is linear in x0 and ν1:t and

because a linear transformation of random variables is again a random vari-
able, xi

t is a random variable.

Sample-Based Techniques for Systems with Linear
Time-Invariant Dynamics

We will use sample approximations throughout the rest of this chapter to ap-
proximate probabilities involving random variables describing the agents’
state and therefore we will sketch how samples from the random variables
xi

t can be generated. For arbitrarily distributed initial states xi
0 and for arbi-

trarily distributed system disturbance ν i
t there is in general no closed-form

representation (or one with a finite number of parameters) of the densities
of the random vectors xi

t . We will therefore make use of sample-based tech-
niques for representing the uncertain states xi

t .
We assume that for each agent i = 1, . . . ,M we can draw N independent

and identically distributed (i.i.d.) samples of the random vector xi
0 at time
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xi xil ∼ xit

Figure 1.2.: Samples are drawn from the random variable representing the state of
agent j, e.g., the position estimate of an UAV.

step t = 0 (see Figure 1.2 for an illustrative depiction of the samples). We
will denote these samples by {xi

0 j}N
j=1 and assume, for notational conve-

nience only, that we draw an equal number N of realizations from each
agent’s initial random vector xi

0. Furthermore for each agent i we draw N

i.i.d. disturbance samples (ν i
1 j,ν

i
2 j, . . . ,ν

i
T j), j = 1, . . . ,N from the random

system disturbance ν i
1:T that affects agent i over the planning horizon of

length T .
The model of the dynamics (1.26) then allows us to generate N “sample

trajectories” over time. These trajectories are obtained by propagating each
initial sample in combination with a joint disturbance sample through the
system equation (1.27). Each sample trajectory is of length T +1 and is of
the form

xi
0:T, j := [(xi

0 j)
>,(xi

1 j)
>, . . . ,(xi

T j)
>]> , (1.29)

where for xi
t j it holds that

xi
t+1, j = (Ai)txi

0 j +
t

∑
s=1

(Ai)t−s−1(Bui
s +ν

i
s j) . (1.30)

The most important property of this construction is that the sample tra-
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jectories depend deterministically and linearly on the control inputs. This
will enable us to formulate a sample-based approximation of the MA-MPC
problem as a deterministic optimization problem.

What else have we achieved by this construction? For one we have ob-
tained a representation of agent i’s uncertain states for instance at time step
t the samples {xi

t j}N
j=1 are samples from the random variable xi

t . These
samples can be used to evaluate probabilistic quantities depending on the
agents’ random states that otherwise we would have had to employ com-
putationally expensive methods to calculate. One example of such a proba-
bilistic quantity is the expectation Exi

t
{g} of a function g with respect to xi

t .
It can be approximated through

Exi
t
{g} ≈ 1

N

N

∑
j=1

g(xi
t j) (1.31)

and the expectation over an event E through

Exi
t
{E} ≈ 1

N

N

∑
j=1

1E(xi
t j) (1.32)

both with convergence to the true expectation as the number of samples
goes to infinity [104].

With this construction in mind, we will from now on assume that we can
always draw samples from the random variables xi

t .
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Sample-Based Control for a Single Agent

For the single agent chance constrained model predictive control problem
(SA-MPC)

SA-MPC : minimize
u1:T

Ex0:T {h(x0:T ,u1:T )} (1.33)

s.t. u1:T ∈ Fu (1.34)

∀t=1,...,T xt = ft(x0,u1:t ,ν1:t) (1.35)

P{x1:T /∈ F} ≤ γ (1.36)

E{x1:T ∈ G} . (1.37)

for one agent and without coupling constraints on joint states of agents, the
work [39] proposes an approach to formulate the problem as MBL opti-
mization problem. The assumptions made in that work are that

• the objective function is piecewise linear and convex,

• the feasible region Fu for the controls is a convex polytope,

• the system model ft is linear,

• the feasible region F for the system states is either a convex polytope
or a non-convex polytope with convex polytopal obstacles.

In that work realizations of the state trajectory x1:T are drawn as demon-
strated in the previous section and the probability P{x1:T /∈ F} is approx-
imated by the empirical probability computed from these samples. The
resulting sample average approximation constraints that ensure that the
empirical probability PN {x1:T /∈ F} ≤ γ are then formulated as MBL con-
straints.

The focus of this chapter lies on efficient modeling of constraints on
inter-agent collision probabilities so we take the formulation of the single
agent planning problem with the above assumptions for granted and assume
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1. Motion Planning with Chance Constraints

that it is modeled as in [39] as a MBL problem. This is the reason why it
is often convenient to consider a reduced version of the MA-MPC problem
of the form

MA-MPC : minimize
ui

1:T , i=1,...,M

M

∑
i=1

hi(ui
1:T )

s.t. for all agents i = 1, . . . ,M :

ui
1:T ∈ F i

u

∀t=1,...,T xi
t = f i

t (x
i
0,u

i
1:t ,ν

i
1:t)

∀ j=1,...,M, j 6=i P

{
(xi

1:T ,x
j
1:T ) /∈ F i, j

}
≤ γ

i, j ,

(1.38)

with only the inter-agent collision avoidance constraints. When consider-
ing the reduced MA-MPC problem, we assume that the chance constraints
P
{

xi
1:T /∈ F

}
≤ γ and the constraints E

{
xi

1:T ∈ G
}

are already handled by
methods as those introduced in [39] and, hence, are included in the deter-
ministic constraint ui

1:T ∈ F i
u.

The Mean and Covariance in Linear Time-Invariant Systems

We assume without loss of generality that the system disturbance ν i
t for all

agents and for all time steps is zero-mean1. For system disturbance with
vanishing mean the mean µ i

t of agent i’s random state follows the recursive
rule

µ
i
t = Ai

µ
i
t−1 +Bui

t−1 , (1.39)

1If the disturbance had a non-zero mean, we could subtract this mean from the system equa-
tions as deterministic disturbance and would have reduced this disturbance to zero-mean
disturbance again.
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1.6. Sample Average Approximation

as one can easily check from (1.26) by taking the expectation. It follows
that the mean is determined through

µ
i
t =
(
Ai)t

µ
i
0 +

t

∑
s=1

(
Ai)t−s−1 Biui

s (1.40)

for each agent i analogously to Equation (1.27) and always depends linearly

on the controls.
The covariances of the random vectors xi

t do not depend on any control
inputs, but only on the covariances of the prior distribution xi

0 and the dis-
turbances ν i

1:t . The recursive formula for the evolution of the covariances
is

Cov(xi
t) = AiCov(xi

t−1)(A
i)>+Cov(ν i

t−1) (1.41)

+AiCov(xi
t−1,ν

i
t−1)+Cov(ν i

t−1,x
i
t−1)(A

i)> .

This property can be derived from basic matrix manipulations and covari-
ance matrix properties. In the general problem formulation of MA-MPC,
we assumed that covariances of the prior distributions xi

0 and the distur-
bances ν i

t are known in advance, so the agents can recursively compute the
covariance of their random state at time step t.

1.6. Sample Average Approximation of Inter-Agent Collision
Probability

This section is concerned with the approximation of the probability of an
inter-agent collision and the derivation of constraints that keep these prob-
abilities below user-defined thresholds. We use the sample approximations
of the agents’ uncertain states to derive a sample approximation of the prob-
ability of an inter-agent collision. This direct approximation converges to
the true probability of a collision as the number of samples goes to infin-
ity. However, the complexity of the resulting optimization problem can be
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1. Motion Planning with Chance Constraints

so high that this approach proves problematic for control under real-time
requirements.

1.6.1. Approximation of Collision Probabilities

In order to render the probability of an inter-agent collision computationally
tractable, we replace it by the sample average approximation (SAA) [75,93,
103]. The general idea in SAA of chance constraints is to replace the prob-
ability measure P by the empirical measure constructed from i.i.d. samples
from the random vectors describing the states of the agents. More precisely,
let {x1

j}N
j=1 and {x2

l }N
l=1 be N i.i.d. samples from the independent random

vectors x1
1:T and x2

1:T that represent the state trajectories of agents 1 and 2,
derived as highlighted in Section 1.5.2. Then a joint sample from the ran-
dom vector (x1

1:T ,x
2
1:T ) is given by (x1

j ,x
2
l ) resulting in N2 joint samples.

We replace the measure P by the empirical measure

PN :=
1

N2

N

∑
j=1

N

∑
l=1

δx1
j ,x

2
l
, (1.42)

where δx1
j ,x

2
l

denotes the discrete measure with mass one at (x1
j ,x

2
l ). This is

a discrete measure assigning the mass 1
N2 to each point (x1

j ,x
2
l ).

Definition 1.4 (SAA of the Inter-agent Collision Probability) The sam-
ple average approximation of the chance constraint on the probability of
a collision is

PN
{
(x1

1:T ,x
2
1:T ) /∈ Fc}= EPN{1CFc}= 1

N2

N

∑
j=1

N

∑
l=1

1CFc(x1
j ,x

2
l )≤ γ

1,2 ,

(1.43)
where 1CFc is the indicator function of the complement of Fc as defined in
Section 1.5.1.
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1.6. Sample Average Approximation

In problem MA-MPC constraint P
{
(xi

1:T ,x
j
1:T ) /∈ F i, j

}
≤ γ i, j will be re-

placed by constraint (1.43).

Remark 1.3 In Section 1.6.3 we will demonstrate how the SAA con-
straints can be formulated as mixed-binary linear constraints. In Definition
1.4 the indicator function of the complement of Fc has to be evaluated N2

times and each of these evaluations requires a fixed number of binary con-
straints in the MBL formulation as we will see in Section 1.6.3. Since one
usually desires to employ as many samples as possible to guarantee good
approximation properties and since binary variables have a crucial impact
on the complexity and thus the run-time of the program, a quadratic de-
pendence of the number of binaries on the number of samples renders this
formulation problematic under real-time requirements.

1.6.2. Convergence Properties

In this section we will consider convergence properties of plans found with
the approximated chance constraint. Since in this section we are only con-
cerned with inter-agent collision probabilities, we assume that we consider
only two agents and we assume that the other chance constraints on the
agents’ states are given through deterministic constraints, i.e. the inter-
agent collision constraints are the only probabilistic constraints. We will
show convergence in the following simplified program

2MA-MPC : min
ui

1:T ,u
j
1:T

hi(ui
1:T )+h j(u j

1:T )

s.t. ui
1:T ∈ F i

u and u j
1:T ∈ F j

u

xi
t = f i

t (x
i
0,u

i
1:t ,ν

i
1:t) ,x

j
t = f j

t (x
j
0,u

j
1:t ,ν

j
1:t)

P

{
(xi

1:T ,x
j
1:T ) /∈ Fc

1:T

}
≤ γ

i, j .

(1.44)

Denote by 2MA-MPCN the counterpart of 2MA-MPC with the approxi-
mated inter-agent collision chance constraint in Definition 1.4.
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1. Motion Planning with Chance Constraints

In order to prove convergence, we will employ a result from [103] on the
convergence of the SAA of general chance constrained optimization prob-
lems to our problem of chance constrained MPC (for a brief introduction,
please see Appendix A.1).

Definition 1.5 (Optimal Values) Define ϕ i, j to be the optimal objective
function value of 2MA-MPC with the “true” chance constraint on inter-
agent collision probabilities. Define ϕ

i, j
N to be the optimal objective func-

tion value for 2MA-MPCN with the “approximated” chance constraint from
Definition 1.4.

Definition 1.6 (Optimal Controls) Define Φi, j to be the set of joint con-
trols (ui

1:T ,u
j
1:T ) at which the optimal value ϕ i, j is achieved. Analogously,

define Φ
i, j
N to be the set of joint controls (ui

1:T ,u
j
1:T ) at which the optimal

value ϕ
i, j
N is achieved for the approximated constraints.

We need the following assumptions to hold to prove the convergence.

Assumption 1 For the problem 2MA-MPC

1. Φi, j 6= /0 and Φ
i, j
N 6= /0 holds, i.e., both 2MA-MPC and 2MA-MPCN

are feasible.

2. For an optimal joint plan (∗ui
1:T ,

∗u j
1:T ) ∈ Φi, j with collision proba-

bility

P

{
(xi

1:T ,x
j
1:T ) /∈ Fc

1:T | (∗ui
1:T ,

∗u j
1:T )
}
= γ

i, j (1.45)

and arbitrary ρ > 0 there exists a joint plan (ui
1:T ,u

j
1:T ) with

dU

(
(∗ui

1:T ,
∗u j

1:T ),(u
i
1:T ,u

j
1:T )
)
< ρ (1.46)
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such that

P

{
(xi

1:T ,x
j
1:T ) /∈ Fc

1:T | (ui
1:T ,u

j
1:T )
}
< γ

i, j , (1.47)

where dU is the normal Euclidean distance in R
du,i ×Rdu, j of two

joint plans.

3. The objective functions hi and h j are continuous.

Assumption 1.2 requires that if optimal joint controls have violation
probability equal to γ i, j, then there is a “backoff” joint plan that is arbi-
trarily close to the optimal plan, for that the inter-agent collision proba-
bility will be smaller than γ i, j. In most real world scenarios it is safe to
assume this, since e.g. for motion planning agents will have the chance
to wait a short while or make a very small detour to decrease the collision
probabilities. Assumption 1.3 is also no severe restriction, since in appli-
cations mostly linear, piece-wise linear and convex, or quadratic objective
functions are considered.

Now we are in a position to establish the convergence of plans found
with the SAA.

Proposition 1.1 If Assumption 1 holds for problem 2MA-MPC, then we

have that ϕ
i, j
N → ϕ i, j and dH(Φ

i, j
N ,Φi, j)→ 0 with probability one for N→

∞, i.e., optimal controls found with the SAA of the chance constraints con-

verge against controls that are optimal with the original constraints on

inter-agent collision probabilities. Here, dH denotes the Hausdorff distance

between two sets

dH(A ,B) := max
{

sup
a∈A

d(a,B), sup
b∈B

d(b,A )

}
. (1.48)

Remark 1.4 Here convergence is meant in the following sense: Since we
draw N realizations from the random variables xi

1:T and x j
1:T and use these

realizations to compute an optimal solution of 2MA-MPCN the optimal
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1. Motion Planning with Chance Constraints

solution set and optimal value will also be random, depending on the N

realizations. The statement of Proposition 1.1 for the optimal solution sets
is then

P

{
lim

N→∞
dH(Φ

i, j
N ,Φi, j) = 0

}
= 1 (1.49)

and equivalently for ϕ
i, j
N → ϕ i, j.

PROOF. As we already mentioned the proof of the Proposition uses a result
on general SAA of chance constraints introduced in [103]. In order to apply
the result, we have to check that the assumptions of [103, Proposition 2.2]
are given (see Appendix A.1 for details).

First, we will show that the constraint function in the chance constraints
in 2MA-MPC is a Carathéodory function, i.e., continuous in the decision
variables and measurable in the random parameters. Define

Gt(ui
1:t ,u

j
1:t ,x

i
0,x

j
0,ν

i
1:t ,ν

j
1:t) : = ‖xi

t − x j
t ‖− ε (1.50)

= ‖x(ui
1:t ,x

i
0,ν

i
1:t)− x(u j

1:t ,x
j
0,ν

j
1:t)‖− ε .

(1.51)

Since the model of the agents’ dynamics are linear and x→ ‖x‖ is a con-
tinuous mapping, the mapping

(ui
1:t ,u

j
1:t)→ Gt(ui

1:t ,u
j
1:t ,x

i
0,x

j
0,ν

i
1:t ,ν

j
1:t) (1.52)

is continuous for fixed random parameters. With the same argument also
the mapping

(xi
0,x

j
0,ν

i
1:t ,ν

j
1:t)→ Gt(ui

1:t ,u
j
1:t ,x

i
0,x

j
0,ν

i
1:t ,ν

j
1:t) (1.53)

is continuous for fixed control inputs and, hence, Gt is measurable in the
random parameters. So we have shown that Gt is a Carathéodory function.
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1.6. Sample Average Approximation

The inter-agent collision avoidance chance constraint is equivalent to

P

{
max

t=1,...,T

{
Gt(ui

1:t ,u
j
1:t ,x

i
0,x

j
0,ν

i
1:t ,ν

j
1:t)
}
> 0
}
≤ γ

i, j (1.54)

since the requirement that Gt ≤ 0 for all t = 1, . . . ,T is equivalent to the
requirement that maxt=1,...,T {Gt} ≤ 0. The pointwise maximum of a finite
number of continuous functions is again continuous since for two function
f (x) and g(x) it holds that

h(x) := max{ f (x),g(x)}= f (x)+g(x)+ | f (x)−g(x)|
2

, (1.55)

which is continuous if f and g are continuous. The same holds for measura-
bility and, hence, the overall constraint function is a Carathéodory function.

Our Assumption 1.2 is equivalent to [103, Assumption (A)] and, hence,
Proposition 1.1 follows from [103, Proposition 2.2]. �

1.6.3. MBL Constraint Formulation for Sample-Based
Approximations

In this section, we will outline how the SAA from Definition 1.4 of the
probability of a collision between two agents can be transformed into MBL
constraints. For notational simplicity we assume that the dimensions of the
agents’ states coincide, i.e., d1 = d = d2 and collision avoidance is formu-
lated for the complete agent state.

According to Definition 1.4, the approximation of the constraints

P
{
(x1

1:T ,x
2
1:T ) /∈ Fc}≤ γ

1,2 (1.56)

is

N

∑
j=1

N

∑
l=1

1CFc(x1
j ,x

2
l )≤ N2

γ
1,2 , (1.57)
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1. Motion Planning with Chance Constraints

where

1CFc(x1
j ,x

2
l ) :=

1, if ‖x1
j − x2

l ‖< ε

0, otherwise,
(1.58)

is the indicator function of the complement of Fc. Define the auxiliary
indicator

1CFc,t(x1
t j,x

2
tl) :=

1, if ‖x1
t j− x2

tl‖< ε

0, otherwise,
(1.59)

where x1
t j and x2

tl are the part of the sample trajectories x1
j and x2

l at time
step t according to the construction in Section 1.5.2, i.e., this function will
be one if the samples at time step t come to close. It follows that

1CFc = min
t=1,...,T

{1CFc,t} (1.60)

from the definition of the event of a collision and, hence,

N

∑
j=1

N

∑
l=1
1CFc(x1

j ,x
2
l ) (1.61)

=
N

∑
j=1

N

∑
l=1

min
t=1,...,T

{
1CFc,t(x1

t j,x
2
tl)
}
. (1.62)

We first formulate the indicator functions 1CFc,t through MBL con-
straints: We have to iterate through all samples j = 1 . . .N of the first agent
and all samples l = 1 . . .N of the second agent and check if 1CFc,t(x1

t j,x
2
tl)

equals one or zero. In order to formulate this “check” we introduce a binary
variable e jlt ∈ {0,1} for that holds if e jlt = 1 then samples x1

t j and x2
tl are

within ε proximity of each other and if e jlt = 0 they are not.
By definition, the sample x1

t j = [x1
t j(1), . . . ,x

1
t j(d)]

> is more than ε away
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from sample x2
tl = [x2

tl(1), . . . ,x
2
tl(d)]

> in the maximum norm if

‖x1
t j− x2

tl‖= max
i=1,...,d

{|x1
t j(i)− x2

tl(i)| }> ε . (1.63)

This is equivalent to the condition that one of the following inequalities
holds

x1
t j(1)− x2

tl(1)> ε or (1.64)

x2
tl(1)− x1

t j(1)> ε or (1.65)

...

x1
t j(d)− x2

tl(d)> ε or (1.66)

x2
tl(d)− x1

t j(d)> ε , (1.67)

where we just formulated the absolute value and the maximum from Equa-
tion 1.63 differently. Since the logical “or”-constraints above are not di-
rectly applicable as linear constraints, we use the “Big M”-method to trans-
form them into logical “and”-constraints.

So we check whether sample x1
t j is in ε proximity of sample x2

tl at time
step t through the constraints

x1
t j(1)− x2

tl(1)> ε−b1
jtlMo and

x2
tl(1)− x1

t j(1)> ε−b2
jtlMo and

...

x1
t j(d)− x2

tl(d)> ε−b2d−1
jtl Mo and

x2
tl(d)− x1

t j(d)> ε−b2d
jtlMo ,

(1.68)

with binary slack variables bi
jtl ∈ {0,1} for i = 1, . . . ,2d and arbitrary large

positive number Mo. If at least one of the bi
jtl above is zero, then the samples

have sufficient distance because then the corresponding inequality x2
tl(i)−
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x1
t j(i)> ε or x1

t j(i)− x2
tl(i)> ε holds. If all bi

jtl equal one, the samples can
be within ε distance of each other.

Now we define the binary variable e jlt in such a way that it determines
if the samples at time step t have sufficient clearance. This is done by the
constraint

2d

∑
i=1

bi
jtl ≤ 2d−1+Moe jlt . (1.69)

It follows that if e jtl = 1, then all bi
jtl , i = 1, . . . ,2d can be equal to one

and the samples x1
t j and x2

tl can be within ε distance of each other and if
e jlt = 0, at least one of the bi

jtl , i = 1, . . . ,2d has to be zero and the sam-
ples have sufficient clearance. So the binary variables e jtl correspond to
the indicator function 1−1CFc,t in the sense that if e jlt = 0 it follows that
1CFc,t(x1

t j,x
2
tl) = 1.

Now we want to construct a mixed binary formulation for the minimum
of the indicators over the complete time horizon. This is done with the
constraint

T

∑
t=1

e jtl ≤Moo jl (1.70)

with o jl ∈ {0,1}. If for one t ∈ {1, . . . ,T} the binary variable e jtl = 1, then
the sum will be greater than zero and o jl has to be set to one. If all of the
e jtl = 0, i.e., the samples x1

j and x2
l have sufficient clearance for all time

steps, then o jl can be set to zero. The final constraint is now that at most
γ i, jN2 of the o jl are allowed to be equal to one

N

∑
j=1

N

∑
l=1

o jl ≤ γ
i, jN2 , (1.71)

i.e., at most γ i, jN2 many samples can have a clearance lower than ε at
some time step. The constraints (1.68), (1.69), (1.70), and (1.71) are the
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MBL formulation of the SAA of the chance constraint on the probability of
a collision between two agents.

From this construction it can be seen that the number of binary decision
variables in the MBL formulation depends quadratically on the number of
samples N drawn from the random variables xi

t . Since one usually aims to
employ as many samples as possible in order to warrant a good approxima-
tion quality and since the number of binary decision variables in an MBL
program has a crucial impact on the runtime of the program a high num-
ber of binaries is not desirable. Especially when MA-MPC is to be applied
in scenarios in which decisions on controls have to made under real-time
requirements, the high runtime of the SAA makes it almost impossible to
apply as we will see in the simulations in Section 1.9. Therefore in the
next sections we will investigate more efficient methods for formulating
the collision avoidance constraints.

1.7. Efficient Conservative Collision Avoidance in 2D

In the previous section we proposed a SAA of the constraints on inter-agent
collision probabilities that will converge when the number of samples goes
to infinity. When we transformed this approximation into MBL constraints,
it turned out that we have to introduce binary variables for each pairing of
samples of different agents. Hence, the number of binary variables that
results from the sample-based approximation can be prohibitively high.

In this section, we will therefore propose a computationally more ef-
ficient formulation of inter-agent collision avoidance constraints based on
regions of increased probability of presence (RPP) of agents. Not only does
the RPP formulation allow us to generate controls under real-time require-
ments but we can also prove that controls found with the RPP algorithm
are feasible to the problem with chance constraints on the true probabilities
of agent collisions. In contrast to the SAA where we showed feasibility
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Figure 1.3.: Schematic depiction of regions of increased probability of presence for
the example of the positions of two UAVs.

of controls when the number of samples goes to infinity, here feasibility
always holds when the RPP constraints are satisfied.

The derivation of the RPP algorithm proceeds in two steps: First we will
define a region around the mean of the random position xi of an agent i and
study the probability that the agent is outside this region. The larger this
region is, the less probable it is that the position of the agent lies outside
the region. This can be quantified by a multivariate generalization of the
Chebychev inequality that gives an upper bound on the probability that the
position of the agent lies outside of the RPP region.

In the second step we introduce constraints to the MA-MPC problem
that ensure that for different agents their respective RPPs do not overlap.
We will prove that if these RPPs have the adequate size and they do not
overlap, then we can control the collision probabilities in such a way that
they do not exceed the chance constraint bounds. In order to define the
RPPs and ensure their non-overlap, we have to do the following two things.

1. We have to determine the size of the confidence region of increased
probability of presence in such a way that just the right amount of
probability mass lies outside of the region. We will do this in Sec-
tion 1.7.1.
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2. We have to formulate constraints that ensure that these regions will
not overlap for different agents in order to make sure that the proba-
bility of a collision does not exceed the chance constraint bound. We
will do this in Section 1.7.2

As before in Section 1.6 we will only consider two agents 1 and 2. Also,
in this section we will construct the RPPs for collision avoidance of two-
dimensional states of the agents. The reason for this restriction will become
apparent in Section 1.7.1 and the case of collision avoidance for arbitrary
state dimensions will be considered in Section 1.7.4.

Remark 1.5 We demonstrated in Remark 1.2 that with the help of Boole’s
inequality the probability of a collision P

{
(x1

1:T ,x
2
1:T ) /∈ Fc

}
for two com-

plete joint plans can be bounded from above by sum of the probabilities
P
{
(x1

t ,x
2
t ) /∈ Fc

}
for time steps t = 1, . . . ,T . We will use the bound in this

section and construct the RPPs in such a way that we can guarantee that

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ γ

i, j
t (1.72)

for each time step and for some γ
i, j
t . If the γ

i, j
t are chosen in such a way that

T

∑
t=1

γ
i, j
t ≤ γ

i, j (1.73)

we can guarantee that the original chance constraint of MA-MPC is satis-
fied. Since we will only consider the collision probability in one time step
t, we will omit the subscript t in this section for notational convenience.

1.7.1. Regions of Increased Probability of Presence (RPP)

Let µ i := [µ i(1),µ i(2)]> ∈ R2 be the mean of the random position xi of
agent i.

35



1. Motion Planning with Chance Constraints

Definition 1.7 (Region of Increased Probability of Presence) We define
a rectangular region of increased probability of presence (RPP) around the
mean through

Ri := {[xi(1),xi(2)]> : |xi(1)−µ
i(1)| ≤ α

i
1, |xi(2)−µ

i(2)| ≤ α
i
2} ⊂ R2 .

(1.74)

The RPP Ri describes the set of points in R2 for which both coordinates
deviate at most some distance from the mean value of the random state of
the agent. Its position depends on the mean of the random state of the agent
and its size depends on the two parameters α i

1 and α i
2.

Definition 1.8 (Probability of Presence) For each agent i, we define the
probability that the random position of agent i lies outside of the RPP Ri as

Pi := P
{

xi /∈ Ri}= 1−P
{

xi ∈ Ri} . (1.75)

For larger RPPs Ri, the probability Pi becomes smaller as is quantified
by the following theorem.

Theorem 1.1 (P. Whittle [130]) Let x = [x(1), . . . ,x(d)]> be a multivariate

random vector with zero mean and covariance matrix V ∈ Rd×d , then it

holds for

P := 1−P{|x(i)| ≤ αi, i = 1, . . . ,d} (1.76)

that

P≤ trace
{

VB−1} , (1.77)

where B ∈ Rd×d is a positive definite matrix with diagonal entries α2
i .
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If xi = [xi(1),xi(2)]> is a zero mean bivariate random vector with covari-

ance matrix (Ckl)k,l=1,2 and probability Pi for xi defined as in Definition

1.8, then the probability Pi can be bounded by

Pi ≤ C11(α
i
2)

2 +C22(α
i
1)

2

2(α i
1)

2(α i
2)

2

+

√
[C11(α

i
2)

2 +C22(α
i
1)

2]2−4C2
12(α

i
1)

2(α i
2)

2

2(α i
1)

2(α i
2)

2 .

(1.78)

Here trace{A} denotes the trace of a square matrix A and is given by the
sum of the diagonal elements of the matrix.

Remark 1.6 According to [130, Theorem 2] for a general multivariate
random variable bound (1.77) is at its tightest when the matrix B is the
unique solution to V = BΛB where Λ is some positive definite diagonal
matrix and B has diagonal entries α2

i . For general dimension greater than
two there appears to be no efficient way to determine such a splitting of V.
This is the reason why we consider collision avoidance in two-dimensional
space first and will have to work a bit more to generalize to higher state
dimensions in Section 1.7.4.

We will use the upper bound (1.78) on the rate how Pi decreases as α i
1

and α i
2 increase to derive a method on how to determine a size of the region

Ri such that just the right amount of probability mass lies outside the region.
Since the bound will play an important role, we will denote it by C(xi,Ri),
i.e.,

C(xi,Ri) :=
C11(α

i
2)

2 +C22(α
i
1)

2

2(α i
1)

2(α i
2)

2

+

√
[C11(α

i
2)

2 +C22(α
i
1)

2]2−4C2
12(α

i
1)

2(α i
2)

2

2(α i
1)

2(α i
2)

2 .

(1.79)
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RPPs for Fixed Probability of Presence

In this section we want to investigate the following question: Given an
amount γ i of probability mass, how do we determine the size of the region
such that at most γ i of the probability mass of the random state xi lies out-
side of the region? Or more formally: Given 0 ≤ γ i ≤ 1 and an random

vector xi ∈ R2, how do we determine α i
1 and α i

2 such that

P
{

xi /∈ Ri}≤ γ
i ? (1.80)

If we find α i
1 and α i

2 so that

C(xi,Ri) = γ
i (1.81)

holds, then by Whittle’s Chebychev inequality (1.78) in Theorem 1.1 we
can guarantee that

P
{

xi /∈ Ri}≤ C(xi,Ri) = γ
i (1.82)

the probability mass of the random position xi outside of the region Ri is at
most γ i.

Since the equation C(xi,Ri) = γ i is only one equation for the two un-
knowns α i

1 and α i
2 it is under determined. We propose to choose the pa-

rameters α i
1 and α i

2 such that additionally

α i
1

α i
2
=

√
Ci

11
Ci

22
(1.83)

holds. This choice is motivated by the intuition that for a random state
with axis-aligned Gaussian distribution (i.e., Ci

12 = 0 in the covariance), the
diagonal of the covariance matrix given through Ci

11 and Ci
22, quantifies the

extent of the covariance ellipsoid in x-direction and y-direction. If the ratio
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of α i
1 and α i

2 equals the ratio of
√

Ci
11 and

√
Ci

22, the shape and extent
of the region Ri follows the shape and extent of the covariance ellipsoid.
So if there is considerable uncertainty in one of the coordinate directions,
indicated by a covariance ellipsoid with strong extent in this direction, the
region will also have a stronger spread in this direction to account for this
increased uncertainty.

When we insert the equation for α i
2 that results from (1.83)

α
i
2 =

√
Ci

22
Ci

11
α

i
1 (1.84)

into the equation for the bound C(xi,Ri) = γ i the latter is an equation with
only one remaining unknown. The equation for the remaining unknown is
a polynomial of degree four with two real solutions that can be determined
analytically. The positive real solution of the equation is

α
i
1 =

√√√√Ci
11

γ i +

√
Ci

11Ci
22(C

i
11Ci

22− (Ci
12)

2)(γ i)2

Ci
22(γ

i)2 . (1.85)

Given an uncertain state xi together with the covariance matrix of this
state and given a level γ i, Equations (1.85) and (1.83) allow us to determine
the RPP region Ri such that C(xi,Ri) = γ i holds. Together with Whittle’s
Chebychev inequality we can then guarantee that the probability mass of xi

outside the RPP region Ri is at most γ i and, hence, P
{

xi /∈ Ri
}
≤ γ i.

1.7.2. Collision Avoidance Based on Non-Overlapping RPPs

In this section we will make use of the results of the previous section to
derive the RPP formulation of collision avoidance constraints. We consider
two agents 1 and 2 with states x1

t and x2
t together with an upper bound 0≤

γ
1,2
t ≤ 1 on the probability of a collision of the states of these agents at time

t. We will derive the RPP formulation of collision avoidance constraints
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and then prove that controls found with the RPP constraints are feasible for
the original problem with bound on the probability of a collision.

The RPP constraints are constructed in two steps: In the first step we
determine the RPPs R1

t and R2
t for agents 1 and 2 such that the probability

mass outside of the RPPs is at most some γ i
t for i = 1,2 with γ

1,2
t = γ1

t +γ2
t .

In the second step a constraint is added to the optimization problem that
warrants that the two RPPs will not overlap at time step t.

Remark 1.7 Since we will introduce constraints on the states that ensure
that RPPs for different agents do not overlap, the RPPs of the other agents
will in a way pose obstacles for an agent. In order to have a feasible state
space that is as unrestricted as possible and since more constraints on the
states of an agent will have detrimental effects on their objective, it is natu-
ral to desire that the RPPs are as small as possible. In all of our considera-
tions about RPPs, we will therefore strive to minimize their size.

We propose that agents 1 and 2 split the chance constraint bound γ
1,2
t

into parts according to

γ
1
t =

1
s

γ
1,2
t and γ

2
t =

s−1
s

γ
1,2
t , (1.86)

with free parameter s > 1. In our simulations in Section 1.9, we used
an even split at s = 2. Equations C(x1

t ,R
1
t ) = γ1

t and C(x2
t ,R

2
t ) = γ2

t then
uniquely determine the size parameters for the RPP regions.

Now we have everything we need to construct the RPP regions for agents
1 and 2: the means and covariances of their random states and a size for the
RPPs. Denote by R1

t and R2
t the RPPs constructed from these parameters.

Next, we define the constraint that ensures that these RPPs do not overlap:

Definition 1.9 (Constraint Ct ) The means µ1
t and µ2

t have a distance of
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more than (α1
t1 +α2

t1)+ ε in the x-direction, i.e.

|µ1
t (1)−µ

2
t (1)| ≥ (α1

t1 +α
2
t1)+ ε (1.87)

or a distance of more than (α1
t2 +α2

t2)+ ε in the y-direction, i.e.

|µ1
t (2)−µ

2
t (2)| ≥ (α1

t2 +α
2
t2)+ ε . (1.88)

The following proposition proves that controls for agents 1 and 2 for that
constraint Ct holds, satisfy that the probability of a collision between agent
1 and 2 at time step t is less or equal than the bound γ

1,2
t , i.e., they are

feasible for the problem with bounds on inter-agent collision probabilities.

Proposition 1.2 Let γ1
t and γ2

t be such that γ1
t +γ2

t = γ
1,2
t and let R1

t and R2
t

be RPPs so that C(xi
t ,R

i
t) = γ i

t for i = 1,2. Then for any control sequences

u1
1:T and u2

1:T for that constraint Ct is satisfied at time step 1 ≤ t ≤ T , the

probability of a collision of agents 1 and 2 at time step t is below γ
1,2
t

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ γ

1,2
t . (1.89)

In order to prove Proposition 1.2, we will first establish the following
Lemma.

Lemma 1.1 Let Fc, x1
t , and x2

t be as above. If constraint Ct is satisfied, the

inequality

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ P1

t +P2
t (1.90)

holds, where as in the previous section Pi
t = P

{
xi

t /∈ Ri
t
}

.
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PROOF. By marginalization we have

P((x1
t ,x

2
t ) /∈ Fc)

= P
{
(x1

t ,x
2
t ) /∈ Fc,x1

t ∈ R1
t ,x

2
t ∈ R2

t
}

+P
{
(x1

t ,x
2
t ) /∈ Fc,x1

t ∈ R1
t ,x

2
t /∈ R2

t
}

+P
{
(x1

t ,x
2
t ) /∈ Fc,x1

t /∈ R1
t ,x

2
t ∈ R2

t
}

+P
{
(x1

t ,x
2
t ) /∈ Fc,x1

t /∈ R1
t ,x

2
t /∈ R2

t
}
.

(1.91)

We will first show that the probability

P((x1
t ,x

2
t ) /∈ Fc,x1

t ∈ R1
t ,x

2
t ∈ R2

t ) (1.92)

is zero by showing that (R1
t ×R2

t )∩CFc = /0 from which the claim follows
because then the event x1

t ∈ R1
t ∧ x2

t ∈ R2
t ∧ (x1

t ,x
2
t ) ∈CFc has zero proba-

bility mass. We have CFc ⊂CFc
∞ := {(x,y)| ‖x− y‖∞ < ε} because of the

norm inequality ‖x‖∞ ≤ ‖x‖. Hence, (R1
t ×R2

t )∩CFc ⊂ (R1
t ×R2

t )∩CFc
∞

and we will show (R1
t ×R2

t )∩CFc
∞ = /0, then (R1

t ×R2
t )∩CFc = /0. Let

x1
t ∈ R1

t and x2
t ∈ R2

t , and for contradiction assume that (x1
t ,x

2
t ) ∈CFc

∞. For
the x-coordinates of x1

t and x2
t we have that |x1

t (1)−x2
t (1)|< ε and also for

the y-coordinates |x1
t (2)−x2

t (2)|< ε since by the definition of CFc
∞ it holds

that ‖x1
t −x2

t ‖∞ = max{|x1
t (1)−x2

t (1)|, |x1
t (2)−x2

t (2)|}< ε . For the means
we have |µ1

t (1)− µ2
t (1)| ≤ |µ1

t (1)− x1
t (1)|+ |x1

t (1)− x2
t (1)|+ |x2

t (1)−
µ2

t (1)|< ε +α1
t1+α2

t1 because |x1
t (1)−µ1

t (1)| ≤α1
t1 and |x2

t (1)−µ2
t (1)| ≤

α2
t1 per definition of the RPPs R1

t and R2
t . The same is true for the y-

coordinate and, thus, we have constructed a contradiction to the assump-
tion that constraint Ct holds. Thus, P

{
(x1

t ,x
2
t ) /∈ Fc,x1

t ∈ R1
t ,x

2
t ∈ R2

t
}
= 0

holds if constraint Ct is satisfied.
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For the second summand in (1.91), we have

P{(x1
t ,x

2
t ) /∈ Fc,x1

t ∈ R1
t ,x

2
t /∈ R2

t } (1.93)
(a)
≤ P

{
x1

t ∈ R1
t ,x

2
t /∈ R2

t
}

(1.94)
(b)
= P

{
x1

t ∈ R1
t
}
P
{

x2
t /∈ R2

t
}
= (1−P1

t )P
2
t ,

where inequality (a) follows from the fact that intersecting with an addi-
tional event can only decrease their probability mass. Equality (b) holds
because we assumed in the formulation of the MA-MPC problem that the
initial random vectors x1

0 and x2
0 as well as all the disturbances ν1

1:t and ν2
1:t

are stochastically independent and, hence, so are the random vectors x1
t and

x2
t .

The third and fourth summand in (1.91) can be bounded with the same ar-
guments as the second summand, with the fourth summand being bounded
by P1

t P2
t . Through summation of all the bounds, we obtain

P((x1
t ,x

2
t ) /∈ Fc) (1.95)

≤ (1−P1
t )P

2
t +(1−P2

t )P
1
t +P1

t P2
t (1.96)

= P1
t +P2

t −P1
t P2

t . (1.97)

Since both P1
t ≥ 0 and P2

t ≥ 0 hold and then also P1
t P2

t ≥ 0, we have the
slightly more coarse inequality

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ P1

t +P2
t . (1.98)

�

We have thus shown that the probability of a collision P
{
(x1

t ,x
2
t ) /∈ Fc

}
can be bounded from above by the sum of the probabilities that the random
states x1

t and x2
t are outside the RPP regions R1

t and R2
t .

PROOF.(Proof of Proposition 1.2)
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Summarizing the results of Lemma 1.1 and the construction of the RPPs
together with Theorem 1.1 we can deduce Proposition 1.2:

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ P1

t +P2
t (1.99)

≤ C(x1
t ,α

1
t )+C(x2

t ,α
2
t ) (1.100)

= γ
1
t + γ

2
t (1.101)

= γ
1,2
t (1.102)

if constraint Ct holds, where C(x1
t ,α

1
t ) and C(x2

t ,α
2
t ) are the Chebychev

bounds as defined in (1.78). �

Corollary 1.1 If constraint Ct holds for joint controls of agents 1 and 2 for

every t = 1, . . . ,T and if

T

∑
t=1

γ
1,2
t ≤ γ

1,2 , (1.103)

it follows that

P
{
(x1

1:T ,x
2
1:T ) /∈ Fc}≤ γ

1,2 , (1.104)

i.e., the controls are feasible for the inter-agent collision avoidance con-

straint over the complete planning horizon.

PROOF. The proof follows from Proposition 1.2 and Remark 1.2. �

The proposition and the corollary warrant that if we solve the chance
constrained MA-MPC problem with RPP constraints of the form Ct , then
the obtained controls are automatically feasible for the chance constrained
MA-MPC problem with full constraints on inter-agent collision probabili-
ties. Hence, the RPP constraints allow us to find solutions to the MA-MPC
problem with the complicated probabilistic coupling constraints without
any knowledge about the agents’ random states besides the covariance and
without evaluating the probability of a collision of two agents.
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It suggests itself that controls found for the MA-MPC problem with RPP
constraints are more suboptimal than controls for the MA-MPC problem
with full probabilistic constraints, since the RPP constraints are a conserva-
tive tightening. We will therefore in Section 1.8 propose a less conservative
reformulations and study in simulations the effects of the conservativeness
on the controls.

1.7.3. Constraint Formulation for RPP Method

In this section we will outline how the RPP constraints can be formulated
as mixed-binary linear constraints. In summary, the RPP constraints for a
time instance t can be constructed as follows:

• For all agents i = 1, . . . ,M we determine Cov(xi
t) according to (1.41).

Please note, that this is not done at run time of the MBL optimization
routine but before.

• Also before the mixed-binary solver starts, for all agent combinations
i and j and upper bounds on the collision probability γ

i, j
t we deter-

mine the RPP regions such that C(xi
t ,R

i
t) and C(x j

t ,R
j
t ) equal 1

s γ
i, j
t

and s−1
s γ

i, j
t respectively.

• We replace the probabilistic collision avoidance constraint (1.8) by
the MBL formulation of constraint Ct .

• Then the MBL optimization routine solves the MBL program pos-
sibly with further constraints resulting from obstacle avoidance (see
Section 1.5.2).

Constraint Ct for agents 1 and 2 is that at least one of the coordinates
in the 2D-plane of their expected values have a distance of at least (α1

t1 +

α2
t1)+ ε or (α1

t2 +α2
t2)+ ε respectively.

Now we model the RPP constraint Ct for a time step t in the planning
horizon and a pair of agents denoted by 1 and 2 as constraints for the MBL
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optimization routine. Therefore, we introduce constraints on the distance
of the means to model the RPP constraint Ct

µ
1
t (1)−µ

2
t (1)≥ (α1

t1 +α
2
t1)+ ε or (1.105)

µ
2
t (1)−µ

1
t (1)≥ (α1

t1 +α
2
t1)+ ε or (1.106)

µ
1
t (2)−µ

2
t (2)≥ (α1

t2 +α
2
t2)+ ε or (1.107)

µ
2
t (2)−µ

1
t (2)≥ (α1

t2 +α
2
t2)+ ε . (1.108)

Since a MBL solver can not directly understand logical “or“-constraints,
we formulate them as logical “and“-constraints with the ”Big M”-method
as in Sec. 1.6.3

µ
1
t (1)−µ

2
t (1)≥ (α1

t1 +α
2
t1)+ ε−Mob1

t and (1.109)

µ
2
t (1)−µ

1
t (1)≥ (α1

t1 +α
2
t1)+ ε−Mob2

t and (1.110)

µ
1
t (2)−µ

2
t (2)≥ (α1

t2 +α
2
t2)+ ε−Mob3

t and (1.111)

µ
2
t (2)−µ

1
t (2)≥ (α1

t2 +α
2
t2)+ ε−Mob4

t and (1.112)

bi
t ∈ {0,1} and (1.113)
4

∑
i=1

bi
t ≤ 3 , (1.114)

with large positive number Mo. Please note, that the proceeding is ex-
actly the same as in Section 1.6.3: if one of the binary variables bi

t equals
one it is possible that the corresponding constraint on the distance of the
means is not satisfied. Since at least one of the four constraints in the “or”-
formulation above has to be satisfied in order to guarantee that the means
are far enough apart, we limit the number of binary variables bi

t that are
allowed to be equal to one by three. The equality constraint (1.40) for the
mean and the inequality constraints (1.109)- (1.114) form the MBL con-
straints equivalent to the RPP constraint Ct .
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1.7.4. Extension to Higher Dimensional State Spaces

Unfortunately the explicit form of Whittle’s Chebychev inequality in The-
orem 1.1 holds only for two-dimensional random vectors. However, it may
desirable to formulate collision avoidance chance constraints in state spaces
with dimension higher than two. This may be the case for example for path
planning with UAVs in three-dimensional space where also the height of
flight can be controlled. In this section we therefore propose an efficient
and exact approach based on Chebychev inequalities for chance constraints
for collision avoidance in state spaces with arbitrary dimension.

The general idea of the approach is based on the following observation: If
V denotes the covariance matrix of the random vector x = [x(1), . . . ,x(d)]>

and if P is defined as in Theorem 1.1 by

P := 1−P{|x(i)| ≤ αi, i = 1, . . . ,d} (1.115)

then the inequality

P≤ trace
{

VB−1} (1.116)

with

B =


α2

1 0
. . .

0 α2
d

 (1.117)

simplifies to

P≤
d

∑
i=1

vi

α2
i

(1.118)
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if V is also a diagonal matrix, i.e.,

V =


v1 0

. . .

0 vd

 . (1.119)

The equality

d

∑
i=1

vi

α2
i
= γ (1.120)

that is solved in Section 1.7.1 to determine the optimal RPP is then unam-
biguously solvable when we consider additional d−1 equalities for the αi.
The procedure in this section is therefore the following

1. The covariance matrices of the states of the agents will in general
not be diagonal matrices. However, through a simple transformation
of the state random vectors their respective covariance matrices are
converted to diagonal matrices.

2. We will define RPPs transformed with the transformation found in
the first step and the probability of presence in state dimensions
higher than two and will propose additional constraints on the αi

in order to find optimal RPPs.

3. We will show that controls that are feasible for this constraint will
also be feasible for the original MA-MPC problem in Section 1.4.

4. We will formulate MBL constraints that ensure that the transformed
RPPs of this section will not overlap.

Since the following constructions will be carried out for a fixed time
step t, we will omit the subscript t denoting the time step for notational
convenience.
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Transformation of Agents’ States

Since the covariance matrix Ci for an agent i is symmetric and positive
semi-definite there always exists an eigendecomposition

Ci =
(
Ui)>

Λ
iUi (1.121)

with orthonormal matrix Ui and diagonal matrix Λi. The fact that such an
eigendecomposition exists is a well known fact from multivariate analysis
[37, 47, 70]. If we now consider the transformed random vector

yi := Uixi (1.122)

it follows from covariance matrix algebra that

Cov(yi) = UiCov(xi)
(
Ui)> = UiCi (Ui)> = Λ

i , (1.123)

i.e., the linearly transformed random vector yi has a covariance matrix that
is a diagonal matrix. Given a random state xi of an agent i with covari-
ance matrix Ci there always exists an orthonormal linear transformation Ui

such that the transformed random vector yi = Uixi has diagonal covariance
matrix.

Remark 1.8 In multivariate statistics the above procedure is well-known
in principle component analysis in order to transform strongly correlated
data, i.e., data with a sample covariance that is not in diagonal form, into
uncorrelated data with sample covariance in diagonal form. Then data com-
pression, feature extraction or a projection of the data onto lower dimen-
sional subspaces can be accomplished [37].
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Transformed RPPs

In the previous section we transformed the random state xi into another
random vector yi with an orthonormal matrix Ui such that yi has covariance
matrix in diagonal form. For yi a RPP analogously to the one in Section
1.7.1 can be constructed. Then with the inverse transformation

(
Ui
)> we

can transform the RPP of yi back into a RPP for xi and consider the proba-
bility the xi takes values outside of it.

Definition 1.10 (Transformed RPP) For the transformed random vector
yi as above let

R̃i := {yi ∈ Rd : |yi(k)−
(
Ui

µ
i)(k)| ≤ α

i
k, k = 1, . . . ,d} ⊂ Rd (1.124)

where µ i is the mean of xi and, hence, Uiµ i is the mean of yi. Define the
transformed RPP Ri as

Ri :=
(
Ui)> R̃i , (1.125)

i.e., while R̃i is the straight forward extension of the concept of an RPP
for the transformed random variable yi, the transformed RPP is the inverse
transformation of

(
Ui
)

applied to R̃i.

Definition 1.11 (Transformed Probability of Presence) Define for agent
i

Pi := 1−P
{

xi ∈ Ri} (1.126)

for the transformed RPP Ri, i.e., Pi is the probability that the random vector
xi will take values outside of Ri.

By construction the following lemma holds.
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Lemma 1.2 For a random vector xi, the transformed random vector yi as

above, and the transformed RPPs Ri and R̃i as in Definition 1.10 it holds

that

P
{

xi ∈ Ri}= P
{

yi ∈ R̃i} , (1.127)

i.e., the probability that xi takes values inside Ri equals the probability that

yi takes values inside R̃i.

PROOF. The proof follows from the construction in this and the previous
section

P
{

yi ∈ R̃i}= P
{

Uixi ∈ R̃i} (a)
= P

{
xi ∈

(
Ui)−1

R̃i
}

(1.128)

= P

{
xi ∈

(
Ui)> R̃i

}
= P

{
xi ∈ Ri} . (1.129)

Equality (a) holds since if yi ∈ R̃i there exists a z ∈ R̃i such that y = z which
is equivalent to Uixi = z and this is equivalent to xi =

(
Ui
)> z ∈ Ri by defi-

nition of Ri. �

From Lemma 1.2 we can conclude that for the transformed probability
of presence it holds that

Pi = 1−P
{

xi ∈ Ri}= 1−P
{

yi ∈ R̃i} (a)
≤

d

∑
j=1

λ j

α2
j
, (1.130)

where inequality (a) follows from the observation in (1.118) at the begin-
ning of this Section for

Cov(yi) = Λ
i =


λ1 0

. . .

0 λd

 . (1.131)
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Determination of RPPs

The transformed RPP is defined through the linear transformation Ui, that
is computed from the covariance matrix of the random vector xi, and the
size parameters α j. In order to find the parameter α j for a transformed
RPP of optimal size, i.e., minimal in the sense of Remark 1.7, for a mini-
mum probability of presence 1−γ i we have to add to the under-determined
equality

d

∑
j=1

λ j

α2
j
= γ

i (1.132)

further equality constraints on the α j. Possible further constraints are for
j1 6= j2

α j1
α j2

=
λ j1
λ j2

or
α2

j1

α2
j2

=
λ j1
λ j2

or α j1 = α j2 , (1.133)

where it strongly depends on the random vectors xi which of these addi-
tional equality constraints yields the best results in terms of minimal size
of the RPPs. Together with one of these additional equality constraints it is
then possible to find unique size parameters α j for the transformed RPP.

Here, we will explicitly showcase the determination of the α j only for
the case that all the α j are equal. Then Equation (1.132) simplifies to

1
α2

d

∑
j=1

λ j = γ
i (1.134)

which is equivalent to

α =

√√√√ 1
γ i

d

∑
j=1

λ j . (1.135)
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Non-overlapping RPPs

For two agents with states x1
t and x2

t and an upper bound γ
i, j
t on the prob-

ability of a collision of these agents, we propose a split as mentioned in
Section 1.7 of the chance constraint bound. Then we define the collision
avoidance constraint in arbitrary state dimensions as follows:

Definition 1.12 (Transformed Constraint Ct ) The transformed RPPs of
the states x1

t and x2
t have a distance greater than or equal to ε .

In the two-dimensional case in Section 1.7.1 the constraint Ct was easier
to define since it was a constraint on the distance of the means of the random
vectors xi

t . In the case of transformed RPPs it is not as easy to formulate,
however, in the next section we will see that the transformed constraint Ct

for transformed RPPs can be still formulated as MBL constraints.
Given that constraint Ct from Definition 1.12 holds, we can now formu-

late an equivalent to Proposition 1.2

Proposition 1.3 Let 1 ≤ t ≤ T , γ1
t and γ2

t be such that γ
1,2
t = γ1

t + γ2
t for

two agents 1 and 2 and let R1
t and R2

t be the transformed RPPs of these

agents with bounds on the probability of presence given by γ1
t and γ2

t . Then

for any two control sequences u1
1:T and u2

1:T such that constraint Ct from

Definition 1.12 is satisfied by the states resulting from the controls it holds

that

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ γ

i, j
t . (1.136)

PROOF. With a similar argumentation as in the proof of Proposition 1.2 it
follows that

P
{
(x1

t ,x
2
t ) /∈ Fc}≤ P1

t +P2
t (1.137)
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with Pi
t as in Definition 1.11 when constraint Ct from Definition 1.12 holds.

With Lemma 1.2 and by construction the claim then follows. �

The analog of Corollary 1.1 also holds for the transformed RPPs.

Corollary 1.2 If constraint Ct from Definition 1.12 holds for joint controls

of agents 1 and 2 for every t = 1, . . . ,T and if

T

∑
t=1

γ
1,2
t ≤ γ

1,2 , (1.138)

it follows that

P
{
(x1

1:T ,x
2
1:T ) /∈ Fc}≤ γ

1,2 , (1.139)

i.e., the controls are feasible for the inter-agent collision avoidance con-

straint over the complete planning horizon.

Proposition 1.3 and Corollary 1.2 guarantee that controls for two agents
that satisfy the constraint from Definition 1.12 are also feasible for the true
chance constraints on collision probabilities. Please note, that we do not
make any approximations of the random variables and, hence, all state-
ments hold exactly for the true probability of a collision and not in con-
vergence as for the SAA. Since the constraints on collision probabilities
are always defined as pairwise constraints the statement of Corollaries 1.1
and 1.2 generalizes to the case with arbitrary agent numbers.

Constraint Formulation

In this section we will outline how constraint Ct from Definition 1.12 can
be formulated through MBL constraints.

In summary, the transformed RPP constraints at time step t can be con-
structed as follows (analogously to the procedure in Section 1.7.2):

• For all agents i = 1, . . . ,M determine Cov(xi
t) according to (1.41).
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1.7. Efficient Collision Avoidance in 2D

• For all agent combinations i and j and upper bounds on the collision
probability γ

i, j
t we determine transformed RPP regions as introduced

in the previous sections.

• Replace the probabilistic collision avoidance constraint (1.8) by the
MBL formulation of constraint Ct specified in this section.

• Solve the path planning problem with these constraints, again with
possibly further constraints resulting from obstacle avoidance.

The RPP R̃i is a hyperrectangle around the mean of yi and, hence, the
transformed RPPs can be visualized as rotated hyperrectangles in Rd , since
the linear transformation Ui is orthonormal and, hence, does not change
angles or lengths. Each of the 2d faces Fk of such a rotated hyperrectangle
defines a hyperplane in Rd given by a normal vector nk pointing outward
of the hyperrectangle and a support vector bk. The corresponding “outward
pointing” halfspace can be defined through

Hk :=
{

x ∈ Rd : n>k x≤ n>k bk

}
. (1.140)

In the following we will sketch the formulation of constraint Ct for col-
lision avoidance between two agents 1 and 2. It can be seen for two hyper-
rectangles the following fact holds:

Fact 1.1 Two rotated hyperrectangles R1 and R2 in R
d have a distance

greater than or equal to ε if there is a face in either R1 or R2 such that

all vertices of the other rotated hyperrectangle are in the corresponding

“outward pointing” halfspace and have a distance greater than or equal to

ε from that face.

The 2d respective vertices of the transformed RPPs R1
t and R2

t can be
determined through

vi
m =

(
Ui)> (Uµ

i + ᾱ
i
m
)
, (1.141)
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R1
t

R2
t

b1k

Fk

v21
v22

v23

v24
n1
k

Figure 1.4.: This is an illustration of non-overlapping transformed RPPs: There has
to be a face Fk of an RPP R1

t such that all vertices v2
l of the other RPP

R2
t lie in the “outwardpointing” halfspace defined by Fk.

where

ᾱ
i
m =


s1α i

1

s2α i
2

...
sdα i

d

 (1.142)

with sl ∈ {−1,1} for l = 1, . . . ,d. In Equation 1.141 we go through all
vertices of the untransformed RPP hyperrectangle R̃i

t from Definition 1.10
and map those vertices onto the vertices of Ri

t under the transformation Ui
t .
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Then, for the “outward pointing” normals ni
k of the faces of the RPPs and

the support vectors bi
k, the MBL constraints are

(
n1

k
)>

v2
m ≤

(
n1

k
)>

b1
k− ε +Moe1

k (1.143)(
n2

k
)>

v1
m ≤

(
n2

k
)>

b2
k− ε +Moe2

k (1.144)

for all respective faces k = 1, . . . ,2d in R1 and R2 and for all respective
vertices vi

m, m = 1, . . . ,2d with binary decision variables ei
k ∈ {0,1}. Of the

above inequalities
(
ni

k

)> v j
m <

(
ni

k

)> bi
k−ε , one has to be satisfied, i.e., the

corresponding binary variable e j
k set to zero such that Fact 1.1 is fulfilled.

For an illustration please see Figure 1.4. So we introduce the additional
constraint on the binary variables

2d

∑
k=1

e1
k +

2d

∑
k=1

e2
k ≤ 4d−1 (1.145)

that insures that at least one of the ei
k is equal to zero and, hence, one of the

above inequalities is satisfied.

1.8. Efficient Empirical Conservative Collision Avoidance

RPP regions determined with Whittle’s Chebychev inequality can become
conservative for very small chance constraint bounds γ

1,2
t and respective

γ i
t , since the determination of their size depends inversely on γ i

t as can be
seen from Equations (1.85) and (1.135). Thus, for very small chance con-
straint bounds on inter-agent collision probabilities the RPPs can become
very big and the resulting collision avoidance constraints can become very
conservative. In these cases it is desirable to have a formulation that is less
conservative than the RPP formulation but can still be solved efficiently
under real time requirements. Therefore in this section we will develop a
method for obtaining RPP regions whose size is more adequate for small
chance constraint bounds.

57



1. Motion Planning with Chance Constraints

The main idea is to approximate the true probability P{x /∈ R} that the
uncertain state of an agent lies outside of the RPP region by the empirical
probability derived from the sample approximation of the random vector x

as constructed in Section 1.5.2. We will first show how the true probabil-
ity P{x /∈ R} can be approximated and then how an optimal empirical RPP
(eRPP) region can be constructed through mixed-binary linear program-
ming. Lastly we will show that eRPPs will converge to true optimal RPP
regions for a given probability of presence γ and that controls found with
the eRPPs will converge against controls that are feasible for the chance
constraint on inter-agent collision probabilities.

1.8.1. Determination of eRPPs

Definition 1.13 (Optimal RPP) We will say that a RPP R is optimal for
the true probability P{x /∈ R} for a given random vector x ∈ Rd with mean
µ if its size parameters αi, i = 1, . . . ,d are such that they are a solution to
the program

P[oRPP] : min
αi,i=1,...,d

d

∑
i=1

αi

s.t. R = {x : |x(i)−µ(i)| ≤ αi , i = 1, . . . ,d}
P{x /∈ R} ≤ γ

αi ≥ 0 , i = 1, . . . ,d .

(1.146)

Please note that here optimality of the RPP is again understood in the sense
of Remark 1.7, i.e., we want the RPP to be as small as possible in order to
limit the movement space of the other agents as little as possible.

The determination of an optimal RPP in Definition 1.13 is an optimiza-
tion problem with probabilistic constraints that for general multivariate dis-
tribution of the uncertain state x can not be solved efficiently. This is the
reason, why we will again resort to sample approximation methods and
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1.8. Efficient Empirical Collision Avoidance

construct what we will call an empirical RPP (eRPP) region based on a
sample approximation of the distribution of the state x.

The first step for constructing optimal empirical RPP regions is to ap-
proximate the true probability P{x /∈ R} through the empirical probability:

P{x /∈ R} ≈ 1
N

N

∑
j=1

1CR(x j) , (1.147)

where the samples {x j}N
j=1 are drawn from the distribution of the random

vector x and

1CR(x) :=

1 , if x /∈ R

0 , if x ∈ R .
(1.148)

Then we bound the empirical probability in (1.147) that the uncertain
position lies out side of the region R by γ .

Definition 1.14 (SAA of Optimal RPPs) The SAA of the determination
of the optimal RPPs is to find the size of the rectangular region R such that
the empirical probability is less or equal than γ:

1
N

N

∑
j=1

1CR(x j)≤ γ . (1.149)

It corresponds to the following program

P[eRPP] : min
αi,i=1,...,d

d

∑
i=1

αi

s.t. R = {x : |x(i)−µ(i)| ≤ αi , i = 1, . . . ,d}
1
N

N

∑
j=1

1CR(x j)≤ γ

αi ≥ 0 , i = 1, . . . ,d ,

(1.150)
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where as in the definition of the optimal RPP µ is the mean of the random
vector x.

Problem P[eRPP] can be visualized as finding the smallest hyperrectan-
gle around the mean µ such that at most γN samples lie outside this hy-
perrectangle. From now on we will refer to problem (1.146) as the true
problem and to problem (1.150) as the approximated problem.

Remark 1.9 The approximated problem is an MBL program. To see this,
note that the optimization program of the approximated problem is equiv-
alent to the following linear program with mixed-binary and continuous
decision variables

min
αi,i=1,...,d

d

∑
i=1

αi (1.151)

s.t. ∀i=1,...,d ∀ j=1,...,N x j(i)−µ(i)≤ αi +Moei
j1 (1.152)

∀i=1,...,d ∀ j=1,...,N µ(i)− x j(i)≤ αi +Moei
j2 (1.153)

d

∑
i=1

ei
j1 +

d

∑
i=1

ei
j2 ≤Moo j (1.154)

N

∑
j=1

o j ≤ γN (1.155)

ei
j1,e

i
j2,o j ∈ {0,1} (1.156)

αi ≥ 0, i = 1, . . . ,d . (1.157)

If the binary variables ei
j1,e

i
j2 both are equal to zero, then the sample x j lies

inside the eRPP R around the mean µ given by the side lengths αi and the
corresponding o j can also be set to zero. If the sample x j lies outside of
the eRPP, one of the inequalities (1.152) or (1.153) is not satisfied and the
corresponding ei

j1 or ei
j2 has to be set to one and, hence, o j has to be set

to one. The bound on the sum of the o j guarantees that at most γN of the
samples lie outside of the region.
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1.8.2. Convergence Properties of eRPPs

Now assume we found size parameters αi such that the empirical probabil-
ity mass outside of the eRPP region is at most γ . The question that remains
is: Do these approximated eRPP regions in some way converge to RPP
regions that are optimal to the problem where the true probability mass
outside of this region is at most γ? The answer is yes.

Assumption 2 We will in the following assume that the probability distribu-

tion of x has a positive probability density function, i.e., for the probability

density function f of x it holds that f > 0.

There are many examples of positive density functions like Gaussians,
sums of Gaussians or general exponential densities. For example if Kalman
filtering techniques are used for state estimation of the uncertain states of
the agents, the random vectors x all will be Gaussians [121].

We will show that we can guarantee that as the number of samples used
to build the eRPP region goes to infinity, the eRPP region will converge
against a true RPP region.

Lemma 1.3 Let Assumption 2 hold for x and let α∗ denote the optimal

solution of P[oRPP] and α∗N the optimal solution of the empirical program

P[eRPP]. Then for N→ ∞, i.e., as the number of samples used to construct

the eRPP in program P[eRPP] goes to infinity, we have that α∗N → α∗ with

probability one. It follows that also the eRPP RN constructed from α∗N
converges to the true optimal RPP R constructed from α∗ with probability

one.

PROOF. We will show that the true problem (1.146) of finding the optimal
region and the approximated problem (1.150) satisfy the assumptions of
[103, Proposition 2.2]. When we have established this, then it follows that
the size parameters α∗N that are optimal for the approximated problem will
converge against size parameters that are optimal for the true problem.
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1. Motion Planning with Chance Constraints

The objective function of the true problem is linear and as such con-
tinuous. Define for the random vector x = [x(1), . . . ,x(d)]> and α =

[α1, . . . ,αd ]
> the functions

G2i−1(α,x) := x(i)−αi, G2i(α,x) :=−x(i)+αi . (1.158)

The constraints Gi(α,x)≤ 0,∀i = 1, . . . ,2d are equivalent to the constraint
x∈R where R is constructed with parameter α . In order to summarize these
2d constraints into one equivalent constraint we require that

G(α,x) := max
i=1,...,2d

{Gi(α,x)} ≤ 0 . (1.159)

Each of the Gi is an affine function in both α and x and, hence, measureable
in x for all α and continuous in α for all x. The maximum of a finite number
of measureable functions is again measureable, hence, G is measureable
and also G is continuous as can easily be checked.

The last condition we have to check is, whether Assumption (A) from
[103] holds for P[oRPP], i.e., if for any ε > 0 there is an optimal solution
α∗ of the true problem such that there exists an ᾱ with ‖ᾱ−α∗‖ ≤ ε and

P{G(ᾱ,x)> 0}< γ . (1.160)

Let α∗ be an optimal solution to the true problem and let ε0 > 0. If

P{G(α∗,x)> 0}< γ (1.161)

then we are are done, since then Assumption (A) from [103] holds. So
assume that

P{G(α∗,x)> 0}= γ . (1.162)
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From the definition of the function G we have that

P{G(α∗,x)> 0}= P{x /∈ R(α∗)} , (1.163)

where R(α∗) denotes the RPP constructed from α∗. Let ᾱ be such that
ᾱi > α∗i in every dimension and further ‖ᾱ −α∗‖ ≤ ε0. Then it follows
that

R(α∗)$ R(ᾱ) , (1.164)

i.e., R(α∗) is strictly included in R(ᾱ) where R(ᾱ) is the RPP constructed
from ᾱ . It holds that

γ = P{x /∈ R(α∗)}

=
∫
Rd\R(α∗)

f (x)dx

(a)
>
∫
Rd\R(ᾱ)

f (x)dx

= P{x /∈ R(ᾱ)} ,

(1.165)

where f is the pdf of the random vector x. Inequality (a) holds because we
assumed that f > 0 and, hence, the integral strictly increases for increasing
region of integration. So we have found an ᾱ that satisfies Assumption (A)
in [103] and the Lemma is proved. �

1.8.3. Collision Avoidance Based on Non-Overlapping eRPPs

In this section we will introduce a coupling constraint CtN similar to the
constraints for the exact approaches based on Whittle’s Chebychev inequal-
ity. The constraint CtN will guarantee that the empirical RPPs R1

tN and R2
tN

of two agents do not overlap. We already showed in the previous section
that the optimal empirical RPPs will converge against optimal RPPs deter-
mined by the stochastic program P[oRPP] when the number of samples goes
to infinity. It will follow that controls for two agents that satisfy constraint
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CtN on the empirical RPPs will converge against optimal controls that sat-
isfy the constraint that the optimal RPPs do not overlap. When the optimal
RPPs do not overlap, we can use an argumentation as in Proposition 1.3 to
conclude a bound on the probability of a collision of two agents.

First, we will formulate the constraint CtN . As before in this section we
will consider constraints on the agents at a time step t ∈ {1, . . . ,T} within
the planning horizon.

Definition 1.15 (Constraint CtN) The empirical RPPs R1
tN and R2

tN for a
sample number N > 0 have a distance that is greater than or equal to ε .
More precisely, if

α
i
N = [α i

tN(1), . . . ,α
i
tN(d)]

> (1.166)

denote the optimal size parameters of the empirical RPPs for agents 1,2,
constraint CtN requires that for the means µ1

t and µ2
t of the agents it holds

that

‖µ1
t (i)−µ

2
t (i)‖ ≥ ε +α

1
tN(i)+α

2
tN(i) (1.167)

for at least one i ∈ {1, . . . ,d}.

Remark 1.10 This constraint is transformed into MBL constraints on the
means analogously to the constraint formulation in Section 1.7.3 in arbi-
trary dimension d. We therefore omit the explicit formulation here for the
sake of brevity.

Convergence Properties

Now we will show that controls that satisfy constraint CtN will converge
against controls that are feasible for the constraint on the probability of
inter-agent collisions.
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Consider the auxiliary programs

PR : min
u1

1:T ,u
2
1:T

h(u1
1:T )+h(u2

1:T ) (1.168)

s.t. ui
1:T ∈ F i

t , i = 1,2 (1.169)

∃ j ∈ {1, . . . ,d} : |µ1
t ( j)−µ

2
t ( j)| ≥ ε +α

1
t ( j)+α

2
t ( j)

(1.170)

µ
i
t+1 = Aµ

i
t +Bui

t , i = 1,2, t = 1, . . . ,T −1 (1.171)

where 1 ≤ t ≤ T is an arbitrary time step and R1
t and R2

t are optimal RPPs
for γ1

t and γ2
t with γ1

t + γ2
t = γ

1,2
t and the empirical counterpart

PRN : min
u1

1:T ,u
2
1:T

h(u1
1:T )+h(u2

1:T ) (1.172)

s.t. ui
1:T ∈ F i

t , i = 1,2 (1.173)

∃ j ∈ {1, . . . ,d} : ‖µ1
t ( j)−µ

2
t ( j)‖ ≥ ε +α

1
tN( j)+α

2
tN( j)

(1.174)

µ
i
t+1 = µ

i
t +Bui

t , i = 1,2, t = 1, . . . ,T −1 (1.175)

where R1
tN and R2

tN are empirical RPPs.
These programs can be understood as simplification of the MA-MPC

problem when there are only two agents. The constraint is that the RPPs
have a distance greater than or equal to ε at time step t. For simplicity
reasons we consider in PR only the coupling constraint at one time step
1≤ t ≤ T , however, an extension to coupling constraints in all time steps is
straightforward.

We will show that controls that are optimal for problem PRN will con-
verge against controls that are optimal for PR. Controls that are feasible for
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PR are feasible for the program

SPt : min
u1

1:T ,u
2
1:T

h(u1
1:T )+h(u2

1:T ) (1.176)

s.t. ui
1:T ∈ F i

t , i = 1,2 (1.177)

P
{
(x2

t ,x
1
t ) /∈ Fc | (u1

1:T ,u
2
1:T )
}
≤ γ

1,2
t (1.178)

(1.179)

which is a similar simplification of MA-MPC as we already made in Sec-
tion 1.6.2 with the only difference that we only consider the collision avoid-
ance constraint at one time step t.

Lemma 1.4 Let ϕN denote the optimal value and ΦN the set of optimal

solutions of PRN and let ϕ denote the optimal value and Φ the set of opti-

mal solutions for PR. Let Assumption 2 hold. Then it holds that ϕN → ϕ

and dH(ΦN ,Φ)→ 0 with probability one as N→ ∞. Furthermore it holds

that a feasible solution of PR is also feasible for SPt , i.e., if controls for

two agents satisfy the constraint that d(R1,R2) ≥ ε then they also satisfy

P
{
(x2

t ,x
1
t ) /∈ Fc | (u1

1:T ,u
2
1:T )
}
≤ γ

1,2
t .

PROOF. The proof again follows a similar argumentation as the proof of
[103, Proposition 2.2]. For notational convenience define α := (α1,α2),
X := F1

u ×F2
u , x = (u1

1:T ,u
2
1:T ), h(x) := h(u1

1:T ) + h(u2
1:T ). Let h∗ be the

optimal objective value of PR and let h∗N denote the optimal objective value
of PRN . Define the constraint function

fi(x,α) := |µ1
t [u

1
1:t ](i)−µ

2
t [u

2
1:t ](i)|−α

1−α
2− ε , (1.180)

where the µ1
t [u

1
1:t ](i) denotes the i-th component of the mean of agent 1 at

time step t depending on controls u1
1:t . The functions fi(x,α) are continuous

in both x and α as can be easily checked since µ1
t [u

1
1:t ](i) the mean at time
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t depending on the controls u1
1:t depends linearly on x. Define

f (x,α) := max
1,...,d
{ f1(x,α), . . . , fd(x,α)} (1.181)

then f (x,α)≤ 0 is equivalent to the constraint Ct .
Let xN be the optimal solution of PRN . Since xN ∈ X and since X is

compact, it follows (possibly by passing to a subsequence) that there exists
a x ∈ X such that xN→ x for N→∞. In Lemma 1.3 we already showed that
αN → α for N→ ∞ with probability one. It follows that

lim
N→∞

f (xN ,αN) = f (x,α) (1.182)

with probability one and in particular

f (x,α) = limsup
N→∞

f (xN ,αN)≤ 0 . (1.183)

So x is feasible for PR and, hence, h(x)≥ h∗. It also holds by continuity of
h that

lim
N→∞

h(xN) = h(x) (1.184)

and, hence,

liminf
N→∞

h(xN)≥ h∗ (1.185)

with probability one.
Let x∗ be optimal for PR. Since we consider a path planning scenario it

is reasonable to assume that there will always be joint controls x that differ
from x∗ only by an arbitrary small amount and for that the distance of the
optimal RPPs has a distance > ε . On an optimization level one can also
argue that for a MBL program an optimal solution x∗ will “fix” the values
of all binary variables. For fixed binary variables the problem is a linear
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problem and then it is always possible to find a feasible point arbitrarily
close to x∗ such that no inequality constraints are active in this point.

So for all ε > 0 there exists a point x with f (x,α)< 0 and ‖x∗− x‖< ε .
Let ε := 1

m and let xm be a sequence of points that satisfy the above, i.e.,
xm → x and f (xm,α) < 0. For xm with f (xm,α) < 0 there exists an N(m)

such that for all N ≥ N(m) it holds that

f (xm,αN(m))< 0 (1.186)

and, hence, xm is feasible for PRN(m). Without loss of generality assume
that N(m)→ ∞ for m→ ∞. Since xm is feasible for PRN(m) it holds that
h(xm)≥ h∗N(m) and also h(xm)≥ h∗. It follows that

limsup
m→∞

h∗N(m) ≤ limsup
m→∞

h(xm) = h∗ (1.187)

with probability one.
From inequalities (1.185) and (1.187) it follows that

lim
N→∞

h∗N → h∗ (1.188)

with probability one and the first part of the lemma is proved.
The second part of the lemma follows with the same argumentation as in

the proof of Proposition 1.2 �

From the previous lemma the equivalent to Corollaries 1.1 and 1.2 fol-
lows: When the chance constraint bounds for each time step are chosen
adequately, controls that are optimal for the eRPP constraints will converge
against controls that are feasible for the MA-MPC problem with the origi-
nal chance constraints.

Corollary 1.3 Let u1
1:T,N and u2

1:T,N be controls for agents 1 and 2 that are
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optimal for the MPC problem with constraints CtN for t = 1, . . . ,T and let

T

∑
t=1

γ
1,2
t ≤ γ

1,2 . (1.189)

Then for N→∞ with probability one u1
1:T,N and u2

1:T,N will converge against

controls u1
1:T and u2

1:T for that

P
{
(x1

1:T ,x
2
1:T ) /∈ Fc}≤ γ

1,2 (1.190)

holds.

1.9. Results

In this section, we consider path planning for multiple UAVs whose move-
ments are affected by stochastic wind disturbances according to the Dryden
wind model as specified in [19]. Path planning will be conducted first in
two-dimensional space with the assumption that all UAVs fly at the same
altitude and then in three-dimensional space where the UAVs can also con-
trol their altitude. The task of the UAVs in all considered scenarios is to
reach a certain goal point as quickly as possible on a path that is as fuel ef-
ficient as possible. Bounds on the control inputs are given by bounds on the
maximum acceleration and bounds on the maximum speed of the UAVs.

1.9.1. Model Parameters

We assumed that the UAVs all have the same linear time-invariant motion
model given by the double integrator model

xi
t = Axi

t−1 +Bui
t−1 +ν

i
t−1 . (1.191)
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For planning in two-dimensional state space the system state xi
t ∈ R4 of

each UAV was

xi
t =


xi

t(1)
xi

t(2)
ẋi

t(1)
ẋi

t(2)

 (1.192)

with bounds on the velocity |ẋi
t( j)| ≤ 45 ft/s, j = 1,2 and control inputs

ui
t ∈ R2 being the lateral and longitudinal accelerations

ui
t = [ẍi

t(1), ẍ
i
t(2)]

> , ‖ui
t‖∞ ≤ 12 ft/s2 . (1.193)

The system matrices were given through

A =

[
I2 s ·I2

02 I2

]
, B =

[
02

s ·I2

]
, (1.194)

where I2 is the two-dimensional identity matrix and 02 the two-dimensional
zero matrix and s is the sampling time of the system. For planning in three-
dimensional state space the system state xi

t ∈ R6 was

xi
t =



xi
t(1)

xi
t(2)

xi
t(3)

ẋi
t(1)

ẋi
t(2)

ẋi
t(3)


(1.195)

with bounds on the velocity |ẋi
t( j)| ≤ 45 ft/s, j = 1,2,3. The control inputs

ui
t ∈ R3 were the lateral, longitudinal, and vertical acceleration

ui
t = [ẍi

t(1), ẍ
i
t(2), ẍ

i
t(2)]

> , ‖ui
t‖∞ ≤ 12 ft/s2 . (1.196)
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The system matrices were given similarly to the two-dimensional case by

A =

[
I3 s ·I3

03 I3

]
, B =

[
03

s ·I3

]
, (1.197)

where again s is the sampling time of the system.
We assumed that the initial positions of the UAVs had Gaussian distribu-

tion

[xi
0(1),x

i
0(2)]

> ∼N (µ i,Ci
0) , (1.198)

where µ i is the initial starting position of the UAV and the covariance is

Ci
0 = I2 . (1.199)

For planning in three-dimensional space the initial positions had Gaussian
distribution

[xi
0(1),x

i
0(2),x

i
0(3)]

> ∼N (µ i,Ci
0) (1.200)

with mean µ i the initial starting position and covariance

Ci
0 = I3 . (1.201)

We assumed no uncertainty in the initial velocity of the UAVs and the initial
velocity was set to zero.

We assumed that the target waypoints are given as two-dimensional or
three-dimensional positions Zi for each UAV. In applications these could
for example be given by GPS waypoints. For the objective instead of taking
the quadratic deviation of the d-dimensional position part of the state to the
goal waypoint, we took the `1 deviation plus a weighted penalty term for
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the control inputs

hi(xi
t ,u

i
t) :=

d

∑
j=1
|xi

t( j)−Zi( j)|+
d

∑
j=1

r|ui
t( j)| , (1.202)

with weight r = 1
T . The overall control objective over the complete plan-

ning horizon is

hi(xi
1:T ,u

i
1:T ) :=

T

∑
t=1

hi(xi
t ,u

i
t) . (1.203)

This is a piecewise linear and convex function and, hence, can be formu-
lated as the objective in a MBL program (see [40] for details).

The disturbance samples ν i
t, j affecting the UAVs were drawn from the

discrete Dryden model to simulate wind turbulence acting on the UAVs
[19]. The UAVs were assumed to fly with a maximum speed of 45 ft/s at an
altitude below 1000 ft through a field with light turbulence with wind speed
of 15 knots at 20 feet height, i.e., we applied the discrete time low-altitude
Dryden wind model for light turbulence. The covariances needed for the
exact RPP approaches were determined numerically through the sample
covariances with a suitably large number of samples. This was done offline
before planning. The minimum clearance between the UAVs was set to
ε = 2ft. The MBL solver we used is IBM ILOG CPLEX [57].

1.9.2. Example Scenarios

2D Example With the models detailed above we first evaluated an exam-
ple for path planning in two-dimensional space with two UAVs. In the sce-
nario considered, the UAVs started at µ1 = [50,50] and µ2 = [25,50] and
their respective goal waypoints were Z1 = [250,250] and Z2 = [50,250].
We computed optimal controls with the RPP, transformed RPP, eRPP, and
SAA collision avoidance constraints. The chance constraint bound was set
to γ1,2 = 0.05 and the horizon length was set to T = 12. For the determina-
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(a) 2D path planning with Chebychev-based
RPPs
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(b) 2D path planning with Chebychev-based
transformed RPPs
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(c) 2D path planning with empirical RPPs
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(d) 2D path planning with SAA of chance
constraints

Figure 1.5.: Comparison of path planning in 2D for two UAVs for the Chebychev-
based RPPs, transformed RPPs, empirical RPPs and the SAA of the
chance constraints of inter-agent collision probabilities. The stronger
accentuated regions in (a), (b), and (c) are the ones that lead to con-
straints that are active in the optimal controls.
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1. Motion Planning with Chance Constraints

eRPP chance constraint usage 9.7×10−5

RPP chance constraint usage 0
transformed RPP chance constraint usage 0
SAA chance constraint usage 0.0155

Table 1.1.: Chance constraint usage of the eRPP, transformed RPP, and SAA con-
trols in the 2D path planning example determined a-posteriori with 108

Monte-Carlo samples.

tion of the eRPPs we used N = 200 samples for each UAV and for the SAA
we used N = 50 samples for each UAV. The trajectories resulting from the
optimal controls together with the respective rectangular regions for RPP,
transformed RPP, and eRPP constraints and the samples for the eRPP and
the SAA constraints are depicted in Figure 1.5.

In Figure 1.5(a) and Figure 1.5(b) we depict the trajectories that were
determined with the RPP and transformed RPP constraints. The regions
accentuated in black are the ones whose constraints on the positions of the
UAVs are active, i.e., tight. It becomes apparent that both approaches that
are based on the Chebychev inequality lead to constraints that are rather
conservative in comparison to the eRPP and SAA constraints: UAV 1 is
forced to keep a large clearance to UAV 2 and, hence, needs to make a large
detour in order to satisfy the collision avoidance constraints. This detour
is especially large for the transformed RPP constraints in Figure 1.5(b).
The even higher conservatism of the transformed RPPs in comparison to
the normal RPPs can be explained through the fact that in the right hand
side of the Chebychev inequality in Equation (1.78) the off-diagonal entry
of the covariance C12 appears with a negative sign and therefore tightens
the bounds. When the covariance is transformed such that there is no cor-
relation, i.e., C12 = 0 this tightening summand disappears and, hence, the
inequality becomes more conservative. The trajectory resulting from the
optimal controls with the eRPP constraints (depicted in Figure 1.5(c)) is
much less conservative and strongly resembles the one determined with the
SAA constraints regarding the evasive maneuver UAV 1 has to make in or-
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der to avoid UAV 2. In Figure 1.5(d) the trajectories of the UAVs resulting
from the SAA constraints is plotted. Here, UAV 1 just makes a very slight
evasive maneuver in the third time step in order to let UAV 2 pass first in
the seventh time step. Since Figure 1.5(d) is relatively small, a zoomed-in
view on the trajectories with time step three for UAV 1 and the seventh time
step highlighted is depicted in Figure 1.6. In all scenarios UAV 2 can reach
its target waypoint while for the Chebychev-based constraints UAV 1 does
not even come close to its target. For the eRPP and SAA constraints also
UAV 1 is able to approach its target.

For all controls we computed a-posteriori the empirical chance con-
straint usage by drawing 108 Monte-Carlo disturbance samples from the
Dryden wind model and evaluating the empirical collision probability of
the trajectories. The results of this analysis are given in Table 1.1 and it can
be seen that the controls computed with the Chebychev-based RPP con-
straints have such a high degree of conservatism that the controls have an
actual collision probability of zero. The eRPPs constraints also have some
degree of conservatism compared to the SAA constraint but this is by far
not as strong as for the other two constraints. Also from the a-posteriori
analysis it turns out that the complete collision “risk” of the UAVs in the
SAA is in the seventh time step, where they come closest. Still, even the
SAA does not make use of all of allowed “risk” given through the chance
constraint bound. We expect that this stems from the fact that we only used
N = 50 samples to approximate the agents’ states and for more samples in
the approximation the usage will be higher. However, computation of the
depicted solution for the SAA took around 24 minutes while the eRPP so-
lution was computed in 0.028 seconds on a standard office PC and using a
higher sample number will increase the runtime of the SAA even further.

3D Example Next, we considered an example scenario for motion plan-
ning in three-dimensional space with two UAVs in which the UAVs addi-
tionally were allowed to adjust their altitude. The starting positions for the
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Figure 1.6.: Zoomed-in view of 2D UAV trajectories for the SAA. Time step t =
3 is highlighted for UAV 1, since here it makes a very small evasive
maneuver in order to avoid a collision with UAV 2 in time step t = 7.
The a-posteriori collision probability is zero in all time steps except for
t = 7, where the value given in Table 1.1 is reached.

UAVs were µ1 = [50,50,100] and µ2 = [250,50,100] and the goal way-
points were Z1 = [250,250,100] and Z2 = [50,250,100]. The time hori-
zon was again set to T = 10 and the chance constraint bound was set to
γ

1,2
t = 0.05. Due to the high computational complexity and high memory

requirements of the SAA formulation, we only considered planning with
the transformed RPP and eRPP constraints. In Figure 1.7 we depict two
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(a) 3D path planning with eRPP constraints.
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(b) 3D path planning with eRPPs side view. The eRPP constraints are
active at time step t = 6. From this view one can see that the UAVs not
only avoid each other in the horizontal plane but also adjust their altitude
in order to avoid a collision.

Figure 1.7.: 3D path planning example with two UAVs with eRPP constraints. De-
picted are the eRPPs and the eRPPs of UAV 1 are in red and the ones
of UAV 2 in blue. The time instance the respective eRPP relates to is
written next to the box for times t = 0 and t = 10 in order to improve
the comprehensibility of the plots.

different views of the trajectories of the UAVs resulting from controls that
were optimal with the eRPP constraints. Here, the collision avoidance con-
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(a) 3D path planning with transformed RPP constraints.
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(b) 3D path planning with transformed RPP constraints (side
view). The respective time step related to the mean position is
depicted in the corresponding color.

Figure 1.8.: 3D path planning example with two UAVs with the transformed RPP
constraints. Here, we only depict the planned mean trajectories of the
UAVs since the transformed RPPs became very big and, hence, their
inclusion would have made the image too cluttered. From the mean
trajectories it can be seen however, that the UAVs need to make large
evasive maneuvers that result in large detours and the UAVs ending far
from their target waypoints.
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Chance constraint usage Runtime in seconds
eRPP 0.00011562 0.221
transformed RPP 0 5.186

Table 1.2.: Chance constraint usage of the eRPP and transformed RPP controls in
the 3D path planning example determined a-posteriori with 108 Monte-
Carlo samples and runtime of the optimization routine.

straints were active at time t = 7 and for better comprehensibility we also
attached the initial and final time step to the respective regions. Because the
size of the regions became large, the constraints resulting from the trans-
formed RPP became so conservative that it was difficult to tell anything
from a plot of the trajectories of the UAVs together with the transformed
RPPs. Therefore we only depict the mean trajectories resulting from con-
trols optimal with the transformed RPP constraints in Figure 1.8.

We again conducted an a-posteriori analysis of the actual chance con-
straint usage of the controls by drawing 108 Monte-Carlo samples from the
Dryden wind model and computing the collision probability of the controls.
The results are depicted in Table 1.2 and strongly resemble the results for
the two-dimensional example in the sense that the transformed RPPs are so
conservative that the collision probability is zero and the conservatism of
the eRPP is much lower. In general, when the user specifies a chance con-
straint bound greater than zero, it is desirable that the UAVs use as much
of this granted “risk” as possible in order to find controls that are more op-
timal (i.e. result in shorter, more fuel efficient paths). Therefore an actual
chance constraint usage of zero is undesirable and in this regard the eRPP
constraints perform well since they actually make use of the positive chance
constraint bound. Also in Table 1.2 we depict the runtimes of the CLPEX
optimization routine with the corresponding constraints. It can be seen that
the runtime with the eRPP constraints is of order of magnitude faster than
the transformed RPP approach.
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Time horizon T = 10
Chance constraint bounds γ

i, j
t = 1%,2.5%,5%

Number of samples N = 25,50,100
Time limit for CPLEX for SAA cplex.tilim = 600 s
Integrality gap for CPLEX cplex.epgap = 0.01
Random starting positions µ i ∼U ([0 50]× [0 170])
Random target waypoint Zi ∼U ([450 500]× [0 170])
PC and OS used for simulations Intel Pentium Q9300 2.5 GHz,

8 GB RAM, Windows Server 2008 R2

Table 1.3.: Parameters used for quantitative simulations.

1.9.3. Quantitative Results

Additionally to the illustrative examples we conducted extensive numerical
simulations with randomly generated two-dimensional scenarios. In these
scenarios the starting positions and goal waypoints for UAV path planning
in two-dimensional space were randomly drawn from certain areas in or-
der to encourage potential conflicts or the possibility of a collision. The
starting position were drawn in such a way that there are no collisions at
time t = 0, i.e., such that the MA-MPC problem is feasible. Since the start-
ing and goal positions were randomly drawn and, hence, sometimes many
conflicts occurred and sometimes only very little, an a-posteriori evaluation
of the chance constraint usage of the controls as in the previous examples
turned out to be not very informative. We therefore evaluated and compared
the conservatism of the different collision avoidance methods through the
overall cumulative objective of the controls, i.e., the higher the objective,
the longer detours the UAVs had to make, the more conservative the con-
trols. The time horizon was set to T = 10 in all simulations.

The solver CPLEX provides the possibility to manually set the rela-
tive mixed-integer programming (mip) gap tolerance via the parameter
cplex.epgap. This parameter is defined as follows: When CPLEX solves
a general MILP with branch and cut methods (for algorithmic details please
see [100]) it builds a tree with the linear relaxation of the original problem
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at the root and subproblems resulting from the problem at the parent node
with further linear inequalities (so-called cuts) added as nodes. Let J∗node

be the best objective function achieved in a node and let J∗mip be the best
objective function with MBL variables, i.e., without any relaxations. Then
the relative mip gap tolerance is defined as

epgap :=
|J∗node− J∗mip|
10−10 + |J∗mip|

. (1.204)

The default value for the gap is 10−4 and we it set in our simulations to 0.01.
This has the advantage that the optimization routine will stop prematurely
since often CPLEX is able to find a good integer solution very quickly but
does not have a “proof” of its optimality, i.e., there does not yet exist a node
that has the same objective and, hence, would have to investigate further
nodes. By setting a slightly higher gap parameter, CPLEX is allowed to
abort optimization earlier when the objective of the best integer solution lies
within the tolerance of the objective of the best node. For all the parameters
of the simulations, please see Table 1.3.

Runtime We compared the SAA, RPPs, transformed RPPs and eRPPs
regarding runtime of the MBL optimization routine and the objective of the
solutions. Due to time constraints, we set an upper limit of 600 s for the
optimization for the SAA by setting the CPLEX tilim parameter to 600.
After this time CPLEX will return the best feasible solution it has found so
far and nothing if it has not found any feasible solutions. In Figure 1.9 we
depicted for how many random runs out of 100 CPLEX was able to find a
feasible solution for increasing numbers of UAVs and N = 25 samples. The
low completion rates for UAV numbers higher than two for the SAA follows
because of the time limit and it can be seen that already for low numbers of
samples it became difficult to find a feasible solution within the time limit.
The low completion rate of planning with the RPP-based approaches stems
from the fact that their constraints can become so conservative, that it is
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t = 0.025 and

N = 25 samples

2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

UAVs

eRPP
PCAC
RPP
SAA

C
om

pl
et

ed
 ru

ns

(c) Completions for γ
i, j
t = 0.05 and

N = 25 samples

Figure 1.9.: Depicted is in how many runs out of 100 CPLEX found an optimal
solution for the eRPPs, transformed RPPs (PCAC), and RPPs, or was
able to return a feasible solution within 600 s for the SAA for increasing
numbers of UAVs and N = 25 samples. Lower completion rates of the
approaches based on the multivariate Chebychev inequality (RPP and
PCAC) stem from the fact that the conservatism causes the problem to
become infeasible, while the low completion rates for the SAA stem
from long runtimes.

not possible to find any feasible control given the motion constraints of the
UAVs. This means that the collision avoidance constraints demand such a
high clearance between the UAVs that given the motion constraints of the
UAVs they were not able to find feasible trajectories. Especially for low
chance constraint bounds like γ

i, j
t = 0.01 this causes problems, while for

higher bounds (γ i, j
t = 0.05) less problems occur for lower UAV numbers.

For the eRPP-based problems a solution was always found since by con-
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Figure 1.10.: Depicted are the runtimes of the eRPP, transformed RPP (PCAC),
RPPs, and the SAA until an optimal solution was found. The runtimes
depicted here are only the ones for problem instances that were feasi-
ble (RPP, PCAC) or for that an optimal solution was found within the
set time limit (SAA). The times are averaged over these runs. Please
note that in all figures the vertical axis is in log-scale.

struction they alleviate the computational complexity of the SAA and the
conservatism of the other Chebychev-based RPPs.

In Figure 1.10 we depict the average runtime of CPLEX for the different
chance constraint bounds. Here, we only show the runtime of the runs
for that either a feasible solution was found within the time limit (SAA)
or there exists a feasible solution (Chebychev-based RPPs). Even for the
runs in which the SAA was able to find an feasible solution within 600
seconds the runtime was still relatively high with average runtime around
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(c) Optimal objective for γ
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t = 0.05

and N = 25 samples

Figure 1.11.: Depicted are the averaged values of the objective of the optimal con-
trols or the best feasible controls returned after 600 s (SAA).

100 seconds. The Chebychev-based RPP approaches showed low runtime
for low UAV numbers (M = 2,3) in the range of one second. However, for
the transformed RPPs for more than three UAVs either no feasible solutions
could be found at all or it took very long to find one.

For the eRPPs, before the actual MPC problem could be solved, for each
agent the MBL problem corresponding to P[eRPP] had to be solved for each
agent in order to determine the optimal size of the eRPPs. The runtime of
these MBLs were added to the runtime of the MPC problem with eRPPs and
in Figure 1.10 the accumulated times are depicted. The average runtime of
the eRPPs for less than five UAVs are significantly below one second and
only increase for five UAVs.
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Optimality In Figure 1.11 we depict for the runs that found feasible con-
trols within the time limit the objective of the best controls found averaged
over the completed runs. Since the SAA is the most direct approximation
and optimal controls for the SAA will converge against controls that are op-
timal with the true chance constraints, one would expect that its objective
should be the best. However for example in Figure 1.11(c) it can be seen
that for three UAVs the eRPP actually achieved a better objective. This can
be explained since the objective depicted does not need to be the objective
of the optimal controls but is the objective of the best controls found within
the time limit. This means that within 600 seconds CPLEX was not able
to find a solution with better objective. From Figure 1.11 one can see that
for the approaches based on the Chebychev inequality (RPP and PCAC)
the objective is worst and, hence, the degree of conservatism is high. Also
note that for smaller chance constraint bounds γ

i, j
t the Chebychev inequality

becomes more conservative and the objective even worsens. The eRPP con-
straints achieved good objectives that are comparable and not much worse
than those achieved by the SAA and we conclude that their degree of con-
servatism is comparatively low.

Further Results So far the simulations indicated that the performance
of the eRPPs in comparison with the SAA with regard to runtime is way
better with only slight losses in optimality and is also better in comparison
with the Chebychev-based RPP approaches. As we mentioned earlier, one
disadvantage the eRPPs can have, is that in order to determine the optimal
size of the eRPP for each agent the additional MBL problem P[eRPP] has to
be solved. The complexity of this additional MBL depends on the number
of samples drawn from the uncertain states of the UAVs. In the quantitative
simulations due to the slow runtimes of the SAA we have so far only con-
sidered N = 25 samples. This is a very low number and can hardly produce
representative results for the construction of the eRPPs (e.g. in P[eRPP]
for N = 25 and the chance constraint bounds used in these simulations all
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Figure 1.12.: Completion rate, runtime, and objective with N = 50 samples and
chance constraint bound γ

i, j
t = 0.025 for the eRPP, transformed RPPs

(PCAC) and RPP approaches. Due to the high runtime of the SAA it
was omitted here.

samples need to lie within the region and none are allowed to lie outside).
Therefore we additionally compared the performance of the eRPPs with the
RPPs and the transformed RPPs for higher sample numbers.

In Figure 1.12 we depict the completion rates (Figure 1.12(a)), the run-
times (Figure 1.12(b)) and the optimal objective achieved on the runs
that were feasible (Figure 1.12(c)) for the eRPPs, the transformed RPPs
(PCAC), and the RPPs for 100 randomly generated scenarios and N = 50
samples for each agent. Further, in Figure 1.13 we depict the completion
rates (Figure 1.13(a)), the runtimes (Figure 1.13(b)) and the optimal ob-
jective achieved on the runs (Figure 1.13(c)) also for the eRPPs, the trans-
formed RPPs (PCAC), and the RPPs for 100 randomly generated scenarios
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Figure 1.13.: Completion rate, runtime, and objective with N = 100 samples and
chance constraint bound γ

i, j
t = 0.025 for the eRPP, transformed RPPs

(PCAC) and RPP approaches. Due to the high runtime of the SAA it
was omitted here.

and N = 100 samples for each agent.
In Figure 1.12(b) and Figure 1.13(b) it becomes apparent that doubling

the sample numbers from N = 50 to N = 100 for one to four UAVs has only
very little impact on the runtime of the eRPPs. Only for M = 5 UAVs an
increase in runtime from around 20 seconds to 90 seconds can be observed.
Please recall here that in all runtime plots the time of P[eRPP] to find the
optimal eRPPs was added to the runtime of the actual MPC problem. The
results regarding the achieved optimal objective are as in the previous sim-
ulations, i.e., with the eRPPs a much better objective can be achieved from
which we conclude that their degree of conservatism for collision avoidance
is much lower.
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1.10. Conclusions

This chapter was concerned with model predictive control (MPC) for mo-
tion planning in a multi-agent system with chance constraints on the prob-
ability of collisions of agents. In order to make the non-convex constraints
on multivariate integrals that result from the chance constraints on the prob-
ability of a collision of agents numerically tractable we first proposed a
sample-based approximation of the collision probabilities. We proved con-
vergence of controls that are optimal with the sample-based approximation
of the constraints against controls that are optimal for the MPC problem
with the original chance constraints.

Since the numerical complexity of the sample-based approximation is
still relatively high, we proposed an efficient and conservative reformula-
tion of the chance constraints on collision probabilities. It is based on the
concept of confidence regions of increased probability of presence (RPP).
These are regions for each agent for that the probability that the agent is
outside of the region is below a given threshold. The chance constraints on
collision probabilities were then replaced by the constraint that the regions
for different agents do not overlap. We presented two different methods
for determining the regions: The first is based on a multivariate generaliza-
tion of the well-known Chebychev inequality and the second is based on
a sample-based empirical determination of the RPPs. We proved that con-
trols found with the Chebychev based RPP constraints are feasible for the
original MPC problem with chance constraints on collision probabilities
and that controls found with the empirical RPPs converge against feasible
controls for the original problem. In extensive simulations we evaluated
and compared the different approaches proposed in this chapter.

Strengths The two major strengths of the approximations and reformu-
lations of the chance constraints presented in this chapter are that only very
little assumptions and prior knowledge about the random variables describ-
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ing the agents uncertain states is required and that the resulting constraints
can be formulated as mixed-binary linear constraints.

For the sample-based approximation the only requirement on the occur-
ring random variables is that it is possible to draw samples from them. For
the RPP based reformulations either knowledge of the second central mo-
ment, the covariance, is required which is a very general attribute of random
variables and for example can be estimated through sample-based methods,
or again one needs to be able to draw samples from them for the empirical
RPPs. So even if the disturbance models are highly complex and the occur-
ring random variables have probability distributions that cannot be given
in closed form, only samples need to be generated from the disturbances.
Computer-assisted random number generation and simulation of stochas-
tic processes is a well-studied problem in applied mathematics and there
are several methods in the literature for generating samples from random
variables, for details see [84] and [68] and the references therein.

The second strength is the formulation of the constraints resulting from
the approximations of the chance constraints as mixed-binary linear con-
straints. This enables the user to employ powerful and dedicated commer-
cial solver software for finding optimal solutions of the MPC problem2 .
There is no need for the user to care about actually solving the underlying
optimization problem but only has to provide the models and the constraints
to the solver software. Also these solvers come with high-level modelling
languages like IBM OPL or AMPL with which the mixed-binary linear con-
straints can be implemented in almost the same format as in the mathemat-
ical formulation without any expert knowledge about linear optimization.
Hence, the proposed approximations stand out due to their high degree of
general applicability and ease of use and implementation.

2Examples for such solver software are IBM ILOG CPLEX [57], Gurobi (http://www.
gurobi.com/) or MOSEK (http://www.mosek.com/) just to name a few.
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1. Motion Planning with Chance Constraints

Current Limitations The RPP based collision avoidance constraints are
very general, distribution independent and numerically efficient. However
their generality comes at the price of a certain degree of conservatism of
the resulting controls, i.e., the resulting collision avoidance constraints can
become too conservative and force the agents to keep a safety clearance that
is too cautious and, hence, controls become unnecessarily suboptimal. The
empirical RPPs remedy most of the conservatism but there is still some con-
servatism remaining when using them. The user is faced with the trade-off
between generating possibly suboptimal controls very fast and efficiently
with the RPP approach or determining controls with the SAA that are guar-
anteed to converge against optimal controls but at the cost of increased
runtime.

In general, mixed-integer linear programs with input data of moderate
size can be solved very fast and efficiently. However since theoretically
solving them is NP-hard, certain problem instances and starting from a cer-
tain size of the problem the runtime until an optimal solution is available
can become very long as we saw in the numerical experiments. This means
that for large multi-agent systems suboptimal and distributed solution tech-
niques need to be employed in order to alleviate the high runtimes. For
example [87] considers a robust and distributed coordination approach to
find a suboptimal joint solution for all agents and these techniques could
also be applied to MPC with the RPP constraints. In [78] distributed tech-
niques for solving mixed-integer linear programs in a multi-agent system
based on Gomory cuts were proposed and these approaches could also be
applied.

Applications The algorithms for chance constrained collision avoidance
proposed in this chapter rely on only very general assumptions regarding
the disturbances and, hence, they are applicable in numerous different sce-
narios. Possible applications are motion planning in multi-robot, multi-
UAV, multi-vehicle and multi underwater vehicle scenarios. Further ap-
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plications could be the generation of trajectories for motion planning for
multiple robotic end effectors with collision avoidance constraints, for ex-
ample for automatic line operation or motion planning for robot arms of a
humanoid robot. Also the scenario from Example 1.1 for air traffic control
(ATC) at an airport in which an ATC center has to plan collision free trajec-
tories for multiple aircraft under wind disturbance is a potential application
for the algorithms provided in this chapter.
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2. Mixed-Integer Random Convex Programs

2.1. Introduction to MI-RCPs

A random convex program (RCP) is a continuous convex optimization
problem with linear cost objective, subject to N randomly drawn convex
constraints f (x,δ ( j)) ≤ 0 for j = 1, . . . ,N. Here the δ ( j) are independent
and identically distributed realizations of a random vector δ . Since the
constraints of the convex optimization problem are randomly drawn, the
optimal objective J∗ and the optimal solution if it exists are random vari-
ables. The most notable property of an RCP is that the optimal objective
will remain optimal with a high probability for the next “unseen” constraint
realization. More precisely, if an additional constraint realization is drawn
from δ after the optimization, with high probability J∗ will generalize and
still be the optimal objective value for the new constraint.

For RCPs with continuous decision vectors, [45, 46] initially provided
bounds on the tails of the distribution of the probability that an optimal
solution found under N random constraints will become infeasible for the
next randomly drawn constraint. These bounds were refined in [49] under
the restriction that the RCP is feasible with probability one for all random
constraints. The work [44] lifted this restriction and proved bounds without
any assumptions on feasibility. Further it extends previous results to the
case that some of the random constraints may be violated with the goal of
further improving the optimal objective.

In this chapter, we extend existing work on continuous RCPs to the case
of random programs with mixed-integer decision vectors lying in the in-
tersection of Rn×Zd and random convex constraints. We prove bounds on
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the probability that the optimal mixed-integer objective J∗ does not general-
ize. The class of mixed-integer optimization problems is clearly not convex
in the usual sense, since the domain has discrete components, however it
seems appropriate to name them mixed-integer random convex programs

(MI-RCP) to highlight the fact that the feasible set is the intersection of
R

n×Zd with a convex set. Unfortunately, unlike in the continuous case
where the equivalent of the bounds on the tails of the violation probability
depends linearly on the dimension of the decision variable, in the mixed-
integer case the bounds depend geometrically on the number of discrete
decision variables. A consequence of the geometrical dependence is that
more samples are needed in order to immunize an MI-RCP against uncer-
tainty.

Therefore, in the second part of this chapter we aim to improve and
tighten on the probabilistic bounds. Here, we consider the special case of
mixed-integer random linear programs (MI-RLPs) i.e., MI-RCPs in which
the constraint function is either affine in the decision variable x or piecewise
affine and convex. In this case the feasible region of the continuous relax-
ation of the MI-RLP is a polytope with finitely many vertices. We derive
bounds on the probability that an arbitrary vertex of the feasible region of
the linear relaxation or even a convex combination of vertices becomes in-
feasible under the next constraint realization. The optimal integer solution
will in general not coincide with the optimal solution of the relaxation and
can be located anywhere in the feasible region of the relaxation. However,
any point in the feasible region of the relaxation is the convex combina-
tion of its vertices and, hence, we can utilize the former results to bound
the probability that the integer solution becomes suboptimal under the next
constraint. Parts of the results on constraint sets of mixed-integer convex
problems in Section 2.2 and on general nonlinear MI-RCPs in Section 2.3
are to be published in [7]. All results on mixed-integer random linear pro-
grams in Section 2.4, Section 2.5, and all numerical examples in Section 2.6
are novel to this thesis.
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There are several other approaches to make optimization robust to uncer-
tainty. The robust convex optimization approach [24,65] finds a solution to a
convex problem that is robust to all uncertainty realizations bound to lie in a
given bounded uncertainty set (for more details see Section 2.5.1). Chance-

constrained approaches (as we also considered in the previous chapter of
this thesis) assume that there is a probability measure over the uncertainty
set and try to find an optimal solution that satisfies uncertain constraints
with a guaranteed high probability, see [119] and the references therein.

In many real-world applications integer decision variables occur, for
example when they are used to model decisions on indivisible resources
like in the well-known Knapsack or Traveling Salesman problems [100] or
multi-agent problems. Uncertainty in integer problems has been studied in
the literature before: The works [30,31,69] are concerned with complexity
and efficient solvability of robust linear integer problems with uncertainty
in both the cost vector and the constraint matrices. [32] deals with the ap-
plication of the theory developed in [31] to the optimal control of a supply
chain subject to random demand, which results in a robust mixed-integer
linear problem. In [42] the authors consider the optimal portfolio selection
problem with integer decisions variables to model stock market restrictions
and chance constraints on the expected returns.

This chapter is structured as follows. In Section 2.2 we first study prop-
erties of constraint sets of mixed-integer deterministic convex problems. In
Section 2.3 we give a formal definition of mixed-integer RCPs and of their
violation probability and we derive the first bounds on the violation prob-
ability. In Section 2.4 mixed-integer random linear programs are studied
and a different bound on the violation probability is derived. In Section 2.5
these bounds are applied to random linear programs with uncertain right
hand side, i.e., random linear programs in which the uncertainty only is in
the right hand side and not in the constraint coefficients. In Section 2.6 we
apply the results of this chapter to a Knapsack problem with disturbance
acting on the weights of the items, an inventory problem with uncertain
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demands, and a multi-agent problem.

2.2. Preliminary Results on Mixed-Integer Problems

In this section we consider mixed-integer “convex” optimization problems
of the form

P[K] : min
x∈Ω

c>x

s.t. f j(x)≤ 0, j ∈ K
(2.1)

with a linear objective c 6= 0 and decision variable x confined to lie within
a compact domain Ω that will either be a subset of Zd , Rn ×Zd or Rn.
The constraints are given by convex and lower-semicontinuous functions
f j : Rm → R (where either m = d, n+ d, or n) that are indexed over the
finite set K. We denote the optimal solution of P[K] by x∗(K) if it exists
and the optimal objective by J∗(K). If P[K] is infeasible, we set J∗(K) = ∞.
Denote by Sat(K) the feasible set of P[K], i.e., Sat(K) := {x ∈ Ω : f j(x)≤
0, j ∈ K}.

Definition 2.1 (Support Constraints) A constraint j∈K is a support con-

straint of P[K] if J∗(K \ j)< J∗(K), i.e., if the optimal objective strictly im-
proves when constraint j is removed from P[K]. Denote the set of support
constraints of P[K] by Sc(K)⊂ K.

The following definition of convex sets in mixed-integer spaces will con-
clude this section.

Definition 2.2 (M-convexity) Let M ⊂ Rm be a closed set. We say that a
subset C ⊂ M is M-convex if there is a convex subset C̄ of Rm such that
C = C̄∩M.

For example, on the integer lattice Zd , M-convex sets are the intersection
of standard convex sets in Rd with the integer lattice.
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2.2.1. Support Constraints on the Integer Lattice

In this section we will prove the crucial result that the number of support
constraints of a problem P[K] is less than or equal to 2d if Ω ⊂ Zd , that is,
if the decision variables are confined to lie on the integer lattice. The proof
uses the following fact from [59, Proof of Proposition 4.2, p.83]:

Fact 2.1 Let S ⊂ Z
d be a set with 2d + 1 points and let ci(S) denote the

smallest convex set in Zd that includes S. Then it holds that⋂
x∈S

ci(S\{x}) 6= /0 . (2.2)

This means that, if the number of points in a set S ⊂ Zd is large enough,
then the intersection of Zd and the convex hulls of all subsets S \{x}, con-
sisting of S with the point x removed, is nonempty.

Lemma 2.1 For convex optimization problem P[K] that is feasible with Ω⊂
Z

d , the number of support constraints is no larger than 2d−1.

PROOF. The proof is by contradiction. Assume that there are more than
2d−1 support constraints. Without loss of generality we consider the case
with 2d support constraints and also assume that the support constraints are
the first 2d constraints k = 1, . . . ,2d .

Let x∗0 := x∗(K) ∈ Zd denote the optimal solution of the optimization
problem and let x∗k := x∗(K \ k) ∈ Zd for k = 1, . . . ,2d be the optimal solu-
tion when support constraint k is removed. Let J∗ := c>x∗0 and J∗k := c>x∗k ,
for k = 1, . . . ,2d , denote the respective optimal objective values. Define the
set X to be

X := {x∗0,x∗1, . . . ,x∗q} ⊂ Zd , q = 2d . (2.3)

Notice that all points in X are distinct. To prove this, assume for con-
tradiction that two of them coincide e.g. x∗k1

= x∗k2
. The point x∗k1

satisfies
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all constraints except for k1 and the same holds for the point x∗k2
with con-

straint k2. Since they are equal, they satisfy all constraints. Since k1 and
k2 are support constraints, the points have a better objective value than x∗0:
J∗k1

= J∗k2
< J∗0 by definition. So the point x∗k1

= x∗k2
satisfies all constraints

in K and has a better objective value than x∗0, which is a contradiction to x∗0
being optimal for P[K].

Define ηmin as the smallest objective improvement when discarding a
support constraint

ηmin := min
k=1,...,2d

(J∗− J∗k ) (2.4)

and let η be such that 0 < η < ηmin. Consider the halfspace

H :=
{

x : c>x < J∗−η

}
. (2.5)

By construction, all points x∗k , k = 1, . . . ,2d , lie in H while x∗0 does not.
Since there are 2d support constraints and also x∗0 ∈ X we have that

|X |= 2d +1. We now apply Fact 2.1 and obtain that

⋂
x∈X

ci(X \{x}) 6= /0 (2.6)

and hence there exists a z ∈ Zd that is in the intersection.
Since z is in the intersection (2.6) we have z ∈ ci(X \ {x∗0}) and hence

it is in the convex hull of all the points x∗k , k = 1, . . . ,2d . It follows that
z ∈H since all the x∗k for k 6= 0 are in H .

For all support constraints k ∈ Sc(K) we know that z ∈ ci(X \ {x∗k}),
and since all other points x∗j , j 6= k, satisfy constraint k (and all other non-
support constraints), z does too. So z is feasible for P[K]. Hence, z is an
integer point that is feasible for P[K] and also z ∈H , which means that
c>z < J∗−η < J∗ = c>x∗0. We have thus found a feasible integer point
with objective smaller than x∗0, which is a contradiction to x∗0 being optimal.
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�

2.2.2. Support Constraints for Mixed-Integer Problems

In this section, we prove an upper bound on the number of support con-
straints of a mixed-integer convex optimization problem, i.e., a problem
P[K] where the decision variables are confined to lie in Ω ⊂ Rn×Zd . In
fact, we will prove an upper bound on the number of support constraints
for any Ω ⊂ M where M is a general closed subset of Rk. This can be an
integer or a mixed-integer or a some other space.

Definition 2.3 (Helly’s Dimension) We define Helly’s dimension h(M) of
M to be the smallest integer h such that for every finite collection of M-
convex sets C1, . . . ,Cm with m ≥ h for which every subcollection of h sets
has nonempty intersection

⋂
i∈I

Ci 6= /0 , (2.7)

with |I| = h, it follows that the intersection C1∩C2∩ ·· · ∩Cm of all sets is
also nonempty.

Lemma 2.2 For a feasible convex optimization problem P[K] with Ω⊂M,

the number of support constraints is less than or equal to h(M)−1.

PROOF. The proof is by contradiction. We assume that P[K] has q support
constraints and that q ≥ h. Without loss of generality we assume that the
first q constraints {1, . . . ,q} are the support constraints. Let x∗0 be the opti-
mal solution of P[K] and denote by x∗k , k = 1, . . . ,q the optimal solutions of
P[K\k], i.e., for P[K] with support constraint k removed. All the points x∗k
for k = 0, . . . ,q, are distinct with the same argumentation as in the proof of
Lemma 2.1.
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Let J∗k := J∗(K\k) be the optimal objective value of P[K\k]. Define ηmin

as the smallest objective improvement when discarding a support constraint

ηmin := min
k=1,...,q

(J∗− J∗k ) (2.8)

and let η be such that 0 < η < ηmin. Consider the halfspace

H :=
{

x : c>x < J∗−η

}
. (2.9)

By construction, all points x∗k , k = 1, . . . ,q, lie in H while x∗0 does not.
Define the polytopes

Pk := convM {x∗i : i ∈ {0, . . . ,q}\ k} , (2.10)

for k = 0, . . . ,q to be the convex hull in M of the points {x∗0,x∗1, . . . ,x∗q}
except for the point x∗k . We have q+ 1 polytopes Pk, since there are q+ 1
points x∗k . Since the points in {x∗0,x∗1, . . . ,x∗q} \ x∗k satisfy constraint k, by
convexity of the constraints it follows that all points in the convex hull Pk

satisfy constraint k.
Let I ⊂ {0, . . . ,q} be an arbitrary index set of cardinality |I| = h. Since

by assumption h < q+ 1 there is an index j ∈ {0, . . . ,q} that is not in the
index set I: ∃ j /∈ I. So there is a point x∗j ∈M that lies in all the sets Pi, i∈ I,
by construction of the polytopes Pi, and hence x∗j lies in the intersection

x∗j ∈
⋂
i∈I

Pi . (2.11)

It follows that for arbitrary index sets I ⊂ {0, . . . ,q} with cardinality |I|= h

the intersection
⋂

i∈I Pi 6= /0 is nonempty. Since h is the Helly dimension of
M, we can conclude from Definition 2.3 that the intersection of all Pk is not
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empty

⋂
k=0,...,q

Pk 6= /0 (2.12)

and there exists a z ∈M that lies in the intersection of all the Pk. This point
z is in P0 = convM

{
x∗1, . . . ,x

∗
q
}

, which does not include x∗0, hence z is in H

by construction. The point z also satisfies all q support constraints (and all
other constraints) because it is in each of the Pk. So, c>z < J∗−η < J∗

because z ∈H , and z is feasible for problem (2.1) and has better objective
than x∗0 which is a contradiction to x∗0 being optimal. �

Corollary 2.1 For a feasible mixed-integer convex optimization problem

P[K] with Ω ⊂ Rn×Zd , the number of support constraints is less than or

equal to (n+1)2d−1.

PROOF. Averkov and Weismantel show in [22] that Helly’s dimension of
R

n×Zd is h(Rn×Zd) = (n+ 1)2d . The claim then follows from Theo-
rem 2.2. �

We have thus established that a feasible mixed-integer convex problem
P[K] has at most h−1 support constraints.

The final result of this section is a direct generalization of [44, Lemma
2.3] for infeasible programs P[K]:

Lemma 2.3 For an infeasible convex optimization problem P[K] with Ω⊂
M the number of support constraints is less than or equal to h.

PROOF. The proof is by contradiction an proceeds along similar lines as
the proof of Lemma 2.2 in [44]. Let P[K] be infeasible and without loss
of generality let the first q constraints be support constraints. Assume for
contradiction that q > h.

For each support constraint j we have that J∗(K \ j) < J∗(K) = ∞, i.e.,
the optimal objective when support constraint j is removed is smaller than
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∞. It follows that if a support constraint j is removed from the constraint
set K the problem becomes feasible. Define

Xi := Sat(i) := {x : fi(x)≤ 0} (2.13)

and define for each i ∈ K

Si := Sat(K \ i) := {x : f j(x)≤ 0, j ∈ K, j 6= i} (2.14)

For a support constraint i the sets Si are nonempty by the argumentation
above. Define

Ψ :=
|K|⋂

i=h+2

Xi . (2.15)

It holds that (
h+1⋂
i=1

Xi

)
∩Ψ = {x : f j(x)≤ 0, j = 1, . . . , |K|} (2.16)

= Sat(K) = /0 . (2.17)

Consider the collection of M-convex sets

C := {X1, . . . ,Xh+1,Ψ} (2.18)

and consider an arbitrary subcollection of C consisting of h sets. Denote
the intersection over this subcollection by S . Since C consists of h+ 2
sets, there will be at least on Xi missing in the subcollection and, hence,
Si = Sat(K \ i) will be contained in the subcollection. It follows that the
intersection S is not empty, since Si ⊂S and Si is not empty since i is
an support constraint.

We have thus showed that for an arbitrary subcollection of C consisting
of h sets, the intersection over this subcollection is always nonempty. Since
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h is the Helly dimension of M, it follows that the intersection over all sets
in C is nonempty. The intersection over all sets in C is Sat(K) which is a
contradiction to P[K] infeasible, i.e., Sat(K) = /0. It follows that the number
of support constraints must be less than or equal to h. �

2.2.3. Examples

Previous results in [44, 46, 49] show that for continuous spaces the number
of support constraints depends linearly on the dimension of the decision
variable. In the case of integer or mixed-integer decision variables our re-
sults show that there is an exponential dependence of the number of support
constraints on the dimension of the integer decision variables. In this sec-
tion, we show that these bounds on the number of support constraints can
actually be attained, i.e., we construct two examples of integer linear prob-
lems (ILP) with exactly 2d−1 support constraints.

Example 2.1: A two-dimensional Example

Consider the ILP

min −x−y

s.t. x+ y≤ 1.5 (2.19)

x−0.3y≤ 0.75 (2.20)

−0.3x+ y≤ 0.75 (2.21)

(x,y) ∈ Z2∩ [−10,10]2 .

The optimal solution to this ILP is (x∗,y∗) = (0,0), as it can be easily

checked (see Figure 2.1). If we remove constraint (2.19), the integer

point (x1,y1) = (1,1) has a better objective than (x∗,y∗) and, hence,

constraint (2.19) is a support constraint. If we remove constraint (2.20),
the integer point (x2,y2) = (1,0) has a better objective than (x∗,y∗)

and, hence, constraint (2.20) is also a support constraint. If we remove
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constraint (2.21), the integer point (x3,y3) = (0,1) has a better objective

than (x∗,y∗) and, hence, constraint (2.21) is also a support constraint.

This feasible ILP has therefore 2d−1 = 3 support constraints. �

(-1,-1)

(-1,0)

(-1,1)

(-1,2)

(0,-1)

(0,0)

(0,1)

(0,2)

(1,-1)

(1,0)

(1,1)

(1,2)

(2,-1)

(2,0)

(2,1)

(2,2)

Constraint (2.19) Constraint (2.20)

Constraint (2.21)

Cost

Figure 2.1.: Illustration of the feasible region of a two-dimensional ILP. The gray
dots depict the integer lattice and the black lines the linear constraints.
The bold arrows are the normal directions pointing into the feasible
region. The red arrow on the bottom right depicts the direction of cost
improvement and the red point is the optimal integer solution.
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Example 2.2: A three-dimensional Example

Consider the ILP

min −x− y− z

s.t. x+ y+ z≤ 2.5 (2.22)

−0.35x+ y+ z≤ 1.7 (2.23)

x−0.35y+ z≤ 1.7 (2.24)

x+ y−0.35z≤ 1.7 (2.25)

x−0.35y−0.35z≤ 0.85 (2.26)

−0.35x+ y−0.35z≤ 0.85 (2.27)

−0.35x−0.35y+ z≤ 0.85 (2.28)

(x,y,z) ∈ Z3∩ [−10,10]3 .

It can be checked that the optimal integer solution of this problem is

(x∗,y∗,z∗) = (0,0,0). If constraint (2.22) is removed, the integer point

(x1,y1,z1) = (1,1,1) has a better objective than (x∗,y∗,z∗) and, hence,

constraint (2.22) is a support constraint. The same can be checked for

the removal of each of the constraints (2.23)-(2.28). So we obtain an

ILP that has 23−1 = 7 support constraints. �

2.2.4. Additional Definitions and Facts

In his section we will introduce the essential constraint set, a minimal set of
constraints on which the objective of the optimization problem is the same
as on the whole constraint set K.

Definition 2.4 (Essential Constraint Set) Define the essential constraint
set of a problem P[K] to be

Es(K) := argmin{|S| : J∗(S) = J∗(K), S⊂ K} , (2.29)
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i.e., the minimal set of constraints that uniquely defines the objective value
of P[K].

Definition 2.5 (Nondegenerate Problem) A problem P[K] is called non-
degenerate if for the optimal objective holds J∗(K) = J∗(Sc(K)), i.e., when
the optimal objective under all constraints equals the optimal objective
when only the support constraints are considered.

The following Lemmas will be stated mostly without proof, since their
proof is verbatim the same as their corresponding counterparts in [44]. The
argumentation in [44] does not rely on the continuity of the space Ω but
instead argues on the constraint sets only. This is the reason, why the proofs
carry over from the continuous to the mixed-integer case without change.
We will state the corresponding number of the Lemma in [44] at the top.

Lemma 2.4 (Lemma 2.10 in [44]) For an optimization problem P[K] we

have

1. Sc(K)⊂ Es(K)

2. |Sc(K)| ≤ |Es(K)| ≤ h, where h is the Helly dimension.

This Lemma is analog to Lemma 2.10 in [44] and both the statement and
the arguments for the proof remain unchanged except for the inequality
|Es(K)| ≤ h. We give a proof of this inequality now.
PROOF. |Es(K)| ≤ h:
The proof follows the same line of argumentation as the proof of Lemma
2.10 in [44]. We give it here for the sake of completeness. Let a problem
P[K] with constraint set K be given. We will now construct a descending
sequence K0 = K ⊃ K1 ⊃ K2 . . . of constraint sets that are all invariant for
P[K], i.e., Obj[K] = Obj[Ki] for all i. We will show that there is an index i

and a corresponding constraint set Ki with |Ki|= h and from this the desired
statement will follow since Es(K) is the smallest invariant constraint set
and, hence, h = |Ki| ≥ Es(K).
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Define K0 := K, S0 := Sc(K), K̄0 := K0 \ S0 and i = 0. Consider the
following procedure:

1. Is |Si|= h or K̄i = /0 halt the procedure.

2. Let k ∈ K̄i and define Ki+1 := Ki \{k}, set i = i+1, Si+1 = Sc(Ki+1),
and go to step 1.

If P[K] is feasible all the other problems with smaller constraint sets Ki

will also remain feasible. From the definition of support constraints it fol-
lows that the optimal objective remains the same on all the constraint sets
Ki and, hence, they are all invariant sets. With the same argumentation
as in [44, Proof Lemma 2.10] it follows that support constraints “inherit”
Si ⊂ Si+1. The procedure terminates when either |Si|= h, then the problem
P[Ki] is fully-supported and by Lemma 2.6 nondegenerate. Then Si is an
invariant set for P[K] and since the constraints in Si are support constraints
for problem P[Ki], there at most h of them by Theorems 2.2 and 2.3. The
other termination condition is that K̄i = /0. Then all constraints of P[Ki] are
support constraints Si = Ki and, hence, the cardinality of Ki is bounded by
h. �

Lemma 2.5 (Lemma 2.11 in [44]) If P[K] is nondegenerate its essential

constraint set is unique and coincides with the support constraint set.

We conclude the section by introducing the concept of fully supported
problems, i.e., problems in which the number of support constraints is ex-
actly h−1 if they are feasible and h if they are infeasible.

Definition 2.6 (Fully Supported Problem) A problem P[K] is called fully

supported if the number of its support constraints is exactly h−1 if P[K] is
feasible and h if it is not feasible.

Lemma 2.6 (Lemma 2.8 in [44]) If problem P[K] is fully-supported, then

it is nondegenerate.
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Lemma 2.7 (Lemma 2.12 in [44]) For a subset of the constraint set Y ⊂ K

and additional constraints h1, . . . ,hn ∈ K it holds that

J∗(Y,h j) = J∗(Y ), j = 1, . . . ,n⇔ J∗(Y,h1, . . . ,hn) = J∗(Y ) . (2.30)

The case that a problem P[K] is nondegenerate but not fully-supported

can occur. There is a technique called regularized refinement that allows to
“refine” a nondegenerate problem P[K] to another problem P̄[K] that will
always be fully supported. We will here briefly sketch this procedure, for
details see [44]. Assume that the number of constraints is greater than or
equal to h−1 (or h in the infeasible case) and let K̄ be the set of constraints
in K that are not essential constraints. Define the essential cardinality gap
ν := (h−1)−|Es(K)| (or ν := h−|Es(K)| in the infeasible case). Further,
define an arbitrary total order on the constraints in K, i.e., attach a num-
ber to each constraint such that we can compare constraints. Let Z(K) be
the ν constraints in K with the highest ranking and define the augmented
objective

J̄∗(K) := [J∗(K),Z(K)] . (2.31)

This means the following: we say that J̄∗(K) > J̄∗(K′) for two constraint
sets K and K′ if and only if J∗(K) > J∗(K′) or, if they are equal J∗(K) =

J∗(K′) then the order on the constraints decides which constraint set has
the higher objective Z(K) > Z(K′). Hence, the regularized refinement is a
way of discriminating between constraint sets that lead to the same opti-
mal objective function J∗. The most important property of the regularized
refinement is that

J∗(K)> J∗(K′)⇒ J̄∗(K)> J̄∗(K′) (2.32)

which means that P̄(K) is a refinement of P[K] in the sense of LP-type
problems [94]. It can be shown that the refinement has exactly h−1 many
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essential constraints (h in the infeasible case) and if P[K] is nondegenerate,
so will its refinement. Also, it can be shown that all the preceding Lemmas
in the section hold for the regularized refinement [44].

2.3. Mixed-Integer Random Convex Programs

In this section, we consider random convex programs in which the decision
variable can be integer or continuous or a mixture of both. Consider a func-
tion f (x,δ ) : (Rn×Rd)×Rl → R that is convex and lower-semicontinuous
in x for any fixed δ . Let δ ∈ ∆⊂ Rl denote a random vector and let P be a
probability measure over ∆. Denote by ω := (δ (1), . . . ,δ (N)) N independent
realizations drawn from δ .

Definition 2.7 (Mixed-Integer Random Convex Program) We will call
an optimization problem of the form

P[ω] : min c>x

s.t. f (x,δ ( j))≤ 0, j = 1, . . . ,N

x ∈Ω∩ (Rn×Zd) ,

(2.33)

where the decision variable x lies in the convex compact domain Ω∩ (Rn×
Z

d) (take n = 0 for purely integer random convex programs and d = 0 for
continuous RCPs) a mixed-integer random convex program (MI-RCP).

Definition 2.8 (Violation Probability) For an MI-RCP P[ω] the violation
probability is defined as

V ∗mi(ω) := P{δ ∈ ∆ : J∗(ω,δ )> J∗(ω)} , (2.34)

that is, the probability that the optimal objective of P[ω] computed under
the realization ω will not remain optimal under the next realization δ ∈ ∆.
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V ∗mi(ω) is itself a random variable with values in [0,1] depending on the
random extraction ω .

Definition 2.9 (Helly’s number) Define Helly’s number ζ to be the small-
est integer such that

ζ ≥ ess sup
ω∈∆N

|Sc(P[ω])| (2.35)

for any number of realizations N.

So Helly’s number of an MI-RCP is the smallest integer such that with
probability one, there are less or equal than ζ many support constraints for
every problem P[ω]. Note that from Lemmas 2.2 and 2.3 it follows that
ζ ≤ h, where h is the Helly dimension of the underlying decision space.

We make the following assumptions regarding P[ω]:

Assumption 3

1. The optimal solution of P[ω] is unique if it exists.

2. P[ω] is fully supported with probability one.

The first assumption is no severe restriction, since the uniqueness of the
optimal solution can always be achieved, for instance by introducing tie-
breaking rules (see e.g. [46]). Also, the assumption that P[ω] is fully sup-
ported can be relaxed to the assumption that P[ω] is nondegenerate with
probability one if refinement techniques as in [44] are applied. We require
it here only to streamline the proof of the main result. See Corollary 2.2 for
results on the more general case of not fully supported problems.

Please note that we do not require here the problems P[ω] to be feasible
with probability one (in contrast to e.g. [7, 49]). In the case that P[ω] is
infeasible, we have that J∗(ω) = ∞ = J∗(ω,δ ) and V ∗mi(ω) = 0.
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2.3.1. Main Result on MI-RCPs

We are now in a position to state our main result on the tails of the random
variable V ∗mi(ω) for random convex programs with mixed-integer decision
variables.

Theorem 2.1 Consider an MI-RCP P[ω] as in Definition 2.7, let N ≥ h,

where h= (n+1)2d is the Helly dimension of Rn×Zd and let Assumption 3

hold. Then for ε ∈ (0,1]

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤Φ(ε;ζ −1,N)≤Φ(ε;h−1,N) , (2.36)

where Φ(ε;q,N) denotes the cumulative distribution of the binomial ran-

dom variable

Φ(ε;q,N) :=
q

∑
j=0

(
N

j

)
ε

j(1− ε)N− j . (2.37)

PROOF. The proof follows the lines of Theorem 3.3 in [44]. Since P[ω] is
fully supported with probability one, the support constraint set has cardi-
nality exactly ζ . P[ω] is nondegenerate with probability one by Lemma 2.6
and the support constraint set equals the essential constraint set by Lemma

2.5. Let Ii
ζ
(ω), i = 1, . . . ,CN,ζ with CN,ζ =

(
N

ζ

)
denote the subsets of ζ

elements of ω =
(

δ (1), . . . ,δ (N)
)

. Without loss of generality let I1
ζ
(ω) be

the first ζ elements of ω . Define the events Si as

Si :=
{

ω ∈ ∆
N : the essential constraint set of P[ω] is Ii

ζ
(ω)
}

for all i = 1, . . . ,CN,ζ . Si is the event that constraints Ii
ζ
(ω) are the essential

contraints of problem P[ω], i.e., the event that the optimal solution with
constraints Ii

ζ
(ω) equals the optimal solution found with all constraints ω .
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Since there is exactly one essential constraint set of cardinality ζ , the
events Si are mutually exclusive Si∩S j = /0 for i 6= j and exhaustive

∆
N =

CN,ζ⋃
i=1

Si . (2.38)

It follows that

1 = P
N{

∆
N}= CN,ζ

∑
i=1

P
N{Si}=CN,ζP

N{S1} (2.39)

because all constraint sets have the same probability of being the essential
constraint set and, hence, PN{S1}= 1

CN,ζ
. Define now

Vi(ω) := P

{
δ ∈ ∆ : J∗(Ii

ζ
(ω),δ )> J∗(Ii

ζ
(ω))

}
. (2.40)

the violation probability of an optimal solution found on the constraint set
Ii
ζ
(ω). We will now, without loss of generality, consider V1, as all Vi have

the same distribution, because no constraint set Ii
ζ
(ω) has a higher prob-

ability of occuring than the others. Define for α ∈ [0,1] the probability
distribution of V1 as

F1(α) := P
ζ

{
ω

ζ : V1(ω
ζ )≤ α

}
, (2.41)

where ωζ = (δ (1), . . . ,δ (ζ )). Assume for now that V1 = v is given.
The event S1 equals the event

S1 =
{

J∗(I1
ζ
(ω)) = J∗(I1

ζ
(ω),δ (ζ+1), . . . ,δ (N))

}
(2.42)

by definition of S1. Then by Lemma 2.7 it follows that

S1 =
{

J∗(I1
ζ
(ω)) = J∗(I1

ζ
(ω),δ (ζ+ j)), j = 1, . . . ,N−ζ

}
. (2.43)
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Since all extractions of δ are drawn independently the probability mass
of S1 equals the probability mass of the event that the optimal objective
found on I1

ζ
(ω) remains the same on N−ζ independent realizations drawn

from δ . The event that the optimal objective obtained on I1
ζ
(ω) remains

equal when a further randomly drawn constraint is added, is exactly the
probability 1−V1(ω) = 1− v.

We obtain that

P
N{S1|V1 = v}= (1− v)N−ζ . (2.44)

If we now decondition V1 and recall (2.39), we obtain

1
CN,ζ

= P
N{S1}=

∫ 1

0
(1− v)N−ζ dF1(v) . (2.45)

This is a Hausdorff moment problem [66] and with the same argumentation
as in [44, 49] it follows that F1(α) = αζ .

It follows for the set B := {ω : V ∗mi(ω)> ε}, for which we want to prove
the theorem, that

B =

CN.ζ⋃
i=1

B∩Si , (2.46)

where B∩ Si = {ω : Vi(ω) > ε}. All intersections B∩ Si are disjoint and
have the same probability mass because all constraint sets have the same
probability of being an essential constraint set. From

B∩Si =
⋃

α∈(ε,1]
{ω : Vi(ω) = α} (2.47)
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we conclude that

P
N{B∩S1}=

∫ 1

ε

P
N{S1,V1 = α}dα (2.48)

=
∫ 1

ε

P
N{S1|V1 = α}dF1(α) (2.49)

(a)
= ζ

∫ 1

ε

(1− v)N−ζ
α

ζ−1dα , (2.50)

where equality (a) follows from Equation (2.44) and F1(α) = αζ . The
integral (2.50) is the incomplete beta function ζ B(1− ε;N−ζ +1,ζ ) and
it follows that

P
N{B∩S1}= ζ B(1− ε;N−ζ +1,ζ ) (2.51)

=

(
N

ζ

)−1

Φ(ε;ζ −1,N) (2.52)

(for more details on this derivation please see [44, Line 3.16]). Finally,
observe that

P
N{B}=CN,ζP

N{B∩S1}= Φ(ε;ζ −1,N)
(b)
≤ Φ(ε;h−1,N) , (2.53)

where (b) follows since ζ ≤ h and the binomial distribution is monotoni-
cally increasing in this second argument. This concludes the proof. �

Corollary 2.2 Let P[ω], N, and h be as in Theorem 2.1 and let the op-

timal solution of P[ω] be unique if it is feasible and let P[ω] be nonde-

generate with probability one (i.e., we relax the assumption that P[ω] is

fully-supported with probability one), then the inequality

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤Φ(ε;h−1,N) (2.54)

holds.
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PROOF. As mentioned above, the use of a regularized refinement analo-
gously as in [44] in combination with Theorem 2.1 can be used to prove
this corollary. The regularized refinement of problem P[ω] is constructed
by attaching to each realization of δ a real number drawn uniformly from
the unit interval [0,1]. With probability one this induces a total order on all
the constraint realizations. Then Theorem 2.1 can be applied to the regular-
ized refinement P̄[ω] to obtain the violation bound for it. From the property
(2.32) of the regularized refinement it then follows that

J∗(ω,δ )> J∗(ω)⇒ J̄∗(ω,δ )> J̄∗(ω) (2.55)

and, hence,

V ∗mi := P{J∗(ω,δ )> J∗(ω)} ≤ P{J̄∗(ω,δ )> J̄∗(ω)} := V̄ ∗mi (2.56)

Then it follows that

P
N{V ∗mi > ε} ≤ PN{V̄ ∗mi > ε}

Thm. 2.1
≤ Φ(ε;h−1,N) . (2.57)

�

Remark 2.1 For an MI-RCP with n = 0, i.e., for a pure integer random
convex program, the resulting bound on the tails of the violation probability
is

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤Φ(ε;2d−1,N)

and for a true mixed-integer problem, the bound is

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤Φ(ε;(n+1)2d−1,N) .
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2.3.2. Discussion of the Results

The bounds on the tails of the violation probability in MI-RCPs derived in
this section hold for the most general case of optimization problems with
random nonlinear convex constraints and mixed-integer decision variables.
These bounds can be tractable when the dimension of the space of integer
decision variables is comparatively low. However, differently from the con-
tinuous case, where the upper bound on the number of support constraints
increases linearly with the number of variables, in the mixed-integer setting
we obtained a geometric dependence of this upper bound with respect to the
number of discrete variables (also, we showed examples in dimension two
and three where the upper bound is attained). It follows that the parameter
in the right hand side of the bounds on the tails of the violation probability
also depends geometrically on the dimension of the integer decision vari-
able. This can lead to the bound being conservative and as a consequence
high sample numbers could be needed in order to ensure a desired confi-
dence. This suggests that mixed-integer convex problems, besides being
much harder computationally with respect to their continuous counterparts,
may also be more difficult to immunize against uncertainty via the RCP
approach.

The rest of this chapter is concerned with the study of the special case of
random linear programs and the derivation of bounds that are an improve-
ment to the bounds derived in this section.

2.4. Mixed-Integer Random Linear Programs

In this section we will consider mixed-integer random linear programs of
the form

ILP[ω] : min c>x

s.t. f (x,δ ( j))≤ 0, j = 1, . . . ,N

x ∈Ω∩Rn×Zd

(2.58)
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where Ω is a convex polytope and the constraint function f (x,δ ) is of the
form

f (x,δ ) = max
i=1,...,m

{
ai(δ )

>x−bi(δ )
}

, (2.59)

i.e., piecewise affine and convex in x. Note that piecewise affine and convex
constraint functions correspond to random constraints of the form A(δ )x≤
b(δ ) where A(δ ) and b(δ ) have rows ai(δ )

>, bi(δ ) respectively. We de-
note the linear relaxation of ILP[ω] by LP[ω], i.e., LP[ω] is the random lin-
ear program resulting from ILP[ω] when the integer variables are relaxed
to also be continuous. The feasible region of LP[ω] is always a polytope.
Denote by l the dimension of the decision variable of LP[ω], i.e., l = n+d.

First, our focus will lie on vertices of the feasible region of LP[ω]. More
precisely, we will study the tails of the probability that a vertex of the feasi-
ble region becomes infeasible under the next random constraint extraction.
Then we will derive bounds on the tails of the probability that a convex
combination of vertices of the feasible region of LP[ω] becomes infeasi-
ble under the next random constraint. Since it follows from Minkowski’s
Theorem that every point in a polytope can be expressed as the convex
combination of the polytope’s vertices, these bounds then effectively allow
us to bound the violation probability of any point in the feasible region of
LP[ω].

In general, the optimal mixed-integer solution of ILP[ω] will not coin-
cide with the optimal solution of LP[ω] but will lie in the interior of its
feasible region. So we will utilize the results on the violation probability
of arbitrary points in the feasible region to bound the tails of the violation
probability of the optimal solution of a mixed-integer random linear pro-
gram. This bound is different from the bound in Theorem 2.1 in that it does
not depend geometrically on number of integer decision variables. Since
it depends on the number of vertices of the relaxed feasible region, it can
also become conservative in the case when the feasible region is given by
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many inequalities. However, we will see in numerical examples that the
new bound needs way less samples than the one from Theorem 2.1.

2.4.1. Vertices of RLPs

In this subsection we will consider vertices of the feasible region of RLPs
and deduce bounds on the tails of the probability that a vertex becomes
infeasible under the next realization of the random constraints.

Definition 2.10 (Vertex of a Polytope) An extreme point or vertex of a
polytope P is a point x ∈ P such that there are no points y,z ∈ P, x 6= y

and no λ ∈ (0,1) with x = λy+(1−λ )z.

Definition 2.11 (Simple Polytope) A l-polytope P ⊂ Rl is called simple,
if at each vertex of P exactly l hyperplanes intersect. Simple polytopes
correspond to nondegenerate linear programs in linear programming [133].

If P is represented through a finite set of inequalities

P = {x : Ax≤ b} (2.60)

for a matrix A and vector b and is simple, then an extreme point of P cor-
responds to a set of exactly l linear independent rows a>i of A whose cor-
responding constraints a>i x ≤ bi are active in x, i.e., a>i x = bi. The other
constraints will not be active, i.e., a>j x < b j for j not one of the active rows.
These rows correspond to the hyperplanes {x ∈ Rn : aix = bi} that intersect
in the vertex. For details see e.g. [34, Chapter 2].

Assumption 4 We assume that with probability one the feasible region of

LP[ω]

Sat(ω) := {x ∈Ω : f (x,δ ( j))≤ 0, j = 1, . . . ,N} (2.61)
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is a nonempty simple polytope. We also assume that the optimal solution of

LP[ω] is always unique.

Definition 2.12 (Active Constraints of LP[ω]) For a point v ∈ Sat(ω) we
say that a constraint δ ( j) is active if f (v,δ ( j)) = 0. Define the active con-
straint set of v as

Ac(v) :=
{

δ
( j) : δ

( j) active in v
}

. (2.62)

If f (x,δ ) is affine in x then δ ( j) being active means that the linear inequality
corresponding to δ ( j) is active in x. If f (x,δ ) is piecewise affine and convex
for δ ( j) to be active means that there exists at least one i ∈ {1, . . . ,m} such
that the linear inequality ai(δ

( j))>x−bi(δ )≤ 0 is active in v.

Lemma 2.8 If the feasible region Sat(ω) of LP[ω] is simple with probabil-

ity one, then LP[ω] is nondegenerate with probability one and if the con-

straint function f (x,δ ) is affine in x then LP[ω] is also fully-supported.

PROOF. If the constraint function f (x,δ ) is affine in x and Sat(ω) is sim-
ple with probability one, then LP[ω] will also be nondegenerate and fully-
supported in the sense of [44] with probability one. Constraints that are
active (i.e., satisfied with equality) in the optimal solution of LP[ω] cor-
respond to support constraints and also essential constraints, since every
constraint realization δ ( j) corresponds to one linear inequality. So it fol-
lows that LP[ω] has exactly l support constraints.

If f (x,δ ) is not affine in x but piecewise affine and convex, LP[ω] will
be nondegenerate with probability one in the sense of Definition 2.5. To
see this, let x be the optimal solution of LP[ω] with piecewise affine con-
straints. Since the feasible region is assumed to be a simple polytope, there

are exactly l linear inequalities ai

(
δ ( ji)

)>
x− bi

(
δ ( ji)

)
, i = i1, . . . , il that

are active in x and all the other inequalities will not be active. These active
inequalities stem from at most l realizations δ ( ji) and hence there are at
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most l constraints f (x,δ ( ji)) that are active in x and all the others will not.
If we remove one of the constraints

f (x,δ ( ji)) = max
i=1,...,m

{
ai

(
δ
( ji)
)>

x−bi(δ
( ji))

}
(2.63)

we will also remove one of the l active linear constraints ai(δ
( ji))x−b( ji)

i .
By definition, x is then no longer a basic feasible solution, i.e., a vertex of
the feasible region, since less than l hyperplanes intersect in x and hence
it cannot be the optimum under c since the optimum of a linear program
is always assumed at a vertex. This means that there exists a better opti-
mal solution and the constraint δ ( ji) was a support constraint. Hence, we
showed that active constraints are support constraints. In [51,52] it is shown
that for a general convex program the support constraint set is a subset of
the active constraint set. With the argumentation above it follows that the
support constraint set and the active constraint set coincide. The claim then
follows. �

Lemma 2.9 Let x(ω) be a vertex of the feasible region Sat(ω) and assume

that Assumption 4 holds for Sat(ω). Then it follows that

P
N{

ω ∈ ∆
N : V ∗V (ω)> ε

}
≤Φ(ε; l−1,N) , (2.64)

where

V ∗V (ω) := P{δ ∈ ∆ : f (x(ω),δ )> 0} (2.65)

is the probability that the vertex x(ω) will become infeasible under the next

constraint realization.

This means, we can bound the violation probability of a vertex of the fea-
sible region of an LP[ω] with simple feasible region.
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The proof follows the same line of argumentation as the proof of Theo-
rem 3.3 in [44] for a random convex program, except that here we reason
on active constraint sets and not support constraints. Since the proof has
been elaborated in detail in [44] we will omit most explanations from it.
PROOF. Since Sat(ω) is simple with probability one and x(ω) a vertex of
Sat(ω) there are exactly l linear constraints that are active in x(ω). These
l linear constraints can stem from at most l realizations δ ( j) but it could
happen that less than l random constraints δ ( j) are active in x(ω) (in the
sense of Definition 2.12). For now assume that the active linear constraints
in x(ω) stem from exactly l realizations δ ( j). We will first prove the lemma
under this assumption and then explain how the proof can be extended to
the more general case.

Define

B :=
{

ω ∈ ∆
N : VV (ω)> ε

}
. (2.66)

Let Ii
l (ω) for i = 1, . . . ,CN,l with CN,l =

(N
l

)
be subsets of (δ (1), . . . ,δ (N))

consisting of l elements and without loss of generality let

I1
l (ω) = (δ (1), . . . ,δ (l)) . (2.67)

Define the event

Si := {ω ∈ ∆
N : Ii

l (ω) active in x(ω)} (2.68)

that the i-th subset Ii
l (ω) is comprised of the realizations that are active in

x(ω). Since exactly l constraint realizations are active in x(ω) it follows
that

Si∩S j = /0 for i 6= j and
CN,l⋃
i=1

Si = ∆
N . (2.69)
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Then it holds that

B = B∩∆
N = B∩

CN,l⋃
i=1

Si

=

CN,l⋃
i=1

B∩Si , (2.70)

where

B∩Si = {ω ∈ ∆
N : VV (ω)> ε and Ii

l (ω) is active in x(ω)} . (2.71)

With the same argumentation as in the proof of [44, Theorem 3.3] all of the
events B∩Si have the same probability mass.

Define

Vi(ω) := P
{

δ ∈ ∆ : Ii
l (ω) active in x(ω) and f (x(ω),δ )> 0

}
, (2.72)

then

B∩Si = {ω ∈ ∆
N : Vi(ω)> ε} . (2.73)

Consider now only i = 1 and define for ωl := (δ (1), . . . ,δ (l))

F1(α) := P
l
{

ωl ∈ ∆
l : V1(ωl)≤ α

}
(2.74)

the probability distribution of the random variable V1. The conditional
probability

P
N{S1 | V1(ω) = α} (2.75)

is the conditional probability that event S1 occurs, i.e., that the first l con-
straint realizations I1

l (ω) are active in x(ω), given that the violation prob-
ability is α . It holds that x(ω) satisfies all constraints arising from real-
izations I1

l (ω) with equality and the constraints δ (l+1), . . . ,δ (N) with strict
inequality, i.e., f (x(ω),δ ( j))< 0 for j = l+1, . . . ,N. Since the realizations
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δ ( j) are drawn independently it holds that

P
N{S1 | V1(ω) = α} (2.76)

= P

{
I1
l (ω) active in x(ω), f (x(ω),δ ( j))< 0, (2.77)

j = l +1, . . . ,N
∣∣∣∣ V1(ω) = α

}
(2.78)

= (1−α)N−l . (2.79)

Deconditioning with respect to V1(ω) it follows

P
N{S1}=

∫ 1

0
(1−α)N−ldF1(α) (2.80)

and with the same argumentation as in the proof of [44, Theorem 3.3] we
obtain that F1(α) = α l . The proof concludes as the proof of Theorem 3.3
and the rest is omitted here because the argumentation carries over verbatim
from the proof of Theorem 3.3. This proves the lemma for the case that
exactly l constraint realizations are active in x(ω).

If this is not the case, i.e., if with a nonnegative probability less than l

constraint realizations can be active in x(ω), the concept of “active” con-
straint realizations has to be extended. We propose to employ similar tech-
niques as in Part 2 of the proof of [49, Theorem 2.4]. There the concept of
active constraints is extended as follows: A “ball-vertex” is a ball centered
at the vertex x(ω) with radius such that the ball is fully contained in the
feasible region for all constraint realizations except for l−1 constraint re-
alizations. The concept of active constraints is then extended to constraints
that are active for the ball, i.e., constraints that are “touched” by the ball in
the sense that the ball has nonempty intersection with a hyperplane arising
from the constraint. With this construction it is guaranteed that the ball-
vertex has active constraints arising from at most l constraint realizations
and if the radius of the ball is zero, then we are in the case as above. The
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Constraint 1

Constraint 2

Constraint 3

Vertex

Figure 2.2.: In this figure a vertex and the corresponding ball vertex with three ac-
tive constraints arising from three different constraint realizations is de-
picted. In this case heating and cooling techniques from [49] can be
applied to randomly perturb the constraints so that exactly l constraint
realizations are active for the ball.

above proof carries over more or less verbatim for the ball-vertex when it
touches exactly l constraint realizations and, hence, is omitted here.

However, it can happen that this is not the case either, i.e., the ball
touches more than l active constraint realizations as depicted in Figure 2.2
(cf. [49, Figure 3.4] for the same problem but with general nonlinear con-
straints). In this case so-called heating and cooling techniques as proposed
in Part 2 of the proof of Theorem 2.4 in [49] can be employed. Here the
constraints are first randomly perturbed in a process that is called heating
so that the case in Figure 2.2 will only occur on constraint realizations that
have a probability mass zero. Then one can show that with a similar argu-
mentation as in [49] a process called cooling can be employed to recover
the original vertex from the heated problem. The proof of this statement
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has to be slightly modified, since in [49] optimal solutions of RCPs and
not general vertices are considered. However, for general linear problems
it holds that for any vertex there exists a cost direction such that the vertex
is the optimal solution under this cost direction [100, Theorem 4.6, page
95]. Hence, for fixed realization ω it is possible to construct a cost direc-
tion for x(ω) such that it is the optimal solution under this cost. In the
proof of the cooling property in Equation (3.12) in [49] this cost has to be
considered. Once the heating and cooling properties are established, with
the same argumentation as in [49] the violation probability of the vertex of
the original problem can be recovered from the violation probability of the
heated problem where the constraints cannot be as in Figure 2.2. All in all
the construction and the proofs in [49] are rather technical and since they
carry over almost verbatim, we omit the complete proof here. �

We conclude this section with a result on the violation probability of a
convex combination of n vertices of the feasible region of LP[ω].

Lemma 2.10 Let x1(ω), . . . ,xm(ω) be vertices of the feasible region Sat(ω)

of LP[ω] that satisfies Assumption 4. Let N > ml and let xλ (ω) be a convex

combination of the vertices x1(ω), . . . ,xn(ω), i.e.,

xλ (ω) =
m

∑
i=1

λixi(ω) ,0≤ λi ≤ 1 and
m

∑
i=1

λi = 1 . (2.81)

Then it holds for xλ (ω)

P
N{

ω ∈ ∆
N : V ∗conv(ω)> ε

}
≤Φ(ε;ml−1,N) , (2.82)

where

V ∗conv(ω) = P{δ ∈ ∆ : f (xλ (ω),δ )> 0} (2.83)

is the probability that the convex combination xλ (ω) becomes infeasible

under the next constraint realization.
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PROOF. Define x∗i := xi(ω). The proof proceeds in two steps. We first show
that

P
N{

ω ∈ ∆
N : V ∗conv(ω)> ε

}
≤ PN{

ω ∈ ∆
N : V ∗c (ω)> ε

}
(2.84)

where

V ∗c (ω) := P{δ ∈ ∆ : f (x∗1,δ )> 0 or . . .or f (x∗m,δ )> 0} (2.85)

= P

{
m⋃

j=1

{δ ∈ ∆ : f (x∗j ,δ )> 0}
}

. (2.86)

and then we show that

P
N{

ω ∈ ∆
N : V ∗c (ω)> ε

}
≤Φ(ε;nl−1,N) . (2.87)

Proof of (2.84): Because of the convexity of f we have that

f (xλ ,δ ) = f

(
m

∑
i=1

λix∗i ,δ

)
≤

m

∑
i=1

λi f (x∗i ,δ ) . (2.88)

It also holds that

{δ : f (xλ ,δ )> 0}= ∆\{δ : f (xλ ,δ )≤ 0} . (2.89)

From (2.88) it follows that if ∑
m
i=1 λi f (x∗i ,δ ) ≤ 0 also f (xλ ,δ ) ≤ 0 and,

hence,

{δ : ∑λi f (x∗i ,δ )≤ 0} ⊂ {δ : f (xλ ,δ )≤ 0} . (2.90)
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Then, it follows that

{δ : f (xλ ,δ )> 0}
(a)
⊂ {δ : ∑λi f (x∗i ,δ )> 0}
(b)
⊂ {δ : f (x∗1,δ )> 0 or . . . or f (x∗m,δ )> 0}

=
n⋃

i=1

{δ : f (x∗i ,δ )> 0} ,

(2.91)

where (a) follows from equation (2.89) and inclusion (2.90) and (b) fol-
lows from the fact that all λi ≥ 0 and, hence, for the sum to be strictly
positive at least one of the summands has to be strictly positive. From the
inclusions (2.91) it follows that

V ∗conv(ω) = P{δ : f (xλ ,δ )> 0} (2.92)

≤ P{δ : f (x∗1,δ )> 0 or . . . or f (x∗m,δ )> 0} (2.93)

=V ∗c (ω) (2.94)

and if V ∗conv(ω)> ε it follows that also V ∗c (ω)> ε and so we obtain (2.84)

P
N{

ω ∈ ∆
N : V ∗conv(ω)> ε

}
≤ PN{

ω ∈ ∆
N : V ∗c (ω)> ε

}
. (2.95)

Proof of (2.87): Consider the n product of the feasible region

S := Sat(ω)×·· ·×Sat(ω)︸ ︷︷ ︸
n times

. (2.96)

It can be easily checked that the direct product of simple polytopes is again
a simple polytope and, hence, S is simple. The point x := (x∗1, . . . ,x

∗
m) is

a vertex of S , since a vertex of S is given as an m-vector of vertices of
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Sat(ω). The product feasible region S can also be written as

S =

{
(x1, . . . ,xm) ∈ Rml : (2.97)

g(x1, . . . ,xm) := max
i=1,...,m

{ f (xi,δ
( j))} ≤ 0, j = 1, . . . ,N

}
(2.98)

with piecewise affine and convex function g. We can apply Lemma 2.9 to
the region S and its vertex x to obtain

P
N{

ω ∈ ∆
N : V ∗V (ω)> ε

}
≤Φ(ε;ml−1,N) , (2.99)

where

V ∗V (ω) = P

{
δ ∈ ∆ : max

i=1,...,m
{ f (x∗i ,δ )}> 0

}
(2.100)

= P{δ ∈ ∆ : f (x∗1,δ )> 0 or . . .or f (x∗m,δ )> 0} (2.101)

�

2.4.2. Violation Probabilities of Inner and Integer Points

In this subsection we will combine the results on the violation probability of
vertices of the feasible region of an RLP from the previous subsection with
the well-known fact that each point in a polytope is the convex combination
of the vertices of the polytope. This will allow us to provide bounds on the
tails of the violation probability of arbitrary points in the random feasible
region of an RLP.

Lemma 2.11 If F is an l-polytope (i.e. a compact polyhedron in Rl), then

F is the convex hull of its extreme points. Furthermore, each point of F is

the convex combination of atmost l +1 extreme points.
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PROOF. Because of Minkowski’s theorem for polytopes [100] it holds
that each point is the convex combination of the vertices of F . From
Caratheodory’s theorem [58] it follows that each point is actually the con-
vex combination of at most l +1 vertices. �

Definition 2.13 (Upper Bound on Vertices of Sat(ω)) For LP[ω] denote
by Ṽ (ω) the number of vertices of its feasible region Sat(ω). Define V to
be the smallest integer such that

V ≥ ess sup
ω∈∆N

Ṽ (ω) (2.102)

i.e., the smallest integer number such that the number of vertices of Sat(ω)

is less than or equal to V with probability one.

Since the number of constraint realizations N is finite, V will always be
finite. See Remark 2.2 below for a general bound on the number of vertices
of a simple d-polytope.

Theorem 2.2 Consider LP[ω] with feasible region Sat(ω) that satisfies As-

sumption 4 and let V be as in Definition 2.13. For each point x0 ∈ Sat(ω)

that is feasible for LP[ω] it holds that

P
N{

ω ∈ ∆
N : V ∗(ω,x0)> ε

}
≤
(

V
l +1

)
Φ(ε;s,N), (2.103)

for s := l(l +1)−1 and N ≥ s. Here

V ∗(ω,x0) := P{δ ∈ ∆ : f (x0,δ )> 0} (2.104)

is the probability that the point x0 becomes infeasible under the next con-

straint realization.

PROOF. Let x0 ∈ Sat(ω) be a point in the feasible region Sat(ω). We know
by Lemma 2.11 that x0 can be expressed as the convex combination of l+1
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extreme points of Sat(ω). This will hold with probability one for every
realization ω . It can happen, however, that the vertices in the convex com-
bination change from realization to realization. So we cannot a priori deter-
mine which vertices will be needed in the convex combination. Therefore,
we have to consider all possible combinations of l+1 vertices: Number all
vertices from 1, . . . ,V and consider subsets of vertex indices E i(ω) of car-
dinality l+1 of {1, . . . ,V} and index them by i = 1, . . . ,C :=

( V
l+1

)
. If for a

realization ω Sat(ω) has less than V vertices, we recount the last vertex in
the enumeration until we get to exactly V vertices. Define the event

Ai :=
{

ω ∈ ∆
N : x0 convex combination of vertices E i(ω)

}
. (2.105)

Since x0 will be the convex combination of some l + 1 extreme points by
Lemma 2.11, we have that

1 = P
N{

∆
N}= P

N

{
C⋃

i=1

Ai

}
. (2.106)

From the proof of Lemma 2.10 it becomes apparent that the violation bound
for the convex combination does not depend on the actual weights in the
combination (i.e. the λ j’s) but only on the extreme points involved. That is
the reason why we restrict our studies here to only the subsets of extreme
points and completely neglect the actual convex combination.
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It follows that

P
N{V ∗(ω,x0)> ε} (a)

= P
N

{
(V ∗(ω,x0)> ε)∩

(
C⋃

i=1

Ai

)}
(2.107)

= P
N

{
C⋃

i=1

(V ∗(ω,x0)> ε ∩Ai)

}
(2.108)

≤
C⋃

i=1

P
N{V ∗(ω,x0)> ε ∩Ai} (2.109)

(b)
≤
(

V
l +1

)
Φ(ε; l(l +1)−1,N) . (2.110)

In the above (a) follows from (2.106) and (b) from Lemma 2.10 and the
fact that C =

( V
l+1

)
. �

Corollary 2.3 (Mixed-Integer RLPs) Consider a MI-RCP

min c>x (2.111)

s.t. f (x,δ ( j))≤ 0, j = 1, . . . ,N (2.112)

x ∈Ω⊂ Rn×Zd (2.113)

with constraint function f (x,δ ) that is either affine in x or piecewise affine

and convex. Denote the maximum number of vertices according to Defi-

nition 2.13 of the feasible region by V and let l = n+ d. Assume the fea-

sible region Sat(ω) of the relaxed continuous LP[ω] satisfies Assumption

4 and that the optimal mixed-integer solution is unique. Then it holds for

s := l(l +1)−1 and N ≥ s that

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤
(

V
l +1

)
Φ(ε;s,N) , (2.114)

where V ∗mi(ω) is the violation probability of the optimal mixed-integer so-

lution as in Definition 2.8.
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−2 −1 0 1 2
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−1

0

1
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Figure 2.3.: Example of the feasible region with N = 6 in which also V = 6. The
feasible region includes the sphere S1 which was drawn for illustration
purposes only, the linear constraints (2.117) are the solid lines.

PROOF. Let x∗i be the optimal mixed-integer solution. Since Sat(ω) 6= /0
with probability one and the optimal solution is unique by assumption, it
holds that

J∗(ω)> J∗(ω,δ )⇔ f (x∗i ,δ )> 0 , (2.115)

i.e., the optimal mixed-integer objective gets worse under the next realiza-
tion δ if and only if the optimal integer solution becomes infeasible under
the new constraint. Now we apply the previous theorem to obtain the bound
on the violation probability of the optimal mixed-integer solution. �

Unfortunately in general LP[ω]’s the number of vertices V of the feasible
region will depend on the number N of constraint realization as can be seen
from the following example.
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Example 2.3: Vertices of the Feasible Region

Consider the unit sphere in R2:

S1 := {(sin(θ),cos(θ)), θ ∈ [0,2π]} . (2.116)

Let δ ∼U [0,2π] be uniformly distributed on [0,2π] and let the constraint

realizations for a δ ( j) be the half space including S1 de�ned by the line

that goes through (sin(δ ( j)),cos(δ ( j))) and is tangential to S1 That is,

constraint j is given through

sin(δ ( j))x+ cos(δ ( j))y≤ 1 (2.117)

and also consider the constraints (x,y) ∈ [−2,2]2. Then the feasible

region is with probability one a simple polytope (compact and exactly

2 linear constraints intersect at each vertex with probability one). If we

draw more than four constraints, each constraint can have an intersection

with his left and right �neighbors� on the circle, so we can have exactly

N vertices for the feasible region. See Figure 2.3 for an example with

N = 6 and six vertices.

�

Remark 2.2 A general bound on the number of vertices in a simple poly-
tope in dependence on the n faces is given by the upper bound theorem
[81, 95, 133]. It states that the maximum number of vertices in a simple
polytope in Rl with n faces is bounded from above by

C(l,n) =
(

n+ b l+1
2 c

n− l

)
+

(
n+ b l+2

2 c
n− l

)
. (2.118)

We will now consider a special case of random linear programs, in which
the number of vertices of the feasible region will not depend on the number
of constraint extractions.
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2.5. Linear Programs with Random Right Hand Sides

In the last section we derived a bound on the tails of the violation proba-
bility of an optimal mixed-integer solution of an RLP that depends on the
number of vertices of the feasible region of the corresponding relaxed con-
tinuous LP[ω]. We saw in an example that the number of vertices can grow
with the number of constraint realizations drawn, which can be undesirable
since it worsens the tightness of the bounds.

In this section we consider RLPs with constraints of the form

f (x,δ ) = max
i=1,...,m

{
a>i x−gi(δ )

}
, (2.119)

where gi : ∆ → R is a lower semi-continuous function. The constraint
f (x,δ )≤ 0 is then equivalent to Ax≤ g(δ ), where A has rows a>i and g(δ )

has rows gi(δ ) and the inequality is a vector inequality. Constraints of this
form with uncertain right hand sides occur in many applications, for exam-
ple in inventory control with uncertain demands or in the control of discrete
time linear systems affected by additive disturbance [28].

Theorem 2.3 Let all assumptions of Theorem 2.2 hold. Consider the ran-

dom linear program

LP[ω] : min c>x (2.120)

s.t. f (x,δ ( j))≤ 0, j = 1, . . . ,N (2.121)

with f (x,δ ) = maxi=1,...,m
{

a>i x−gi(δ )
}

. For any point x0 that is feasible

for LP[ω] it holds for s := l(l +1)−1 and N ≥ s that

P
N{

ω ∈ ∆
N : V ∗(ω,x0)> ε

}
≤
(

V
l +1

)
Φ(ε;s,N) , (2.122)

where in this case V is independent of the number of constraint realizations

N and only depends the constraint matrix A with rows a>i .
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PROOF. For constraints of the form as in (2.119) the number of vertices of
the feasible region does not depend on the number of constraint realizations
extracted. This can be seen as follows: Consider a single constraint a>i x−
gi(δ )≤ 0 and let

Fi j := {x : a>i x−gi(δ
( j)) = 0, j = 1, . . . ,N} , (2.123)

be the faces of the realizations of this constraint. Then it follows that

N⋂
j=1

Fi j = /0 (2.124)

with probability one. So all faces given by the same constraint index i for
different random right hand side realizations have empty intersection. Let
x(ω) be a vertex of the feasible region for a realization ω . Then there
are exactly d constraints a>i x−gi(δ

( ji)) that are active in x(ω). We showed
that for same constraint index i the constraints for different realizations δ ( j)

cannot be active at the same time. It follows that for each active constraint
i there is a ji such that the constraint a>i x−gi(δ

( ji)) is active and all other
constraints with index i are satisfied with strict inequality. In fact, this
unique ji is given through

ji = arg max
j=1,...,N

gi(δ
( j)) . (2.125)

The proof is then direct consequence of Theorem 2.2 and the fact that the
number of vertices depends only on the constraint rows ai. �

Corollary 2.4 (MI-RLPs with Random Right Hand Side) Consider a MI-

RCP as in Corollary 2.3 with constraint function

f (x,δ ) = max
i=1,...,m

{
a>i x−gi(δ )

}
(2.126)
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and all assumptions of Corollary 2.3. Then it holds for s := l(l+1)−1 and

N ≥ s that

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤
(

V
l +1

)
Φ(ε;s,N) , (2.127)

where V only depends on the constraint matrix A with rows a>i .

2.5.1. Comparison to Robust Optimization

In this section we compare how linear problems with uncertain right hand
side are treated in the robust optimization literature.

In [124] the case of column-wise uncertainty in a linear program is con-
sidered. The problem considered in that work is

min c>x (2.128)

s.t. Ax≤ b ∀A (2.129)

x≥ 0 (2.130)

and the constraint matrix A has uncertain columns ak confined to lie in
closed convex sets Kk. Hence, the constraint Ax ≤ b ∀A is equivalent to

∑
d
i=1 akxk ≤ b ∀ak ∈ Kk. Then, in [124] it is shown that these constraints

are satisfied if the constraint A∗x≤ b with a∗ik =
(
supak∈Kk ak

)
i is satisfied.

In the robust setting, uncertain right hand sides are a special case of the
model above. This can easily be seen by transforming the constraint Ax ≤
g(δ ) ∀δ ∈ ∆ into Ãx̃ ≤ 0 with x̃ = [x,1] and Ã = [A,−g(δ )]. The robust
constraint

Ax≤ g(δ ) ∀δ ∈ ∆ (2.131)

is satisfied if

Ax≤ g∗ , (2.132)
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where g∗i = infδ∈∆ gi(δ ). With the deterministic constraint g∗, robust con-
straint satisfaction can be guaranteed, but the found solution can be way too
conservative. For example if g(∆) is an ellipsoid, the point g∗ will corre-
spond to the lower left corner of the smallest box including the ellipsoid.

The finite adaptability approach [29, 33] can be applied to the case of
uncertain right hand sides, although its main focus lies in robust multi-stage
optimization. In this approach the uncertainty set B := g(∆) is “covered”
by K partitions, represented by K vectors bk such that for every b ∈ B

there exists at least one bk such that b ≤ bk. Given such a partition the
linear problem with uncertain right-hand side is equivalent to

min max
k=1,...,K

c>xk (2.133)

s.t. Axk ≤ bk, k = 1, . . . ,K . (2.134)

For K = 1 this would correspond to (2.132). The degree of conservatism
of finite adaptability can be lower than that of (2.132) but strongly depends
on the partition. In [29] the authors show that finding an optimal partition
with K = 2 is already NP-hard.

In [25] uncertain linear programs with row-wise uncertainty are consid-
ered, i.e., the rows ai of the constraint matrix A are uncertain. In the case
of right-hand side uncertainty, that means that all entries of a row of Ã are
certain except for the last one. One assumption made in [25] is that the
uncertainty is constraint-wise, i.e., the uncertainty set B has the form

B = B1×·· ·×Bm (2.135)

where Bi = Πi(B) is the projection of the uncertainty set onto the compo-
nents corresponding to the i-th row of Ã, and that these Bi are convex and
closed. For the case of uncertain right-hand side this would mean that

g(∆) = g1(∆1)×·· ·×gm(∆m) , (2.136)
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i.e., that gi(δ ) = gi(δi) only depends on the i-th component of the uncer-
tainty realization δ .

If constraint-wise uncertainty is not given, [25] propose to instead con-
sider the enlargened uncertainty set

B = conv(Π1(B))×·· ·× conv(Πm(B)) . (2.137)

It can be checked that solving the LP with uncertain right-hand side corre-
sponds again to the conservative constraints (2.132).

This means that all the robust approaches will treat the case of uncer-
tainty in the right hand side with a higher degree of conservatism.

2.6. Results

In order to demonstrate the applications of RLPs with uncertainty in the
right hand side and the potential advantages the bounds in Theorem 2.3 and
Corollary 2.4 have over the bounds in Theorem 2.1, we will now consider
three examples.

2.6.1. Perturbed Integer Knapsack

We assume that we have d goods each with fixed and known weights wi > 0.
Instead of packing amount xi of good i into the knapsack, we assume that
a perturbed quantity xi + δ i with random variable δ i gets into the knap-
sack. We do not assume any knowledge about the perturbation vector
δ = (δ 1, . . . ,δ d) but assume that we are able to draw realizations from it.
The objective is to maximize the worth of the goods in the knapsack given
through a cost vector c subject to the constraints that the capacity must not
be exceeded. Since we can only take integer multiples of the goods, the
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resulting problem is an integer linear problem. The LP[ω] integer formula-
tion is

KP[ω] : max c>x (2.138)

s.t.
d

∑
i=1

wi

(
xi +δ

( j)
i

)
≤ W̃ , j = 1, . . . ,N (2.139)

xi ≥ 0, i = 1, . . . ,d (2.140)

xi ∈ Z . (2.141)

This is an integer RLP with uncertain right-hand side. We assume that
xi = 0, i = 1, . . . ,d is feasible with probability one, hence,

d

∑
i=1

wiδ i ≤ W̃ (2.142)

with probability one.
For this example the feasible region of the continuous relaxation of

KP[ω] will always be a d + 1-simplex: There is one vertex 0 ∈ Rd and
d vertices

(0, . . . ,0,di,0, . . .0), i = 1, . . . ,d (2.143)

where

di = max

{
xi : wixi ≤ W̃ − max

j=1,...,N

d

∑
i=1

wiδ
( j)
i

}
(2.144)

is the point in which the hyperplane {x ∈ Rd : w>x = W̃ −∑
d
i=1 wiδ

( j)
i }

intersects the d−1 coordinate hyperplanes

Fk :=
{

x ∈ Rd : xk = 0, x j ≥ 0 j 6= k
}

k 6= i . (2.145)
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Thus the feasible region has V = d + 1 vertices. Let x∗int be the optimal
integer solution. We obtain the bound for the violation probability of x∗int

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤
(

V
d +1

)
Φ(ε;d(d +1)−1,N) (2.146)

= Φ(ε;d(d +1)−1,N) . (2.147)

Note that for d ≥ 6 this bound is much better than the bound Φ(ε;2d ,N) we
would get from the general MI-RCP result because then d(d+1)−1 < 2d .

Now, additionally to the weight constraint, we also consider a volume
constraint

d

∑
i=1

vi

(
xi + δ̃

( j)
i

)
≤ Ṽ , j = 1, . . . ,N . (2.148)

We use the bound in Remark 2.2 with n = d+2 to obtain an upper bound
on the number of vertices of the relaxed feasible region.

For the perturbed knapsack problem with weight and volume constraints,
we compared for different numbers of goods d how many samples were
necessary to obtain

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤ β (2.149)

for fixed ε and β . In order to guarantee (2.149), we numerically determined
the smallest numbers N1 and N2 such that

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤Φ(ε;2d−1,N1)≤ β (2.150)

and

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤
(

V
d +1

)
Φ(ε;d(d +1)−1,N2)≤ β .

(2.151)
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The results for ε = 0.1, β = 0.01, and dimensions d = 6, . . . ,10 are plot-
ted in Figure 2.4 and for d = 10, . . . ,15 are given in Table 2.1 .

6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Figure 2.4.: Number of samples needed in the Knapsack example with weight and
volume constraints to guarantee PN{V ∗mi(ω)> ε

}
≤ β using bound

(2.150) depicted as red dashed line and number of samples needed
to guarantee PN{V ∗mi(ω)> ε

}
≤ β using bound (2.151) depicted as

dashed-dotted blue line, for d = 6, . . . ,10, ε = 0.1, and β = 0.01.

d = 10 d = 11 d = 12 d = 13 d = 14 d = 15
N1 10952 21486 42384 83930 166672 331686
N2 1875 2226 2600 3005 3432 3890

Table 2.1.: Number of samples N1 needed to guarantee PN{V ∗mi(ω)> ε
}
≤ β us-

ing bound (2.150) and number of samples N2 needed to guarantee
P

N{V ∗mi(ω)> ε
}
≤ β using bound (2.151) for d = 10, . . . ,16, ε = 0.1,

and β = 0.01.

It can be seen that the number N2 of samples needed to ensure (2.149) is
of orders of magnitude lower than the number of samples N1 given by the
general MI-RCP bound. Furthermore, bound (2.151) holds for the violation
probability V ∗mi(ω,x0) of any point x0 in the feasible region and not only
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for the theoretical integer optimum. This fact is especially useful if for
example numerical methods like cutting-plane techniques [100] are used
to obtain the optimal solution of the integer problem. A numerical solver
will in general return a solution x0 that is not the optimal integer solution
but within a certain prespecified tolerance of the integer solution. In such
a case the bounds derived in the previous section can also be applied to x0

and, hence, are useful to bound the violation probability of approximatively
optimal integer points.

2.6.2. Data-Driven Inventory Control

In this example we consider the single-station inventory control problem
with fixed ordering costs and uncertain demands [28]. The variables are xk,
the stock available at the beginning of period k, uk, the stock ordered at the
beginning of period k, and wk, the uncertain demand during period k. The
available stock follows the recursive equation

xk+1 = xk +uk−wk . (2.152)

The cost in period k is

C(uk) =

K + cuk, uk > 0

0, uk = 0 ,
(2.153)

i.e., if we decide to order in period k, we will have to pay fixed costs K > 0
regardless of the quantity ordered. The shortage/holding costs are

r(x) = pmax{0,−x}+hmax{0,x} (2.154)

and as in [28] we assume that p > c since otherwise ordering in the last
period would never be optimal.
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We assume that the demand is random with unknown distribution, but we
can either draw N realizations from the demand or are given N realizations
e.g. from historic data. Similar to the robust inventory control problem
introduced in [32] we formulate the inventory control problem with random
demands as random mixed-integer linear problem:

min
uk,vk,yk

T−1

∑
k=0

(cuk +Kvk + yk) (2.155)

s.t. yk ≥ h

(
x0 +

k

∑
i=0

(ui−w( j)
i )

)
, k = 0, . . . ,T −1 (2.156)

yk ≥−p

(
x0 +

k

∑
i=0

(ui−w( j)
i )

)
, k = 0, . . . ,T −1 (2.157)

for all j = 1, . . . ,N (2.158)

0≤ uk ≤Mvk, vk ∈ {0,1}, k = 0, . . . ,T −1 . (2.159)

Here the w( j)
i are realizations of the random demands. It can be checked

through simple transformations of the random constraints (2.156) and (2.157)
that this problem is a mixed-integer random linear problem with uncertain
right-hand sides.

The continuous decision variables are uk and yk for k = 0, . . . ,T −1 and
the binary variables are vk for k = 0, . . . ,T − 1. Therefore the decision
variables lie in the space R2T ×ZT and the Helly dimension h of this space
is h = (2T +1)2T −1. From Theorem 2.1 it follows for the optimal mixed-
integer solution (u∗,y∗,v∗) of the inventory problem for N1 ≥ h that

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤Φ(ε;(2T +1)2T −1,N1) (2.160)

where ∆ is the space of all random demands over T time steps.
The relaxed linear programming version of the inventory problem has 6T

constraints and 3T continuous (relaxed) decision variables. With Theorem
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2.3 and Corollary 2.4 it follows that for N2 ≥ 3T (3T +1)

P
N{

ω ∈ ∆
N : V ∗mi(ω)> ε

}
≤
(

V
3T +1

)
Φ(ε;3T (3T +1)−1,N2) ,

(2.161)

with V determined from Remark 2.2 with d = 3T and n = 6T .
As in the previous section we numerically determined minimal N1 and

N2 for both bounds in order to guarantee

P
N{V ∗mi > ε} ≤ β (2.162)

for ε = 0.1 and β = 0.01. The results are depicted in Table 2.2 and it
can be seen that for T > 6 the bound (2.161) requires much less samples to
guarantee PN{V ∗mi > ε} ≤ β . As in the previous example the bound derived
in this section proves to be better than the general MI-RCP bound from
Section 2.3, when the decision of the integer space is greater than six.

T = 2 T = 3 T = 4 T = 5
N1 319 745 1723 3951
N2 993 2241 3967 6271

T = 6 T = 7 T = 8 T = 9
N1 8971 20189 44991 99477
N2 9023 12383 16181 20617

Table 2.2.: Number of samples N1 needed to guarantee PN{V ∗mi(ω)> ε
}
≤ β us-

ing bound (2.160) and number of samples N2 needed to guarantee
P

N{V ∗mi(ω)> ε
}
≤ β using bound (2.161) for the inventory problem

with T = 1, . . . ,9, ε = 0.1, and β = 0.01.

We conclude this example with a remark:

Remark 2.3 Even if the number of samples in Table 2.2 required to guar-
antee certain generalization probabilities seem to be high, it is not nec-
essary to solve a mixed-integer problem with all of the constraints: The
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general constraint Ax≤ b( j) j = 1, . . . ,N is equivalent to the constraint that
Ax≤ b∗(b(1), . . . ,b(N)) where the i-th component of b∗(b(1), . . . ,b(N)) is

b∗i (b
(1), . . . ,b(N)) = min

j=1,...,N
b( j)

i (2.163)

is the minimum of the i-th components of the constraint realizations. So the
complexity of the actual optimization problem does not increase.

2.6.3. Multi-Agent Coordination

In this section we will consider a two-dimensional model predictive multi-
agent coordination problem similar to the model in [102]. We assume that
there are two agents that plan over a horizon of length T in two-dimensional
state space subject to the constraint that their states do not violate a mini-
mum clearance. The model parameters are

A =

[
1 1
0 1

]
,B =

[
0.5
1

]
(2.164)

with control inputs ui
t ∈ [ui

min,u
i
max] and given initial states. There are 2T

linear inequalities needed to model the input constraints for each agent.
The recursive state equation for each agent i is

x̂i
t+1 = Ax̂i

t +Bui
t , t = 0, . . . ,T −1 . (2.165)

The state recursion is a two-dimensional equality constraint so we need
4T inequality constraints to model the state recursion for each agent and
additional 8 linear inequalities for each agent to describe the initial state
equality constraint.

The collision avoidance constraints are that the states x1
t and x2

t of agents

145



2. Mixed-Integer Random Convex Programs

1 and 2 do not come too close, i.e.,

‖x1
t − x2

t ‖1 > ε0 , t = 0, . . . ,T −1 (2.166)

for the minimum clearance parameter ε0. We assume that the agents’ states
are perturbed by a disturbance wi

t , i.e., xi
t = x̂i

t +wi
t . So we treat the collision

avoidance constraints as random constraints. As in the previous chapter
these collision avoidance constraints are modeled as mixed-binary linear
constraints with the big-M method, resulting in 5T inequalities with 4T

binary variables. The constraints are

∀t = 1, . . . ,T x̂1
t (1)+w1

t (1)− x̂2
t (1)−w2

t (1)≥ ε0−Mob1
t (2.167)

x̂2
t (1)+w2

t (1)− x̂1
t (1)−w1

t (1)≥ ε0−Mob2
t (2.168)

x̂1
t (2)+w1

t (2)− x̂2
t (2)−w2

t (2)≥ ε0−Mob3
t (2.169)

x̂2
t (2)+w2

t (2)− x̂1
t (2)−w1

t (2)≥ ε0−Mob4
t (2.170)

h

∑
i=1

bi
t ≤ 3 , (2.171)

where Mo is as before some big number and xi
t( j) denotes the j-th coordi-

nate of xi
t and the same for wi

t .
For the relaxation we need additional 2T linear inequalities to model that

the relaxation of the binaries lies in the interval [0,1]. The goal of the agents
is to reach a certain goal position Zi ∈ R2.

The decision variables lie in R2T ×Z4T and, hence, the Helly dimension
of the decision space is h = (2T +1)24T and the dimension of the relaxed
decision space is l = 6T . The number of linear inequalities in the relaxation
of the model predictive control problem with two agents is

4T
input constraints

+ 8T
state constraints

+ 16
start value

+ 7T
collisions

= 19T +16 . (2.172)
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T = 1 T = 2 T = 3 T = 4 T = 5
N1 658 13680 290672 5919824 115424336
N2 1559 6031 13543 24123 37785

Table 2.3.: Number of samples N1 needed to guarantee PN{V ∗mi(ω)> ε
}
≤ β us-

ing bound (2.173) and number of samples N2 needed to guarantee
P

N{V ∗mi(ω)> ε
}
≤ β using bound (2.174) for the two-dimensional

model predictive control problem for two agents with planning horizon
lengths T = 1, . . . ,5, and ε = 0.1, and β = 0.01.

For the MI-RCP bound we have for N1 ≥ (2T +1)24T −1

P
N{V ∗mi > ε} ≤Φ(ε;(2T +1)24T −1,N1) (2.173)

and for the MI-RLP bound for N2 ≥ 6T (6T +1)−1

P
N{V ∗mi > ε} ≤

(
V

6T +1

)
Φ(ε;6T (6T +1)−1,N2) (2.174)

with V obtained from the upper bound theorem (Remark 2.2). In this ex-
ample the violation probability is

V ∗mi = P
{

δ ∈ ∆ : ‖x1
1− x2

1‖1 ≤ ε0 or . . . or ‖x1
T − x2

T‖1 ≤ ε0
}
, (2.175)

the probability that there will be a collision in time steps 1, . . . ,T . The
random parameter δ = (w1

1,w
2
1, . . . ,w

1
T ,w

2
T ) is the joint disturbance acting

on both agents over the planning horizon.
As in the previous two examples we numerically determined the N1 and

N2 that ensure

P
N{V ∗mi > ε} ≤ β . (2.176)

Remark 2.4 Since in this example there are many linear inequalities, V

can become very big. We encountered numerical difficulties with the de-

147



2. Mixed-Integer Random Convex Programs

termination of N2 since
( V

6T+1

)
can become bigger than the largest float-

ing point number although the right-hand side of (2.174) is actually much
smaller. In order to circumvent this problem, we employed a more conser-
vative bound along the lines of [44, Section 5]. We will briefly sketch it
here.

For the binomial coefficient
( V

6T+1

)
the well-known inequality

(
V

6T +1

)
≤
(

eV
6T +1

)6T+1

(2.177)

holds. For the cumulative binomial distribution, Chernoff’s inequality [54]

Φ(ε;s,N)≤ exp
(
− (Nε− s)2

2Nε

)
(2.178)

holds for Nε ≥ s. Putting these two together, we obtain(
V

6T +1

)
Φ(ε;6T (6T +1)−1,N2)

≤
(

eV
6T +1

)6T+1

exp
(
− (N2ε−6T (6T +1)−1)2

2N2ε

)
(2.179)

for N2ε ≥ 6T (6T +1)−1. The right-hand side of (2.179) is less than or
equal to β if and only if

(6T +1) ln
(

eV
6T +1

)
− lnβ ≤

(
(N2ε−6T (6T +1)−1)2

2N2ε

)
(2.180)

which follows from (2.179) by taking the logarithm on both sides of the
inequality and rearranging the terms. Inequality (2.180) was used in the
numerical experiments in this section to obtain N2 such that (2.176) holds.

In Table 2.3 we depict the numbers of samples N1 and N2 needed to
ensure that (2.176) holds, i.e., that a collision probability greater than ε

occurs only with probability less than or equal to β . Here, we chose β =
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(a) Example state trajectory without coordination constraints.

(b) Example state trajectory with coordination constraints.

Figure 2.5.: Example state trajectory for two agents without and with random
constraints.

0.01 and ε = 0.1. It can be seen that for T ≥ 2 bound (2.174) requires much
less samples than bound (2.173) to ensure the same level of confidence.

Further, we considered a concrete example with T = 5, ε0 = 1, u1
t ∈

[−20,20], u2
t ∈ [−12,12], x1

0 = [30,1], x2
0 = [45,1], Z1 = 60, Z2 = 50 and

objective function ∑
T−1
t=0 |Zi− xi

t(2)|, where xi
t(2) denotes the y-coordinate

of agent i. The system disturbance for each agent in each direction was
modeled to be correlated over time with covariance matrix Σ ∈ RH×H , with
entries Σst = 0.5 for s 6= t and Σtt = 2 + t to model the increase in un-
certainty over time. The disturbance acting on agent i in direction j was
drawn according to (wi

0( j), . . . ,wi
T−1( j))∼N (0,Σ). Since we considered

a planning horizon of length T = 5, we drew 37785 joint system distur-
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bance samples. In Figure 2.5(a) we plotted the state trajectories of the two
agents without any collision avoidance constraints. It can be seen that at
time steps t = 2 and t = 3 there would be potential violations of the random
constraint. The optimal objective value function without constraints was
J∗ = 242. In Figure 2.5(b) the state trajectories were determined with col-
lision avoidance constraints. The optimal objective value in this case was
J∗ = 282,6172. For this state trajectory it holds that PN{V ∗mi > 0.1}≤ 0.01,
i.e., the probability that we drew a realization of the joint disturbance such
that the probability that the next disturbance sample will lead to a collision
is higher than 10%, is less than 99%.

2.7. Conclusions

In this chapter we considered so-called mixed-integer random convex pro-
grams (MI-RCPs), convex optimization problems with a fixed number of
random constraints with discrete and continuous decision variables. We
proved explicit bounds on the tails of the probability that the optimal solu-
tion of an MI-RCP remains optimal for further, at the time of optimization
yet unknown, realizations of the random constraints (the so-called viola-
tion probability). These bounds hold for the most general case of MI-RCPs
with nonlinear convex random constraints. In order to sharpen the bounds
we considered MI-RCPs in which the constraints are linear and the uncer-
tainty only affects the right hand side of the linear constraints. For problems
with this structure we used a different argumentation to prove significantly
sharper bounds. The effect of this sharpening on the number of samples
needed to guarantee a prespecified confidence of an optimal solution was
studied in several different numerical examples.

Strengths The MI-RCP approach is a design approach to ex-ante im-
munize the solutions of convex programs with random constraints against
the effects of uncertainty. It is not concerned with concrete numerical so-
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lution techniques of an optimization problem but with designing a convex
optimization problem in such a way that it can be guaranteed with high con-
fidence that an optimal solution of the problem will remain optimal for fur-
ther realizations of the random constraints. Hence, the focus lies on giving
theoretical guarantees no matter how the optimal solution was found. The
remarkable result of this chapter is that it is indeed possible to immunize
convex programs with random constraints against the effect of uncertainty
with very little further assumptions on the actual nature of the uncertainty.

The theoretical results on MI-RCPs are highly general and do not make
any assumptions on the structure of the optimization problem besides con-
vexity of the constraints and on the structure of the random parameters be-
sides that one can draw independent and identically distributed realizations
from it.

Current Limitations When the dimension of the integer decision space
is high, due to the nature of the bounds on the tails of the violation proba-
bility, also a high number of samples will be needed in order to ensure that
an optimal solution will be optimal for further realizations with given confi-
dence. In those cases it is very likely that the bounds derived in this chapter
are too conservative and it is therefore an open question how to sharpen and
improve the bounds. Our results on MI-RCPs with linear constraints are a
first step in this direction and future work will be concerned with finding
tighter bounds.

Applications Mixed-integer problems have a wide range of applications
in operations research, engineering and finance. MI-RCPs can be applied
whenever an optimization problem with randomness or uncertainty in the
constraints with mixed-integer decision variables has to be solved and the
user is interested in strong theoretical guarantees about the generalization
properties of an optimal solution. For example, MI-RCPs were applied to
the optimal design of truss structures with uncertainty about external loads
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and material stiffness properties with the goal of using as little material as
possible in the structure [7]. In this thesis we considered a Knapsack prob-
lem with perturbed capacity constraints, an inventory control problem with
random demands and a multi-agent MPC problem with collision avoidance
constraints under disturbance.

As an application in finance, random convex programs with continuous
decision variables have already been applied to data-driven portfolio opti-
mization in [48]. When fixed transaction costs for buying assets in a port-
folio are assumed the portfolio optimization problem becomes an mixed-
integer problem [91] and the approaches on MI-RCPs presented in this the-
sis can be applied.
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3. Distributed Optimization under
Uncertainty

3.1. Introduction

In this chapter we tackle the problem of multiple agents coordinating under
uncertainty in a distributed manner. For example consider a team of mobile
robots where each robot’s task is to reach a target way point and the robots
need to coordinate in order to avoid collisions among each other and safely
reach their targets. Or consider a distributed sensor network whose task is
to track several targets as efficiently and accurately as possible. Both these
applications have several key characteristics and challenges in common and
in the following we will briefly highlight these.

Firstly, in both scenarios the state transitions are uncertain: For exam-
ple for a differential drive robotic platform if the robot applies the action
of turning 45◦ to the left, it will only do so with a certain probability and
with some other nonnegative probability it will turn, say, 44◦ or 46◦ etc.
In the sensor network the sensor will in general not be able to exactly pre-
dict the movements of the targets and will therefore have to resort to some
probabilistic model for the target motion.

Secondly, the internal states of the systems are not directly accessible but
have to be estimated from noisy observations: The robots in the multi-robot
system will in general not have perfect knowledge about their absolute po-
sitions but will have to use noisy measurements, e.g. from laser scanners,
to infer their own and the other robots’ positions. In the sensor network a
sensor will in general not be able to perfectly locate the tracked targets and
there will always be the possibility that a target is within the sensing radius
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of a sensor and due to sensor noise the sensor will not be able to correctly
detect the target.

The decentralized partially observable Markov decision process (Dec-
POMDP) model allows to model distributed planning under uncertainty
in multi-agent systems taking the challenges above into account [27]. In
the Dec-POMDP model each agent can carry out actions that have certain
probabilistic effects on the states of the agents and their environment. A
probabilistic modeling of the effects means that when an agent carries out
an action, with a probability specified by the model, some effect occurs,
with some probability a different effect occurs etc.

Furthermore, in this model the agents do not have exact, but uncertain
knowledge about their current internal states and their environment. After
execution of an action this knowledge can be updated by noisy, i.e., inex-
act observations. The goals or tasks of the agents (e.g. in the multi-robot
scenario the robots want to reach their target locations as fast and fuel-
efficiently as possible) are modeled in the Dec-POMDP model through a
reward function. This reward function depends on the actions of the agents
and the actions’ effects on the states and the environment. The goal of the
agents in the Dec-POMDP model is then to find actions that optimize the
expected reward from the actions and their effects.

When optimizing the reward, the agents do not only take into account
their current knowledge and the immediate reward resulting from the next
action. They also incorporate future, yet unknown, information gathered
through future observations and the possibility of executing future actions
based on the future knowledge. The result of the optimization is then not
only the next action that optimizes the short-term reward but a so-called
policy that for all possible future observations within some time limit de-
termines the optimal action for these observations. In other words, a policy
maps possible future observations to a respective action that is optimal with
respect to the knowledge resulting from the observations.

Unfortunately, studies of complexity have shown that the problem of
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finding optimal policies in Dec-POMDPs is very hard to solve. In the
special case of Dec-POMDPs, where all agents have the same goal, the
complexity of finding an optimal policy is complete in NEXP, even if only
two agents are considered [27]. Intuitively the complexity is related to the
combinatorial examination of all possible future observations, actions and
their effect on the states of the agents. It is therefore apparent that the size
of the state space, i.e., the number of possible states, the size of the action
space, i.e., the number of possible actions and the size of the observation
space have a crucial impact on the complexity of finding optimal policies.

In order to reduce the complexity of finding policies in Dec-POMDPs
alternating optimization approaches to find locally optimal policies were
proposed in the past [98, 99]. In alternating optimization the policies of all
agents except one are held fixed and the one agent computes its best re-
sponse policy to the fixed policies of the others. After an agent has adapted
its policy to the fixed policies of the other agents another agents is picked to
do the same and so forth. A joint policy for all agents is then called locally
optimal, if no agent can improve the overall reward by changing its own
policy. The proceeding is similar to hill-climbing approaches in general
combinatorial optimization and artificial intelligence in which all but one
decision variable are held fixed at some value and the objective is optimized
with respect to the remaining free variable [114].

The challenge when applying alternating optimization approaches from
[98,99] is that when an agent wants to find its best response to the fixed poli-
cies of the other agents, it is not clear which action the others will eventually
execute, since, as we explained above, a policy maps future observation to
actions. Hence, in order to coordinate its actions with the actions of the
other agents and to find a best response policy, an agent has to account for
all possible future observations the other agents could make within some
time limit and for each find its best response.

This necessity of also considering all future observations for the other
agents leads to an explosion of the space of possible “states” the agent
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needs to consider and, hence, of the complexity of the problem each agent
has to solve locally in order to compute a best response. To alleviate this
increase in complexity, we propose in this chapter that each agent does not
account for all possible future information the other agents might gather
when it searches for its best response to the policies of the other agents but
only the information they will most likely gather in the future. Each agent
can easily compute these most likely information from the models specified
in the Dec-POMDP and the policies of the other agents. It is intuitively ap-
parent that when an agent considers only the most likely future information
for the other agents, the complexity of the problem it has to solve locally
is reduced significantly. In fact, we prove in this chapter that each agent
when solving the local best response problem only has to account for the
effect of its actions on the state space directly linked to itself and the future
observations of the other agents only play a marginal role. Furthermore,
we prove in this chapter that if the agents employ a coordination scheme
based on alternating optimization as described above, for which it is guar-
anteed that the expected reward is monotonically increasing, and under the
assumption that always the most likely information will be gathered when
solving the local best response problems by the agents, then convergence to
a locally optimal joint policy for all agents can always be guaranteed. We
provide empirical evidence in experiments and simulations that the most
likely information approach leads to a significant improvement of runtime
compared to other approaches in which all information is considered.

This chapter is structured as follows: In Section 3.2 we formally define
the Dec-POMDP model for planning under uncertainty, introduce its sim-
plification, the network distributed POMDP model, and describe how ex-
isting approaches find locally optimal policies in these models. In Section
3.3 we formalize the concept of most likely information in POMDPs and
describe how this concept can be applied in multi-agent planning. Further-
more, we prove the resulting complexity reduction and finite convergence
of alternating optimization planning with the most likely information con-
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cept. In Section 3.4 we provide concrete algorithms on how to incorporate
the most likely information approach in planning. In Section 3.5 we de-
scribe how the concepts of the previous sections can be extended to contin-
uous planning and information spaces. In Section 3.6 we critically discuss
the most likely information paradigm and address related work. In Sec-
tion 3.7 we present empirical results obtained from experiments in a sen-
sor network and a multi-robot system and conduct comparisons with other
state-of-the-art planning techniques.

3.2. Problem Formulation

The problem addressed in this chapter is the search for joint policies that
maximize a joint cumulative expected reward in a multi-agent setting. Such
systems can be modeled as Decentralized Partially Observable Markov De-

cision Processes (Dec-POMDP).

Definition 3.1 (Dec-POMDP) A Dec-POMDP is a tuple

< X ,U ,P,Ω,O,R,b0 > , (3.1)

where

• X := X 1×·· ·×X M×X u denotes the state space of the system
consisting of local state spaces X i for each agent i ∈ {1, . . . ,M} and
the space of unaffectable world states X u. All spaces are assumed
to be discrete and finite in this model. A joint state x ∈X subsumes
the current state of the whole system, comprised of the states of all
agents and the world state.

• U :=U 1×·· ·×U M denotes the space of possible actions available
to the system consisting of the discrete action spaces U i of each
agent i. An action u ∈U is called joint action.
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• p(xt+1,xt ,ut) is the transition function for the probabilistic transition
from system state xt ∈X to system state xt+1 ∈X under joint action
ut . It is defined as

p(xt+1,xt ,ut) := P{xt+1 = xt+1|xt = xt ,ut} , (3.2)

i.e., the probability that the system transitions from state xt = xt to
state xt+1 = xt+1 given action ut .

• Ω := Ω1 × ·· · ×ΩM is the discrete joint observation space. Each
agent i only observes ω i

t ∈ Ωi from its own observation space, i.e.,
the observations of all other agents are hidden to agent i.

• o(ωt ,xt ,ut) is the observation function defined as

o(ωt ,xt ,ut) := P{ω t = ωt |xt = xt ,ut} , (3.3)

i.e., the probability of making observation ω t = ωt given that the
system is in joint state xt = xt and the agents applied joint action ut .

• R : X ×U → R, (xt ,ut)→ R(xt ,ut) ∈ R is the reward function that
maps state-action combinations to real values.

• b0 is an initial discrete probability distribution over the state space
X . It is assumed to be independent for all agents, i.e., bi

0 is the
probability distribution over the local state space X i of agent i and
the probability of being in joint state x = (x1, . . . ,xM,xu) is b0(x) =

bu
0(x

u) ·∏M
i=1 bi

0(x
i). The initial distribution is known to all agents.

Remark 3.1 In the case of M = 1, i.e., if there is only one agent in the
system, the model is called (single-agent) POMDP. For a general introduc-
tion to Markov Decision Processes in which the states are directly observ-
able see [106], for an introduction to POMDPs [80] and to Dec-POMDPs
[27, 72, 98].
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In the Dec-POMDP model the agents cannot directly observe the joint
state of the system but can only take noisy measurements and from these
make inference about the state. Hence, all the knowledge the agents have
are the actions they have executed so far and the observations they have
made. The goal of the agents is to optimize the reward over some planning
horizon of length T . Since when the agents plan, future measurements are
not known yet, they need to optimize the expected reward and the result
of the optimization will not be action strategy consisting of a sequence of
actions but it will be a so-called policy π i for each agent i. This policy gives
an optimal action for each possible seqence of observations. For example
for a sequence of observations some action may be optimal because the
agent believes to be in some state with high probability and for some other
sequence of observations another action might be optimal.

Since agent i does not know observations or actions of the other agents,
the decision at each time step t can only be based on its local observation
sequence (ω i

0, . . . ,ω
i
t ). Therefore, the behavior of an agent i is fully defined

by a policy π i(ω i
0, . . . ,ω

i
t ) = ui

t ∈ U i that maps observation sequences to
possible actions. For a given joint policy π =

(
π1, · · · ,πM

)
and an initial

state distribution b0, the expected cumulative reward over T steps is

Jπ(b0) = Ex0:T

{
RT (xT )+

T

∑
t=0

R(xt ,ut)

∣∣∣∣ b0,π

}
, (3.4)

where R(xt ,ut) denote one-step rewards and RT (xT ) is some terminal re-
ward. It can be shown that the probability distributions over joint states xt

and actions ut , which are needed to compute Jπ(b0), are fully determined
by the initial state distribution and the joint policy [28]. Hence, the control
objective is to find the joint policy π∗ = argmaxπ(Jπ(b0)) that maximizes
the expected reward Jπ(b0).

Unfortunately, the general problem to find the optimal policy in Dec-
POMDPs is NEXP-complete and therefore not feasible for most systems
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[27]. In this chapter we will therefore consider a special case of Dec-
POMDPs called Network Distributed POMDPs (ND-POMDPs) that are
motivated by making decisions under uncertainty in domains like sensor
networks [99, 127].

Example 3.1: Sensor Network Target Tracking Example

S1 S2 S3

L1 L2

Figure 3.1.: Distributed sensor network for tracking targets in locations L1 and L2.

The following example is taken from [99,127] and originates from the

area of tracking a target in a sensor network [89]. See Figure 3.1 for the

setup of the example. We assume that there are three sensors S1,S2,S3
and that sensors S1 and S2 can scan location L1 and S2,S3 can scan

location L2, i.e., S2 can scan two locations but only one at a time. In

order to locate a target in one of the locations both sensors that can

scan the location need to coordinate and both scan the location at the

same time.

There is a target that can be either in L1 or in L2 or absent and

that has an uncertain motion, i.e., if it is present in one location with a

certain probability it will stay in that location or leave it with a certain

probability.

If the sensors choose to scan a location it is not guaranteed that

they will make accurate observations. With a certain probability they

can make a false-negative observation, i.e., the target is present in that

location but the sensor does not see it, or a false-positive observation,

i.e., the target is not present but the observation indicates to the sensor

that it is. These observation probabilities only depend on the sensor
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and, hence, are stochastically independent for di�erent sensors. When

a sensor scans a location it incurs a certain cost, if it does not scan at

all it receives no cost. When two sensors scan a location with the target

present at the same time, they receive a reward. The goal of the sensors

is to track the target under as little costs as possible gaining a reward

as high as possible.

The special characteristics of this scenario are that the transition prob-

abilities of the target are independent of the actions of the sensors, the

transitions and observation probabilities of the sensors are independent

of the actions of the other sensors and the rewards are �local�, i.e., when

sensors S1 and S2 track a target in L1, S3 could be turned o� and would

not receive any reward or costs. �

Motivated by the main characteristics of this scenario the networked dis-
tributed POMDP (ND-POMDP) model was introduced in [99]. In the fol-
lowing we will formally introduce the model.

Definition 3.2 (Transition and Observation Independence) We call a
Dec-POMDP transition independent if the joint transition function from
Definition 3.1 can be written as the product

p(xt+1,xt ,ut) = pu(xu
t+1,x

u
t ) ·

M

∏
i=1

pi(xi
t+1,x

i
t ,u

i
t) , (3.5)

where pu is the transition function for the unaffectable world states and pi

are the transition functions of the individual agents and xt =(x1
t , . . . ,x

M
t ,xu

t ),
xt+1 = (x1

t+1, . . . ,x
M
t+1,x

u
t+1), and ut = (u1

t , . . . ,u
M
t ).

A Dec-POMDP is observation independent when the joint observation
function can be written as the product

o(ωt ,xt) =
N

∏
i=1

oi(ω i
t ,x

i
t ,x

u
t ) , (3.6)
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where oi are the observation functions of the individual agents and ωt =

(ω1
t , . . . ,ω

M
t ).

In a transition and observation independent model the state transition
probabilities and observation probabilities are stochastically decoupled. We
will further simplify this model by assuming that the reward function also
has a special structure.

Definition 3.3 (Local Reward) The fact that in many multi-agent settings
interaction only occurs locally, i.e., an agent will in general not interact with
all other agents but only with a smaller subset, can be exploited by consid-
ering local reward functions in which each term models local interaction
between a group of agents

R(xt ,ut) = ∑
I⊂I

RI(x
i1
t , . . . ,x

ik
t ,x

u
t ,u

i1
t , . . . ,u

ik
t ) , (3.7)

where I = {{i1, . . . , ik} ⊂ {1, . . . ,M}} refers to all subsets of agents. Each
part of the sum only depends on the states and actions of some of the agents
and the unaffectable world state. When there is not interaction in a certain
subset I of agents set RI ≡ 0.

Based on the local reward function we can now study which agent inter-
acts with which others agents by means of an interaction graph.

Definition 3.4 (Interaction Hypergraph) Define the interaction hyper-

graph as a graph G = (A,E) in which the vertices A are the agents and there
is an edge between two agents i1 and i2 if there exists an I = {i1, . . . , ik} ⊂
{1, . . . ,M} such that {i1, i2} ⊂ I and RI 6≡ 0, i.e., if agent i1 and i2 have a
reward function in common.

Based on the interaction hypergraph we define the neighbor of an agent
to be the other agents with which it interacts. This could be all other agents
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in the network as for example for sensor S2 in Example 3.1 or just a single
agent as for sensors S1 and S3.

Definition 3.5 (Neighborhood) The neighborhood Ni of an agent i are the
agents

Ni := { j ∈ A : j 6= i and (i, j) ∈ E} , (3.8)

i.e., the neighborhood of an agent i are all the other agents it interacts with
via the reward function. Define the neighborhood state

xNi
:= (xi1 , . . . ,xik) (3.9)

as the states of all the agents i j ∈ Ni in the neighborhood of agent i.

Together with transition- and observation-independence, this definition
allows to represent the expected reward (Equation (3.4)) as

J(b0) = ∑JI(bI
0) , (3.10)

i.e., as the sum of cumulative rewards for agents that interact with each
other. It was shown that each part of this sum only depends on the policies
π I of agents in the subset I [99]. Therefore, any change in policy of agent i

only affects the reward in its local neighborhood JI for i ∈ I.

Definition 3.6 (ND-POMDP) Define a Network Distributed POMDP as
a Dec-POMDP with transition and observation independent model as in
Definition 3.2 and local reward as in Definition 3.3.

Definition 3.7 (Belief State) We will call the discrete probability distribu-
tions over (joint) states belief states or beliefs.
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3.2.1. Alternating Optimization for ND-POMDPs

Several approaches were proposed in the literature to find locally optimal
policies of Dec-POMDPs by alternating optimization. An alternating op-
timization algorithm iterates through the agents according to some polling
scheme and finds an optimal policy for each agent assuming that the poli-
cies of the other agents are held fixed. This iteration goes on until no agent
can improve its policy with respect to the others anymore and a locally op-
timal joint policy is found. The ”Joint Equilibrium-based search for poli-

cies“ (JESP) algorithm [98] is an alternating optimization algorithm for
general Dec-POMDPs whereas the ”Locally interacting distributed joint

Equilibrium-based search for policies“ (LIDJESP) algorithm [99] extends
JESP to ND-POMDPs.

The key idea of our approach can be adapted to any algorithm using
alternating optimization in transition and observation independent models.
However, since LIDJESP can be applied in conjunction with the approach
introduced in this chapter, we will briefly outline its functionality.

Given an ND-POMDP the local cumulative reward JI only depends on
the behavior of the agents i ∈ I in the neighborhood. This allows to split
the planning problem into subproblems that represent the interaction in lo-
cal neighborhoods. At the beginning all agents in a neighborhood exchange
(random) initial local policies. To improve the joint policy, each agent holds
the policies of the other agents in its neighborhood fixed and computes its
best response to the fixed policies of the other agents in their neighborhood.
Then, the expected gains for potential improvements are exchanged among
the agents in a neighborhood and the agent achieving the largest gain is
allowed to change its policy. This continues until no agent can further im-
prove its policy and thus, the joint policy is in a local optimum.

In order to find a best response to fixed policies of other agents at every
optimization step the agents need to solve a single-agent POMDP with an
extended state space [98]. A state in this POMDP is a combination of the
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local state xi
t of agent i, the states xNi

of all other agents in the neighbor-
hood Ni of the agent, the unaffectable world state xu

t and the possible ob-
servation sequences ωNi

1:t the neighbors could make until time t. An element
et

i = (xi
t ,x

Ni
t ,xu

t ,ω
Ni

1:t ) of this space is called episode. The possible future ob-
servations of its neighbors have to be considered by the agent since it does
not know which future observations its neighbors will make and, hence,
which actions the neighbors will eventually carry out. So it has to account
for all possible future observations of its neighbors. Thus, to obtain the best
response in each optimization step, an optimal policy for a POMDP over
episodes has to be found. The complexity of this computation depends on
the dimension of the state and observation spaces of all other agents in Ni.
Therefore, the complexity of the search for joint policies increases consid-
erably with the number of agents within a local neighborhood.

In the following we will introduce a heuristic that will drastically reduce
the dimension of the state space of the local POMDP an agent has to solve.
More precisely, with the heuristic each agent i does not have to solve a
POMDP over episodes but only a POMDP over its own local state space
X i and the space of unaffectable world states X u. Especially for algo-
rithms that are based on alternating improvement of joint policies in which
each agent could possibly be required to compute best responses to the poli-
cies of other agents several times, this represents a considerable speedup.

3.3. Alternating Optimization with Maximum Likelihood
Observations (MLOs)

To reduce the complexity of alternating optimization in multi-agent sys-
tems, the key idea of the approach presented in this chapter is as follows: In-
stead of accounting for all possible future observations its neighbors could
make and computing its best response for each observation sequence, the
agent assumes for planning purposes that its neighbors will always make
the observation that is most likely to occur in a probabilistic sense based
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on the observation probabilities as explained below. Under this assumption
the behavior of an agent’s neighbors is deterministic and an optimal pol-
icy simplifies to a sequence of actions. We will show that under the most
likely observations assumption and the resulting sequences of actions for
the neighbors, the local optimization problem for each agent is a POMDP
over only its own local state space X i.

3.3.1. Maximum Likelihood Observation (MLO)

In this section we will formally define the most likely observation in the
context of an ND-POMDP model and demonstrate how it can be computed
from a given belief.

Definition 3.8 (Maximum Likelihood Observation) Given a belief b
ui

t−1
t

and an action ui
t−1, the maximum likelihood observation (MLO) is defined

as as follows:

ω̂
i
t = arg max

ω i
t∈Ωi

{
P

{
ω

i
t = ω

i
t

∣∣∣∣bui
t−1

t ,ui
t−1

}}
, (3.11)

i.e., the maximum likelihood observation ω̂ i
t is the observation that has the

highest probability of being made by agent i at time step t given the belief

b
ui

t−1
t over the states of agent i and the unaffectable world states and action

ui
t−1.

Remark 3.2 Please note here that we implicitly assume that there is a lex-
icographic ordering on the observation space. So when there is a tie in the
likelihood among two or more observations, the lexicographic criterion can
be used as a tie-braking rule.
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The conditional probability in Equation (3.11) can be computed from an
agent’s action ui

t−1, belief bui
t , and the observation oi of the agent

P

{
ω

i
t = ω

i
t |b

ui
t−1

t ,ui
t

}
= ∑

xi
t+1∈X i, xu

t+1∈X u

P

{
ω

i
t = ω

i
t |xi

t+1 = xi
t+1,x

u
t+1 = xu

t+1,u
i
t−1

}
·P
{

xi
t+1 = xi

t+1,x
u
t+1 = xu

t+1|ui
t−1

}
= ∑

xi
t+1∈X i, xu

t+1∈X u

oi(ω i
t ,x

i
t+1,x

u
t+1,u

i
t−1) ·b

ui
t−1

t (xi
t+1,x

u
t+1) .

(3.12)

bui
t

t is the belief of agent i at time t and subsumes all the information agent i

has at that time and depends only on the initial belief, the agent’s actions up
to time t and the observations the agent made. The belief can be recursively
computed through

b
ui

t−1
t (xi

t+1,x
u
t+1) := ∑

xi
t∈X i, xu

t ∈X u

pi(xi
t+1,x

i
t ,u

i
t−1) · pu(xu

t+1,x
u
t ) ·be

t (x
i
t ,x

u
t )

(3.13)

where

be
t (x

i
t ,x

u
t ) =

1
c

oi(ω̃ i
t−1,x

i
t ,x

u
t ) ·b

ui
t−1

t−1 (x
i
t ,x

u
t ) (3.14)

and c is a normalization constant

c := ∑
xi

t∈X i, xu
t ∈X u

be
t (x

i
t ,x

u
t ) (3.15)

and ω̃ i
t the observation made in time instance t − 1 [80]. It is important

to note here that since we consider transition and observation independent
models, all beliefs of an agent will be independent of the states and actions
of all other agents. Since further all observation probabilities for different
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agents are independent, it follows that the determination of the MLO for
agent i only depends on the observation model and the beliefs of agent i.

Remark 3.3 (MLO Actions) A policy π i determines for a sequence of
observations ω̃ i

1:t that were made by the agent up to time t the next action
ui

t := π i(ω̃ i
1:t) that is optimal for this observation history. For time t = 0

based on the probability distribution b0 the first optimal action ui
0 := π i(〈〉)

is given by the policy before any observations are made. Based on the
resulting predicted belief b

ui
0

0 the MLO ω̂ i
1 can be computed as described

above. From the MLO the corresponding optimal action ui
1 := π i(ω̂ i

0) can
be computed and then the next MLO ω̂ i

1 can be computed according to
Equation (3.11). By iterating these computations, it is possible to obtain an
MLO action sequence ui

0:T and a corresponding sequence of MLOs ω̂ i
1:T .

See Algorithm 3 for details.

The following definition considers the effect the MLO assumption has
on the resulting beliefs.

Definition 3.9 (Nominal Belief Trajectory) Consider an ND-POMDP, an
initial discrete probability distribution bi

0 over a discrete state space X i of
an agent and an initial probability distribution bu

0 over the space of unaf-
fectable world states X u. For an MLO sequence ω̂ i

1:T and a corresponding
action sequence ui

0:T , define the nominal belief trajectory to be the sequence
of probability distributions

bi
0:T := (bi

0 ·bu
0,b

i
1, . . . ,b

i
T ) , (3.16)

where for 1≤ t ≤ T

bi
t(x

i
t+1,x

u
t+1) := ∑

xi
t∈X i, xu

t ∈X u

pi(xi
t+1,x

i
t ,u

i
t−1) · pu(xu

t+1,x
u
t ) ·be

t (x
i
t ,x

u
t )

(3.17)
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where

be
t (x

i
t ,x

u
t ) =

1
c

oi(ω̂ i
t−1,x

i
t ,x

u
t ,u

i
t−1) ·b

ui
t−1

t−1 (x
i
t ,x

u
t ) (3.18)

and c is the normalization constant as in (3.15).

Remark 3.4 The nominal belief trajectory is the sequence of probability
distributions obtained by iterated prediction with actions and filtering with
maximum likelihood observations of the initial probability distribution over
the state space of agent i and the unaffectable world states [114, Chapter
15]. Please note that given actions and MLOs the belief trajectories are
deterministic in belief space, i.e., in the space of all discrete probability
distributions over the state space.

3.3.2. The Local POMDP

In this section, we show that the local problem for an agent of computing
its best response to the fixed policies of its neighbors and the sequences
of actions resulting from the MLO assumption is a POMDP over the local
state space.

Proposition 3.1 In an ND-POMDP the problem for agent i of finding a

best response to the policies of its neighbors Ni when it is assumed that the

neighbors make the most likely observation is a single-agent POMDP over

the local state space X i and the space of unaffectable world states X u.

PROOF. We will show that the reward function for agent i only depends
on the states of the agents, the world states and the actions of the agent.
Since by assumption the model is transition and observation independent,
the proposition is then proved. Given a stochastically independent initial
joint belief b0, policies πNi

for all neighbors, under the MLO assumption
fixed sequences of actions result from the policies and, hence, the nom-
inal belief trajectories bNi

0:T are fixed. In the following we define xI
t :=
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(xi1
t , . . . ,xi

t , . . . ,x
ik
t ,xu

t ) as the joint state of agents in subset I, the unaf-
fectable world states and joint actions uI

t := (ui1
t , . . . ,ui

t , . . . ,u
ik
t ), respec-

tively. The goal of agent i is to maximize the cumulative expected reward

T

∑
t=0

 ∑
xNi

t ,xu
t

bt(xI
t ,x

u
t ) · ∑

I∈I
RI(xI

t ,x
u
t ,u

I
t )

 , (3.19)

where the actions u j
t are fixed for all j ∈ Ni because of the MLO assump-

tion, the decision variables are the actions ui
0:T , and the probability distribu-

tions bi
t are computed according to the prediction (3.13) and update process

(3.14). For each of the summands in the large round brackets it holds that

∑
xNi

t ,xu
t

bt(xI
t ,x

u
t ) · ∑

I∈I
RI(xI

t ,x
u
t ,u

I
t )

= ∑
xi

t ,x
u
t

bi
t(x

i
t ,x

u
t ) ·

∑
xNi

t

∏
j∈Ni, j 6=i

b j
t (x

j
t ,x

u
t ) · ∑

I∈I
RI(xI

t ,x
u
t ,u

I
t )︸ ︷︷ ︸

=:R̃(xi
t ,x

u
t ,u

i
t )


= bi

t(x
i
t ,x

u
t ) · R̃(xi

t ,x
u
t ,u

i
t) ,

(3.20)

where R̃I(xi
t ,x

u
t ,u

i
t) only depends on the actions of agent i since the actions

of the other agents are fixed and, hence, their belief trajectories b j
t (x

j
t ,xu

t )

deterministic. It follows that

T

∑
t=0

∑
xNi

t ,xu
t

bt(xI
t ,x

u
t ) · ∑

I∈I
RI(xI

t ,x
u
t ,u

I
t ) =

T

∑
t=0

∑
xi

t ,x
u
t

bi
t(x

i
t ,x

u
t ) · R̃(xi

t ,x
u
t ,u

i
t)

(3.21)

and the state space of the decision problem for agent i is only X i×X u

with modified reward function R̃. �
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3.3. Efficient Alternating Optimization

We have thus shown in Proposition 3.1 that the MLO assumption signif-
icantly reduces the complexity of the local problem agents have to solve in
order to compute a best response.

3.3.3. Convergence

In this section we will show that if each agent makes the MLO assumption
for its neighbors and a scheme is applied such that the agents are allowed
to change their local policies such that the expected reward resulting from
the joint policies is non-decreasing, we can always guarantee finite conver-
gence of the coordination.

Definition 3.10 (Locally Increasing Coordination) A coordination algo-
rithm using MLOs is called locally increasing, when alternately one of the
agents in a neighborhood Ni∪{i} changes its policy πk to a different policy
π̃k such that for the corresponding respective sequences of actions derived
from the MLO assumption uk

0:T and ũk
0:T it holds that

∑
I∈I

JI(ũk
0:T ,u

(Ni∪{i})\{k}
0:T ,b0)≥ ∑

I∈I
JI(uk

0:T ,u
(Ni∪{i})\{k}
0:T ,b0) , (3.22)

where

JI(uk
0:T ,u

(Ni∪{i})\{k}
0:T ,b0) =

T

∑
t=0

∑
xNi

t ,xi
t ,x

u
t

bt(xI
t ,x

u
t ) ·RI(xI

t ,x
u
t ,u

I
t ) (3.23)

is the expected cumulative reward resulting from RI if agent i executes the
sequence of actions ui

0:T and the other agents execute the sequences uNi

0:T ,
respectively. This means that in a locally increasing coordination algorithm
the agents change their policies such that the cumulative expected reward
evaluated on the actions resulting from the MLO assumption is monotoni-
cally increasing.
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3. Distributed Optimization under Uncertainty

Remark 3.5 The polling structure according to which agents are selected
to improve the cumulative reward could for example be a fixed order as
we will demonstrate in MLOFIXEDORDER in Algorithm 1 or a more smart
“auctioning” method as MLOLIDJESP as in Algorithm 4.

The following proposition shows convergence for any locally increasing
algorithm.

Proposition 3.2 For an ND-POMDP, a locally increasing algorithm based

on the MLO assumption converges after finitely many improvement rounds

where an improvement round is when one agent changes its policy to a

better one.

PROOF. Since we modeled the system to be transition and observation
independent, changes in the actions of agent i only cause changes in the
belief bi

t and not in the beliefs of the other agents. Hence, a change in
actions of agent i only has an impact on the expected rewards JI for i ∈ I.
Therefore, even if changes to the local policy have been made, we have for
the JI with i /∈ I

JI(ui
0:T ,u

Ni

0:T ,b0) = JI(ũi
0:T ,u

Ni

0:T ,b0) , (3.24)

i.e., changes of the cumulative reward in a neighborhood do not have a
negative impact on the cumulative reward of agents that do not belong to
the neighborhood (see also [99]).

172



3.3. Efficient Alternating Optimization

The overall cumulative reward consisting of the sum of all reward func-
tions is thus monotonically increasing:

∑
I

JI(ũi
0:T ,u

Ni

0:T ,b0) (3.25)

= ∑
I,i∈I

JI(ũi
0:T ,u

Ni

0:T ,b0)+ ∑
I,i/∈I

JI(ũi
0:T ,u

Ni

0:T ,b0) (3.26)

≥ ∑
I,i∈I

JI(ui
0:T ,u

Ni

0:T ,b0)+ ∑
I,i/∈I

JI(ũi
0:T ,u

Ni

0:T ,b0) (3.27)

= ∑
I,i∈I

JI(ui
0:T ,u

Ni

0:T ,b0)+ ∑
I,i/∈I

JI(ui
0:T ,u

Ni

0:T ,b0) (3.28)

=∑
I

JI(ui
0:T ,u

Ni

0:T ,b0) . (3.29)

Since the overall expected cumulative reward is bounded from above by the
global optimum that can be found by a centralized optimizer, a locally in-
creasing algorithm leads to a bounded, monotonically increasing sequence
of cumulative rewards. Since the space of all joint actions is finite and
discrete, there are only finitely many sequences of actions and correspond-
ing cumulative rewards. Thus, we have a monotonically increasing finite
sequence that is bounded from above and, hence, any locally increasing
algorithm converges in finitely many steps. �

Remark 3.6 Convergence is achieved when no agent can improve its pol-
icy with respect to the policies of its neighbors. However, when a dis-
tributed scheme for improvement is applied (like in [99] or MLOLIDJESP)
in which the agent that can establish the best improvement in local neigh-
borhood objective is allowed to change its policy there has to be some way
for the agents to check for convergence. This means there has to be some
way for the agents to decide when the algorithm has globally converged
in the whole system. In [99] this is accomplished by the introduction of a
termination counter that is locally stored in each agent. We refer the reader
to [99] and Algorithm 4 for details.
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3. Distributed Optimization under Uncertainty

Algorithm 1 MLOFIXEDORDER(i)
1: π i← random policy,
2: (ui

0:T , ω̂
i
1:T )← COMPUTEMLO(π i,b0,T )

3: Transmit ui
0:T and corresponding MLOs ω̂ i

1:T to other agents
4: Receive best responses u j

0:T , MLOs ω̂
j

0:T from agents j ∈ {1, . . . , i−1}

5: Receive random responses u j
0:T and MLOs ω̂

j
0:T from agents j ∈ {i+

1, . . . ,m}
6: (π i,ui

0:T )← BESTRESPONSE(i,b0,(u1:i−1
0:T ,ui+1:M

0:T ), ω̂
{1,...,M}\i
0:T ,T )

7: Transmit ui
0:T and MLOs ω̂ i

1:T to agents {i+1, . . . ,M}
8: return

(
π i,ui

0:T
)

3.4. Algorithms

Fixed Ordering In this section, we will first present the case that there
is a fixed ordering on all agents given, i.e., the local neighborhoods are
neglected and there is no “smart” improvement of the plans. We present
this simpler version first in order to better emphasize the characteristics
of planning with MLOs. In this algorithm each agent computes a best-
response to the policies of the other agents only once.

Every agent starts first with a randomly generated policy and determines
for this policy the MLOs and corresponding actions as described in previ-
ous sections and Remark 3.3 (Line 2 in Algorithm 1). These are then trans-
mitted to all other agents in Line 3. Agent i receives actions and MLOs from
the other agents (Lines 4 and 5) where the actions of agents {1, . . . , i− 1}
are already optimized. This means that agents {1, . . . , i− 1} already com-
puted their best responses while agents {i+ 1, . . . ,M} will optimize their
plans based on the best responses of the agents with lower index. This is a
hierarchical concept in which agent i has to adapt to the already optimized
policies of agents {1, . . . , i−1} and all agents j with j > i have to adapt to
the already optimized policy of agent i.

In line 6 the agent computes its own best response to the plans of the
other agents. In order to do so it first determines the nominal belief tra-
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3.4. Algorithms

Algorithm 2 BESTRESPONSE(i,b0,bu
0,b

Ni

0 ,uNi

0:T , ω̂
Ni

1:T ,T )
1: // compute nominal belief trajectories for neighbors
2: for all j ∈ Ni do
3: for all t = 1, . . . ,T do
4: b j

t ← MLBELIEFUPDATE(b j
t−1,u

j
t−1, ω̂

j
t−1)

5: end for
6: end for
7: COMPUTEVALUEFUNCTION(i,bi

0 ·bu
0,b

Ni

0:T ,u
Ni

0:T ,0,T )
8: π i← COMPUTEPOLICY(i,bi

0 ·bu
0,〈〉)

9: (ui
0:T , ω̂

i
1:T )← COMPUTEMLO(π i,b0,T )

10: return (π i,ui
0:T )

jectories for the others agents and then determines its best response by
calling BESTRESPONSE. Here each agent first determines the nominal be-
lief trajectories for its neighbors resulting from the MLO assumption and
then calls COMPUTEVALUEFUNCTION and COMPUTEPOLICY to solve the
POMDP over its own local state space and find its best response policy. The
optimal policy is computed through dynamic programming (see Algorithms
6 and 7) similarly as in [98, 99]. The MLOs and actions corresponding to
the resulting policy are then transmitted to agents {i+ 1, . . . ,M} and the
optimal policy is returned.

Smart Improvement Now we will briefly highlight in Algorithm 4 how
planning with the most likely observation assumption can be combined with
the LIDJESP algorithm from [99]. After exchanging action sequences and
MLOs based on a randomly generated policy with the other agents in its
neighborhood, agent i first determines the utility of the current joint plan in
line 9. The joint plan consists of its own policy combined with the action
sequences of the other agents and the utility is computed as described in
the proof of Proposition 3.1. Afterwards, in line 10 the agent determines
the utility of its best response policy and the improvement compared to the
previously determined utility. The agent that can achieve the best improve-
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3. Distributed Optimization under Uncertainty

Algorithm 3 COMPUTEMLO(π i,b0,T )

1: ui
0← π i(〈〉)

2: b
ui

0
1 ← PREDICTBELIEF(b0,ui

0) // belief prediction according to Eq.
3.13

3: for all t = 1, . . . ,T do
4: best_like← 0
5: for all ω i

t ∈Ωi do
6: prob← 0
7: for all xi

t+1 ∈X i,xu
t+1 ∈X u do

8: prob +←− oi(ω i
t ,x

i
t+1,x

u
t+1) ·b

ui
t

t+1(x
i
t+1,x

u
t+1)

9: end for
10: if prob > best_like then
11: best_like← prob
12: ω̂ i

t ← ω i
t

13: end if
14: end for
15: ui

t ← π i(ω̂ i
1:t)

16: be
t ← FILTERBELIEF(ω̂ i

t ,b
ui

t
t ,ui

t) // belief update according to Eq.
3.14

17: bui
t

t+1← PREDICTBELIEF(be
t ,u

i
t) // belief prediction according to Eq.

3.13
18: end for
19: return (ui

0:T , ω̂
i
1:T )

ment is determined and is allowed to change its policy. The convergence of
MLOLIDJESP follows from Proposition 3.2 and the convergence of LID-
JESP in [99].

Please note that after MLOLIDJESP has converged, each agent locally
not only has a fixed action sequence but a complete policy that leads to the
MLO action sequence. So although coordination is based on fixed action
sequences and the local POMDP each agent solves has a reduced complex-
ity than in other approaches it still results in full policies for all agents.
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Algorithm 4 MLOLIDJESP(i)
1: Compute interaction hypergraph and Ni

2: π i← random policy, ui
0:T ← π i(ω̂ i

1:T )
3: prevVal← 0
4: d← diameter of hypergraph, termCtri← 0
5: Exchange ui

0:T with Ni

6: while termCtri < d do
7: for all xi

0,x
Ni

0 ,xu
0 do

8: bi
0(x

i
0,x

Ni

0 ,xu
0)← bu

0(x
u
0) ·bi

0(x
i
0) ·bNi

0 (xNi

0 )

9: prevVal +←− bi
0(x

i
0,x

Ni

0 ,xu
0) ·

EVALUATEPOLICY(i,xi
0,x

u
0,x

Ni

0 ,π i,〈〉, ω̂Ni

1:T ,u
Ni

0:T ,0,T )
10: gaini←COMPUTEVALUEFUNCTION(i,bi

0,u
Ni

0:T ,0,T )− prevVal
11: end for
12: if gaini > 0 then
13: termCtri← 0
14: else
15: termCtri

+←− 1
16: end if
17: Exchange gaini, termCtri with Ni

18: termCtri←min j∈Ni∪{i}
{

termCtr j
}

19: maxgain←max∈Ni∪{i}
{

gain j
}

20: winner← argmax∈Ni∪{i}
{

gain j
}

21: if maxgain > 0 and i == winner then
22: (π i,ui

0:T )← BESTRESPONSE (i,b0,〈〉,uNi

0:T ,0,T )
23: else if maxgain > 0 then
24: Receive uwinner

0:T from winner and update uNi

0:T
25: end if
26: end while
27: return π i

3.5. Extension to Continuous State Spaces

If the algorithms presented in this section are to be applied to POMDP
models in which the agents have continuous state spaces, i.e., the spaces
X i and X u are no longer discrete but continuous, and also the observation
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Algorithm 5 MLBELIEFUPDATE( j,b j
t−1,u

j, ω̂ j)

1: b̃u j
t ≡ 0

2: // belief prediction according to (3.13)
3: for all x j

t ,xu
t do

4: for all x j
t−1,x

u
t−1 do

5: bu j
t (x j

t ,xu
t )

+←− pu(xu
t ,x

u
t−1) · p j(x j

t ,x
j
t−1,u

j
t−1) ·b

j
t−1(x

j
t−1,x

u
t−1)

6: end for
7: end for
8: // filtering with MLO according to (3.14)
9: for all x j

t ,xu
t do

10: be
t (x

j
t ,xu

j)← o j(ω̂ j
t ,x

j
t ,xu

t ) ·bu j
t (x j

t ,xu
t )

11: end for
12: normalize be

t
13: return be

t

Algorithm 6 COMPUTEVALUEFUNCTION(i,bi
t ,b

Ni

0:T , ω̂
Ni

1:T ,u
Ni

0:T , t,T )

1: if V i
t (b

i
t) already exists then

2: return V i
t (b

i
t)

3: end if
4: best←−∞

5: for all ui
t+1 ∈U i do

6: val← COMPUTEVALUEACTION(i,bi
t ,u

i
t+1,b

Ni

0:T ,u
Ni

0:T , t,T )

7: V
ui

t+1
i (bi

t)← val
8: if val > best then
9: best← val

10: end if
11: end for
12: V i

t (b
i
t)← best

13: return best

space is continuous, two challenges occur.
The first challenge is to find a suitable representation of the beliefs, i.e.,

the probability distributions over the state space. In the discrete case one
just has to store a probability for each possible state. In the continuous case
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Algorithm 7 COMPUTEVALUEACTION(i,bi
t ,u

i
t ,b

Ni

0:T , ω̂
Ni

1:T ,u
Ni

0:T , t,T )
1: val← 0
2: for all xi

t ,x
u
t do

3: reward← R̃(xi
t ,x

u
t ,u

i
t)

4: val +←− bi
t(x

u
t ,x

i
t) ·reward

5: end for
6: if t < T then
7: for all ω i

t+1 ∈Ωi do
8: bi

t+1← UPDATE(i,bi
t ,u

i
t ,ω

i
t+1) // belief update

9: // probability of making observation ω i
t+1 according to (3.12):

10: prob← P
{

ω i
t+1 = ω i

t+1|bi
t ,u

i
t+1
}

11: prob_others← P

{
ωNi

t+1 = ω̂Ni

t+1|bNi
t ,uNi

t+1

}
12: val +←− prob · prob_others ·

COMPUTEVALUEFUNCTION(i,bi
t+1,b

Ni

0:T , ω̂
Ni

1:T ,u
Ni

0:T , . . .)
13: end for
14: end if
15: return val

Algorithm 8 COMPUTEPOLICY(i,bi
t ,ω

i
1:t), t,T

1: ui
t+1← argmaxui

t+1

{
V

ui
t+1

i (bi
t)

}
2: π i(ω i

1:t)← ui
t+1

3: if t < T then
4: for all ω i

t+1 do
5: bi

t+1← UPDATE(i,bi
t ,u

i
t+1,ω

i
t+1) // belief update

6: COMPUTEPOLICY(i,bi
t+1, [ω

i
1:t ,ω

i
t+1], t +1,T )

7: end for
8: end if
9: return

we propose a projection of the belief space B, i.e., the infinite-dimensional
space of continuous probability distributions, to a finite low-dimensional
representation (e.g. Gaussians characterized by their mean and covari-
ance) as described in [113]. Over the belief states, which in the case of
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Algorithm 9 EVALUATEPOLICY(i,xi
t ,x

u
t ,x

Ni
t ,π i,ω i

0:t , ω̂
Ni

0:T ,u
Ni

0:T , t,T )

1: ui
t ← π i(ω i

0:t)

2: value← ∑d,i∈d RI(xi
t ,x

d\{i}
t ,xu

t ,u
i
t ,u

d\{i}
t )

3: if t < T then
4: for all xi

t+1 ∈X i,xu
t+1 ∈X u,xNi

t+1 ∈X Ni do
5: for all ω i

t+1 do
6: ω i

0:t+1← [ω i
0:t ,ω

i
t+1]

7: value +←− pu(xu
t+1,x

u
t ) · pi(xi

t+1,x
i
t+1,u

i
t) · pNi

(xNi

t+1,x
Ni

t+1,u
Ni

t+1) ·
oi(ω i

t+1,x
i
t+1,x

u
t+1,u

i
t) ·oNi

(ω̂Ni

t+1,x
Ni

t+1,x
u
t+1,u

Ni

t ) ·
EVALUATEPOLICY

(i,xi
t+1,x

u
t+1,x

Ni

t+1,π
i,ω i

0:t+1, ω̂
Ni

1:T ,u
Ni

0:T , t +1,T )
8: end for
9: end for

10: end if
11: return value

a finite dimensional representation are given by parameters of the proba-
bility distributions, the system is fully observable and called belief state
MDP [80, 114]. Therefore, value iteration for finite horizon problems can
be used to recursively compute the optimal value function [106]. In theory,
the value function J∗T (b) is initialized with the expected final reward for
every b ∈B. The Bellman equation

J∗t−1(bt−1) = max
u
E{J∗t (bu

t )} (3.30)

is then applied to expand the value function recursively, where the belief
state bu

t is computed from the preceding belief according to the prediction
step in Bayesian estimation [118]. At each step J∗t is the maximal expected
reward that can be gained in T − t steps. The result of the final step J∗0
allows to compute the optimal action for arbitrary belief state in constant
time [28].

However, since the belief state MDP has infinitely many states, it is not
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possible to evaluate the value function at every point b ∈B. To overcome
this problem, Fitted Value Iteration as proposed in [43, 92] can be em-
ployed to efficiently approximate the optimal value function. The idea is
to evaluate the value function only over a finite subset B̃ ⊂B. Since in the
value iteration process points bu

t may not be included in B̃, an interpola-
tion method is used to estimate their values by means of neighboring points.
This calculation repeats over the planning horizon and computations such
as coefficients of interpolations can be performed off-line if the transition
and observation model is time-invariant. Furthermore, if the model of the
agents resembles each other, the same precalculations can be used for all
agents. From the resulting approximation of the optimal value function,
optimal actions from any initial belief can be derived in constant time.

A second challenge for applying the approach presented in this section
to multi-agent systems with continuous state spaces is the determination of
the MLO. For continuous observation spaces Ωi the nonlinear and possibly
non-convex optimization problem

ω̂
i
t = arg max

ω i
t∈Ωi

{
P

{
ω

i
t = ω

i
t

∣∣∣∣bui
t

t ,ui
t

}}
(3.31)

with continuous variable ω i
t has to solved. However, for two important

and widely applied filtering techniques, i.e., for the Kalman filter for linear
systems and the particle filter for general nonlinear systems, we will in
the following show how to obtain the MLO exactly (in the linear case) or
approximately (in the general nonlinear case).

3.5.1. MLO in Kalman Filters

In linear systems with additive Gaussian white noise characterized by the
linear state equation

xi
t+1 = Aixi

t +Biui
t +vi

t (3.32)
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with Gaussian system disturbance vi
t ∼N (0,Q) and measurement equa-

tion

ω
i
t = Hixi

t +wi
t (3.33)

with Gaussian measurement noise wi
t ∼N (0,Σ), the belief prediction and

update are given by the Kalman filter equations [121]. These consist of state
prediction conducted on the mean x̂i

t and the covariance Ci
t of the Gaussian

belief

x̂pi

t = Ax̂ei

t−1 +Bui
t (3.34)

Cpi

t = ACei

t A>+Q (3.35)

(3.36)

and an update when a measurement ω i
t was taken

x̂ei

t = x̂pi

t +Kt

(
ω

i
t −Hx̂pi

t

)
(3.37)

Kt = Cpi

t H>
(

HCpi

t H>+Σ

)−1
(3.38)

Cei

t = (I−KtH)Cpi

t . (3.39)

A special characteristic in this setting is that all occurring beliefs are Gaus-
sian and, hence, unambiguously parametrized by their mean vector and
covariance matrix. It then follows directly that ML observations are given
by ω̂ i

t = Hix̂pi

t , where Hi is the observation matrix and x̂pi

t the mean of the
predicted state estimate [23].

3.5.2. MLO in Particle Filters

For state estimators in general nonlinear continuous systems, such as par-
ticle filters, the ML observation could be computed by sampling the obser-
vation distribution and subsequent maximization over the samples. Particle
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filters are applied in many fields of engineering ranging from e.g. robotic
localization [125], general estimation and tracking problems [21, 60], and
sensor management problems [77, 122]. Here we will briefly sketch how
maximum likelihood observations could be obtained in nonlinear models
when particle filters are applied. We here consider the case where the sys-
tem models are given by the general nonlinear time variant equation

xi
t+1 = ft(xi

t ,u
i
t ,v

i
t) (3.40)

and the measurement model is given by

ω
i
t = ht(xi

t ,u
i
t)+wi

t (3.41)

with additive white Gaussian measurement noise wi
t ∼N (0,Σ) with co-

variance Σ. For this measurement model the likelihood is given by

p(ω i
t |xi

t ,u
i
t) = N (ω i

t −ht(xi
t ,u

i
t),Σ) (3.42)

as can be easily checked. Assume that the predicted belief bui
is approxi-

mated by the empirical distribution

bui
(xi

t ,x
u
t ) =

N

∑
j=1

w j,tδ
{

xi
j,t

} (3.43)

for samples xi
j,t and importance weights w j,t . For the distribution of the

measurement process under the particle approximation it holds that

p(ω i
t )≈

N

∑
j=1

w j,t p(ω i
t |xt = xi

j,t) (3.44)
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which is a mixture of Gaussians (GM) with N components with means
located at

{
h(xi

j,t ,u
i
t)
}N

j=1 (3.45)

and covariances Σ [37, 77]. From this GM we can now draw N samples
ω i

j,t ∼ p(ω i
t ) for j = 1, . . . ,N and the determination of the MLO can be

approximated by determining

ω̂
i
t := arg max

j=1,...,N

{
p(ω i

j,t)
}
, (3.46)

the maximum evaluated over the samples.

3.6. Discussion and Related Work

The algorithms presented in this chapter are based on some simplifying as-
sumptions (transition and observation independence) and use some heuris-
tics (ML observations and actions from the neighbors). In this section we
therefore want to discuss in which scenarios one can assume that these sim-
plified models will be feasible and when they potentially are too simple to
model the real world.

If transition- and observation-independence is assumed, the stochastic
models of the agents are completely independent and their interaction is
solely modeled by a joint reward function. Several interesting problems
can be sufficiently described under these assumptions.

An important example in which transition and observation independence
can safely be assumed (and actually is in the literature, see for example
[23,83,96,99]) is tracking of multiple targets with one or several stationary
or mobile sensors. In these applications it is assumed that the movement
of the targets is independent and the measurements in the sensors are too.
When applicable, coordination of the sensors in order to track the targets is
then achieved by a joint reward function.
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In multi-robot path planning scenarios it is generally beneficial to have
a continuous model of the state space of the robots since a discretization
will either be very simple and, hence, imprecise or it will be detailed re-
sulting in a large state space. In path planning in continuous space, we
are not interested in modeling the physical impact of actions between the
agents, but their impact on the objective. For example, we do not want to
model the physical implications of a collision of two robots in the transi-
tion model, but to avoid collisions while planning through the right choice
of the objective function. In other words, if we avoid collisions between
the robots by introducing a carefully modeled objective function, transition
independence can be assumed. In Section 3.7.2 we will consider a problem
as described above with continuous state space for the robots. If, on the
other hand, the area in which the robots move is modeled by grid-based
techniques and, hence, there is a discrete state space of locations for the
agents, it can be too optimistic to assume transition independence. For ex-
ample if a robot occupies a certain grid cell no other robot will be able to
move into that grid cell and this fact will have to be modeled by the tran-
sition function. In such a case the assumption of transition independence
will be violated.

The search for solutions of Dec-POMDPs is highly complex and requires
approximations in all but the simplest of problems. We avoid the full prob-
abilistic dynamics for the sake of efficiency, but nevertheless incorporate
the observation model into planning, which is a strong advantage in com-
parison to pure open loop approaches (also called unobservable Markov
decision processes [97]). The MLO assumption is not suitable, when the
future reward highly depends on the observations as for example in the tiger
scenario (see [98]). In this scenario there are only two observations (hear
tiger or not) with equal probability and the successful action depends on
this binary observation. With our approach, one instance of a joint trajec-
tory in belief space is computed. This can be seen as a plan under best
conditions. If used as online algorithm, i.e., with replanning after each ex-
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ecuted action, unforeseen changes to this over-confident assumptions can
be incorporated after each executed step, when the planning is performed
anew with the updated information. We see our approach suitable in appli-
cations, where it is reasonable to pursue a ’most likely trajectory’ in belief
space and adapt the plan if required. This is for example the case for sensor
management and robot navigation as we will show in our empirical results
in the next section.

The idea of approximating POMDPs by assuming nominal belief state
dynamics was first proposed in [96] for the problem of coordinated guid-
ance of autonomous UAVs for tracking a target. To achieve fixed trajecto-
ries in belief space for a given sequence of actions, stochastic disturbance
in the system and observation model is set to zero. When several UAVs co-
ordinate to track targets, the paper does not consider a distributed coordina-
tion algorithm but a centralized one. In [105], Maximum Likelihood (ML)
observations are introduced that lead to deterministic dynamics in belief
space given a sequence of actions. Furthermore, theoretical aspects of the
impact on Linear Quadratic Regulation are addressed. However, this paper
considers only deterministic system dynamics and the derivation of its the-
oretical results heavily relies on this assumption. Both [96, 105] would not
be applicable in the sensor network scenario in Example 3.1 since they as-
sume deterministic dynamics for the system state and either do not consider
coordination among several planning agents at all or utilize centralized co-
ordination techniques. Hence, the important difference to our approach is
that [96, 105] only solve single-agent POMDPs with deterministic system
dynamics and not much harder distributed problems where the goal is to
find joint policies for multiple agents.

186



3.7. Results

S1 S2 S3

L1 L2

Figure 3.2.: Depicted is the ’3-chain’ sensor network in which two targets are to be
tracked by three sensors.

3.7. Results

3.7.1. Sensor Network Target Tracking

Our goal in this section was to compare MLOLIDJESP using the MLO as-
sumption with the original algorithm LIDJESP from [99] regarding runtime
and cumulative reward of the resulting policies. We considered the sensor
network example from Example 3.1 with increasing numbers of sensors
and increasing complexity of the network. First, we considered the exact
scenario from Example 3.1 (called ’3-chain’), then considered a chain of
four sensors (called ’4-chain’), then a more complex scenario consisting of
five sensors (called ’5-p’), and finally considered a scenario with six sen-
sors (called ’6-h’). In order to ensure a high degree of comparability, the
scenarios ’3-chain’, ’4-chain’ and ’5-p’ were exactly as in the experiments
section of [99] from which we have also taken the details of the LIDJESP

implementation. Planning with the MLO assumption was conducted ac-
cording to the MLOLIDJESP algorithm. Since we conducted the simula-
tions on a single office PC (Intel Pentium E5300 2.6 GHz, 8 GB RAM,
Windows Server 2008 R2) the computations for the agents were conducted
sequentially. We did not need the termination counter (termCtr) stopping
criterion from line 6 in MLOLIDJESP since we immediately noticed when
the agents’ policies have converged. In the following we will present the
details of each scenario and results obtained.

Scenarios
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Target 1 absent L1 Target 2 absent L2
absent 0.5 0.5 absent 0.6 0.4

L1 0.2 0.8 L2 0.25 0.75

Table 3.1.: Transition probabilities of the targets for the ’3-chain’ scenario.

S1 S2 S3

L1 L2

S4

L3

Figure 3.3.: Depicted is the ’4-chain’ sensor network in which two targets are to be
tracked by four sensors.

Target 2 absent L2 L3
absent 0.4 0.35 0.25

L2 0.2 0.5 0.3
L3 0.3 0.25 0.45

Table 3.2.: Transition probabilities of Target 2 for the ’4-chain’ scenario.

'3-chain' In this scenario there were three sensors arranged in a chain
and two targets (see Figure 3.2). The first target could either be absent or
appear in location L1, the second target could be either absent or appear in
location L2. It follows that there were four different possible joint state xu.
The transition probabilities for the targets are given in Table 3.1

'4-chain' In this scenario there were four sensors also arranged in a chain
(see Figure 3.3). There were two targets, the first one could be either absent
or appear in location L1 and has the same transition function as the first
target in the previous scenario, i.e., its transition function is specified in
Table 3.1. The second target could either be absent, appear in location L2
or appear in location L2. Target 2’s transition probabilities are given in
Table 3.2. In total there are six different possible joint states xu.
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S1 S2 S3
L1 L2

L3 L4

S4 S5

L5

Figure 3.4.: Depicted is the ’5-p’ sensor network in which two targets were to be
tracked by five sensors.

Target 1 absent L1 L3 L5
absent 0.15 0.5 0.2 0.15

L1 0.1 0.5 0.3 0.1
L3 0.2 0.1 0.45 0.25
L5 0.35 0.05 0.1 0.5

Table 3.3.: Transition probabilities of Target 1 for the ’5-p’ scenario.

Target 2 absent L2 L4
absent 0.4 0.35 0.25

L2 0.2 0.5 0.3
L4 0.3 0.25 0.45

Table 3.4.: Transition probabilities of Target 2 for the ’5-p’ scenario.

'5-p' In this scenario there were five sensors arranged in a ’p’ shape de-
picted in Figure 3.4. Again, there were two targets that the sensors want to
track. The first target could be either absent, in location L1 or in L3 or in
location L5. The second target could be either absent, in location L2 or in
location L4. The transition probabilities for both targets are given in Tables
3.3 and 3.4. In total there were 12 different possible joint states xu.

'6-h' In this scenario six sensors were arranged in the ’s’ shape as de-
picted in Figure 3.5. Again there were two targets the sensors tried to track
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S3 S4

S5

L3

L5

L4

S6

L1

S2

L2

S1

Figure 3.5.: Depicted is the ’6-h’ sensor network in which two targets were to be
tracked by six sensors.

where the first target could either be absent or appear in locations L1, L3,
and L5. Its transition function is the same as in the ’5-p’ scenario and there-
fore also given by Table 3.3. The second target could be either absent or
appear in locations L2 or L4 and its transition function is given by Table 3.4.
In total there were 12 different joint states for the positions of the targets.

Evaluation

In Figures 3.6 and 3.7 we depict the runtime of MLOLIDJESP and LIDJESP

in the ’3-chain’ scenario (Figure 3.6(a)) and in the ’4-chain’ scenario (Fig-
ure 3.6(b)) for different lengths of planning horizon T and averaged over ten
runs with different random initial policies each. In these Figures the vertical
axis is always in log-scale. It can be seen that especially for shorter plan-
ning horizons like T = 2 or for very simple scenarios like for the ’3-chain’
scenario there is not a huge gain in runtime from planning with the most
likely observation assumption. In MLOLIDJESP there is some overhead for
determining the most likely observation and the nominal belief trajectories.
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(a) Runtime comparison of LIDJESP
and MLOLIDJESP for the ’3-chain’
sensor network scenario.
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(b) Runtime comparison of LIDJESP
and MLOLIDJESP for the ’4-chain’
sensor network scenario.

Figure 3.6.: Runtimes in seconds for the ’3-chain’ and for the ’4-chain’ sensor net-
work scenarios. Due to numerical complexity and high memory re-
quirements for LIDJESP only policies for a time horizon up to length
T = 5 were evaluated.
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(a) Runtime comparison of LIDJESP
and MLOLIDJESP for the ’5-p’ sen-
sor network scenario.
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(b) Runtime comparison of LIDJESP
and MLOLIDJESP for the ’6-h’ sen-
sor network scenario.

Figure 3.7.: Runtimes in seconds for the ’5-p’ and for the ’6-h’ sensor network sce-
narios. MLOLIDJESP’s runtime is orders of magnitude faster than the
time it takes LIDJESP to find a solution. Due to numerical complexity
and memory requirements for LIDJESP only policies up to T = 4 were
evaluated.

Since in these simple scenarios each sensor did not have many neighbors
and each of these neighbors did not have many potential observation, the
overhead in MLOLIDJESP balanced with the theoretical complexity reduc-

191



3. Distributed Optimization under Uncertainty

1 2 3 4 5
0

50

100

150

200

250
LIDJESP
MLOLIDJESP

Run

Va
lu

e 
fu

nc
tio

n

(a) Cumulative reward function val-
ues for the ’4-chain’ sensor network
scenario.
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(b) Cumulative reward function val-
ues for the ’5-p’ sensor network sce-
nario.

Figure 3.8.: Value of cumulative reward obtained by joint policies for the ’4-chain’
and for the ’5-p’ sensor network scenarios for 5 different initial policies.
It can be seen that the value achieved by MLOLIDJESP is less than that
of LIDJESP. However, since the runtime needed with MLOLIDJESP to
find a joint policy is so much lower, MLOLIDJESP can employ random
restarts and find several locally optimal joint policies in the time LID-
JESP would need to find only one solution. This is especially beneficial
since in both algorithms the quality of the locally optimal solutions
heavily depends on the initial starting policies.

tion.
In more complex scenarios like the ’5-p’ and ’6-h’ scenarios where the

local neighborhoods were bigger and, hence, the local planning problem
for a sensor had a higher complexity we can see in Figure 3.7 that the com-
plexity reduction that comes with planning with the most likely observation
assumption in MLOLIDJESP had an impact of orders of magnitude on the
runtime compared to LIDJESP. This shows that the most likely observation
assumption constitutes a significant improvement in terms of runtime in all
but the most simple scenarios, especially in those with more neighbors and
observation spaces with higher cardinality.

Since the most likely observation assumption is a suboptimal heuris-
tic not only the runtime performance of MLOLIDJESP is of importance
but also the quality of the solutions found when employing this heuristic.
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LIDJESP MLOLIDJESP

Scenario ’4-chain’ 156.822 119.269
Scenario ’5-p’ 95.3162 73.6413

Table 3.5.: Average cumulative reward obtained by LIDJESP and MLOLIDJESP.

Therefore, we were also interested in evaluating the overall cumulative re-
ward obtained from joint policies in the sensor network scenario and in
comparing this with the reward gained from joint policies obtained with
LIDJESP. In Figure 3.8(a) we depict the cumulative reward of policies ob-
tained with LIDJESP and with MLOLIDJESP for the ’4-chain’ sensor net-
work scenario for T = 3 and in Figure 3.8(b) we depict the cumulative re-
ward gained in the ’5-p’ scenario. Each bar corresponds to a single run and
for each run both algorithms were initialized with the same random initial
policy in order to ensure comparability. The cumulative rewards achieved
averaged over ten runs are depicted in Table 3.5

It shows that on average the quality of solutions found with MLOLID-
JESP were slightly more suboptimal than for the ones found with LIDJESP.
In [99] it was also shown that the quality of solutions found with LIDJESP

were likely to be suboptimal compared to the globally optimal solution,
hence, MLOLIDJESP’s solutions were even more suboptimal. However,
both algorithms only find local optima whose value strongly depends on
the starting value, the initial joint policy. Since MLOLIDJESP showed a
runtime performance that is of orders of magnitude better than LIDJESP’s
especially in complex scenarios, MLOLIDJESP can be used in combination
with random restarts in order to improve the value of the solution found.
The much faster runtime allows MLOLIDJESP to explore the solutions
space more thoroughly in much faster time than LIDJESP. For example,
in the ’5-p’ scenario in Figure 3.8(b) MLOLIDJESP could evaluate five dif-
ferent random initial policies and choose the joint policy that gives the best
cumulative reward in half the time LIDJESP would need to find only one
locally optimal joint policy.

193



3. Distributed Optimization under Uncertainty

3.7.2. Multi-Robot Coordination

In this section, we consider a path planning problem in a multi-robot sys-
tem where the task of the robots was to reach a target area in an environ-
ment with obstacles with motion affected by disturbances and noisy sensor
measurements for localization. In this scenario we applied the MLO co-
ordination algorithm in continuous robot state space in a receding horizon
fashion, i.e., the robots coordinated and agreed on a set of policies that max-
imize a cumulative reward over a time horizon of length T and each robot
i executed the first action ui

0 = π i(〈〉). Then the robots took measurements
in order to improve their localization and replanned.

System Model

The state of the robot was modeled as a three-dimensional continuous vec-
tor [xt ,yt ,ψt ], where xt and yt denoted the two-dimensional position of the
robot in the plane and ψt the orientation of the robot. The discrete-time
state space motion model of the robots we employed both in the simulation
and in the experiments was

xt+1 =

xt

yt

ψt

+
(u

s
t +vs

t )cos(ψt)

(us
t +vs

t )sin(ψt)

uψ

t +vψ

t

 , (3.47)

where the input to the system us
t denoted the speed and the input uψ

t the
applied turning angle. The disturbances vs

t and vψ

t were modeled as zero-
mean and white with Gaussian distribution with variances σ2

s = 1cm2 and
σ2

ψ = 0.001rad2. The disturbances were added to the control inputs to
model disturbances on the actuators of the robots or model inaccuracies.

In order to improve their position estimates each robot took noisy dis-
tance measurements to two landmarks after each movement. State esti-
mation consisting of prediction and filtering with these measurements was
conducted with linearized system and observation models by means of the
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extended Kalman filter (EKF) [121]. We did not discretize the state space
of the robots and applied the extension to continuous state spaces as de-
scribed in Section 3.5. Since we employed the EKF for state estimation, all
occurring belief states were Gaussians and could be parametrized by their
first and second moments. Each local POMDP over the robot’s state space
was solved by fitted value iteration as proposed in [43]. The MLO was ob-
tained as Hx̂p

t , where H was the first order linearization of the measurement
model by its partial derivative matrix and x̂p

t the mean of the predicted state
estimate [23, 121].

The possible control inputs to the robots were inputs of speed us
t = 1 or

us
t = 0. Furthermore, the turning angles uψ

t ∈ {−π

4 rad,0rad, π

4 rad} could be
applied resulting in six possible control inputs. We restricted the possible
turning angles to going straight and making a turn to the left or to the right
since it was shown that for a Dubins vehicle (which has essentially the
same dynamics as in (3.47) except for the omission of noise and with a
fixed speed) paths of minimal length from a starting configuration to a goal
configuration only consist of straights and curves with maximal turning
angle [62, 123].

The environment in which the robots acted and planned was static with
obstacles and a target region at known positions. The reward function was
split into a local reward Ri

L that depended only on the state of robot i and a
reward Ri j evaluating pairwise locations of robots. The local reward Ri

L

Ri
L(x

i,yi,ψ i) =


0, if [xi,yi]

T
is in the target region

−3, if [xi,yi]
T

is not in the target region

−20, if [xi,yi]
T

is in an obstacle.

(3.48)

penalized all system states outside the target area as well as collisions with
obstacles. In order to penalize potential collisions between two robots in
the reward function Ri j we used the pairwise Mahalanobis distance DM of
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Figure 3.9.: Walking robots used for experiments.

their respective Gaussian belief states bi and b j

DM(bi,b j) =

√
(x̂i− x̂ j)

T
(Σi−Σ j)−1 (x̂i− x̂ j) (3.49)

where x̂i and x̂ j were the means of the Gaussian belief states and Σi and Σ j

the covariances. The joint probabilistic reward function that modeled the
interaction of two robots i and j was

Ri j(bi,b j) =−20 ·max(0,1− DM(bi,b j)

10
) . (3.50)

Mahalanobis distances larger than 10 were not considered and hence those
robots did not interact with each other, as we assumed a collision as un-
likely. The reward of each robot i was

Ri
L(x

i,yi,ψ i)+∑
j 6=i

Ri j(bi,b j) . (3.51)
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Experiments with Real Robots

We conducted several experiments with robots introduced in [129] depicted
in Figure 3.9. The size of the robots was 5cm× 10cm and they were de-
ployed in an 0.7m×1m test environment. The test environment was over-
looked by a high resolution camera, whose images were used to create the
GUI plots of a run in a environment with obstacles depicted in Figure 3.10.
In Figures. 3.10(a) and 3.10(b) conflicts on which robot will pass the gap
first occurred and both conflicts were resolved without a collision by the
algorithm. In Figure 3.10(a) both the upper yellow as well as the lower red
robot wanted to pass a gap between two obstacles and they coordinated in
such a way that they did not collide. In these experiments localization was
carried out with noisy measurements and only this data and the output of
the EKF was used in our algorithm to determine coordinated joint motion
plans for the robots. The precise readings from the overhead camera were
not used for coordination in any of the experiments.

(a) First conflict before gap.
The two robots closest to the
gap were in a position to pass
the gap.

(b) Second conflict before gap.
The two backmost robots were
in a position to pass the gap.

(c) All conflicts were resolved.

Figure 3.10.: Images taken from the GUI output of a run conducted on real robots.
Here the robots task was to reach the target region on the right hand
side of the environment. The obstacles are depicted in solid black. The
complete trajectories of the robots up to the current depicted position
are drawn as solid line in the color of the robot. The images show
two conflict configurations (a) and (b) and a configuration after all
conflicts have been resolved (d).
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Figure 3.11.: Example environment with obstacles. The starting positions for four
robots are denoted by S1, . . . ,S4 and the target positions by T1, . . . ,T4.
The dashed boxes were randomly placed obstacles of fixed size. The
solid triangles on the bottom of the environment are the randomly
placed starting positions and the top triangles are the goals for the
robots. It can be seen that in this example there can be a lot of inter-
action among the robots, since their paths will most likely intersect at
some point.

Quantitative Results

We conducted several quantitative tests in multi-robot path planning sim-
ulations with the models introduced above to evaluate the scalability and
optimality of our algorithm for increasing numbers of robots in the system.
The task of the robots was to reach a certain goal in randomly generated
test environments with obstacles. For the simulations the obstacles were
randomly placed and the starting and target positions for the robots were
randomly chosen in such a way that their paths will intersect and, hence,
collisions were likely to occur. A typical realization of the positions of
the obstacles together with the starting and goal positions are depicted in
Figure 3.11.
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Figure 3.12.: Depicted are the average number of coordination iterations needed
until a converged joint plan was found as a function of the number
of robots in the system and for different lengths of the planning hori-
zon. The number of coordination iterations necessary only moderately
grows with increasing numbers of robots.

Scalability First it was our goal to evaluate how many best response co-
ordination iterations were necessary until a converged locally optimal joint
plan was found. Proposition 3.2 theoretically guarantees convergence but
does not make any statements on when a locally optimal plan was found.
However, the number of coordination iterations is of crucial importance for
real-world applications, since it determines how frequently the robots have
to communicate and how often each robot has to compute a best response
according to Algorithm 2. Here MLOLIDJESP was used for deciding which
robot can change its plan in its local neighborhood.

In Figure 3.12 the average number of coordination iterations needed un-
til a converged joint plan was found are plotted as a function of the number
of robots in the system and for different lengths of the planning horizon.
For example, for six robots planning with a horizon of length five, in av-
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Figure 3.13.: Average number of interactions of each robot per coordination itera-
tion and timestep in the planning horizon.

erage each robot had to compute its best response to the plans of the other
robots according to Algorithm 2 a little less than five times until a locally
optimal joint plan was found. It can be seen that the number of coordina-
tion iterations necessary was almost independent of the length of the plan-
ning horizon and only moderately increased with increasing numbers of
robots. This is a particularly pleasant property since usually the complexity
of multi-robot coordination problems grows exponentially with the number
of robots.

In Figure 3.13 we depict the average number of other robots a robot in-
teracted with, i.e. the average number of times the joint reward function
Ri0 j 6= 0 for robot i0. This is an important statistic to look at, since even if
there were hundreds of robots in an environment, if their paths were such
that there was only pairwise interaction among a few robots, then the aver-
age number of coordination iterations would be low. It can be seen from the
figure that in the randomly generated scenarios this was not the case as the
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Figure 3.14.: Average number of steps the robots need to reach their goal as a func-
tion of the number of robots for a fixed priority polling scheme from
Algorithm 1 and for a dynamic auctioning-like polling scheme from
Algorithm 4. Averaged over 20 Monte-Carlo (MC) runs.

average number of interactions increased with increasing number of robots
in the system.

Optimality Next, we wanted to evaluate the effect of the polling scheme,
with which the robots were allowed to compute their best response to the
plans of the other robots, on the optimality of the resulting locally optimal
joint plan. We compared fixed order polling schemes from Algorithm 1
with the dynamic auctioning scheme from Algorithm 4.

In Figure 3.14 we plot the average number of steps each robot needed to
reach its goal as a function of the number of robots in the system for a fixed
priority polling scheme and for the dynamic scheme. Here a “step” has to
be understood as the execution of one action, i.e., when a robot needed 26
steps to reach its goal, it applied 26 actions. Note that an action can also be
to not move for one time step. Hence, the higher number of steps needed

201



3. Distributed Optimization under Uncertainty

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A* planner
MLO planner

System disturbance standard deviation in dm

Av
er

ag
e 

nu
m

be
r o

f c
ol

lis
io

ns

2

(a) Increasing system distur-
bance

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

A* planner
MLO planner

Av
er

ag
e 

nu
m

be
r o

f c
ol

lis
io

ns

Measurement noise standard deviation in dm2

(b) Increasing measurement
noise

Figure 3.15.: Average number of robot collisions with A∗ planning and the MLO
planner as a function of increasing system disturbance (a) and mea-
surement noise in localization (b). The results were averaged over 100
MC runs with random obstacles. Since the MLO planner accounts for
uncertain system dynamics, noisy measurements and uncertain local-
ization while planning, it was very robust and allowed the robots to
safely reach their goals.

by the fixed priority scheme means that either the robots had to take larger
detours of were forced more often to wait, e.g. in order to avoid a collision.
It can be seen that on average a dynamic polling scheme lead to shorter and,
hence, better paths than a fixed priority scheme, since the suboptimality of
locally optimal joint plans found with dynamic polling schemes was lower
than the suboptimality of plans found with fixed priority schemes.

Comparison to Deterministic Planning

Finally, we were interested how our approach of planning with nominal
belief dynamics would compare to the A∗ algorithm that is widely used in
path planning in multi-robot systems (see e.g. [26, 35]). We implemented
the multi-robot A∗ planning algorithm as proposed in [26] in conjunction
with an extended Kalman filter by letting the A∗ planner plan on the means
of the filter’s estimates. The simulations in this subsection were conducted
with a system consisting of four robots.

In Figure 3.15(a) we depict the average number of robot collisions as
a function of increasing disturbance in the system dynamics (3.47). The
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values on the x-axis refer to the standard deviation σ2
s . The measurement

noise standard deviation was σ2
ω = 1cm2. When the system disturbance

increases the movements of the robots become more imprecise and it be-
comes more difficult to precisely control them. Especially when robots get
close to each other this causes problems since it becomes more difficult to
avoid collisions. It can be seen that the average number of collisions was
higher for the A∗ planner and this number even increases for higher system
disturbances. The number of collisions of our planner with nominal belief
dynamics (MLO planner) was generally much lower and unaffected by the
increase of system disturbance.

In Figure 3.15(b) we depict the average number of robot collisions as a
function of increasing measurement noise of the distance sensors that were
used for localization. The system disturbance was set to σ2

s = 0.5cm2.
When the standard deviation of the measurement noise increased, the sen-
sors were more imprecise and hence the localization of the robots became
more imprecise. For increasing measurement noise the number of robot
collisions, that occurred when the robots executed plans computed with the
A∗ algorithm, were much higher than when planning with the MLO plan-
ner. Notice that as the measurement noise increased, the MLO planner
accounted for the increase and became more cautious, leading to even less
collisions. Collision-free paths determined with the A∗ method had an av-
erage length of 79cm and MLO paths starting at 88cm at low measurement
noise to 90cm for the highest measurement noise.

Our planner using nominal belief dynamics explicitly accounted for the
uncertain system dynamics and the measurement model through the incor-
poration of ML observations when planning. Further, noisy system dynam-
ics and uncertain localization corresponded to Gaussian belief states with
high variance. Since our algorithm used these belief states to determine the
reward of different state-action combinations, it also explicitly incorporated
these uncertainties while planning. So the MLO planner was very robust
and allowed the robots to safely reach their goals with just a slight increase
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in overall path length.

3.8. Conclusions

In this chapter we proposed an heuristic for the efficient and distributed
search for locally optimal joint policies in a multi-agent system in Dec-
POMDPs. The most likely observation assumption in transition and obser-
vation independent Dec-POMDPs allows an agent, when alternating opti-
mization is employed, to find its best response not to full observation de-
pendent policies of its neighbors but to fixed sequences of actions. The
advantage is that the local POMDP an agent has to solve does not have an
extended state space that is comprised of the space of all observation se-
quences of the neighbors in addition to the state space of the agent but it
is only a POMDP over the state space of the agent. Furthermore, we ex-
tended the most likely observation approach to POMDPs with continuous
state and observation spaces and for the most common cases of linear agent
dynamics together with Kalman filters, and nonlinear agent dynamics with
particle filters we demonstrated ways to compute the most likely observa-
tion. In real and numerical experiments in a sensor network and a multi-
robot motion planning scenario we evaluated the efficiency and robustness
of planning with the most likely observation assumption.

Strengths Planning with the most likely observation assumption is an
efficient heuristic to quickly find locally optimal joint policies in complex
multi-agent systems with a lot of interaction among the agents. Under the
most likely observation assumption each agent finds its best response to
fixed sequences of actions of the other agents and the result is a full obser-
vation dependent joint policy for all agents. Although this is a suboptimal
heuristic the orders of magnitudes faster runtime compared to other known
suboptimal algorithms together with random restarts can be used to quickly
and efficiently explore the joint policy space.
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Limitations In Section 3.6 we already discussed that there are systems
in which transition and observation independence might be too simple to
model the behavior of a system. In these cases it is advisable to use the full
dynamics and employ other solution strategies e.g. dynamic programming
based techniques for Dec-POMDPs [98, 131].

We also already mentioned that in scenarios in which there are several
different observations with equal likelihood of being made (e.g. in the dis-
tributed Tiger problem [98]) the most likely observation assumption can be
too optimistic and even misleading. In these scenarios also the full Dec-
POMDP model will have to be employed.

Applications In this thesis we studied two different applications for plan-
ning in Dec-POMDPs with the most likely observation assumption: a sen-
sor network example and motion planning in a multi-robot system. Gen-
eral sensor management is a broad field of research and many approaches
use the POMDP model to find optimal sensor management strategies [76].
Sensor management applications range from information theoretic sensor
selection for maximizing the expected information gain from the sensors’
measurements to the optimal placement of mobile sensing devices such as
UAVs or sensor equipped robots [96]. Our approach will be applicable and
we expect it to perform well in these scenarios.
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In this thesis several approaches for optimization and decision-making un-
der uncertainty with a strong focus on applications in multi-agent systems
were considered.

A special characteristic of optimization in multi-agent systems is that co-
ordination regarding the utilization of indivisible resources can be modeled
through discrete decision variables. This is the reason why optimization
problems with discrete and continuous decision variables occurred at sev-
eral different occasions in this thesis.

One fundamental question when considering optimization under uncer-
tainty is how the uncertainty actually influences the optimization problem.
We first examined optimization problems in which the uncertainty affects
the constraints through some random disturbance parameter. Our goal here
was to develop algorithms that are able to efficiently deal with the arising
uncertainties, i.e., algorithms in which the incorporation of uncertainties
does not lead to a major increase in complexity. Furthermore, we were
interested in giving strong theoretical guarantees on the solutions found
with random constraints regarding the behavior of the solutions under re-
alizations of the constraints that we not yet know or have not explicitly
accounted for. In addition, we considered models in which the uncer-
tainty affects the impact of the decision variables on the objective function.
For these models we derived distributed algorithms that are characterized
through their efficiency though at the cost that they do not find a globally
optimal solution.

More precisely, we first studied model predictive control for motion plan-
ning in a multi-agent system with chance constraints on the probability of a

207



4. Conclusions

collision of agents. We highlighted that these chance constraints cannot be
evaluated in closed form and lead to complex and non-convex constraints
for the MPC problem. In order to make the MPC problem numerically
tractable, we proposed several approximations and conservative reformula-
tions of the chance constraints. In each case we proved that optimal controls
found with these approximations converge against either optimal or feasi-
ble controls for the MPC problem with the true chance constraints. The
approximations and reformulations proposed in this chapter are to the best
of our knowledge the first that deal with the efficient application of chance
constraints that couple the states of agents in a multi-agent system.

The main challenge tackled in this chapter was reducing the computa-
tional complexity of the constraints on collision probabilities while still
ensuring theoretical properties such as feasibility and convergence.

Summarizing, the main advances and contributions of this chapter from
a users perspective are the following:

• The techniques derived in this chapter facilitate efficient, safe, and
reliable control of multi-agent systems even if the states of the agents
are uncertain.

• To the best of our knowledge we are the first to consider coupling
chance constraints on joint states of agents in a multi-agent system.

• The major applications are the safe and efficient operation and coor-
dination of mobile robots, UAVs, vehicles, or aircraft.

We also studied mixed-integer convex programs with a fixed number of
random constraints. We proved explicit bounds on the tails of the probabil-
ity that the optimal solution of such a program will remain optimal under
further, yet unseen, random constraints. Through a slightly different argu-
mentation we proved, for the case that the random constraints are linear,
different bounds that are sharper when the uncertainty only affects the right
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hand side of the linear constraints. The explicit results on the generalization
properties derived in this thesis are to the best of our knowledge the first for
random convex programs with discrete and continuous decision variables.

The main challenge in this chapter was the theoretical derivation of
bounds on the tails of the violation probability for optimal solutions of
mixed-integer programs with random constraints.

Summarizing, the main advances and contributions of this chapter from
a users perspective are the following:

• The theory derived in this chapter allows to immunize solutions
of mixed-integer convex optimization problems with random con-
straints against uncertainty.

• The explicit results on the generalization properties derived in this
thesis are to the best of our knowledge the first for random convex
programs with discrete and continuous decision variables.

• The applications are whenever one has to deal with randomness and
uncertainty in optimization and wants to immunize the solutions
found against this uncertainty, e.g. in the design of truss structures or
MPC in a multi-agent system with disturbance.

Finally, we studied distributed algorithms for efficiently finding subopti-
mal sequential solutions in the Dec-POMDP model. We proposed the most
likely observation assumption for alternating optimization in multi-agent
systems. We proved that the size of the local problem each agent has to
solve is drastically reduced and we provided empirical evidence that this
theoretical reduction also has an huge impact on runtime that can be up to
orders of magnitude compared to similar suboptimal algorithms.

The main challenge in this chapter was to derive a computationally effi-
cient coordination scheme that finds locally optimal joint policies even for
high numbers of agents and long planning horizons.
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Summarizing, the main advances and contributions of this chapter from
a users perspective are the following:

• The algorithm derived in this chapter allows agents to agree on a lo-
cally optimal joint strategy in a distributed manner. This saves com-
putation time and communication bandwidth, since all computations
can be executed distributedly and communication is only used to ex-
change changes in the joint policy.

• The coordination strategy proposed in this chapter is an efficient
heuristic to quickly find locally optimal joint solutions in complex
multi-agent systems when there is a lot of interaction among the
agents.

• The main applications are decentralized probabilistic planning in
large and spatially distributed sensor networks with stationary or mo-
bile sensors.

Future Work An interesting direction for future research is the explo-
ration of distributed solution techniques for chance constrained MPC and
MI-RCP problems. The optimization problems that result from the approx-
imations and reformulations we presented for the chance constrained MPC
problem are mixed-integer linear programs (MILPs). For solving these
MILPs one could apply the approach [78] that proposes a combination of
the Dantzig-Wolfe decomposition for linear programs together with Go-
mory cuts, a technique for finding optimal solutions to MILPs [34]. A fur-
ther technique for solving MILPs are branch and cut algorithms in which
branching is conducted over a subset of the integer variables. The applica-
tion of algorithms from the field of parallel computing for message-based
distributed solving of branch and cut problems [64, 82] to the multi-agent
MILP could be worth exploring.
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The works [51, 52] already proposed a method with which random con-
vex programs with only continuous decision variables can be solved in a
distributed fashion in a multi-agent system. They assume that each agent
only has knowledge about a small subset of the random constraints and
through a certain communication protocol agents agree on a subset of rel-
evant constraints such that then every agent can compute the globally op-
timal solution. When applying these algorithms to mixed-integer random
convex programs the challenge is that the communication protocol is de-
signed in such a way that the agents repeatedly exchange constraints that
are active for their local optimization problems and the determination of
active constraints in mixed-integer problems is highly nontrivial.

A third interesting direction for future work is the study of bounds on
the tails of the violation probability for the SAA of chance constraints. In
this thesis we were able to prove statements on the convergence of plans
that are optimal under the SAA constraints, however, no statements about
the rate of convergence or quantitative results on the error for fixed sample
numbers were made. There is research on the topics for example [20,75] but
the works largely depend on the knowledge or computation of the Vapnik-
Chervonenkis (VC) dimension of the feasible set or use very conservative
bounds on the dimension. The bounds derived in these works therefore can
be too conservative as was shown in [44]. A first step towards sharpening
the bounds with the help of statistical estimation of the VC dimension was
made in [4] but needs to be extended further.
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A. Appendix

A.1. General Convergence of the SAA

In this appendix we will very briefly state the results and assumptions
from [103] on the convergence of optimal solutions of the sample average
approximation (SAA) of a chance constrained program against the optimal
solutions of the “true” problem.

Consider a general chance constrained problem

min
x∈X

f (x) (A.1)

s.t. P{G(x,ν)≤ 0} ≥ 1−α (A.2)

for compact set X , continuous function f : Rd → R, random vector ν ∈
Ξ, and a function G : Rd × Ξ → R. The function G is assumed to be
a Carathéodory function, i.e., G(x, ·) is measureable for all x ∈ Rd and
G( · ,ν) is continuous in x for almost every ν . As in [103] define

p(x) := P{G(x,ν)> 0} , (A.3)

then the general chance constrained problem is equivalent to

min
x∈X

f (x) s.t. p(x)≤ α (A.4)

Let ν1, . . . ,νN be N i.i.d. realizations of the random vector ν and denote
by PN the empirical measure constructed from these samples. The SAA of
the chance constrained problem is

min
x∈X

f (x) s.t. pN(x)≤ α , (A.5)

where

pN(x) =
N

∑
j=1

1(0,∞)(G(x,ν j)) . (A.6)
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Another assumption has to be made in order to show convergence:

Assumption 5 (Assumption (A) in [103]) There is an optimal solution x to

the chance constrained problem such that for every ε0 > 0 there exists a

x̂ ∈ X with ‖x− x̂‖ ≤ ε0 and p(x̂)< α .

This condition states that there is a sequence that converges to the optimal
solution x and for each member of the sequence p(xk) < α . It guarantees
that the optimal solution can be perturbed by a small margin and the prob-
ability of a failure will be smaller α . Then the following proposition holds

Proposition A.1 (Proposition 2.2 in [103]) Let ϕN be the optimal value of

the SAA and ϕ the optimal value of the general chance constrained prob-

lem. Further denote by SN the set of all optimal solutions where ϕN is

attained and by S the set where ϕ is attained. Then it holds that ϕN → ϕ

with probability one for N→∞ and dH(SN ,S)→ 0 with probability one for

N→ ∞.
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