
028

H
en

n
in

g
 L

at
eg

ah
n

M
ap

pi
ng

 a
nd

 L
oc

al
iz

at
io

n
in

 U
rb

an
 E

nv
iro

nm
en

ts
 U

si
ng

 C
am

er
as

HENNING LATEGAHN

Mapping and Localization
in Urban Environments
Using Cameras

....
.

Henning Lategahn

Mapping and Localization in Urban
Environments Using Cameras

Schriftenreihe
Institut für Mess- und Regelungstechnik,
Karlsruher Institut für Technologie (KIT)

Band 028

Eine Übersicht über alle bisher in dieser Schriftenreihe erschienenen
Bände finden Sie am Ende des Buchs.

Mapping and Localization in Urban
Environments Using Cameras

by
Henning Lategahn

Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Maschinenbau
Tag der mündlichen Prüfung: 16. August 2013
Referenten: Prof. Dr.-Ing. C. Stiller, Prof. Dr.-Ing. S. Hinz

Print on Demand 2013

ISSN 1613-4214
ISBN 978-3-7315-0135-0

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Mapping and Localization in Urban Environments
Using Cameras

Zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

der Fakultät für Maschinenbau
Karlsruher Institut für Technologie (KIT)

genehmigte

Dissertation

von

DIPL.-INFORM. HENNING LATEGAHN

Tag der mündlichen Prüfung: 16. August 2013
Hauptreferent: Prof. Dr.-Ing. C. Stiller
Korreferent: Prof. Dr.-Ing. S. Hinz

to my wife and son
Eike and Jarno

Acknowledgment

This Phd thesis would not have been possible without so many people who have
helped and supported me and at this point I would like to express my gratitude.
Firstly, I would like to thank my supervisor Prof. Dr. Christoph Stiller for the
opportunity to complete this work at his institute and the support I have received.
I would like to thank my co-supervisor Prof. Dr. Stefan Hinz for the supervision
and the fruitful discussions.
The two years I collaborated with the Volkswagen research devision have been a
thrilling time and I am happy to have gotten the chance to get to know the depart-
ment. In particular I want to thank Dr. Jan Effertz, Dr. Thorsten Graf and Dr. Dirk
Stüker for their support.
The collaboration with Daimler research during the last two years of my studies
have been exciting and seminal. Special thanks go to Eberhard Kaus, Dr. Martin
Haueis, Dr. Uwe Franke, Christoph Keller, Dr. Carsten Knöppel and Dr. Jochen
Hipp. Beyond that, I want to thank the KIT part of the team for the support and
discussions: Julius Ziegler, Markus Schreiber, Philipp Bender and Tobias Strauss.
Furthermore, I want thank all colleagues of our institute for the many discussions
at the coffee breaks, summer seminars and for the nice spare time activities ranging
from playing volleyball to barbecue. Special thanks go to my scrum partners: Dr.
Holger Rapp, Philip Lenz and Miriam Schönbein. Moreover, I want to thank Julius
Ziegler, Bernd Kitt, Jonas Firl, Dr. Andreas Geiger, Benjamin Ranft, Johannes
Beck and Eike Rheder for proof reading an initial version of this manuscript and
the excellent feedback. I received a great portion of support from my former stu-
dent helper Johannes Beck which I would like to acknowledge.
I want to thank our office staff, our system administrator and the workshop staff
for their excellent support in all endeavors.
Furthermore, I want to thank my parents in law for continuous encouragement over
the past years. Special thanks goes to my parents for having always supported me.
Finally, I am deeply grateful to my wife and son whom I dedicate this work to. I
want to thank them for countless joyful moments.

Karlsruhe, June 2013 Henning Lategahn

I

Abstract

Next generation navigation systems and advanced driver assistance system both require a high precision
ego localization. A multitude of comfort and safety systems can be realized if such a localization
solution is coupled with highly accurate digital maps. In fact, both are prerequisites for automatic
driving, a goal that is pursued for decades but still remains unsolved. In this thesis we present a system
to fully automatically create a highly accurate visual feature map from image data alone. Moreover,
a system for high precision self localization relative to this visual map is presented. Mapping and
localization heavily depend on a powerful image processing front end and we present a method to
automatically learn a visual descriptor which is tailored to this specific computer vision domain.
The proposed mapping algorithm computes a graph of poses and pairwise motion constraints which is
optimized in a least squares sense. We introduce a novel place recognizer which detects areas of self
overlap of the mapping surveys. Pairwise image similarities are computed from holistic features and
putative loop closure hypothesis are refined to increase robustness to perceptual aliasing by dynamic
programming. Thereafter, a large set of 3D landmarks are automatically extracted and stored in an
efficient data structure. We demonstrate the feasibility of our approach on several challenging data sets.
Four survey trajectories of several ten thousand poses are automatically merged into one consistent pose
graph representation.
The localization algorithm which we present requires only a monocular camera and any additional
hardware is superfluous. First, the nearest pose of the map is found by an efficient search strategy
in the space of appearances. Thereafter, a two step procedure is followed which firstly computes a
rough six degrees of freedom ego pose estimate by minimizing the squared back projection error of
landmark observations. Secondly, a sliding window of past such estimates is jointly re-optimized
to increase robustness and enforce temporal consistency. We demonstrate centimeter-level accurate
self localization on several data sets with forward and backward facing cameras. The high precision
self localization algorithm allows the implementation of an augmented reality system and we present
numerous experimental results of it.
Both of the aforementioned methods largely depend on powerful image descriptors and finding a good
descriptor is cumbersome. We address this problem and present a novel method to fully automatically
learn an algorithm to visually describe a region around a given pixel position of an image. We identify
a set of algorithmic building blocks which allows to create a multitude of descriptors by chaining
these blocks in arbitrary order. To the best of our knowledge, we are the first to show how many
well established descriptors like local binary patterns (LBP), binary robust independent elementary
features (BRIEF), histograms of oriented gradients (HOG) and speeded up robust features (SURF) can
be constructed using our blocks. Moreover, we propose a fitness function that evaluates any given
descriptor in the realm of place recognition under varying illumination conditions. A genetic algorithm
iterates selection and mutation steps and automatically derives a novel descriptor which we dub DIRD
(DIRD is an illumination robust descriptor). We assess DIRD on a disjoint test set and demonstrate a
significant superiority over its handcrafted counter parts. Thereafter, the point matching performance of
DIRD which is of utmost importance for successful localization is evaluated on three test sets exhibiting
large illumination variations. DIRD substantially outperforms state-of-the-art alternatives in all tests;
by a factor of two in some cases.

Keywords: Localization, Mapping, SLAM, Descriptor Learning, Computer Vision

III

Kurzfassung

Die nächste Generation der Navigations- und Fahrerassistenzsysteme werden beide eine hoch genaue
Eigenlokalisierung benötigen. Eine Vielzahl an Komfort- und Sicherheitssystemen kann realisiert wer-
den, wenn eine solche Lokalisierungslösung mit hoch genauen digitalen Karten kombiniert wird. Bei-
des sind Grundvoraussetzungen für das automatische Fahren; ein Ziel das seit Jahrzehnten verfolgt
wird, jedoch bisher ungelöst ist. In dieser Arbeit stellen wir ein System vor, welches rein bildbasiert
eine hochgenaue visuelle Merkmalskarte erstellt. Darüber hinaus stellen wir ein Verfahren zur hochge-
nauen Eigenlokalisierung relativ zur vorherig genannten Karte vor. Sowohl die Kartierung, als auch die
Lokalisierung sind stark von einem performanten Bildverarbeitungsfrontend abhängig und wir stellen
eine Methode zum automatischen Erlernen visueller Deskriptoren vor, welche für eine spezielle Bild-
verarbeitungsdomäne maßgeschneidert sind.
Der vorgestellte Kartierungsalgorithmus berechnet einen aus Posen und Bewegungsschätzungen beste-
henden Graphen, welcher im Sinne der kleinsten Fehlerquadrate optimiert wird. Wir stellen einen
neue Methode zur Ortserkennung vor, welche Selbstüberlappungsbereiche der Kartierungstrajektorie
erkennt. Paarweise Bildähnlichkeiten werden von holistischen Merkmalsvektoren berechnet und vor-
läufige Ringschlusshypothesen werden durch dynamische Programmierung überprüft um die Robus-
theit gegenüber visuellen Uneindeutigkeiten zu erhöhen. Danach wir eine große Menge an 3D Land-
marken extrahiert und in einer effizienten Datenstruktur gespeichert. Wir demonstrieren die Anwend-
barkeit unseres Ansatzes auf mehreren anspruchsvollen Datensätzen. Vier Kartierungstrajektorien mit
mehreren zehntausend Posen werden automatisch in eine konsistente Posengraphrepräsentation über-
führt.
Der vorgestellte Lokalisierungsalgorithmus benötigt lediglich eine einzige Monokularkamera und
jegliche Zusatzhardware ist überflüssig. Zuerst wird die nächste Pose der Karte durch eine effiziente
Suchstrategie im visuellen Merkmalsraum gefunden. Danach wird ein zweischrittiges Verfahren aus-
geführt, welches zuerst eine grobe Eigenposenschätzung mit sechs Freiheitsgraden durch Minimierung
von Landmarkenrückprojektionsfehlern berechnet. Danach wird eine gefensterte Historie solcher
Schätzungen gemeinsam erneut optimiert um Robustheit zu erhöhen und eine zeitliche Konsistenz
zu erzwingen. Wir demonstrieren eine zentimetergenaue Eigenlokalisierung auf mehreren Daten-
sätzen mit vorwärts und rückwärts gewandten Kameraaufbauten. Die hohe Genauigkeit der Eigen-
lokalisierung erlaubt die Umsetzung eines Augmented Reality Systems und wir zeigen mehrere exper-
imentelle Ergebnisse eines solchen Systems.
Beide vorherig genannten Methoden sind stark von performanten Bilddeskriptoren abhängig und es
ist schwierig einen guten Deskriptor zu finden. Wir adressieren diese Problem und stellen eine neue
Methode zum vollautomatischen Erlernen eines Algorithmus zur visuellen Beschreibung einer Bildre-
gion vor. Wir identifizieren eine Menge von algorithmischen Bausteinen, welche die Konstruktion
einer Vielzahl an Deskriptoren durch Verkettung dieser Blöcke erlaubt. Nach bestem Wissen, sind
wir die ersten, die zeigen wie etablierte Deskriptoren wie local binary patterns (LBP), binary robust
independent elementary features (BRIEF), histograms of oriented gradients (HOG) und speeded up ro-
bust features (SURF) durch unsere Blöcke konstruiert werden können. Des Weiteren, stellen wir eine
Bewertungsfunktion vor, die einen gegeben Deskriptor auf Funktionalität im Bereich der Ortserken-
nung unter variierenden Beleuchtungsbedingungen hin bewertet. Ein genetischer Algorithmus iteriert
Auswahl- und Mutationsschritte und erlernt so automatisch einen neuen Deskriptor, den wir mit DIRD
(DIRD is an illumination robust descriptor) bezeichnen. Wir bewerten DIRD auf einer disjunkten Test-
menge und zeigen eine deutliche Überlegenheit über händisch erstellte Algorithmen auf. Danach wird
die Performanz von DIRD auf Punktmatchingproblemen, die bei der Lokalisierung von aller höchster
Wichtigkeit sind, auf drei Testdatensätzen mit hoher Beleuchtungsvariation, bewertet. DIRD performt
deutlich besser als der Stand der Technik auf allen Datensätzen; manchmal um den Faktor zwei besser.

Schlagworte: Lokalisierung, Kartierung, SLAM, Deskriptorlernen, Bildverarbeitung

CONTENTS V

Contents

Notations and Symbols VII

1 Introduction 1

1.1 Contribution . 2

1.2 Thesis Overview . 3

2 Related Work 9

2.1 Localization . 9

2.2 SLAM . 11

2.3 Descriptor Learning . 13

3 Nonlinear Least Squares Estimation 15

3.1 Definition . 15

3.2 Factor Graphs . 18

3.3 Normalization . 19

3.4 Solvers . 20

3.5 Manifolds . 23

3.6 Robustness . 27

3.7 Extended Kalman Filter . 28

4 Mapping 33

4.1 Pose Graph Estimation . 33

4.2 Loop Closure Detection . 36

4.3 Landmark Estimation . 40

4.4 Map Data Structure . 41

4.5 Experiments . 43

VI CONTENTS

5 Localization 53

5.1 Topological Localization . 54

5.2 Metric Localization . 56

5.3 Experiments . 61

5.3.1 Quantitative Experiments 62

5.3.2 Qualitative Experiments 66

6 Descriptor Learning 73

6.1 Algorithmic Building Blocks . 74

6.2 Learning Procedure . 82

6.2.1 Fitness Function . 84

6.2.2 Evolution Strategies . 84

6.3 Experiments . 86

7 Conclusion 99

A Appendix 105

A.1 Histograms of Oriented Gradients 105

A.2 Speeded Up Robust Feature . 106

References 110

NOTATIONS AND SYMBOLS VII

Notations and Symbols

Acronyms

ACC Adaptive Cruise Control
ALOI Amsterdam Library of Object Images
AR Augmented Reality
AUC Area Under the Curve
BRIEF Binary Robust Independent Elementary Features
DIRD Dird is an Illumination Robust Descriptor
DOF Degree of Freedom
EKF Extended Kalman Filter
EM Expectation Maximization
GMM Gaussian Mixture Model
GNSS Global Navigation Satellite System
GPS Global Positioning System
HOG Histogram of Oriented Gradients
LBP Local Binary Pattern
NLS Nonlinear Least Squares
PR Precision Recall
RANSAC Random Sample Consensus
ROC Receiver Operating Characteristic
SIFT Scale Invariant Feature Transform
SIMD Single Instruction, Multiple Data
SLAM Simultaneous Localization and Mapping
SURF Speeded Up Robust Feature

Notations
lj Landmark
pi Pose

VIII NOTATIONS AND SYMBOLS

x State vector
z Measurement vector
u, v Pixel position
d Disparity
π(·) Camera projection function
fi Holistic feature vector
I(·) Indicator function

1

1 Introduction

Modern societies largely depend on mobility for the vast majority of people. Most
households in industrialized countries own at least one vehicle and its usage is
part of everyones life. This freedom of mobility, however, comes at the price of
4009 fatalities and 392365 injuries caused by traffic accidents in Germany in 2011
[22]. Traffic remains the largest single cause of death in the European Union for
ages 15 to 29 [16].
The desiderata for safety is ubiquitous and car manufactures have spent enormous
endeavors to increase vehicle safety. In fact, recent developments have led to a
pronounced decline in traffic related mortalities. In 1990, 7906 people were killed
in traffic in Germany [22] which almost doubles the current number despite an
increase in new vehicle registrations [22]. It is largely agreed that this decline
is partially attributed to modern active safety systems such as collision warning,
adaptive cruise control (ACC), lane departure warning, blind spot detecting and
many more. These systems have reached the market and exhibit a high degree of
maturity.
Nowadays, much effort is spent on pushing the degree of automation even further.
Systems that take over full vehicle control in critical situations seem to be within
reach. A partially or fully automatically operating vehicle has many desirable and
appealing properties. It cannot suffer from distraction and fatigue, can decide
in milliseconds and may possibly cooperate with other traffic participants and
thereby increase street capacity without additional infrastructure.
All of the aforementioned systems share a common dependency on both high
precision digital maps and a centimeter-level accurate self localization. Static
objects of the environment that are persistent over time such as curb stones, traffic
signs, lane markings and traffic lights can easily be stored in such maps. During
online localization, the relative vehicle position of these objects can be retrieved
easily from the ego position at any time. Thereby, the on board environment
perception can be moved to an offline computation hence exonerating electronic
control units from computationally demanding tasks. Furthermore, the “sensing
range” of such static map objects is literally unbound. Moreover, any sensor
problems caused occlusion can be elegantly avoided.
Another broad application area is automatic driving which has attracted consid-
erable attention, both in media and research, lately and first working systems
have been demonstrated. Maps and a highly accurate ego localization solution

2 1. INTRODUCTION

Figure 1.1: An example image which is used to derive a high precision ego pose.

substantially simplify this unsolved problem. A path can be planned using the
digital map and the localization is the feedback for the steering and acceleration
controller. Moreover, the map can be enhanced by additional information like
traffic rules, speed limits, positions of traffic lights and many more.

1.1 Contribution

Herein, we present a system for high precision self-localization using a monocu-
lar camera only. The camera is localized relative to a visual landmark map. We
show how these maps can be computed from visual information alone and detail
the localization algorithm. An example of such a camera image is depicted in
Figure 1.1. We use gray scale cameras with a resolution of roughly a half mega
pixel and 90◦ field of view. Finally, we introduce a novel method to automatically
construct problem specific image descriptors to learn a powerful localization spe-
cific descriptor.
Unlike [59] the visual map is created fully automatically from street level imagery

and does not require any additional hardware like [46]. We propose a novel place
recognizer that is used to ensure consistency in areas of self overlap. The method
is very efficient and much faster to compute than a widely used alternative [17]
and is freed from any previous training to create codebooks. Moreover, it is robust
to illumination variations caused by different times of day which is an issue that is
mostly ignored by recent developments in this area. Preliminary results related to
mapping have been published in our works [44, 39, 37].
We present a localization algorithm that requires only a single monocular cam-
era whereas [67] have used bulky and costly laser scanners. We demonstrate
centimeter-level precision by an extensive set of experiments on real world data
and the achieved accuracy ranges among the most accurate systems to date. The

1.2. THESIS OVERVIEW 3

authors of [45] report a localization accuracy of 10cm with laser scanners which
we demonstrate to have eclipsed. Beyond that, we obviate the need for a global
positioning device for initialization purposes as it is required by e.g. [52]. In con-
trast to [56], the proposed system estimates a six DOF ego pose which allows the
implementation of an augmented reality (AR) system. We have published earlier
versions of the method in [38, 42, 43, 41].
Many computer vision problems make use of a visual key point descriptor that de-
scribes an image region around a pixel position by a numeric feature vector. Point
matching, classification and image retrieval are a few non-exhaustive prominent
examples. Recently, a flood of newly developed descriptors have been published
most of which are designed with a broad applicability in mind. Finding the de-
scriptor that is best suited for localization and mapping is extremely tedious and
cumbersome. That is why, we propose to automatically construct problem specific
methods from a set of algorithmic building blocks. We demonstrate how widely
used descriptors such as local binary patterns (LBP), binary robust independent el-
ementary features (BRIEF), histograms of oriented gradients (HOG) and speeded
up robust features (SURF) can be constructed by the proposed blocks. To the best
of our knowledge, we are the first to introduce a unification of existing methods
and an easy way to automatically create novel ones. The work of Winder, Brown
and co-workers [70, 12] present a set of blocks whose parameters are optimized by
Powell’s method. The order of blocks however is fixed and only the parameters are
optimized. Our methods spans a much greater space and is able to create a richer
structure. Unlike [12] we demonstrate that many commonly used descriptors such
as LBP, BRIEF, HOG and SURF can be constructed using our blocks. We demon-
strate a substantial improvement of an automatically learned descriptor over a set
of general purpose ones when applied to place recognition and point matching un-
der challenging lighting conditions. The thus obtained method largely contributes
to the overall localization performance. Our previous publications [40, 36] have
described some related aspects.

1.2 Thesis Overview

The remainder of this thesis is structured as follows.
Chapter 2 reviews related work. First, common methods addressing the localiza-
tion problem are presented. Global navigation satellite system (GNSS) approaches
suffer from shadowing and multipath propagation and several solutions have been
proposed which are briefly mentioned. Map relative localization has recently at-
tracted considerable attention. Laser scanners and cameras are most often used
for this purpose. Moreover, our approach to localization is related to simultaneous

4 1. INTRODUCTION

localization and mapping (SLAM) which has been extensively studied in the past
decade. The most influential ideas are shortly re-stated. Lastly, work related to
automatically learning a visual image descriptor are reviewed.
Nonlinear least squares (NLS) estimation plays a fundamental role throughout this
thesis. Chapter 3 offers an introduction into the subject. First, the problem is de-
fined as the search for an argument of a vector valued residual function such that
it minimizes the squared Mahalanobis norm. Factor graphs are introduced which
elegantly provide a representation that is equivalent to the residual function and
help to ease the understanding of such problems. A toy example accompanying
the entire chapter is successively extended to introduce more advanced topics such
as manifolds which are used when state spaces need to be over parameterized. A
generally applicable and commonly used trick to reduce a weighted least squares
problem to an ordinary one is presented which allows to treat all NLS problems of
this thesis as ordinary ones for reasons of better readability whilst silently assum-
ing all noise covariance matrices correctly.
Chapter 4 elucidates the mapping process that is used to compute a visual map en-
tirely from a set of stereo sequences. The proposed method allows to fuse record-
ings of several survey trajectories into one single pose graph representation. To
this end, areas of self overlap are reliably detected by the proposed place recog-
nizer and hence, enforcing consistency in these areas. Correctly detecting areas of
self overlap is of utmost importance. It ensures consistency in these areas which
would otherwise be unusable for localization purposes. Furthermore, we propose
an algorithm that computes a large set of 3D landmarks from the recorded imagery.
Salient points are associated between several images and the landmark position is
estimated such that it explains the observed pixel positions as good as possible.
Finally, the map data structure is presented which is a crucial prerequisite for fast
online landmark retrieval. The main concept of this chapter is illustrated in Figure
1.2.

The details of how to localize a single monocular camera relative to the aforemen-
tioned visual map are elaborated in Chapter 5. The presented algorithm follows
a three step approach. First, a very rough pose estimate is determined to initialize
all subsequent localization steps. Thereto, a topological localization algorithm is
proposed which finds the pose of the map that is closest to the current ego position.
This nearest neighbor search is entirely performed in the space of appearances as
no global positioning device is used. After topological localization all 3D land-
marks of the immediate vicinity of the current camera pose are loaded from disk
and associated with salient points of the current camera image. These associations
are harnessed to derive a rough metric ego pose estimate which is referred to as
one-shot estimate. Finally, a set of past one-shot estimates are re-optimized jointly

1.2. THESIS OVERVIEW 5

visual map

3. landmark estimation

2. graph
optimization

1. loop closure detection

Figure 1.2: The mapping process creates the visual map used for localization
and is introduced in Chapter 4. First, a visual odometry induced pose graph is
constructed. Areas of self overlap are reliably detected by the proposed loop clo-
sure detector which matches overlapping subsequences by dynamic programming.
Lastly, natural landmarks are detected and their spatial position is estimated by
NLS estimation using the result of the aforementioned pose graph optimization.

to increase overall robustness and this third processing step is dubbed pose adjust-
ment. An overview of the chapter is depicted in Figure 1.3
A framework for automatic learning of descriptors is presented in Chapter 6. A
set of algorithmic building blocks is proposed which can be chained in any order
to form a single descriptor for each such combination. This construction scheme
allows to automatically assemble a multitude of different descriptors. A fitness
function that evaluates the performance of a descriptor in the realm of place recog-
nition under varying illumination conditions is proposed. Finally, the construction
scheme is coupled with the fitness function to derive a meta heuristic that fully
automatically finds a descriptor that performs particularly well in the domain of
this specific problem. We demonstrate a substantial improvement of the learned
descriptor over state-of-the-art general purpose ones. The key concept is shown in
Figure 1.4.

6 1. INTRODUCTION

1km

1m
current image

visual map

place recognizer

Figure 1.3: Our novel localization method is elaborated in Chapter 5. First, the
current camera image is translated into a space of appearances and the pose of the
map that is most similar is found using a place recognizer. Thereafter, landmarks in
the vicinity of the vehicle are loaded from disk and associated with pixel positions
of the current camera image. Landmark associations are finally harnessed to derive
a high precision six dimensional ego pose.

1.2. THESIS OVERVIEW 7

root

I469

A B C D E

Descriptor Representation

Descriptor Evolution

Figure 1.4: We introduce a set of algorithmic building blocks which allow to
assemble descriptors by chaining these blocks in arbitrary order as described in
Chapter 6. If these blocks are nodes of a graph then a single descriptor is fully
described by a path trough this graph (top left). An evolution strategy is used to
iteratively mutate a root descriptor to yield successively better ones. One such evo-
lution is shown (middle). The thus learned descriptor (E) outperforms state-of-the-
art alternatives (A-D) in place recognition under varying illumination conditions
as shown on the right bottom.

9

2 Related Work

In this chapter we will review related work. First, we cover state-of-the-art lo-
calization methods in Section 2.1. Thereafter, we present a summary of the most
influential simultaneous localization and mapping (SLAM) methods and systems
in Section 2.2. Finally, work related to descriptor learning is elucidated in Section
2.3.

2.1 Localization

In this section we review recent advances related to localization in general and
map relative localization in particular. We first briefly touch GNSS approaches
and how these can be improved by integrating road maps into the estimator.
Thereafter, we delve into the realm of map relative localization in 2D and in 3D.
Finally, we shortly sketch topological camera based localization methods.
A straight forward and commonly followed approach to address the localization
problem is to use GNSS. Pseudorange measurements are fused in a filter frame-
work to estimate the global position and clock offset of the receiver. Multipath
propagation, however, causes severe problems and can cause catastrophic diver-
gences of the estimator. To mitigate these effects Sünderhauf and co-workers
developed a robust least squares solver which jointly estimates the receivers
position and the set of valid pseudorange measurements in [65]. To this end, one
switch variable is estimated for every pseudorange measurement jointly with the
position state vector. These switch variables reveal any outlying measurement.
A greatly improved accuracy is demonstrated using a low cost global positioning
system (GPS) receiver albeit not reaching the accuracy necessary for some
applications.
Using road maps in conjunction with GNSS seems an appealing possibility to
constrain the ego position. Several approaches have recently emerged and we
exemplarily cite the work of Drevelle and Bonnifait [21]. The search for the most
likely ego position is recast as a constraint satisfaction problem. Interval analysis
is used to find a set of solutions (ego positions) that satisfies GPS measurements
and map induced restrictions. Several hypothesis can be computed in cases of
ambiguities. The reported localization accuracy is 6.5 meters in 95% of the cases
in a street canyon like scenario in downtown Paris.

10 2. RELATED WORK

Integrating additional knowledge (the map in this case) contributes to the overall
accuracy of the localization system as demonstrated by the work mentioned above.
Li et al. [47] have followed a similar idea and have added additional cues into
their localization estimator. GPS readings, maps and beyond that, a monocular
camera is used. The camera detects lane markings and road signs of a known
position. All three complementary measurements are finally fused by a particle
filter to yield a refined ego pose.
Recently, precomputed maps have been used for localization purposes. The
obtained localization is always relative to a previously recorded map and global
position accuracy therefore depends on the map accuracy. However, map relative
accuracy is often the desired goal for e.g. path planning and the like. Furthermore,
any error prone handling of occluded or reflected satellite reception is obviated
completely. A laser range finder is used in [67] to localize within a 3D polygon
map. A particle filter propagates the posterior distribution over the ego pose
through time.
A rotating laser scanner is used for localization in [45, 46]. Levinson and
collaborators have proposed to use infrared remittance values of laser beams of
the road surface only. The road surface can be found rather accurately in laser
point clouds and is likely to be persistent over time. SLAM approaches are used to
smooth the map and enforce consistency in areas of self-overlap whereas particle
filters are their choice of localization estimator.
Laser scanners of this type are prohibitively expensive on the one hand and cause
severe packaging problems on the other. Hence, their use in series production
vehicles is inadmissible. The recent explosive growth of imaging technologies
offers a solution and cameras are used by Napier and Newman in [51]. A model
of the road surface is computed by computing local orthographic projections of it
from stereo data. This road surface model is stored as a map and subsequent passes
of the same route are localized relative to it. The mutual information between
synthesized views of the surface and the current camera image is maximized to
derive a 2D ego pose.
Pink [56] follows a related idea. Aerial images are pre-processed by detecting
corners of road markings. Unlike [51], point features (landmarks) are used in his
approach. An online camera image is searched for these landmarks and iterative
closest point algorithms yields the estimated 2D ego pose. Finally, these ego
position estimates are fused with a motion model to constrain the motion and
increase overall accuracy.
The aforementioned systems localize in 2D. Some application areas, however,
require a 3D localization. The notion of landmarks for a 6 degree of freedom
(DOF) localization is also presented in [69]. A micro aerial vehicle is localized
relative to a dense point cloud map. A sparse point cloud map is computed

2.2. SLAM 11

by structure from motion first and gaps are filled in by patch based multi view
stereo yielding the dense map. Virtual camera images can then be computed from
the dense representation. The ego pose can thereafter be recovered from point
correspondences with the current online image.
A very recent 6 DOF localization system using a monocular camera is presented
in [2] by Alcantarilla, Dellaert and others. In fact, their system shows some
resemblance to the work presented herein albeit some pronounced differences.
A visual map is computed by means of bundle adjustment using stereo cameras.
Landmarks are extracted and their visual description is stored for localization.
An NLS solver is used to yield the ego pose estimate during online operation
from a monocular camera. The initialization process of finding a proximity of
the map to localize in differs from ours and scales much worse. In fact, their
system is designed for small indoor scenarios whereas our system scales to large
scale outdoor trajectories. Moreover, the carefully designed visibility prediction
process of [2] is completely obviated by our map data structure.
Cameras have also been used by Badino in [3, 4]. Imagery was recorded for an
urban area and holistic image features describing each single pose of the mapping
trajectory are extracted from the images and stored as the map. During online
localization current image features are matched to the map and position estimates
are smoothed by fusing odometry information. The method is dubbed topometric
localization. The final position estimate will always correspond to exactly one
pose of the mapping trajectory.
The aforementioned methods only seem to be the tip of the iceberg in the realm
of holistically describing images for this kind of localization. Milford [50] has
pushed the idea further by describing panorama images by only a few bits. Place
matches are computed for double round trip trajectories of lengths up to 70km.
The dynamic time warping of the pairwise image difference matrix appears to be a
crucial ingredient. Our place recognizer draws some inspirations from this work.

2.2 SLAM

SLAM is the long known problem of localizing a robot within a map while
computing that map at the same time. Localizing is enabled by known maps
while map generation depends on a localization solution. Hence, SLAM tries
to solve this elusive chicken and egg problem. Most often maps are represented
by a collection of landmarks which are sensed by some sensor. Bayesian filters
like extended Kalman filters (EKFs) aim at estimating a state comprised of all
landmarks and the current ego position [5, 23, 19]. Sensor readings can be fully

12 2. RELATED WORK

predicted from one such state vector and compared to the actual sensor output to
yield the filter innovation.
Despite its theoretical soundness, the filter approaches as stated above suffer
from well known Draconian limitations in scalability preventing large scale real
time systems. Discovering a special structure of the state covariance matrix
which exhibits strong correlations only between landmarks that have been sensed
jointly eventually led to submapping approaches. Only a small fraction of the
state vector and covariance is updated at each time step and a global update is
postponed as long as possible (e.g. until a loop closure occurs). These methods
have constant complexity most of the time. We exemplarily mention the work
of Pinies and co-workers [55]. Their solution is numerically equivalent to the
regular EKF formulation after every global update and does not necessitate any
approximations.
A long known solution from photogrammetry experienced a resurgence of
interest once computing power had increased: bundle adjustment. All robot
poses and all landmark positions are stacked into one joint state vector which is
estimated by nonlinear least squares (NLS) estimation. Levenberg-Marquardt
and Gauss-Newton methods are popular choices of solvers. The measurement
matrix of the linearized system of equations which is iteratively solved exhibits an
extremely sparse structure. The emergence of sparse matrix solvers using variable
reordering [1] finally led to the breakthrough. A relative representation of the
problem dubbed relative SLAM is presented in [62]. Triggs et al. offer a good
introduction into bundle adjustment in [68].
Nowadays the landmark/pose notion of SLAM is replaced by a simple pose-only
surrogate. The state of the map consists of all poses of the robot trajectory and the
motion induced pose graph is estimated from sensor readings. Once loop closures
are introduced, the system of pose to pose constraints becomes overdetermined.
This pose graph is then an abstract representation and agnostic of the sensor that
created it. It is finally solved by standard nonlinear least squares machinery. The
removal of landmark positions from the problem allows to estimate very large
trajectories [20]. A fine introduction into the subject is presented in [28]. A
flexible open source software library is presented in [35]. Most approaches of
solving pose graphs can be traced back to the influential work of Lu and Milios
[49].
Another problem tightly coupled to SLAM is the detection of previously visited
places dubbed loop closure detection. FabMap presented in [17] by Cummins and
colleagues has emerged into the work horse of loop closure detection. It applies
an appearance based approach. A probabilistic model of places is learned from
salient image features. Large feature vocabularies need to be trained beforehand.
Their work is robust to perceptual aliasing albeit being computationally rather

2.3. DESCRIPTOR LEARNING 13

expensive. The feature extraction is quite time consuming. To mitigate the effects
of visually describing a multitude of image features in every image Sünderhauf
and co-workers [66] have resorted to a simplistic approach. The image is down
sampled and partitioned it into small equally sized image tiles each of which is
holistically described by only one single image descriptor. Concatenating single
tile features into one yields the descriptor representing the appearance of the entire
image. Place recognition is thereafter straight forwardly achieved by nearest
neighbor search in the space of appearances.

2.3 Descriptor Learning

We present a descriptor learning framework and review related literature here.
The work closest to our descriptor learning framework is the work of Brown
and co-workers [70, 12]. A set of blocks are presented which are combined to
assemble a descriptor. The block parameters are optimized by Powell’s method.
Blocks include smoothing, non-linear transforms, pooling and normalization. A
large training set of different views of the same points is created by large scale
bundle adjustment. The order of blocks, however, is fixed and only the parameters
are optimized. Our methods spans a much greater space of descriptors with more
processing blocks. Furthermore, the order of blocks is optimized as well.
Parameters of scale invariant feature transform (SIFT) and histograms of oriented
gradients (HOG) features are optimized by the method of [64]. A set of patches
are automatically extracted from street level imagery similarly to [12]. The pa-
rameter space of these hand crafted methods is thereafter searched for an optimum
with car classification in mind. Experiments show a substantial improvement
of the trained parameter set over the default set. Furthermore, it is shown how
classification accuracy can benefit from application specific parameters.
Philibin et al. [54] and Carneiro [14] both present a method for feature learning.
Their work focuses on learning a distance function for image retrieval which
is referred to as distance metric learning. Linear projections and deep believe
networks are used. We refrained from learning a mere distance transform but
rather optimized the entire descriptor.
Descriptors used for image retrieval largely depend on spatial pooling and vector

coding. Boureau and colleague [11] systematically investigated the effects of
proper pooling and coding choices. By pairwise combination of these choices,
a rich set of novel descriptors can be created. The importance of appropriate
choices for these steps could be highlighted. They find that sparse coding is more

14 2. RELATED WORK

appropriate than soft and hard quantization and maximum pooling substantially
improves over average pooling.
Using a filter operation followed by estimating the filter distribution has been
investigated in our previous work on texture description in [40]. We test several
filter banks (gradient filters, Haar wavelets) and model the filter response by
Gaussian mixture models (GMMs) using the expectation maximization (EM)
algorithm. Thereby we achieve state of the art texture classification performance.
A large body of literature has been published on evaluating different image
detectors and descriptors. It is far beyond the scope of this thesis to exhaus-
tively review them all. We exemplary mention the recent work of Gauglitz
and co-workers [25] as this kind of evaluation studies are only loosely re-
lated to descriptor learning. A vast test set of images for feature tracking
was created and commonly used descriptors are evaluated in terms of matching
performance. However no alteration or automatic feature construction is proposed.

15

3 Nonlinear Least Squares
Estimation

Nonlinear least squares (NLS) problems play a fundamental role throughout the
rest of the thesis. In this chapter we review the basics of NLS estimation.
First, we give a formal definition of NLS problems and show how these prob-
lems can be elegantly modeled by factor graphs. The factor graph notation will be
frequently used in the localization Chapter 5 and the mapping Chapter 4. It con-
cisely summarizes the structure inherent to the specific problem and augments the
associated error sums in a complementary way. Thereafter, we review numeric al-
gorithms commonly used to derive an estimate to these problems. Then a method
is presented that can handle estimates of non-Euclidean spaces such as e.g. rota-
tions in 3D. A manifold approach is reviewed which has gained popularity in the
computer vision and robotics community lately. Since NLS problems are notori-
ously susceptible to any outliers in the measurement vector, we shortly elaborate
common solutions to this problem. Finally, we bridge the gap between NLS esti-
mation and Extended Kalman Filters (EKF) which are interpreted as a sequential
approximation of the full NLS estimate. The chapter is accompanied by a simple
toy example which is successively extended to cover the aforementioned aspects.

3.1 Definition

NLS problems frequently arise in situations where a hidden state vector x ∈ Rn
needs to be computed from noisy measurements z ∈ Rm. One example applica-
tion is model or curve fitting. If a physical phenomenon can be described by an
equation containing parameters and a set of noisy measurements is available then
these parameters can be estimated. In a usual case the number of measurements
outnumbers the number of parameters by a fair margin. Since no parameter set can
then be found to fully explain all measurements (with vanishing residuals) a set of
parameters is sought that minimizes a squared error sum.

16 3. NONLINEAR LEAST SQUARES ESTIMATION

Formally let

r : Rn → Rm (3.1)

x 7→

 r1(x)
...

rN (x)

 (3.2)

be a vector valued function with ri(x) ∈ Rmi being subvectors of r(x) such that∑N
i=1mi = m. We refer to r(x) as residual vector and x denotes the state. An

NLS problem is now the search for an estimate of x that minimizes the squared
norm of the residual vector. The estimate is denoted by

x̂ = arg min
x

{
r(x)T r(x)

}
(3.3)

= arg min
x

{
||r(x)||22

}
(3.4)

= arg min
x

N∑
i=1

||ri(x)||22︸ ︷︷ ︸
=:E(x)

 (3.5)

and E(x) is a scalar error function whose minimum is sought. In the model fitting
example above the residual vector may be defined as r(x) = (h(x)− z) with h(·)
being a measurement function which predicts a measurement from any given state
vector x. It is often possible to compute a measurement from a state but not vice
versa. Hence one needs to solve for x̂ to revert some measurement z, a problem
that can be solved by NLS estimation.
We give a simple example next. Suppose there exists a subway train that drives
from one subway stationA to the nextB. A andB are connected by straight tracks
and the distance between them is known exactly. The train starts to travel and a
device on board measures the traveling distance over time intervals of one minute.
The total traveling time shall be N minutes in this example. Hence we obtain N
distance measurements d1, . . . , dN for the N intervals and the train arrives at B
after the last measurements. The device, however, suffers from some inaccuracies
and the measured distances are noisy. The goal shall now be to estimate the posi-
tions of the train for every full minute after all measurements have been acquired.
A position pi ∈ R is defined as a scalar value of the totally traveled distance until
then. The first and last position is constrained to correspond to A and B respec-
tively that is p0 = 0 and pN = D withD being the known distance betweenA and

3.1. DEFINITION 17

A B

D

Figure 3.1: The positions of the subway train are schematically depicted. The
train starts at the known position A and travels to the known position B. A device
measures the traveled distance di between any two consecutive positions pi−1 and
pi. The NLS problem seeks the positions p1, . . . , pN−1 such that the noisy mea-
surements di are best explained.

B. An example instance of this problem is shown in Figure 3.1. We wish to derive
a good estimate of the positions in between. Thus, the state vector corresponds to
the positions

x =

 p1

...
pN−1

 ∈ RN−1 (3.6)

and is N − 1 dimensional. The residual vector is now

r(x) =

 (p1 − p0)− d1

...
(pN − pN−1)− dN

 ∈ RN (3.7)

and penalizes any deviation of the distance between two consecutive poses from
the measured distance. It yields the error function

E(x) =

N∑
i=1

|| (pi − pi−1)− di︸ ︷︷ ︸
ri(x)

||22 (3.8)

whose minimizing argument x̂ corresponds to the position estimates of the subway
train between the stations A and B.

18 3. NONLINEAR LEAST SQUARES ESTIMATION

....

Figure 3.2: The factor graph of the initial toy example is shown. It consists of
all variables that appear in the NLS problem. Hollow variables are optimized
(comprise the state) and solid ones are fixed and remain unaltered.

3.2 Factor Graphs

Before delving into the technicalities of how to actually compute x̂ we introduce
factor graphs [34]. A factor graph is a graph that consists of vertices and edges that
connect exactly two vertices. Vertices correspond to variables that appear in the er-
ror functionE(x). A subset of the nodes comprise the state vector. Edges that con-
nect vertices correspond to residuals ri(x). Figure 3.2 shows the associated factor
graph of the train example. One edge exists for every ri(x) = (pi − pi−1) − di
and the summation of (3.8) extends exactly over all edges of the graph. Edges are
often labeled with measurements as is in this example. The edge between pi−1

and pi is labeled with the associated measured distance di. Finally, all vertices
that appear hollow in the graphs are subject to optimization and comprise exactly
the state vector x. Solid vertices are variables that cannot be changed during op-
timization. In this example this holds for the first and last positions p0 and pN
which remain unaltered. Note the great similarity of the factor graph of Figure 3.2
and the overview sketch of Figure 3.1.

Every NLS problem can be translated into its associated factor graph and vice
versa. Therefore, we always present both the error sum E(x) and the factor graph
for better readability. In the above example, one edge connects exactly two ver-
tices. In fact, this is the case for all NLS problems throughout the thesis. In
general, an edge can connect more than two vertices. However, this never happens
in any of the NLS problems of this thesis and we have therefore presented this
slightly simplified notation. An extension to graphs that allow to connect more
than two vertices is straight forward and is usually referred to as a hyper-graph. A
typical example which requires a hyper-graph representation is the joint estimation
of scene structure, camera poses and a coordinate transform from measured pixel
observations and some pose priors. If the pose priors are given in a different co-
ordinate system (e.g. vehicle coordinates as opposed to camera coordinates) then
the transform from vehicle to camera coordinates can be estimated jointly with the
scene structure. However, to predict a single pixel observation the corresponding
pose, point and coordinate transform needs to be known rendering it a hyper edge
(connecting three variables).

3.3. NORMALIZATION 19

........

Figure 3.3: The factor graph of Figure 3.2 is slightly extended and an additional
prior term is added. This prior is found as an additional summand in (3.9).

We slightly extend the aforementioned example to show how prior information can
be integrated into NLS problems seamlessly and how this is shown in the factor
graph representation. We suppose that at one point the train passes a landmark of
known position and this is detected by the on board device. Hence it is known that
some specific pose pk is nearby the landmark of known position p̄k. To integrate
this information the error function (3.8) is extended to

E(x) = ||pk − p̄k||22 +
N∑
i=1

||(pi − pi−1)− di||22 (3.9)

which additionally penalizes the deviation of pk from its prior p̄k. The extended
factor graph is shown in Figure 3.3. The prior p̄k is added to the graph. It is
connected by an additional edge with pk. This additional edge represents the ad-
ditional summand of (3.9). The prior p̄k is shown by a solid vertex as it cannot be
changed during optimization. This toy example obviously serves only to show the
general principle of how prior information can be integrated into NLS problems.

3.3 Normalization

At this point we want to draw the attention to another important issue which has
been completely neglected so far. Suppose the subway train device mentioned
above provides a quality measure for each of its measurements. That is, that some
measurements are known to be more accurate than others. This information must
not be ignored during optimization. Let λi be the certainty of the distance measure
di. For increasing λi more confidence should be put on di. This integrates into the

20 3. NONLINEAR LEAST SQUARES ESTIMATION

error function as follows

E(x) =
N∑
i=1

λi||(pi − pi−1)− di||22 (3.10)

= r(x)TΛr(x) (3.11)

with r(x) of (3.7) and a diagonal weight matrix Λ = diag(λ1, . . . , λN). In gen-
eral Λ does not need to be diagonal but is required to be symmetric and positive
definite. In fact, the error distribution of r(x) is assumed to be Gaussion with
covariance matrix Σ leading to the weight matrix Λ = Σ−1 or λn = 1

σ2
n

for a
diagonal Σ = diag(σ2

1 , . . . , σ
2
N) . Then the Cholesky decomposition Λ = LTL

can be computed and an auxiliary residual function

r′(x) = Lr(x) (3.12)

can be defined. Finding x that minimizes the squared norm of r′(x) then corre-
sponds to

x̂ = arg min
x

{E′(x)} (3.13)

= arg min
x

{
r′(x)T r′(x)

}
(3.14)

= arg min
x

{
r(x)TLTLr(x)

}
(3.15)

= arg min
x

{
r(x)TΛr(x)

}
(3.16)

finding the solution of the weighted version as desired. Henceforth, we always as-
sume non-weighted (ordinary) NLS problems for the sake of simplicity but silently
apply the aforementioned normalization procedure where necessary.
The possibility to integrate weights allows to finely adjust the influence of prior
believe in any estimate (cf. (3.9)).

3.4 Solvers

In this section we present common approaches to solving problems like (3.5). A
good introduction into a broad spectrum of optimization algorithms and others is
presented in [58]. We derive the Gauss-Newton and Levenberg-Marquardt algo-
rithms next. Both share a common overall structure. At first an initial guess x0 of

3.4. SOLVERS 21

the state vector is used for initialization. Then a small change ∆ is found such that
x0 +∆ yields an improvement of the residual norm which isE(x0 +∆) < E(x0).
The process is iterated by setting xi+1 = xi + ∆ until a termination criterion is
met. Common choices of termination criteria are to monitor the change in residual
norm E(xi) − E(xi+1) or to check the norm of the update vector ||∆|| to decide
for termination. Usually the iteration is also terminated once a maximum number
of iterations is reached which may hint at an ill conditioned problem.
It remains to show how to compute the update vector ∆ ∈ Rn with n being the
dimension of the state space. To this end we define an auxiliary function

s(δ) = r(xi + δ) (3.17)

for a fixed xi. Note that s(·) behaves like r(·) and can be well approximated by
Tailor series expansion for small δ by

s(δ) ≈ s(0) + S(0)δ (3.18)

with the Jacobian

S(0) =
∂s(δ)

∂δ

∣∣∣∣
δ=0

(3.19)

=
∂r(x)

∂x

∣∣∣∣
x=xi

. (3.20)

An update ∆ is found by minimizing

s(δ)T s(δ) ≈ (s(0) + S(0)δ)
T

(s(0) + S(0)δ) (3.21)
= s(0)T s(0) + 2s(0)TS(0)δ + δTS(0)TS(0)δ (3.22)

for δ by equating the derivative of (3.22) with zero. This yields

0 = 2S(0)TS(0)δ + 2S(0)T s(0) (3.23)

with a unique solution

δ = −
(
S(0)TS(0)

)−1
S(0)T s(0) (3.24)

=: ∆ (3.25)

which we take for ∆. Note the difference in notation between δ and ∆. Equa-
tion (3.22) is a scalar function with the dependent variable vector δ which has a

22 3. NONLINEAR LEAST SQUARES ESTIMATION

unique minimum at δ = ∆ which is a concrete value. The introduction of the
auxiliary function s(·) may seem overly complicated and unnecessary at this point
but will help to remain consistent once the state vector is of a non-Euclidean space
and element of a manifold. The full Gauss-Newton algorithm is shown in Algo-
rithm 1. Another very popular choice is to extend the Gauss-Newton method into

Algorithm 1 Gauss Newton
Require: initial guess x0

Ensure: x that is a local minimum of r(x)T r(x)
x← x0

while termination criterion not met do
define function s(δ) := r(x+ δ)

S ← ∂s(δ)
∂δ

∣∣∣
δ=0

solve STS∆ = −ST s(0) for ∆
x← x+ ∆

end while

the Levenberg-Marquardt algorithm shown next. The main difference is the intro-

Algorithm 2 Levenberg-Marquardt
Require: initial guess x0

Require: initial value of λ > 0
Ensure: x that is a local minimum of r(x)T r(x)
x← x0

while termination criterion not met do
define function s(δ) := r(x+ δ)

S ← ∂s(δ)
∂δ

∣∣∣
δ=0

solve
(
STS + λ diag(STS)

)
∆ = −ST s(0) for ∆

x′ ← x+ ∆
if r(x′)T r(x′) < r(x)T r(x) then
x← x′

decrease λ
else

increase λ
end if

end while

duction of a damping factor λ when solving the linearized system of equations.
It helps to escape some local minima (but not all) and is generally more robust

3.5. MANIFOLDS 23

than Gauss-Newton. However, its convergence speed is a little bit slower in gen-
eral. Sometimes the Levenberg-Marquardt algorithm is referred to as a trust region
method.

3.5 Manifolds

Many times it is necessary to estimate a vector of a non-Euclidean space. Promi-
nent examples are rotations in 3D. Representing rotations by Euler angles causes
sever problems in some situations. If the difference of two such vectors needs to
be computed then the simple Euclidean norm is deceptive. The vector norm of the
vector difference of e.g. x1 = (π, π, π) and x2 = (−π,−π,−π) is non-vanishing
though they obviously represent the same rotation. Moreover, there exists config-
urations where one degree of freedom is lost. Suppose the angles represent the
rotation around the x-axis, the then rotated y-axis and finally around the twice ro-
tated z-axis. Then, one degree of freedom is lost once the second rotation angle
approaches π

2 as the first and last axis perfectly align and the sum of their angles
is the last remaining degree of freedom. This may cause the estimator to diverge
once it approaches these configurations during optimization. This problem is re-
ferred to as gimbal lock.
A common approach is to use a parameterization that does not suffer from gimbal
lock. Unfortunately, there exists no minimal (3-vector) representation of the group
of rotations in 3D that satisfies this requirement. Hence, one needs to resort to
a suitable parameterization using rotation matrices or quaternions. Thoughtlessly
using this parameterization in the state vector is doomed to fail. The algorithms
presented above do not assure that the updated state vector xi+1 = xi+∆ actually
represents a rotation matrix or quaternion which both only exhibit three degrees of
freedom each. In this section a method that elegantly circumvents this deficiency
which has gained popularity in robotics and computer vision is presented. It uses
the notion of manifolds which we introduce next.
A manifold is a union of open subsets of Rn for some n with associated functions
for each subset that map elements of the subset to another space Rm. The function
that maps between the subsets Rn to Rm are called charts. An nice introduction
example may be the manifold of a sphere surface. Consider the position of points
on the earth surface (assumed to be a perfect sphere). Naturally they are expressed
by a 3-vector in some Euclidean coordinate system of three axis. However, only
points that belong to the surface are contained in this manifold (hence a union of
subsets). For a local region we can simply chop out the region and draw a 2D map
of it (say a map of Europe). Within this map we can consistently work with 2D
coordinates. The chart then maps from 2D map coordinates to 3D coordinates.

24 3. NONLINEAR LEAST SQUARES ESTIMATION

...

Figure 3.4: The poitions of the toy example are now in 2D having an x and y
coordinate. However, all positions are required to lie on the track defined by the
line of direction v. The set of all points of this line is the manifold M .

In particular we can compute the difference of two 3D points that belong to the
surface and express the difference by 2D coordinates. Moreover, a 3D point can
be updated by a small 2D update vector by using the chart (map).
We resume the subway example but now consider each position of the train to be

estimated to be 2-vector which is constrained to lie on a line (namely the tracks)
of known parameterization. Figure 3.4 shows a sketch. The line manifold is the
set of all points of the line

M =
{

(x, y)T = λv|λ ∈ R and v = (vx, vy)T
}

(3.26)

with known direction vector v. The new state vector is now comprised of positions
which are an element of this line manifold. Each position is represented by two
spatial coordinates pi = (pxi , p

y
i)T ∈M thus

x =

px1
py1
...

pxN−1

pyN−1

 . (3.27)

3.5. MANIFOLDS 25

The chart φ of the manifold maps each element to its minimal one dimensional
representation by

φ(pi) = λi (3.28)

=
pxi
vx

(3.29)

with pi ∈ M and λi ∈ R. The inverse finally maps from the minimal representa-
tion to the manifold by

φ−1(λi) = λiv (3.30)

and we can switch back and forth between both parameterizations. Much like in
the earth surface example above we can define the difference of two poses of the
manifold by the 	 operator which will yield the difference in minimal representa-
tion by

pj 	 pi = φ(pj − pi) (3.31)

=
pxj − pxi
vx

(3.32)

= δ. (3.33)

Conversely, a small update δ ∈ R can be applied to any pose pi of the manifold by
the ⊕ operator by

pi ⊕ δ = pi + φ−1(δ) (3.34)
= pi + δv (3.35)
= pj (3.36)

and it follows that

pj ⊕ (pj 	 pi) = pj (3.37)

holds. Using the notation of ⊕ and 	 we can restate the residual function (3.7) for
the manifold case yielding

r(x) =

 (p1 	 p0)− d1

...
(pN 	 pN−1)− dN

 ∈ RN (3.38)

26 3. NONLINEAR LEAST SQUARES ESTIMATION

where the regular minus − is replaced by 	. Finally, we are able to define the
auxiliary function for a given state x by

s(δ) = r(x⊕ δ) (3.39)

=

(p1 ⊕ δ1)	 p0 − d1

(p2 ⊕ δ2)	 (p1 ⊕ δ1)− d1

...
PN 	 (pN−1 ⊕ δN−1)− dn

 (3.40)

=

(px1 + δ1v

x − px0) /vx − d1

((px2 + δ2v
x)− (px1 + δ1v

x)) /vx − d2

...(
pxN −

(
pxN−1 + δN−1v

x
))
/vx − dN

 (3.41)

with δ = (δ1, . . . , δN−1)T and δi ∈ R being a minimal representation. The point
is that s(·) is now a vector function of the minimal representation whereas r(·)
is a function of the manifold. The Gauss-Newton method is now presented in
algorithm 3 that also works for the manifold case. The only difference is the

Algorithm 3 Gauss Newton on manifolds
Require: initial guess x0 ∈M
Ensure: x ∈M that is a local minimum of r(x)T r(x)
x← x0

while termination criterion not met do
define function s(δ) := r(x⊕ δ)
S ← ∂s(δ)

∂δ

∣∣∣
δ=0

solve STS∆ = −ST s(0) for ∆
x← x⊕∆

end while

definition of the auxiliary function s(δ) = r(x + δ) versus s(δ) = r(x ⊕ δ)
and the update equation x ← x + ∆ versus x ← x ⊕ ∆. By construction it is
guaranteed that x← x⊕∆ ∈M is still a member of the manifold.
For a state vector that represents e.g. a rotation matrix the gimbal lock problem
is fully avoided as long as the state update δ which is still represented by Euler
angles is small (and hence far from any lock) which is an assumption that is well
fulfilled in practice. Computing the difference between the initial examples of
x1 = R(π, π, π) and x2 = R(−π,−π,−π) where R(·, ·, ·) is a rotation matrix is
then x1	x2 = φ(x−1

2 x1) = (0,0,0)T ∈ R3 with φ(·) being a chart that maps from

3.6. ROBUSTNESS 27

rotation matrices to Euler angles. Thus, the desired result is obtained by using the
manifold of rotation matrices.

3.6 Robustness

NLS problems suffer from a high susceptibility to any implausible measurements
often referred to as outliers. These measurements exhibit a much greater noise
level than expected. If these measurements remain undetected the solvers of Sec-
tion 3.4 diverge catastrophically. Many times one single outlier leads to an overall
poor estimate. Hence, it is of paramount importance to reliably detect these out-
liers. Once these measurements are identified, they are removed from the residual
function and the outlier cleaned version can be solved as explained above.
A straight forward approach is to investigate the residual function. If certain el-
ements of the residual function that correspond to one measurement are unnatu-
rally high it strongly hints at an outlier. Formally let ri(x) be a subvector of the
residual function r(x) that involves the measurement zi which is to be inspected.
If Λi is the inverse covariance matrix of ri then the squared Mahalonbis norm
R = ri(x)TΛiri(x) should follow a χ2 distribution. If 1 −

∫ R
0
χ2(x)dx � 1

holds then it is likely that zi is an outlier. This method is usually referred to as
naïve outlier rejection.
The approach is quite fast to compute in practice and shows acceptable perfor-
mance if only few outliers are to be expected in the measurements. In situations
where the outlier density increases it may not be possible to reliably detect all out-
liers correctly. A widely used alternative to the problem is the use of a random
sample consensus (RANSAC) [24]. A novel randomized version is presented in
[15]. First, a minimal set of measurements that is required to compute an estimate
is randomly drawn and the state is estimated. Thereafter, all measurements are in-
spected whether they support the current state hypothesis. The process is repeated
and the largest inlier set is used for a final joint optimization. RANSAC requires
considerably more time to derive an estimate (due to to its repeated estimation) but
achieves excellent results in practice.
RANSAC, however, exhibits one deficiency. For some NLS problems a sensi-
ble minimal set of measurements cannot be found. Pose graph estimation as it is
presented in Chapter 4 is such an example. Recent advances try to integrate the
classification of measurements into inlier and outlier sets into the NLS estimation.
Sünderhauf et al. [65] have proposed to augment the NLS problems by one switch
variable for every measurement that is possibly unreliable. The switch variable is
passed through a logistic function and indicates an inlier by a value near one and
outlier by a value near zero. Hence, the residual function can yield a lower min-

28 3. NONLINEAR LEAST SQUARES ESTIMATION

imum by automatically disabling certain measurements. The convergence speed
of these augmented NLS problems seem to be a little worse (due to much more
complex fitness surface) but provide a powerful alternative to RANSAC.

3.7 Extended Kalman Filter

A common approach that is often followed when estimating a hidden state that
evolves over time is the Extended Kalman Filter (EKF). Let x0, . . . , xN be the evo-
lution of the hidden state for consecutive time steps. A transition function f(·) that
models the state development is assumed to be known such that xi = f(xi−1)+ εi
with an unknown noise vector εi. The transition function is used to predict a future
state and may require a control parameter which we neglect here for simplicity.
Moreover, there exists a believe in the initial state which is denoted by x̄0. Beyond
that, a measurement is obtained for every time step such that zi = h(xi) + γi with
known measurement function h(·) but unknown noise γi. The goal of the EKF is
to recursively estimate the state xi from the previous state estimate x̂i−1 using the
state prediction f(x̂i−1) and the current measurement zi. The state x could, for
example, encode the state of a moving car-like vehicle and may contain position,
yaw, angular and linear velocities. As such vehicle state cannot change arbitrar-
ily a future state can be predicted for small time lags by extrapolating the vehicle
movements given the aforementioned parameters. Any change in velocities is then
modeled as (system) noise ε. A measurement device for such a system could be a
GNSS receiver which outputs a noisy position reading z which obviously depends
on the state. An EKF filter can then be used to infer the state (velocities etc.) from
the GNSS readings for any time step. The graphical model is depicted in Figure
3.5. Note that the graphical model is not equivalent to the associated factor graph.
The graphical model is generic and holds for all EKF problems whereas a factor
graph can only be constructed for one specific NLS problem.

The goal of EKF estimation is to recursively obtain an estimate x̂i of the current
state xi. To this end, the previous state estimate x̂i−1 is used to predict the cur-
rent state by f(x̂i−1). Thereafter the state prediction can be refined by exploiting
the current measurement zi to yield the final state estimate x̂i. System (εi) and
measurement noise (γi) are assumed to be independent, zero mean and Gaussian
distributed with covariance matrices Qi and Ri respectively. In EKF filtering, it is
crucial to track the certainty in the current state estimate, too as it influences the
amount of change during an update step from measurements. The estimated state
covariance of x̂i is denoted by Pi.
Next we present both the prediction and update step for the EKF. On initialization
the state is set to x̂0 = x̄0 and P0 is set to P̄0 which is provided with x̄0. The

3.7. EXTENDED KALMAN FILTER 29

....

Figure 3.5: The graphical model of an EKF is shown. An initial state x0 is prop-
agated over time by the transition function f(·). The state, however, is only im-
plicitly observed using the measurement function h(·) yielding the measurements
zi.

prediction of the state covariance is

P pi = Fi−1Pi−1F
T
i−1 +Qi (3.42)

where Fi−1 is the Jacobian of f(·) for x̂i−1 and Qi is the system noise covari-
ance as above. The state is simply predicted by applying f(·) to the current state
estimate

x̂pi = f(x̂i−1). (3.43)

The update step thereafter fuses the current state measurement zi with the state
prediction x̂pi and the predicted covariance P pi by

yi = zi − h(x̂pi) (3.44)
Si = HiP

p
i H

T
i +Ri (3.45)

Ki = P pi H
T
i S
−1
i (3.46)

x̂i = x̂pi −Kiyi (3.47)
Pi = (I −KiHi)P

p
i (3.48)

where I is the identity matrix and Ri is the measurement covariance matrix.
The EKF summarizes all past measurements in one single state vector x̂i and re-
cursively updates that state from noisy state measurements zi. In the case of a
constant dimension of the state vector (thus when the state vector does not grow
over time) the update requires constant time for each update step independent of
the number of measurements. This very appealing complexity property largely

30 3. NONLINEAR LEAST SQUARES ESTIMATION

contributes to the success of the EKF which has developed into a standard tech-
nique for a broad range of estimation problems. As in the general NLS case the
EKF assumes outlier free measurements. Outlier detection can be handled by e.g.
gating techniques which reject very unlikely state measurements.
Next, we show how the same problem can be solved using NLS estimation. To this
end, we define the state of the NLS problem to be x = (xT0 , . . . , x

T
N)T . Hence, the

NLS estimate aims at estimating all states jointly and at once [61]. Of course this
is only possible once all measurements z1, . . . , zN have been acquired. Though,
a sequential version to estimate all states until the current time i can be derived
straight forwardly. The residual function is now given by

r(x) =

x0 − x̄0

f(x0)− x1

...
f(xN−1)− xN
h(x1)− z1

...
h(xN)− zN

(3.49)

whose squared norm is minimized by the algorithms of Section 3.4. Just like the
EKF the estimated state shall not deviate too much from its prediction (f(xi−1)−
xi), the initial state shall be near its believe (x0 − x̄0) and the deviation of the
predicted measurements from the actual ones (h(xi)− zi) is penalized. Note that
the initial state covariance of x̄0, the system and measurement noise can be handled
by the normalization method of Section 3.3.
Moreover, we note that a single EKF update is in fact very similar to solving an
NLS problem for the residual function

rekf(xi) =

(
f(x̂i−1)− xi
h(xi)− zi

)
(3.50)

which contains the current EKF state as the NLS state xi [8]. Here x̂i−1 is the
EKF-estimated previous state and f(x̂i−1) is the prediction of the current state.
The EKF, however, must properly propagate the state covariance as well.
Finally we note that it is possible to define the EKF state to contain a fixed number
of past states xi−K , . . . , xi in the state vector jointly. The EKF then becomes very
similar to NLS estimation except that the EKF does not iterate during the update
step as Gauss-Newton and Levenberg-Marquardt algorithms do. In fact, it is even
possible to iterate the update step which is yet another flavor and referred to as the
iterated EKF (IEKF). Using this variant allows to finely adjust the parameter K

3.7. EXTENDED KALMAN FILTER 31

(the time lag) to balance accuracy and runtime. The IEKF solution approaches the
full NLS solution for K → i.

33

4 Mapping

We present our mapping algorithm next. The aim of the mapping process is to
obtain a map which allows to localize a camera relative to it. Our goal is to create
such a map from stereo vision alone. Since large areas may need to be covered,
the algorithm is designed to handle discontinuous recordings. In particular a map
can be constructed from surveys of different days. Overlap between single or
multiple trajectories are robustly identified and the map is extended accordingly.
Hence, a map can be extended every time a new dataset is added to the database.
Furthermore, the mapping procedure is fully automatic and requires no manual
intervention. The obtained map has no global reference since only vision is used
to compute it. However, some cases may require a geographic reference of the
entire map. Therefore, we propose a slight extension to add such geo reference to
it. This step, however, is optional and is only mentioned for completeness. A GPS
receiver is required only in that case.
Throughout the rest of this chapter we assume a set of survey trajectories with
associated stereo image sequences to be available from which we derive the vi-
sual map. At first, these trajectories are computed by visual odometry and made
consistent in areas of overlap by means of loop closure detection and pose graph
optimization. Thereafter, landmarks are extracted from the associated stereo image
streams and their spatial position is estimated. Finally, the entire map data needs to
be stored efficiently on secondary memory since its size easily eclipses available
primary memory capacities. The aforementioned steps are presented detailedly in
the following sections.
A preliminary work of the place recognizer has been published in [36]. A similar
landmark estimator has been presented in [42, 41].

4.1 Pose Graph Estimation

We assume a set of survey recordings S1, . . . ,SR each of which contains a se-
quence of stereo images Sr =

(
sr1, . . . , s

r
Nr

)
. These sequences cover the area for

which a map is sought and may be from different days. To spare the reader a flood
of indices we make a notational simplification and assume only one recording

34 4. MAPPING

which consists of the concatenation of all stereo images

S =
(
s1

1, . . . , s
1
N1
, s2

1, . . . , s
R
NR

)
=: (s1, . . . , sN) (4.1)

which is still discontinuous at the transitions from one sequence to the next (e.g.
s1
N1

to s2
1). We do not lose generality by renaming the elements of the sequence

(4.1). It still contains the stereo images of multiple sequences and days.
Before delving into the details of the mapping tool chain we need to slide in a short
paragraph on notations. Throughout the rest of the thesis we assume poses to be
parameterized by 4× 4 homogeneous matrices

p =

(
R t

01×3 1

)
∈ SE(3) (4.2)

with 3 × 3 rotation matrix R and 3 × 1 translation vector t. Moreover, the chart
φ(·) maps from this over parameterized manifold SE(3) into R6 the minimal pa-
rameterization of 3D angle and 3D translation vector [31]. The motion operator ⊕
which applies a motion δ ∈ R6 to a pose p ∈ SE(3) is defined by

p2 = p1 ⊕ δ (4.3)
= p1 · φ−1(δ) ∈ SE(3). (4.4)

Conversely, the subtraction of two poses yields a change by

δ = p2 	 p1 (4.5)
= φ(p−1

1 · p2) ∈ R6. (4.6)

A good introduction into this subject can be found in [31] and [63].
First, we show how to compute a pose graph G from the sequence (4.1) of stereo
images. A pose graph is a graph that consists of a set of poses each of which
is associated with exactly one stereo image of one recording. These poses are
interconnected by motion constraints. Formally, a pose graph for the N stereo
images of S is defined as the two tuple

G =

{p1, . . . , pN |pn ∈ SE(3)}︸ ︷︷ ︸
set of poses

,
{
δij ∈ R6|i, j ∈ {1, . . . , N}

}︸ ︷︷ ︸
set of pairwise constraints

 (4.7)

with δij being a motion estimate between pose pi and pj .
The graph is constructed by adding the pose to pose motion constraints δij first. If

4.1. POSE GRAPH ESTIMATION 35

pose pi is in close proximity to pose pj the stereo images si and sj can be used
to estimate the motion δij by means of visual odometry [26]. Poses pi and pj are
assumed to be spatially close to each other if they are successive poses of the same
initial sequence (i.e. j = i+1). For j 6= i+1 these poses are assumed to be close
if the loop closure detection of Section 4.2 has identified the stereo images si and
sj to show the same place. We postpone the technicalities of this place recognition
until the next section.
The final step of pose graph estimation is to compute the poses of the graph such
that it matches all pairwise constraints as good as possible. One may expect pj =
pi⊕δij or equivalently δij = pj	pi which cannot be satisfied for all δij due to the
motion δij being a noisy estimate. Hence, each motion constraint induces an error
eij = pj 	 pi − δij which is non-vanishing. Thus, the pose graph optimization
seeks a configuration of all poses such that the sum of squared norms of all these
errors is minimal. The following error function

E(p1, . . . , pN) =
∑
ij

||eij ||2 (4.8)

=
∑
ij

||pj 	 pi − δij ||2 (4.9)

reflects this error where the summation extends over all i, j for which one δij
exists. The result of this NLS problem

p̂1, . . . , p̂N = arg min
p1,...,pN

{E(p1, . . . , pN)} (4.10)

is taken as the poses of the visual map. These estimates are kept fixed after
estimation and used throughout the rest of the mapping process. They are also
stored as part of the map data structure (see Section 4.4).
Note that (4.9) exhibits a degree of freedom which needs to be handled. An
arbitrary rotation or translation of all p̂1, . . . , p̂N yields the exact same error
value (4.9). We follow a common approach and simply fix exactly one pose to
an arbitrary value during optimization. A judicious choice is to set p1 to the
coordinate origin.
Figure 4.1 shows the factor graph of (4.9). A simple sample trajectory is shown

which contains all the poses. Poses are interconnected by motion constraints. The
first pose is depicted solid which means it is kept fixed during optimization. All
other poses are hollow and comprise the state of (4.9). The summation of (4.9)
again extends over all edges of the factor graph.

36 4. MAPPING

...

Figure 4.1: The factor graph of the pose optimization is shown. All poses except
the first are optimized such that their pairwise relative distances correspond to the
visually estimated motion δij as good as possible.

4.2 Loop Closure Detection

A crucial ingredient of the pose graph optimization above is the detection of pairs
of stereo images that show the same place. It is important to enforce map con-
sistency in areas of self overlap which cannot be achieved without such detection.
The goal is to find pairs of stereo images si and sj that show the same location
even though the images are captured on different times, possibly days. We present
our approach for place recognition in this section.
First one single feature vector is computed for every image of S and pairwise sim-
ilarities are computed from them. This matrix of pairwise similarities is thereafter
refined by a post processing step to achieve robustness to visual aliasing and am-
biguities.
In the sequel we refer to the feature vector that describes an image as holistic fea-

ture vector [66]. The left image of a stereo frame is sampled down and partitioned
into 4 × 4 equally sized tiles each of which is 48 × 48 pixels in size. Then, one
DIRD descriptor is computed for the center part of each tile. All sixteen DIRD
features of one image are concatenated to form the holistic feature vector. The

4.2. LOOP CLOSURE DETECTION 37

image

holistic vector

Figure 4.2: A holistic feature is computed for each image. To this end the image
is sampled down and tiled into n × n equally sized tiles. Each tile is described
by one DIRD [36] vector and these vectors are finally concatenated. The example
shows a 2× 2 tiling whereas a 4× 4 tiling is used in the experiments.

final holistic vectors are of dimension 3456 where each element of the vector is a
single byte. The process is schematically depicted in Figure 4.2. Note that these
holistic features are also stored as part of the final map (see Section 4.4).
Now, let f1, . . . , fN be all holistic features of the map with fi extracted from the
left image of si. A column vector Di of L1 distances is then computed by

Di = (||f1 − fi||1, . . . , ||fN − fi||1)
T
. (4.11)

for every index i ∈ {1, . . . , N}. Note that this operation can be performed quite
efficiently on modern CPUs using SIMD (single instruction, multiple data) instruc-
tions since DIRD features are byte vectors.
Simply taking the minimizing argument of (4.11) as the result of the place recog-
nizer is error prone and susceptible to visual aliasing and ambiguities. Hence, we
introduce a post processing step to refine the search next. The idea is to expect that
for a correct match of images si and sj their holistic features fi and fj are similar
(in a vector distance sense). Moreover we also expect neighboring poses of si and
sj to match as well. For this correct match to be accepted we also require fi′ to
match fj′ if pose pi is close to pi′ and pj is close to pj′ . Hence, we search for
subsequences of features that match.
We formalize this requirement by first defining the similarity column vector

Si = (logit(||f1 − fi||1), . . . , logit(||fN − fi||1))
T (4.12)

38 4. MAPPING

distance

similarity

0
0

1

0.5

Figure 4.3: The logistic function logit(·) that translates all distance values into
similarity scores between zero and one is depicted.

with logit(·) being a logistic function which translates all distances of (4.11) into
similarity scores in the range (0,1). The logistic function is parameterized such
that it translates large distance values to a similarity score of (near) zero and small
distances to one. Values in the range of µ which is half of the expected maximum
value result in similarity scores near 0.5. Hence, the logistic function is

logit(d) =
1

1 + exp
(
−(d−µ)

σ

) (4.13)

with d being the distance value and σ an appropriate scaling value which deter-
mines the slope of the transition range near µ. The logit(·) function is plotted in
Figure 4.3. Next the similarity matrix

S = (S1, . . . , Si) (4.14)

with column vectors of (4.12) is defined. Thus, Sj,i ∈ S denotes great similarity of
the image si to the image sj if its value approaches one. A such defined similarity
matrix is best shown visually and an example is depicted in Figure 4.4 (left). An
off-diagonal streak of high similarities can clearly be seen. We aim at finding such
streaks which hint at well matched subsequences.
For any image sj that we consider to show the same place as image si we search
for a streak as in Figure 4.4 that ends at row j in column i. Formally let

Tj,i = max
j1,...,jL s.t.

(jk−1−jk)∈{0,1,2,3}
and jL=j

L∑
k=1

Sjk,i−k+1 (4.15)

4.2. LOOP CLOSURE DETECTION 39

Figure 4.4: Sample matrices S and T are shown. S shows pairwise similarities
between poses of the survey trajectory. The color scale is shown from orange (low)
to blue (high). The streak indicates that two subsequences overlap and show the
same area. The search for such streaks is performed by dynamic programming
and the result is shown on the right. The right matrix T shows an increase in
certainty into the loop closure (ranging from orange (low) to blue (high)). The
main diagonal is not shown.

be the maximum sum of one such streak of length L. The matrix T with elements
Tj,i can be computed efficiently from S by dynamic programming and one ex-
ample is shown in Figure 4.4. We compute Tj,i only for those j, i which seem
promising which means that Sj,i exceeds a conservative threshold. Note that S
and T are both extremely sparse and memory efficient. The streak length in our
experiments is L = 30.
The last step of place recognition is to suppress locally non-maximal place
matches. The right of Figure 4.4 shows that a few places are matched within
a small neighborhood. For pose graph optimization and all subsequent steps a
slightly sparser graph is beneficial. Hence, we keep only the maximum match in
each column. The non-maxima suppressed matrix is denoted by U . It contains the
values Uj,i = Tj,i if j, i is locally maximal. Finally, we accept all image pairs j, i
as place matches if the value Uj,i exceeds the threshold τ = 1

3L.
We note that the method presented above is unable to detect a previously visited

place when observed from an opposite driving direction. An algorithmically triv-
ial solution to largely mitigate this effect is to record imagery for a forward and
backward facing camera simultaneously. The distance computation in (4.11) and

40 4. MAPPING

(4.12) can be replaced by a simple surrogate

min
{
||ffi − f

f
j ||1 + ||f bi − f bj ||1, ||f

f
i − f

b
j ||1 + ||f bi − f

f
j ||1

}
(4.16)

with ff and f b being the forward and backward feature vectors.

4.3 Landmark Estimation

Next, we elaborate the computation of the set of landmarks which are used during
localization. We associate salient image points across all images of the sequence
S. We refer to a set of pixel positions belonging to a single point in 3D as a
tracklet. Every landmark that is finally stored in the map is computed from exactly
one tracklet. It remains to show how to compute the 3D position of one landmark
lj ∈ R3 from its tracklet. Recall that a stereo setup is used for mapping. Thus, the
pixel position and disparity of lj is available when observed from a set of poses
pk, . . . , pk+K . We summarize pixel positions and disparities in the measurement
vectors zk = (uk, vk, dk)T , . . . , zk+K = (uk+K , vk+K , dk+K)T for the landmark
of interest. Finally, the error function

Elm(lj) =
k+K∑
κ=k

||π(lj , pκ)− zκ||2 (4.17)

provides a goodness of fit of lj with respect to the measured pixel positions and the
poses pk, . . . , pk+K that are fixed (see Section 4.3). The function π(l, p) computes
pixel position and disparity for a landmark l observed from pose p [29]. The 3D
landmark position can be estimated by

l̂j = arg min
lj

{Elm(lj)} (4.18)

and is found by NLS estimation which is repeated for every tracklet.
The factor graph of (4.17) is shown in Figure 4.5. It shows the poses

pk, . . . , pk+K and the landmark lj . Poses are solid which denote a fixed variables
(ones that are not optimized). The landmark is shown by a hollow stars indicating
a variable which is optimized and is exactly the argument of (4.17). The summa-
tion of (4.17) extends over all edges of the graph each of which corresponds to a
pixel position and disparity. Hence, we estimate the landmark positions for fixed
poses. This allows to compute each landmark independently of all other ones
which can easily be done in parallel. Moreover, the computation time scales only

4.4. MAP DATA STRUCTURE 41

.......

Figure 4.5: The factor graph of the landmark estimation is shown. The landmark
lj is observed from multiple pose pk, . . . , pk+K . Poses are kept fixed during land-
mark estimation and not subjected to optimization.

linearly with the map size as opposed to squared in the case of joint estimation of
poses and landmarks.
Using (4.18) for every tracklet/landmark yields the 3D position of every landmark.
Finally, we prune some landmarks from the map that seem inappropriate for
localization. Back projection errors and lengths of the tracklets are heuristically
thresholded for this purpose. For robust and reliable landmark association during
online localization, landmark feature vectors are computed. In our case we
use our illumination robust yet efficient novel DIRD [36] descriptor. For the
example landmark lj (see Figure 4.5) one descriptor is computed for every pose
pk, . . . , pk+K it is observed from and stored within the map data structure (see
Section 4.4).

4.4 Map Data Structure

The final visual map consists of all poses p1, . . . , pN their holistic features
f1, . . . , fN , all landmarks l1, . . . , lM and their visual description. For fast on-
line retrieval we store all landmarks visible from a given pose pi and their feature
vectors extracted from that particular image i together in one file. Hence, every
landmark is represented by a multitude of landmark feature vectors; one for each
image the landmark was observed from. This wasteful appearing over parameteri-
zation, however, contributes much to a reliable association during online operation.
It frees us from any struggle related to scale and/or rotation invariance. We simply
match landmark features of the nearest pose. Moreover, the search for potentially

42 4. MAPPING

Figure 4.6: The map data structure is shown. For every pose of the map, one single
file is created. The file contains the estimated pose, the holistic feature describing
the pose appearance and all landmarks visible from this pose. A sample landmark
is shown solidly. It is stored in both files with the visual descriptor computed
independently for each pose.

matchable landmarks is easy. Only landmarks that are stored for the currently
nearest mapping pose are used. The map data structure is depicted in Figure 4.6.
Some cases require a global position estimate during localization. An example is

a self driving vehicle which shall follow a certain trajectory. This trajectory may
have been recorded by a high precision GNSS receiver or may have been automati-
cally created from digital road maps. Then, this trajectory can only be followed by
the vehicle if the localization estimate is expressed in the same coordinate system
(e.g. latitude, longitude, altitude). Hence, we propose to slightly extend the above
algorithm to obtain a global reference. This step requires a GNSS receiver during
mapping and is optional and only mentioned for completeness.
Suppose there exists a global position gi for every stereo frame si of S. Then we
simply set pi = gi when storing the poses of the map. Note, however, that the
global position is only used when saving the map to disk. In particular a visual
odometry induced pose estimate is used for the creation of the landmark positions.

4.5. EXPERIMENTS 43

Landmark positions are stored relative to the poses they are observed from and
their estimate it thus not effected by this pose update. Thereby the pose estimates
can be altered (e.g. set to a global position) after the map computation is already
completed. Moreover any slight map/trajectory updates to enforce consistency
with other map data is easily achieved and the entire map does not need to be com-
pletely recomputed.
Finally, we note that using a global pose estimate for the estimation of landmark
positions is infeasible. GPS position estimates lack the required precision too of-
ten. The problem becomes especially pronounced when sudden GPS jumps occur.
This happens frequently in practise when e.g. leaving street canyons or the like.
In the areas of GPS jumps no landmark positions can be estimated that explain
the observed pixel positions well enough and all landmarks are classified as out-
liers. Hence, these areas would become essentially landmark free which is a truly
undesirable property.

4.5 Experiments

We present the result of a large scale mapping experiment next. Several sequences
of stereo images are recorded and no GPS is used anywhere. The focus of the first
set of experiments lies on the proper recognition of correct place matches. There-
after, we present the results of the landmark estimation process.
First, we test the place recognizer of Section 4.2. We recorded a sequence of 14500
stereo images. For the following place recognition experiments we have recorded
imagery for a forward and backward facing stereo setup to detect places from dif-
ferent driving directions. Both stereo setups are only used for place recognition
and all subsequent steps rely on only one of the setups.
Figure 4.7 shows the similarity matrix S and its post processed version U . The
size of the matrix is quite large and some example areas are shown with more ap-
propriate zoom. One loop closure (first zoom picture) occurs in an area of visual
ambiguity. From the simple vector representation of an image no reliable place
recognition can be achieved. The post processed (and non-maxima suppressed)
similarity matrix U however shows good noise removal properties.
The result of pose graph optimization is shown in Figure 4.8. The left part shows

the result of graph optimization where the place recognition step has been skipped.
The graph contains no loop closures and the resulting estimate is a mere motion
integration. The inevitable drift that occurs in this situation is clearly visible. The
graph shows great inconsistencies.
The right part of Figure 4.8 shows the result of pose graph optimization once the

result of place recognition is incorporated into the mapping process. Areas of de-

44 4. MAPPING

Figure 4.7: The similarity matrix for the first test set is shown. The dynamic
programming procedure and non-maxima suppression produce a noise removed
version depicted on the right side.

Figure 4.8: The estimated pose graphs for test set one are shown. The left part
shows the loop closure free version whereas the right shows the final result after
integrating the detected loops which are marked orange.

4.5. EXPERIMENTS 45

Figure 4.9: The estimated pose graphs for test set two are shown. The left part
shows the loop closure free version whereas the right shows the final result after
integrating the detected loops. The graph contains 25000 poses. Orange indicates
overlap again.

tected self overlap are highlighted in orange. Each area of self overlap corresponds
to exactly one streak of the matrix U in Figure 4.7. All inconsistencies are clearly
resolved. We note that the pose graph optimizer is a non-robust version since the
place recognizer has not introduced a single false positive link into the pose graph.
Hence we refrained from integrating any outlier detection schemes as e.g. in [66].
The same holds for all following experiments. Any false loop closure detection
would result in a severely and clearly visibly distorted pose graph estimate.

To assess the robustness of the presented method we have repeated this exper-
iment for a longer image sequence of 25000 images. It was recorded in a small
suburban area and covers almost all streets of that suburb. Trying to record im-
agery for all streets naturally requires loop rich trajectories. Some streets have
been traveled several times during this survey. The resulting graph contains vari-
ous loops of different sizes.
The result of place recognition is shown in Figure 4.9. First the pose graph without
any place recognition is shown on the left. Heavy inconsistency and drift can be
seen. The right part shows the pose graph after place recognition. Areas of self
overlap are again denoted by orange.

46 4. MAPPING

Figure 4.10: The similarity matrix for the large loop test set is shown. Noise due
to visual aliasing is reliably removed.

The two aforementioned experiments demonstrate that places are reliable detected
in suburban areas. To evaluate the place recognizer once faced with large loops we
have recorded an image sequence of a single large loop on a two lane major street.
The similarity matrix S and its post processed version U are depicted in Figure
4.10. The similarity matrix shows areas of high self similarity. This is caused by
a large alley like appearance which only slowly changes. The dynamic post pro-
cessing, however, is able to reliably detect it and remove it from the final place
recognition matrix U shown on the right of Figure 4.10. The area of overlap man-
ifests as a continuous, off-diagonal, long streak and can clearly be seen in both S
and U .
The resulting pose graph estimate is shown in Figure 4.11. The left part shows the

loop closure agnostic version whereas the right shows the final pose graph estimate
after the integration of the place recognition. The orange (detected self overlap)
is not continuous. In this experiment we have found that lane changes between
traversals cannot be reliably handled by our method and we attribute the discon-
tinuous detection to that. The holistic appearance of a place changes substantially
once observed from a lateral offset of several meters. We believe that this draw-
back is inherent to the approach and can only be overcome by more sophisticated
methods. We propose an extension in the last chapter 7 and simply accept it for
now. Nevertheless, the result is satisfactory. Missing some spots of self overlap

4.5. EXPERIMENTS 47

Figure 4.11: The estimated pose graphs (with and without loop closure) for the
large loop data set are shown.

is far more favorable than introducing false loop closures. This, however, did not
happen in any of the experiments.

Finally, we stress test the place recognizer by a large scale experiment. We
recorded a fourth stereo sequence whose trajectory overlaps with each of the three
preceding ones. We then ran the place recognizer and pose graph optimizer on the
joint set of all recordings. The result is shown in Figure 4.12. The fourth recording
(glue trajectory) is depicted in orange whereas the first three are shown in blue. All
areas of cross and self overlap are detected correctly. The final pose graph opti-
mizer does not handle outliers and assumes all links to be correct. However, this is
essentially superfluous since no false detections are output by the place recognizer.
Next, we show some examples of the landmark estimation process for a backward
facing stereo camera setup. Figure 4.13 shows a typical image of one of the se-
quences. The orange dots and circles of the image indicate the pixel positions for
which a landmark was computed. In fact, each dot is a small circle and the circle
radius denotes the back projection error which we seek to minimize during map-
ping. A larger circle therefore indicates a worse landmark position estimate. All
circles shown in the figure are stored in the map. In particular those landmarks that
are pruned after estimation due to short tracklet lengths or bad back projection er-
rors are not shown. The following car for instance does not contain any landmarks
even though it lends itself nicely to feature extraction. Moving objects are easily
handled by our pruning heuristic.

48 4. MAPPING

Figure 4.12: The place recognizer is stress tested by merging all aforementioned
trajectories by one “glue” trajectory shown in orange. All areas of self and cross
overlap are correctly detected.

4.5. EXPERIMENTS 49

Figure 4.13: The pixel positions for which a landmark was estimated are shown
for a backward facing camera configuration. All features on the car are correctly
identified as non-stationary and are therefore not stored in the map.

Figure 4.14 shows another image with detected landmarks. This image was cap-
tured in a rural area. One can observe that much fewer landmarks are extracted
in that case. Roughly half of those landmarks are located on vegetation which is
not persistent and may vary over larger time spans. Another significant portion is
located far behind the vehicle close to the horizon which cannot contribute much
to a localization estimate. We identified this drawback of “feature poverty” in
rural areas as the greatest weakness of the entire mapping/localization approach.
Localization robustness and accuracy is higher in feature dense urban areas. Nev-
ertheless, we note that localization is accurately possible in most rural cases if
there exists at least a modicum of structure. Moreover, we see much room for
improvement and propose an extension for landmark extraction in the last chapter
7 which is specifically tailored to road surface features which also exist in rural
areas.
Figure 4.15 shows several examples of small map chunks viewed from the birds

eye perspective. Following the color scheme, the poses of the mapping trajectory
are shown in blue whereas the landmark positions are shown in orange. For bet-
ter visibility only those landmarks which are close to the mapping trajectory are
shown. Landmarks much further away are neglected in that figure even though
they are stored in the map data structure. Parked cars, house facades and crossing
roads can be found in this view.

50 4. MAPPING

Figure 4.14: Another image where landmark pixel positions are highlighted. Rural
areas contain much fewer landmarks than urban areas. Many features are far away
from the ego vehicle and do not contribute much to a ego pose estimate during
localization.

Finally we state some statistics related to mapping. The number of landmarks
that are detected in one image of the sequence ranges from one hundred to three
thousand depending on both the area (rural, urban) and the traveling speed. The
considerably high average landmark density coupled with the approach of storing
landmarks and their visual features redundantly leads to an average map storage
size of almost one gigabyte per kilometer.
The visual odometry which is used to create the pose graph runs with approxi-
mately 10Hz on modest computing hardware. The time for holistic feature extrac-
tion is negligible (approx. 5ms per image). The place recognizer scales quadrat-
ically with the number of poses and takes about thirty minutes for a pose graph
of 50000 poses where almost all time is spend on the similarity matrix computa-
tion S. The dynamic programming refinement takes a few minutes. The time for
pose graph optimization varies considerably and depends on the number of poses
and even more so on the topology of the graph. By far the most time is spend on
landmark feature extraction. Their 3D estimation is very efficient and is negligible
compared to the feature association step. For feature extraction, association and
position estimation we achieve a speed of approximately three kilometers in one
hour. However, the entire mapping tool chain runs fully automatically and requires
no manual intervention. Moreover, it is embarrassingly parallel and lends itself to
multi core/computer architectures which should allow massive speed ups.

4.5. EXPERIMENTS 51

Figure 4.15: The top view of some areas of the map are shown. Blue denotes the
estimated trajectory and landmarks are depicted in orange.

53

5 Localization

Next, we present the localization algorithm. A single monocular camera is used
and we show how to localize that camera relative to the visual map as described in
Chapter 4. First, a rough overview is presented. At that point we spare the details
before elaborating the technicalities in Sections 5.1 and 5.2 respectively. Earlier
versions of this approach have appeared in [42, 41]. Figure 5.1 shows an overview
of the algorithm. We distinguish three states the localizer may be in.

On start up nothing is known about the camera position. In fact it is not even
known whether the camera is anywhere inside the area for which a map is avail-
able. Hence, the method is in state unknown. In that state the goal is to find the
pose of the map that is nearest to the current ego position. This is achieved by
extracting one holistic feature for the current camera image and match that against

1km

1m

Figure 5.1: An overview of the localization algorithm is shown. The map consists
of poses (blue circle), associated holistic features (green brackets with asterisk)
and landmarks (orange stars). The current camera image is depicted on the bottom.
A holistic feature is extracted from it and the most similar vector of the map is
found (arrow). All landmarks of the vicinity are then associated with salient points
of the image. The three solid landmarks (stars) are associated successfully in the
example and shown in the camera image. The landmark associations are translated
into a high precision metric ego pose estimate.

54 5. LOCALIZATION

the entire set of holistic features of the map. Figure 5.1 exemplary shows the cur-
rent camera image on the bottom. Holistic features are denoted by green brackets
with asterisks. The nearest pose is highlighted by a solid circle in that example.
We refer to this type of localization as topological localization and it is closely
related to the place recognizer of Chapter 4. Details of how to develop the place
recognizer into a light weight topological localizer is elucidated detailedly in Sec-
tion 5.1. Once a nearest pose is found the localizer changes state from unknown
to topological.
A topological localization yields the nearest pose of the map which forms the
starting point for metric localization. Thus, the aim is to change state from
topological to metric. To this end, landmarks of the vicinity of the nearest
pose are loaded from disk and associated with salient points of the current camera
image. The current camera image at the bottom of Figure 5.1 shows three example
landmarks highlighted by solid orange stars which can also be found in the top
view of the map directly above. Pixel positions of the landmarks whose 3D world
coordinates are known can finally be used to estimate a metric ego pose. Details
of this step are spelled out in Section 5.2. If this metric localization has succeeded
for a few time steps the localizer changes state from topological to metric.
Note that the search for the nearest mapping pose is straight forward when in state
metric and obviates the need for global searching. When leaving the map the
internal state changes back to unknown.

5.1 Topological Localization

The goal of topological localization is to find the pose of the map that is closest
to the current ego pose. If this pose is known, all relevant landmark positions
and their visual descriptors can be loaded from disk and used to compute a metric
ego pose estimate (see Section 5.2). Since the map size can become considerably
large we herein present a method for efficiently finding the nearest neighbor pose.
To this end, we slightly modify the place recognizer of Section 4.2 and derive a
light weight topological localizer. The current camera image is used to extract one
holistic feature vector from it. That feature vector is thereafter compared to each of
the holistic feature vectors of the visual map. A dynamic programming procedure
is used to achieve robustness in areas of visual ambiguity and aliasing.
The current camera image is down sampled and partitioned into 4×4 equally sized
square tiles each of which is 48× 48 pixel in size. The center pixel of each tile is
described by one DIRD vector. These sixteen feature vectors are concatenated to
form one holistic vector and is denoted gi for the current camera image with i being
the current time index. Recall that the holistic feature vectors of the map are stored

5.1. TOPOLOGICAL LOCALIZATION 55

in the map data structure. Let these map feature vectors be f1, . . . , fN for the N
poses of the mapping trajectory. The search for the spatially nearest pose now
corresponds to the search of the pose of the map that is closest in appearance hence
in the space of holistic feature vectors. Since a simple nearest neighbor search is
susceptible to visual aliasing we apply the dynamic programming refinement of
the place recognition of Section 4.2.
Let S ∈ RN×i be a similarity matrix with columns

Si = (logit(||f1 − gi||1), . . . , logit(||fN − gi||1))
T ∈ RN (5.1)

with logit(·) being a logistic function which translates all L1 distances into a sim-
ilarity scores in the range (0,1). The logit(·) function is defined by

logit(d) =
1

1 + exp
(
−(d−µ)

σ

) (5.2)

with distance value d and shift parameter µ and scaling factor σ (cf. (4.13) and
Figure 4.3). Hence the similarity matrix is defined as

S = (S1, . . . , Si) (5.3)

with column vectors of above. If an element Sj,i of the matrix is approaching
one then it denotes a high visual similarity of the current pose i to the map pose
j. However, to accept j as the nearest pose we also expect the immediately pre-
ceding online feature gi−1 to show high similarity to fj−1 of the map. Since
traveling velocities between mapping and localization may be different we alter-
natively allow that fj−3 matches gi−1 for example. In fact, we search for a short
subsequence of L features gj1 , . . . , gjL of the map that matches the past L online
features fi−L, . . . , fi while constraining (jk−1 − jk) ∈ {0,1,2,3}. For a potential
nearest pose j we define

Tj,i = max
j1,...,jL s.t.

(jk−1−jk)∈{0,1,2,3}
and jL=j

L∑
k=1

Sjk,i−k+1 (5.4)

to be the maximum match of a subsequence of length L. For efficiency reasons we
compute the column vector Ti for the current time index only for those j that seem
promising enough which is Sj,i > τS . Moreover, we allow to compute at most
M values Tj,i at each time step. We sort all Sj,i > τS and choose the M greatest
ones. Finally, a nearest pose j is accepted if Tj,i > τT . In all experiments we have

56 5. LOCALIZATION

set the length of the subsequence L = 30, the number of candidates M = 10 and
the threshold τT = 1

3L.
Computing the row of similarities Si takes time linear in the number of mapping
poses whereas the refinement of computing Ti is constant. Nevertheless, the sim-
ilarity computation can be implemented very efficiently on modern CPUs using
SIMD instructions since DIRD features are byte vectors.
Note that computing visual similarity for topological localization as presented
above is concise and globally optimal. We see some advantages over filter based
alternatives like particle or histogram filters. Unsolved problems like the correct
number of particles or issues related to particle depletion do not arise. Moreover,
the topological localization is very efficient and takes only a very few milliseconds
on a single core for moderate map size (few ten thousand features). The linear
complexity of the similarity computation Si will eventually cause a loss of real
time capability for very large map sizes. A reduction of the dimensionality of the
holistic features seems an obvious step to mitigate (but not avoid) this issue. More
thoughts on the problem and potential solutions are discussed in chapter 7. For
all map sizes of the experiments we have not experienced any run time problems.
Topological localization is very efficient and takes up only a small fraction of the
total computation time.

5.2 Metric Localization

Our metric localization method follows a two step approach. First an initial (met-
ric) estimate of the camera pose is computed from landmark associations. Hence-
forth, we will refer to this as a one-shot estimate. Since these one-shot estimates
can have varying accuracy and may even fail in some very unfavorable situations
a sliding window history of one-shot estimates is stored. During the second step,
these past one-shot estimates are re-optimized jointly. To this end, we fit a motion
model to the sliding window of past one-shot estimates. Both steps are elaborated
in greater depth next.
During metric localization it is assumed that the pose of the map that is closest to
the current camera position is already known. Either it is easily inferred from the
immediately preceding time step or the topological localization provides a hint.
This knowledge allows to load the associated map pose file which contains all
nearby landmark positions and their visual descriptors from disk (see also Figure
4.6). Next, these landmarks are associated with pixel positions of the current cam-
era image. Salient points are extracted, described by DIRD and matched with those
of the map. The search space within the image plane can be restricted quite heav-
ily since a good ego pose estimate is known from the previous time step already.

5.2. METRIC LOCALIZATION 57

.......

Figure 5.2: The factor graph of the NLS problem of (5.5) is shown. The current
pose (blue circle) is optimized for fixed landmark positions (solid orange stars)
such that it matches the measured pixel positions zm best.

Let the set of landmarks successfully matched be l1, . . . , lM and their associated
pixel positions be z1 = (u1, v1)T , . . . , zM = (uM , vM)T . The current ego pose is
denoted by qi ∈ SE(3).
The 3D landmark positions are kept fixed and a one-shot estimate q̄i is found by

seeking the minimizing argument of

Eone(qi) =
M∑
m=1

||π(lm, qi)− zm||2 (5.5)

where π(l, q) computes the pixel position of the 3D point l projected into the cam-
era at pose q [29]. This one-shot estimate is found by NLS estimates and denoted
by

q̄i = arg min
qi

{Eone(qi)} . (5.6)

The factor graph associated with the NLS problem (5.5) is visualized in Figure 5.2.
Landmarks are denoted by stars and since they are kept fixed (are not optimized
for) in (5.5) are depicted with solid colors. The pose qi is denoted by a hollow
circle and is the argument of (5.5). The summation of (5.5) extends over the edges
of the graph which are labeled with the measured pixel positions zm.
Since (5.5) is a quadratic error function it is naturally very susceptible to any out-
liers. Outliers can arise from miss-associations which cannot be fully avoided in
practice despite a carefully designed feature matcher. Moreover, any incorrectly
estimated landmark can cause such outliers as well. Undetected outliers can cause
catastrophic divergences of the pose estimator. Therefore, we wrap the estimate of

58 5. LOCALIZATION

Figure 5.3: The prediction of a pose from a previous velocity augmented pose is
shown. The pose contains a velocity vector v = (vx, vy, vz)

T which can be used
to extrapolate with the known time lag ∆t.

(5.6) in a random sampling consensus [24] (RANSAC). We randomly draw mini-
mum sets of three landmarks, estimate q̄i and evaluate all landmark pixel positions
for support of the current hypothesis. After one hundred such iterations the largest
inlier set is optimized jointly in a NLS sense to yield the final one-shot estimate q̄i.
Measurement covariance matrices have been neglected so far in favor of better
readability. The norm of (5.5) is in fact a squared Mahalanobis norm which con-
siders measurement uncertainty. Next, we introduce the pose adjustment step of
the localization algorithm which jointly re-optimizes a set of past one-shot esti-
mates. This step, however, requires a certainty measure of the estimate q̄i and we
denote its covariance matrix by Σi. We find a judicious choice of Σi by checking
the number of inlier landmark associations (according to RANSAC). Uncertainty
is increased for fewer inlier landmark matches and vice versa.
A sliding window history of past one-shot estimates q̄i−K , . . . , q̄i are now to be
re-optimized jointly to yield the final ego pose estimate. Due to the absence of
any additional external hardware like odometers or the like we resort to forcing
the motion induced by these past one-shot estimates to follow certain dynamics.
At this point we exploit the knowledge that the camera is mounted inside a vehicle
which naturally follows non-holonomic motion models.
Thus, we augment each pose of the window by velocities in each dimension and

set ri = (qi, vi) with velocity vector vi = (vxi , v
y
i , v

z
i)T . We refer to ri as velocity

augmented pose. Moreover, the time lag ∆ti between any two poses qi−1 and qi
is known. This allows to compute a prediction r̄i of the velocity augmented pose
ri by applying the change ∆ti · vi−1 to pose qi−1. A prediction of the velocity

5.2. METRIC LOCALIZATION 59

augmented pose ri is thereby obtained from the prediction function

f(ri−1,∆ti) = f ((qi−1, vi−1) ,∆ti) (5.7)

=

(
qi−i ⊕

(
∆ti

(
vi−1

03×1

))
, vi−1

)
(5.8)

= r̄i (5.9)

hence assuming a constant velocity vector. The prediction function is shown in
Figure 5.3.
The pose adjustment then tries to balance the prediction f(ri−1,∆ti) with its one-
shot prior q̄i while penalizing velocity changes. To this end, we define the subtrac-
tion of the velocity augmented poses

r′ 	 r = (q′, v′)	 (q, v) (5.10)

=
(

(q′ 	 q)T , (v′ − v)
T
)T
∈ R9 (5.11)

and derive the error function

Eadj(ri−K , . . . , ri) =
K∑
k=0

||qi−k 	 q̄i−k||2Σi−k
+

K−1∑
k=0

||f(ri−k−1,∆ti−k)	 ri−k||2 (5.12)

whose minimizing argument

r̂i−K , . . . , r̂i = arg min
ri−K ,...,ri

{Eadj(ri−K , . . . , ri)} (5.13)

is taken as the final metric pose estimate.
The factor graph of (5.12) is depicted in Figure 5.4. The velocity augmented

poses ri−K , . . . , ri which are subjected to optimization are shown. These are the
arguments of the error function of (5.12). These are inter connected and each edge
corresponds to one constraint. Edges connecting consecutive poses are constraints
stemming from the motion model (prediction function (5.7)), are labeled with the
time lag ∆t and correspond exactly to the second summation of (5.12). Edges that
connect to a one-shot prior q̄i penalize any deviation of ri to q̄i and these edges
represent the first summation of (5.12).
A joint re-optimization of a set of previous one-shot estimates increases the ac-

curacy of the estimate. Additional constraints (motion model) provide additional

60 5. LOCALIZATION

.....

Figure 5.4: The factor graph associated with (5.12) is shown. The one-shot es-
timates q̄i serve as a prior during pose adjustment. The priors are balanced with
their predictions from the velocity augmented poses.

cues which can only be exploited in joint optimization. Furthermore, the squared
Mahalanobis norm of the residual ||q̂i 	 q̄i||Σi = (q̂i 	 q̄i)TΣ−1

i (q̂i 	 q̄i) is inter-
preted to disclose any one-shot estimate q̄i that is an outlier in the pose adjustment
sense. If for any reason one such one-shot estimate has yielded an unreasonable
value it is found hereby, pruned from (5.12) and the final estimate (5.13) is re-
computed. This one-shot outlier detection further contributes to the overall robust-
ness of the method.
Finally, we justify our choice of the constant velocity model to constrain the cam-
era motion. Many more elaborate motion models like the curve linear models of
[60] or dynamic single track models may appear deceptively tempting. However,
these models require the knowledge of the mounting position of the camera rel-
ative to the vehicle center. The aforementioned models require a notion of the
heading of the vehicle; not the heading of the camera which can be arbitrary in
our case. Our goal was to allow this localizer to work without any troublesome
camera to vehicle calibration. Nothing keeps one from using this approach with
a sidewards facing camera even though we admit to have tested it only with for-
ward and backward facing configurations. A possible extension to exploit motion
models that are specifically tailored to car-like vehicles might be to integrate the
camera-to-vehicle coordinate transform into the optimization objective and opti-
mize everything jointly. We discuss this idea in more detail in the conclusion
Chapter 7.
At this point we mention an alternative pose adjustment if a motion estimate be-
tween consecutive time steps is available. This motion estimate can be computed
e.g. from vision itself or some external hardware may provide velocity and yaw
rate estimates. Let the motion between poses pi−1 and pi be denoted by mi ∈ R6

5.3. EXPERIMENTS 61

such that pi = pi−1 ⊕mi + εi with an unknown noise vector εi. Then the motion
model can be replaced by the motion constraint and (5.12) is replaced by

Eadj(pi−K , . . . , pi) =

K∑
k=0

||pi−k 	 p̄i−k||2Σi−k
+
K−1∑
k=0

||(pi−k 	 pi−k−1)−mi−k||2 (5.14)

where the velocity augmented poses are now replaced by the regular poses. The
velocities are not estimated anymore. The minimizing argument is found slightly
faster and if the motion estimates are very accurate (e.g. from a high precision
IMU) then it offers additional robustness. Then, however, an accurate 6 DOF
camera-to-IMU calibration is required. We mention this approach only for com-
pleteness as it may be beneficial in some situations. In all experiments we use our
vision only method of applying a motion model constraint to the window of past
one-shot estimates. No external hardware is required anywhere in the experiments
we present next.

5.3 Experiments

Next we present experiments on real world data to assess and evaluate our
localization method. We examine each step of the localization method first. Then
a measure for the overall localization accuracy is derived and evaluated on the
test set. The presented method derives a map relative localization estimate of a
map that does not have any global reference. Hence, ground truth is impossible
to acquire. Therefore, we have chosen to use two independent cameras mounted
on the same vehicle and record data for both of them. Then two completely
independent localization estimates can be computed for each of the cameras.
Finally, these two estimates are compared for consistency which yields a measure
of localization accuracy which we believe is in the range of the overall localization
accuracy.
After the aforementioned quantitative set of experiments we present some qualita-
tive evaluations. We manually enhance the visual map with infrastructural objects
like pedestrian crossings, traffic lights, lane markings, curb stones etc. During
online localization these objects are projected into the camera that is believed
to be at the estimated position. The projection is then overlaid onto the current
camera image yielding an augmented reality system for intelligent vehicles. We
present several screen shots of our augmented reality (AR) system.

62 5. LOCALIZATION

5.3.1 Quantitative Experiments

We have equipped a standard station wagon with two stereo camera setups. One
stereo rig is facing forward whereas the other is facing backwards. Imagery is
recorded and analyzed thereafter. Note that forward and backward facing cameras
are never used jointly but are always evaluated independently. Hence we obtain
one set of recordings for each stereo setup. Stereoscopy is required and used only
for the creation of the map. A mere single monocular camera is used in all local-
ization experiments. No additional sensors like GPS or the like are used anywhere
in the experiments. We note that the forward facing camera setup has a slightly
narrower field of view which seems to impact some of the experiment.
We have picked a 7km route through mostly urban and partially rural areas as rep-
resentative testing ground. We have travelled this route on three different days
each two weeks apart. The first traversal was used to create the visual map and
we will refer to this test set as MAP. The two remaining recordings are used for
the localization experiments we refer to them as LOC1 and LOC2 respectively. A
visual map was created for both backward and forward facing cases of the map-
ping test set MAP as presented in Chapter 4. Map computation is not time critical
for real time operation and takes roughly three hours for each set. Almost thirteen
million landmarks are created (for each case). The storage size for these map sizes
is roughly 5 gigabytes each in a compact binary format. It includes all poses, land-
marks and their visual descriptors.
In the following we will present several localization experiments which are per-
formed on each of the test sets. In particular we use the mapping trajectory for
the localization experiments as well. The localization experiment for the map-
ping case obviously yields excellent results and shall serve as an upper (or lower)
bound which cannot be exceeded by any other test set. Thus, we obtain six results
for each test which are MAP, LOC1 and LOC2 for the forward and backward fac-
ing camera configuration each.

At first we determine the traveled distance before a topological localization is
possible, hence until the nearest pose of the map is found. We have replayed each
test set from 500 equidistantly placed starting positions and determined the dis-
tance until a topological localization is achieved.
We present results as two sided violin plots in Figure 5.5. One plot represents one
test set each. The plots show vertical and smoothed histograms of the distance un-
til topological localization is possible. The left halfs (blue) of each plot represents
the results for the backward facing case whereas the right portion (orange) shows
findings for the forward facing setup. The median is marked as well.
We have removed the upper 5% quantile from the plots for better visibility.
The median for topological localization is 3.1 meters for the mapping test set

5.3. EXPERIMENTS 63

MAP LOC1 LOC2

80

40

0

5

0

[m
e
te

r]

Figure 5.5: Two sided violin plots (vertical, smoothed histograms) for the required
traveling distance until a topological localization is possible are shown for three
test sets. The first plot shows results for the mapping sequence (shown again with
more appropriate scale) whereas the others show findings for the two localization
test sequences. The left half of each plot shows results for the backward facing
configuration. The right portion represents the forward facing camera setup. The
median is shown for each plot.

(both forward and backward), 8.0 meters for LOC1/backward, 9.1 meters for
LOC1/forward, 7.8 meters for LOC2/backward and 9.6 meters for LOC2/forward.
However, we note that some areas (especially rural ones) are unfavorable for topo-
logical localization and may easily require one hundred meters and more of trav-
eling before topological localization is possible. Furthermore, our experiments
indicate a high sensitivity to lane differences between mapping and localization.
This can be seen from the spiking tops of the plots in Figure 5.5. All topological
localizations that the localizer has output are corrected and are verified by the sub-
sequent metric localization.

We follow the same testing procedure as before to assess the number of inlier
landmark associations for each time step during one-shot estimation. To this end,
each test set is used for metric localization and the number of inlier landmark as-
sociations (according to RANSAC) are tracked. Results are again shown by two
sided violin plots for the six cases in Figure 5.6. Point matching works perfectly
for the mapping trajectory since matching images are identical. Hence, the left plot
of Figure 5.6 corresponds to the histogram of number of visible landmarks during
mapping (every single landmark is associated correctly). Matching images from a

64 5. LOCALIZATION

MAP LOC1 LOC2

0

1000

2000

3000

[#
]

Figure 5.6: Violin plots for the number of successfully associated landmarks per
camera image during localization are shown for the three test sets. See also Figure
5.5.

different day (LOC1 and LOC2) is more realistic. The number of correctly found
landmarks ranges from zero (underexposed camera in underbridge) to almost two
thousand in some case. A significantly higher number of landmarks are associated
for the forward facing case. We attribute this to the narrower field of view which
makes camera calibration and feature matching easier.
Next, we illustrate the mean back projection error of the inlier landmark matches

during one-shot estimation in pixels in Figure 5.7. Significant differences can be
observed between forward and backward facing setups. We again attribute this
to the narrower field of view which exhibits fewer distortions. The median back
projection error is between 0.5 and 1.0 pixels; a range we would have expected for
good localization.
So far only the left camera image of the stereo recordings has been used. Since we

have recorded both left and right images of the stereo setup in all cases we are now
able to estimate the trajectory for both the left and right camera. We compute the
one-shot estimates for every left and right image independently and compare them
for consistency. Since the base length of the stereo rig is known the right camera
estimate can be compensated for it and subtracted from the left camera estimate.
The norm of the difference between the two estimates are depicted in Figure 5.8.
The left and right one-shot estimates clearly agree to within centimeter level ac-
curacy. The experiment is repeated for the final localization after pose adjustment

5.3. EXPERIMENTS 65

MAP LOC1 LOC2

1

2

[p
x
]

Figure 5.7: Violin plots for the mean back projection error of all inlier landmark
associations (in pixels) are shown for the three test sets. See also Figure 5.5.

12

8

4

0

[c
m

]

MAP LOC1 LOC2

Figure 5.8: Violin plots of the difference of two independent localization esti-
mates of two independent cameras mounted on the same vehicle are shown. They
indicate the magnitude of the localization error relative to the visual map. Findings
for the one-shot estimate are shown.

66 5. LOCALIZATION

MAP LOC1 LOC2

12

8

4

0

[c
m

]

Figure 5.9: Violin plots of the difference of two independent localization esti-
mates of two independent cameras mounted on the same vehicle are shown. They
indicate the magnitude of the localization error relative to the visual map. Findings
for the final ego pose estimate (pose adjustment) are shown.

and the results are visualized in Figure 5.9. We believe that the consistency mea-
sure presented here is of the same magnitude as the localization accuracy is.

5.3.2 Qualitative Experiments

Quantitative experimental findings were highlighted in the previous sections. Next,
we present results of some qualitative tests. We have labeled objects of interest in
some frames of the mapping trajectory. These can then be stored in map coordi-
nates by reconstructing its 3D position from stereoscopy. During online localiza-
tion these objects can be overlaid onto the current camera image. Thereto the 3D
objects are simply projected into the camera which is believed to be at the esti-
mated pose.
The labeling is depicted in Figures 5.10 and Figure 5.11. The object of interest

(e.g. pedestrian crossing) is manually labeled in one image and stereoscopy is used
to compute its 3D camera relative position. Since the pose of the camera is already
known from the mapping process the camera relative position can be translated
into a global (map) relative position and stored in the map.

5.3. EXPERIMENTS 67

Figure 5.10: The labeling of a pedestrian crossing is shown. Line segments drawn
on top of one image are used with stereoscopy to derive its 3D map relative position
from it. This information is stored in the map data structure.

During localization a high precision 6 DOF ego pose estimate is available. This al-
lows to load all infrastructural objects of the vicinity and project it into the current
camera image. One such example is shown in Figure 5.12. It is shown how the
previously labeled pedestrian crossing is approached. At first it is even occluded
by the truck but its camera relative position is nevertheless very accurate. More-
over, this approach allows to make these objects available long before any sensor
would be able to detect it. Its “sensing” range is unbound. To demonstrate this
effect we show the same scene in Figure 5.13 but a few ten seconds earlier. The
crossing is still several hundred meters away but accurately overlaid.
Figure 5.14 again shows the same area but these images were recorded two weeks

later. Hence, they are from a different test set. The road surface is wet in Figure
5.12 whereas it is dry in Figure 5.14. However, the exact same visual map was
used. The AR system works well and with the required precision.
Yet another example is illustrated in Figure 5.15. The examples show a good fit
of the project objects with the camera image. A false localization would be seen
be a significant deviation of the objects projection from the actual image position.
Moreover, a six DOF estimate is necessary for such systems. Pitch and roll needs
to be compensated for.

68 5. LOCALIZATION

Figure 5.11: Any object of interest can be labeled. Here a tunnel entrance and a
traffic light is marked.

Finally, we cannot resist to mention that the system was used for autonomous
driving with the IMU extension mentioned in Section 5.2. We were able to suc-
cessfully drive fully automatically in a dense urban environment using this local-
ization alone while fully neglecting any GPS readings from the on board receiver.

5.3. EXPERIMENTS 69

Figure 5.12: Results of our AR system are shown. The previously labeled pedes-
trian crossing is reliably made available during online localization. This approach
allows to circumvent any problems caused by occlusion.

70 5. LOCALIZATION

Figure 5.13: The system allows to make the map objects available long before any
sensor would be able to detect it. The pedestrian crossing of Figure 5.12 is shown
some ten seconds earlier.

Figure 5.14: The same scene as before is shown but with a recording of a different
day.

5.3. EXPERIMENTS 71

Figure 5.15: Another screen shot from the AR system. Traffic lights and a tunnel
entrance are exemplary shown.

73

6 Descriptor Learning

Many problems in computer vision and pattern recognition rely on the ability to
uniquely describe the neighborhood of a single pixel of an image by one numeric
feature vector. To this end, the pixel neighborhood around the pixel in question is
analyzed and transformed into a compact vector representation. This vector repre-
sentation can thereafter be used to address a variety of different vision problems.
Finding pixel positions in a set of images that belong to the same point in 3D is
a prominent and frequent example. Furthermore, a collection of such feature vec-
tors can be used to describe the content of an image which in turn allows to query
large databases in order to find the same image content from an appearance based
perspective. Alternatively, these feature vectors can be used to assign one class
label of a set of known classes to an image. Image classification helps to automate
many tasks that are otherwise tedious and error prone if performed by humans.
Throughout the rest of this chapter one algorithm that extracts a vector from a pixel
neighborhood is referred to as a descriptor whereas the vector itself is referred to
as feature vector or feature for short.
The literature offers a plethora of different descriptors that have recently been pub-
lished and the flood of newly published methods doesn’t seem to cease. Many
descriptors are now accepted as standard methods in this area such as SURF [6],
BRIEF [13], SIFT [48], HOG [18] and more as they perform well on various tasks.
However, all these methods are general purpose descriptors designed to perform
well on average. One might imagine that a problem specific descriptor may out-
perform a general purpose one on that specific problem.
In this chapter we present a set of elementary algorithmic building blocks that
can be combined in any order to form a descriptor for each such combination. We
show how many standard descriptors can be decomposed into these blocks. Hence,
a systematic construction of descriptors is thereby possible. Furthermore, we ar-
gue that these blocks allow to automatically create novel descriptors by random
combination. A preliminary sketch of the concept has been previously presented
in [36].
In the following we present a method to combine these building blocks to auto-
matically create novel descriptors. Then, a fitness function that evaluates one such
descriptor for a specific problem is proposed. The fitness function is used to assess
each one of the descriptors and a genetic algorithm selects the best performing
ones. The best performing ones are slightly modified by a mutation operator to

74 6. DESCRIPTOR LEARNING

create a new generation of offspring descriptors which replaces the parent popu-
lation. By iterating this procedure, we automatically learn a descriptor that is tai-
lored to the problem of interest. In our example, we address the problem of visual
place recognition under varying illumination conditions. We show the feasibility
of the approach by comparing the automatically learned descriptor to state-of-the-
art methods and demonstrate a substantial improvement.
First, we present the building blocks used to span the space of all descriptors in
Section 6.1. Thereafter, evolution strategies which we use as a genetic algorithm
are elucidated in Section 6.2. Experiments and the results of the descriptor learning
are presented in Section 6.3.

6.1 Algorithmic Building Blocks

We propose to use elementary building blocks which can be chained in any order
to create many descriptors. First, we present a simple example and detail the
specific building blocks thereafter.
We assume a pixel position u, v is given (e.g. by some detector) and we
strive at extracting an image feature vector f describing the neighborhood
of that pixel position. The gray scale image I can be convolved with a high
pass and a low pass filter to yield the filtered responses Ilow = I ∗ hlow and
Ihigh = I ∗ hhigh with ∗ denoting convolution and h being the filter ker-
nels. A simple descriptor f1 can then simply take the responses at the pixel
position as a 2-vector output f1(u, v) = (Ilow(u, v), Ihigh(u, v))T . Such a
descriptor can be extended by an additional processing step which converts
Cartesian to polar coordinates by f2(u, v) = (∠f1(u, v), ||f1(u, v)||). Note
that such an operation does not require knowledge of how f1 was computed.
Still, such descriptor is low dimensional and not very discriminative. To
extend the descriptor f2 it can be applied several times at predefined offsets
around the pixel position u, v and use the concatenation as output. Hence, let
(u1, v1), . . . , (uN , vN) be pixel offsets. Then f2 can be extended to yield the
descriptor f3(u, v) = (f2(u+ u1, v + v1), . . . , f2(u+ uN , v + vN)) by applying
it multiple times. This operation is again independent of the previous processing
step. It is always possible to apply any given descriptor multiple times without
having to know how that descriptor was computed. This chain of operations can
be extended almost arbitrarily. Another possible extension is to compute f3 in a
circular neighborhood of u, v and compute a histogram from these f3-values. The
histogram itself is then taken as f4.
This example descriptor can be summarized by its processing steps: low/high
pass filtering, Cartesian to polar transform, repetition and finally histogram

6.1. ALGORITHMIC BUILDING BLOCKS 75

computation. The point is, that each step can be replaced by any alternative. The
low/high pass filters could be replaced by derivative filters. The polar transform
could be skipped or replaced by a vector normalization operation or any other
sensible operation. The repetition could change its offset pixel position or the
histogram bin centers (or number) could change. Moreover, steps can be repeated
several times. Nothing keeps one from applying yet another repetition at the end
to yield yet another descriptor f5. We note that the descriptor presented above
serves as a mere toy example to introduce the basic idea. It is not meant to be
functional as an image descriptor.
In the next paragraphs, each of the possible building blocks is introduced in
greater detail. Every descriptor starts with some filter operation and is followed
by any number of additional steps. For most of the elementary processing steps
there exists a set of variants of that step. The repetition pattern for instance can
have many different sets of offset pixel positoins. These variants are explained as
well.

Filter Banks: The following filter banks are contained in our scheme:

• Sobel Filters which create a two-vector output. This filter bank does not
have alternative variants. The two filter kernels are given by

FSobel−hor =

 1 2 1
0 0 0
−1 −2 −1

 (6.1)

FSobel−vert =

1 0 −1
2 0 −2
1 0 −1

 (6.2)

and detect edge like structures in images [32].

• Gaussian blurring which convolves the input image with a truncated Gaus-
sian kernel and thereby creates a one-vector for each pixel position. We
provide a set of kernel widths σ to control the degree of smoothing as vari-
ants with σ ∈ {3,5,7,9,11,13}.

• Derivative in horizontal and vertical direction which is loosely related to the

76 6. DESCRIPTOR LEARNING

Sobel filter bank above but without smoothing. We apply a difference filter

Fdiff−hor = (−1, 0, . . . ,0︸ ︷︷ ︸
=Z

,1) (6.3)

Fdiff−ver =

−1
0
...
0
1

 (6.4)

in horizontal and vertical direction. The step width Z denotes the number
of zeros and are provided as the variants of this filter bank. Its range is
Z ∈ {0, . . . ,4}. The filter response is two dimensional.

• A Haar filter bank is provided which applies three filters at each scale de-
fined by

Fhaar−vert =
1

22s−1

 0 · · · 0
...

. . .
...

0 · · · 0

1 · · · 1
...

. . .
...

1 · · · 1︸ ︷︷ ︸
2s−1

 ∈ R2s×2s

(6.5)

Fhaar−hor =
1

22s−1

1 . . . 1
...

. . .
...

1 . . . 1
0 . . . 0
...

. . .
...

0 . . . 0

∈ R2s×2s

(6.6)

Fhaar−diag =
1

22s−1

1 . . . 1 0 . . . 0
...

. . .
...

...
. . .

...
1 . . . 1 0 . . . 0
0 . . . 0 1 . . . 1
...

. . .
...

...
. . .

...
0 . . . 0 1 . . . 1

∈ R2s×2s

(6.7)

where s defines the scale. The filter bank consists of all scales s ∈
{1, . . . , N} and N ∈ N defines the variant. We provide several variants

6.1. ALGORITHMIC BUILDING BLOCKS 77

N ∈ {1, . . . ,4}. A Haar filter bank of maximum depth N contains 3N
filters.

• The rank transform is provided as a filter bank that is not a convolution
operation. Let I(u, v) be the gray level of pixel position u, v. Then the rank
transform outputs

R(u, v) =
8∑
k=1

I(I(u, v) > I(uk, vk)) (6.8)

with (u1, v1), . . . , (u8, v8) being the eight immediate neighbor pixel posi-
tions of u, v. Hence (6.8) computes the number of neighbor pixels that are
brighter than I(u, v) where I(b) is the indicator function which evaluates to
one if the Boolean expression b is true and to zero otherwise. The is only
one variant of the rank transform.

• Similarly to the rank transform the census transform is provided as a filter.
The census transform for pixel position u, v is defined by

C(u, v) =
8∑
k=1

I(I(u, v) > I(uk, vk)) · 2(k−1) (6.9)

with (uk, vk) again being the neighbor pixel positions to u, v as above. In
contrast to the census transform, the difference of gray values is first trans-
lated into a binary representation (I(I(u, v) > I(u1, v1)), . . . , I(I(u, v) >
I(u8, v8)) and then interpreted as a decimal number. The census transform
only contains one variant.

• Last, we added the identity filter to the set of filter banks which leaves the
input image untouched.

Repetition: As in the example above, our scheme requires the ability to repeat a
given descriptor several times. The repetition block evaluates a given descriptor
at a set of predefined offsets around u, v. The features obtained from these offset
positions are concatenated and form the output of this block. Every set of offsets
is one variant that can be chosen for this block.
Formally, we define a set of pixel offsets

ON = {(u1, v1), . . . , (uN , vN)|(un, vn) ∈ Z× Z} (6.10)

78 6. DESCRIPTOR LEARNING

Figure 6.1: A given descriptor can be extended by applying it at different offsets
of pixel positions and concatenation. Several such repetition masks are shown.

which are integer values. A given descriptor A is extended to yield

B(u, v) =

 A(u+ u1, v + v1)
...

A(u+ uN , v + vN)

 (6.11)

by applying it N times around the pixel position u, v and concatenating the re-
spective outputs. We chose three different rules to generate an offset index ON .

• The first set of offsets is a repetition pattern quite close to u, v. The number
of offsets for these patterns are between nine and sixteen.

• Moreover, a set of BRIEF [13] like repetition patterns for different numbers
of offsets are stored. These offsets follow Gaussian distributions hence ex-
hibiting a closer density towards the center. The number of offsets N ranges
from 20 to 300 for these patterns.

• Finally, a small set of repetitions are stored as variants which are further
away from the center and form an equidistantly spaced grid. The number of
offsets N is between four and sixteen. This repetition is commonly found
as the last step in descriptors like SURF [6].

Some of the first two sets of repetition patterns are exemplary shown in Figure 6.1.
Linear Transform: A matrix multiplication may be appended to a sequence of
construction steps. If a descriptor computes the feature vector A for pixel position

6.1. ALGORITHMIC BUILDING BLOCKS 79

Figure 6.2: A given descriptor can be extended by applying a constant matrix M
to it. Two example matrices are shown. See text for details.

u, v then this can be altered by multiplying B = MA for a constant matrix M .
Two sets of predefined matrices are stored. Let N be the dimension of the input
feature A .

• One set contains 2N × N matrices with exactly one -1 and one 1 in each
row such that every column contains exactly one non-zero entry.

• The second set containsN−1×N matrices with one column of 1s and rows
containing exactly one additional -1 such that every column has at most one
-1.

One example each is shown in Figure 6.2. Each of this configurations serves as
one variant.
Non-linear Transform: Some descriptors compute a polar coordinate representa-
tion from e.g. horizontal and vertical derivatives such as e.g. HOG and SIFT. Such
a transform is obviously non-linear and we provide three types of such non-linear
transforms. They form the set of variants for this building block.

• One Transform that computes polar from Cartesian coordinates is pro-
vided. For a feature A = (a1, . . . , aN)T as input it outputs B =

(
√
a2

1 + a2
2, atan2(a1, a2), . . . ,

√
a2
N−1 + a2

N , atan2(aN−1, aN))T . For
odd N the last aN is simply taken as is.

• Another nonlinear transform that has proved to be useful is the transform
that scales a given feature to unit norm. That is it outputs B = A

||A||2 for
input feature A.

• Finally a nonlinear transform inspired by a recent trend of using binary de-
scriptors [30] is added to the set of variants. A sign quantization transform

80 6. DESCRIPTOR LEARNING

which replaces all negative elements of a vector by zeros and nonnegative
elements by ones is provided.

Histogram: The histogram building block is one of the most powerful blocks to
extend a given descriptor. If a descriptor B shall describe the neighborhood of the
pixel position u, v and some descriptor A is already available then B can apply A
N times in a predefined neighborhood ON around u, v (e.g. a circular area.), col-
lect all features vectors a1, . . . , aN of this neighborhood and compute a histogram
from this set of features. The histogram itself is then the feature that B computes.

We chose a very general and broadly applicable histogram representation. A
histogram is a set of histogram bin centers and the number of features that are
assigned to each bin. Bin assignment is computed by nearest neighbor search.
The bin centers, however, are constant and thus the histogram is completely rep-
resented by their bin counts. Note that this general definition equally represents
simple one dimensional histograms as well as histograms of any high dimensional
space.
Variants of this block are two-tuples (C,ON) where C = (c1, . . . , cN) ⊂ RD is an
ordered set of N bin centers with D being the dimension of the input descriptor
A that shall be extended. The area at which the input descriptor is evaluated is
defined by the neighborhood ON ⊂ Z2 of pixel position offsets (cf. Repetition).
Hence, the input dimension of this block is D and the output feature is of dimen-
sion N as there are N bin centers cn.
It remains to show how to compute sensible bin centers for a given input descriptor
A. We therefore provide a set of sample images and pixel positions and the bin
centers are drawn from evaluating A at N pixel positions of these sample images.
Thereafter the bin centers are kept constant. The process is depicted in Figure 6.3.
Dimensionality Reduction: As the dimension of a descriptor which is a random
combination of these building blocks may easily grow very large it is necessary to
provide a dimensionality reduction block. The dimension of a feature vector may
be reduced by multiplying the vector by a constant matrix M . For dimension re-
duction we use random projection matrices ([10]). The degree by which the vector
is reduced is the set of variants for this step. It ranges from 10% to 90%.
Summation: A summation block is presented next. Let a given descriptorA com-
pute the features a1, . . . , aN in some neighborhood ON around the pixel position
u, v. This first step is much like the first step of the histogram computation. Then
the output can be the summation of these vectors e.g. B =

∑N
i=1 ai where the

summation extends over all pixels of the neighborhood ON . Alternatively the ab-
solute value can be summed by B =

∑N
i=1 abs(ai) where the absolute function

is applied component-wise. These two options are varints of this block. A third

6.1. ALGORITHMIC BUILDING BLOCKS 81

image

.........
......

...

training image

features of
the neighborhood

B = histogram

Figure 6.3: The pixel position u, v shall be described and a descriptor A is avail-
able. Then, A is evaluated on all pixel positions of the neighborhood ON forming
the features a1, . . . , aN . These are then assigned to the nearest neighbor bin center
c1, . . . , cM of the histogram. These bin centers are constant and never changed.
They are initially computed by evaluatingA on predefined pixel positions of an in-
dependent training image. The histogram is then the output of the new (extended)
descriptor B.

82 6. DESCRIPTOR LEARNING

variant is to concatenate both versions e.g.

B =

(∑N
i=1 ai∑N

i=1 abs(ai)

)
. (6.12)

Choosing a set of such building blocks and selecting one variant for each block
now allows to chain these blocks and obtain one descriptor for each such chain.
Next, we demonstrate how commonly known descriptors can be constructed from
our set of building blocks.
We exemplary show how the BRIEF and LBP feature descriptor can be constructed
using the proposed blocks. SURF and HOG features can also be represented by
a sequence of blocks as proposed above. Their construction, however, is quite
technical and we therefore move the derivation to the appendix A.
The LBP feature can actually be constructed by a few different combinations of
steps. The input image can be convolved with eight derivative filters to yield an 8-
vector for the pixel position u, v. This vector is thereafter sign quantized to yield a
1 for every nonnegative entry and 0s otherwise. A linear transform is then applied
with the following matrix

M =
(
20 21 . . . 27

)
. (6.13)

Computing a histogram of these values finally leads to the LBP descriptor [53].
BRIEF is widely used as it is very efficient to compute and even more efficient to
match due to its binary nature. It can be constructed by first smoothing the input
image with a Gaussian mask of appropriate size. Then, a repetition with a pattern
as depicted on the right of Figure 6.1 is applied. A such computed vector is then
multiplied by a matrix as depicted on the left of Figure 6.2 and the resulting vector
is sign quantized. This yield exactly the descriptor of [13].

6.2 Learning Procedure

We are interested in finding a descriptor which is specifically tailored to the prob-
lem at hand. As mentioned in the introduction of this chapter, image descriptors
find their application in a broad field of different domains. A descriptor perform-
ing well in one domain may not necessarily perform equally well in another. To
quantify the performance of a given descriptor for a specific domain we introduce
the notion of a fitness function. A fitness function takes a descriptor (hence the
entire algorithm) as input and outputs a value that describes the performance of
this descriptor for one specific problem. If for instance feature matching between

6.2. LEARNING PROCEDURE 83

Filter Bank
Block A

Block B

Block C
Root

Terminal

Figure 6.4: A simplified example graph of processing steps. Large nodes
(blue/gray) are processing steps and small nodes inside (orange) are variants. A
path through the graph corresponds to exactly one descriptor. A path is indicated
by the orrange arrows and all nodes of the path are blue. It always starts with
one variant of a filter bank and proceeds through additional processing steps (e.g.
repetition, histograms, summation etc.).

images is the domain of interest one could evaluate a set of feature matches be-
tween these images against ground truth matches and take the number of correctly
associated points as the fitness. Herein, we seek a descriptor which is well suited
for place recognition under varying illumination conditions. The associated fitness
function is introduced in Section 6.2.1
The descriptor construction scheme as presented above can be summarized by a

graph. The nodes of the graph represent the building blocks. Each node contains
a constant set of variants. Every path through the graph corresponds to exactly
one descriptor. The graph is depicted in Figure 6.4. Using this graph/path notation
it is easy to randomly create a large set of descriptors by sampling paths through
the graph. We have constrained the maximum length of a path (number of steps)
to six. But even then the total number of different descriptors which can be con-
structed reaches almost a billion due to the combinatorial explosion.
Hence it is difficult to find the best performing descriptor for a particular computer
vision problem. In this section we show how we search for a good performing
descriptor. We introduce the fitness function that evaluates any given descriptor

84 6. DESCRIPTOR LEARNING

for suitability for the specific problem of place recognition. Thereafter, a meta
heuristic is reviewed which is used to find a good performing descriptor from the
huge set of constructible descriptors.

6.2.1 Fitness Function

We follow the line of Chapter 4 and describe one image of a sequence by one
holistic feature vector. The image is down sampled and tiled into 4 × 4 equally
sized square patches of small size. The center pixel position of every patch is
described by a feature vector and these single tile features are concatenated to
represent the entire image.

To evaluate a given descriptor we have recorded a training sequence. We have
traveled a route of approximately 10km on three different times of the day. We
recorded image sequences and established correspondences of images showing the
same place. The image pairing was computed automatically from high precision
GPS measurements. We refer to these image pairs as positive pairs. Furthermore,
we randomly created negative pairs of images that do not show the same place.
Example images are shown in Figure 6.5. The recordings are from a day with
clear sky and harsh cast shadows are clearly visible. The first three images of
Figure 6.5 show the exact same place. The overall appearance of that place varies
considerably.
Using this training set as ground truth, a precision-recall (PR) curve can be com-
puted by varying a classification threshold of norms of feature vector differences.
That means we strive to find a descriptor that best separates the positive from the
negative pairs. By including images recorded in the morning, at noon and evening
the change that naturally occurs during the course of a day is well captured in our
training set.

6.2.2 Evolution Strategies

The fitness function evaluates any given descriptor and thereby allows to compare
descriptors. Next we present the search strategy which searches for the best per-
forming one. The search does not guarantee to find the single best performing
combination of processing steps but still seeks a combination which is “locally”
optimal. Common optimization strategies like Gauss-Newton or Powells method
[57] cannot be applied since the set of descriptors cannot be modeled as a vector
space of fixed dimension. Thus, we resort to evolution strategies [9].

6.2. LEARNING PROCEDURE 85

Figure 6.5: Some sample images from the training set. The first three show the
same place during morning, noon and evening. Note the severe changes in illumi-
nation and cast shadows.

86 6. DESCRIPTOR LEARNING

At first, a set of M descriptors are randomly created by sampling paths through
the graph of processing steps. Each of these M combinations is then evaluated by
the fitness function and the best L < M performing ones are kept whereas the rest
is discarded. These L descriptors are slightly modified by a mutation operation to
yield another set of M child descriptors. These are again evaluated and only the
top scoring ones are selected into the next generation. Mutation and selection are
iterated until convergence.
It remains to show how a given path through the graph of processing steps can be
mutated. We implemented three different mutation operations.

• A path can be extended by a single additional processing step. This pro-
cessing step does not necessarily need to be added to the end of the path but
can also be added in between. To keep the computational complexity of the
resulting descriptor tractable we have bounded the maximal number of steps
to six. This mutation operation is hence only possible if the number is not
reached yet.

• The inverse of the previous step is also possible. A single processing step
can be removed anywhere from the path.

• Finally, a variant of a processing step can be exchanged for another one.

Figure 6.6 shows three possible child descriptors of the one of Figure 6.4 that are
created by each of the three possible mutations. To speed up the search process, we
have thinned out the training set by removing easy to distinguish image pairs that
do not contribute much to a training success as proposed in [7]. Image pairs that
are correctly classified by many descriptors are considered for removal in favor of
more challenging pairs. Thereby we are able to approximately double the number
of descriptor evaluations per time.

6.3 Experiments

We ran the evolution strategy for the fitness function for roughly one hundred
hours. We have tested several parameters for L and M with one to four parents
and four to sixteen children. We observed that the performance of the current
generation of descriptors improves drastically in the beginning but slows down
thereafter. Better performing descriptors are successively harder to find once the
learning process proceeds. At the point of convergence where no children improve

6.3. EXPERIMENTS 87

Figure 6.6: The path trough the graph of Figure 6.4 can be mutated into any of
these paths in one mutation step.

88 6. DESCRIPTOR LEARNING

root

I469

root

DIRD

Figure 6.7: A “family tree” of descriptors during the learning process is shown.
One node denotes one descriptor and the links denote a child-parent relationship.
The root descriptor creates many descendants until the best performing descriptor
is finally found.

the current score for several generations the top scoring element achieves an area
under the PR curve (AUC) of 0.82 for our training dataset.
Figure 6.7 shows the entire evolution of the learning process. The graph shows

one node for each descriptor that was tested and thereafter inherited into the next
generation (the ones that were not selected are not shown). An edge between any
two nodes denotes a child-parent relationship. Hence, the root descriptor shown
on the left was mutated to form the connecting nodes etc. The orange path shows
the path from the root descriptor to the best performing one on the right.
Unlike other automatically learned data structures like e.g. artificial neural net-

works our approach allows to interpret the learned descriptor as each processing
step is easily understood. The automatically learned descriptor convolves the input
image with a set of Haar filters on four cascades in vertical, horizontal and diago-
nal direction (cf. (6.5)-(6.7)) . Each vector corresponding to the filter responses
is thereafter scaled to unit norm and summed over a set of sixteen offset positions.
Finally, nine such vectors of an equidistantly spaced grid around the pixel in ques-
tion are concatenated to form the final feature vector. The feature vector is 216
dimensional and we dub the descriptor DIRD (Dird is an Illumination Robust De-
scriptor).

6.3. EXPERIMENTS 89

false positive rate 10
0

1
tr

u
e
 p

o
si

ti
v
e
 r

a
te

recall 10
0

1

p
re

ci
si

o
n

Figure 6.8: ROC and PR curves for the test set. From bad to good: simple gray
value descriptor, SURF, BRIEF, U-SURF and the learned descriptor DIRD. See
also Figure 6.9.

To assess the proposed learning approach we have tested DIRD on an independent
test set and compared its performance to state-of-the-art alternatives. We again
formed pairs of images showing the same place and pairs of images that do not
show the same place. However, the image pairs are computed from recordings that
are completely disjoint from the training set to avoid any biases towards DIRD.
Computing the AUC on the test set we found that a simple gray value descriptor
yields 0.11, SURF achieves 0.49, BRIEF scores 0.51 and U-SURF evaluates to
0.68. Finally, DIRD achieves an AUC of 0.82 substantially outperforming any of
the aforementioned descriptors. The associated PR and ROC curves are shown in
Figure 6.8 whereas the AUC plots are depicted in Figure 6.9.
DIRD was learned with place recognition in mind and shows good performance in

this setup as presented before. Next, we evaluate its performance in point matching
tasks which require illumination robustness. Reliable point matching is required
oftentimes in a variety of robotics applications. Visual odometry and localization
(see Chapter 5) are some examples. Moreover, point matching can become com-
putationally complex as many distance measures between feature vectors need to
be computed. To be computationally tractable we propose two additional variants
of DIRD. Generally each component of a DIRD feature vector is of type float
which requires four bytes of data storage each. For fast feature matching, how-
ever, byte vectors are more convenient to compare (due to recent advances in CPU
architectures offering SIMD instructions). Hence we propose to quantize the float
values into 256 discrete byte values. A quantization can be represented by a set of
intervals Q = {[qi, qi+1)|i = {0, . . . , V − 1}} with V ∈ N being the number of

90 6. DESCRIPTOR LEARNING

Image

SURF

BRIEF

U-SURF

DIRD

0 0.2 0.4 0.6 0.8 1

Figure 6.9: Area under the PR curve for a simple gray value descriptor (Image),
SURF, BRIEF, U-SURF and the learned descriptor DIRD. For the curves see Fig-
ure 6.8.

quantization values. In this case, we consider V = 256 byte values. The quantiza-
tion then maps any value v 7→ i if v ∈ [qi, qi+1).
Each component of the feature vector can then be quantized using such a quan-

tization. Note, that it is easily possible to use different quantizations for different
components of the feature vector. In fact, we use two different quantizations Q1

andQ2 for the odd and even components of a DIRD vector. Figure 6.10 shows the
histograms of the odd and even components of a set of DIRD vectors. Their shape
differs substantially which is why we handle them differently.

Examining the feature value distributions of Figure 6.10 reveals values of very
high occurrence probability (e.g. a value of zero for the even components). We
design our quantizations so that it has a finer resolution in these areas i.e. the in-
terval boundaries qi and qi+1 are much tighter. An easy way to achieve such a
quantization is to compute V quantiles of the occurring values and take these as
the interval boundaries qi. This automatically yields a finer quantization in regions
of high occurrence. Note, that the feature values are (approximately) uniformly
distributed after such a quantization.
Following recent trends in computer vision to use binary descriptors [30] we use a
third flavor of DIRD which quantizes each component to either 0 or 1. We again
determine the quantization threshold by using the 50% quantile for the odd and
even components of a set of DIRD features. A binary-quantized DIRD vector re-

6.3. EXPERIMENTS 91

20 4 6 8 10 0 5 10-10 -5

Figure 6.10: Histograms of values of the odd (left) and even (right) vector com-
ponents of DIRD are shown.

quires only 27 bytes (=216 bits / 8 bits per byte) of storage. In total we evaluate the
continuous DIRD vectors which we refer to as DIRD (float), the byte-quantized
version DIRD (byte) and the bit quantized binary version which we refer to as
DIRD (bit).
We evaluate each of the DIRD flavors on three challenging test sets and compare

its performance to state-of-the-art descriptors USURF and BRIEF. The USURF
descriptor is run in extended mode which yields a 128 dimensional float vector.
Moreover, we compare the DIRD family to a simple gray value descriptor which
uses 256 gray values of pre-defined pixel positions around the interest point as the
descriptor.
The first test set is the “day-to-night” test set taken from [30]. It shows the sky
line of a city during the course of a full day. The test set consists of seven images
in total where the first one is taken early in the morning and the last at night time.
Three of these images are shown in Figure 6.11. The camera has been stationary
over the full time span. From these test images we extract pairs of features corre-
sponding to the same point but at different times. To this end, we first mask out
the sky and thereafter compute an equidistantly spaced grid of pixel positions as
can be seen in Figure 6.11. For each such grid point we extract a feature vector
in every image. Pairs of corresponding feature vectors are found by computing
all possible pairs showing the same spot. In total, 56000 positive feature pairs
are computed thereby. Furthermore, we randomly pair features of different image
location yielding yet another 56000 negative feature pairs. The performance of
different descriptors is then assessed by computing the area under the ROC curve.
The results are depicted in Figure 6.12. The gray value descriptor that is used as a

baseline is hardly able to distinguish positive from negative pairs as the illumina-
tion changes. Its AUC is 0.64. BRIEF performs significantly better and achieves
an AUC of 0.89. USURF achieves a score of 0.92 showing some robustness to

92 6. DESCRIPTOR LEARNING

Figure 6.11: The “day-to-night” test set of [30] contains seven images taken over
the course of a full day. Three sample images are shown. The sky is masked out
and features are extracted for the marked (orange) pixel positions.

false positive rate

tr
u
e
 p

o
si

ti
v
e
 r

a
te

1

1

0
0

gray256
BRIEF

USURF
DIRD (bit)

DIRD (float)
DIRD (byte)

0.6

0.7

0.8

0.9

1 2 3 4 5 6

0
.6

4

0
.8

9 0
.9

2 0
.9

5

0
.9

5

0
.9

5

Figure 6.12: ROC curves for the tested descriptors are shown for the test set de-
picted in Figure 6.11. The bar plots show the respective AUCs.

6.3. EXPERIMENTS 93

this heavy illumination variation. The best scoring descriptors for this setup are,
however, DIRD (bit), DIRD (float) and DIRD (byte) with values of 0.945, 0.948
and 0.949 respectively. Interestingly, all three perform almost equally well on this
dataset despite a reduction in storage of factor 32 from DIRD (float) to DIRD
(bit). We plan to further investigate the possibility of data reduction in the future
(see Chapter 7).
Very recently, Zambanini and Kampel [71] have published work on illumination
robust image descriptors and they kindly provided their dataset and we use it as a
second test set. Image patches of a fixed size of 64× 64 pixels are extracted from
the Amsterdam library of object images (ALOI) [27]. These patches are grouped
such that each group shows the same region of an object photographed under dif-
ferent illumination conditions. Some example patches are shown in Figure 6.13.
We again, computed positive and negative image pairs and computed the corre-
sponding feature vectors from them. In total we obtain 115000 patch pairs each.
As before, descriptor performance is measured by the AUC.
Results for this dataset are shown in Figure 6.14. The result is comparable to the

previous one. The gray value descriptor performs poorly with an AUC of 0.75
followed by BRIEF with an AUC of 0.88. USURF reaches an AUC of 0.93. DIRD
(bit) and DIRD (float) perform equally well with an AUC of 0.95 as in the previous
test. DIRD (byte), however, slightly outperforms them with an AUC of 0.96.
Finally, we assess the proposed descriptors by a real world point matching task.

Two stereo images of different times showing the same place are taken for test-
ing. The left images are shown in Figure 6.15. The top image is taken during
morning hours whereas the second one was shot during evening hours. The local
appearance is changed significantly between the two images. This, however, is a
typical situation in which feature points need to be associated correctly for local-
ization. In this test scenario we detect salient points in all four images (using both
stereo images each). This detection of points is kept fixed for all subsequent exper-
iments. Then points are associated by feature matching. One point is matched in
a ring manner from image one to image four and then again to image one yielding
a quadruple match. We keep only those matches for which the ring matching was
successful i.e. the feature was correctly matched back to its initial pixel position
in image one. Thereafter, we compute a visual odometry [26] estimate between
these two stereo images and keep only those matches flagged as inliers by the
visual odometry estimator. The matching results (inlier only) for the gray value
descriptor, USURF, BRIEF, DIRD (bit), DIRD (float) and DIRD (byte) are shown
in Figures 6.15 and 6.16 from top to bottom.

The baseline descriptor gray256 correctly matches only features that are very
far away as their appearance does not change so much for this test. It matches 99
features. USURF performs second worse in this setup and correctly matches 550

94 6. DESCRIPTOR LEARNING

Figure 6.13: Some sample patches of the test set of [71] are shown. Correspond-
ing patches are grouped. Positive and negative pairs are drawn and used in the
evaluation.

interest points. Slightly more points (645) can be matched correctly using BRIEF.
Our binary descriptor DIRD (bit) is able to correctly associate 992 points. Its con-
tinuous sibling DIRD (float) matches 1236 points and is only superseded by DIRD
(byte) with 1391 inlier matches. These findings are summarized in Figure 6.17.
The inlier ratio is also presented in Figure 6.17. It reveals that USURF and BRIEF
match only 23% correctly whereas DIRD (byte) and DIRD (bit) match around 40%
correctly. DIRD (float) exhibits an inlier ratio of 36%. The gray level descriptor is
far off with 18%.
We note that the three DIRD variants are the top performing descriptors in all tests.
Their increasing order is always DIRD (bit), DIRD (float) and DIRD (byte) except
for the inlier fraction test where DIRD (bit) and DIRD (float) have changed places.
We feel particularly encouraged to continue work on DIRD by the excellent point
matching performance of DIRD (byte) which outperforms all alternatives by a

6.3. EXPERIMENTS 95

0.75

0.8

0.85

0.9

0.95

1 2 3 4 5 6false positive rate

tr
u
e
 p

o
si

ti
v
e
 r

a
te

1

1

0
0

gray256
BRIEF

USURF
DIRD (bit)

DIRD (float)
DIRD (byte) 0

.7
4

0
.8

8

0
.9

3 0
.9

5

0
.9

5

0
.9

6

Figure 6.14: ROC curves and AUCs are shown for the tested descriptors for the
test set shown in Figure 6.13. DIRD (byte) is the best performing descriptor.

substantial margin and more than doubles the performance of the best non-DIRD
descriptor.

96 6. DESCRIPTOR LEARNING

Figure 6.15: The top two images are used for a point matching task. The flow
field of correctly associated points are shown for a simple gray value descriptor
(99 inlier matches) and USURF (550 inlier matches).

6.3. EXPERIMENTS 97

Figure 6.16: The flow fields of correctly associated points are shown for BRIEF
(645 inlier matches), DIRD (bit) (922 inlier matches), DIRD (float) (1236 inlier
matches) and DIRD (byte) (1392 inlier matches.)

98 6. DESCRIPTOR LEARNING

1
3

9
1

1
2

3
6

9
9

2

6
4

5

5
5

0

9
9

1 2 3 4 5 6

0.4

0.8

1.2

1
0

0
0

 I
n
lie

r
M

a
tc

h
e
s

4
0

.3

3
6

.03
9

.5

2
3

.5

2
3

.3

1
7

.9

1 2 3 4 5 6

10

20

30

40
%

 I
n
lie

r
M

a
tc

h
e
s

Figure 6.17: Results for the point matching task are shown. Left to right:
Gray256, USURF, BRIEF, DIRD (bit), DIRD (flaot) and DIRD (byte). The in-
lier ratio is shown in the same order.

99

7 Conclusion

A set of algorithms for map relative visual localization using a single monocular
camera was proposed in this thesis achieving centimeter level accuracy.
The mapping pipeline was presented in Chapter 4. It only requires a stereo camera
and does not rely on any additional external hardware like odometers or GNSS
receivers. Nevertheless, their optional inclusion is straight forward when de-
sired. Stereo sequences are recorded such that they cover the area for which a
map is sought. These sequences can be acquired on different days and times and
the proposed algorithm merges these recordings and enforces consistency. Finally,
landmark positions are computed and stored in an efficient map data structure.
The mapping process first computes a pose graph which consists of of all poses
of all survey trajectories. Poses of the graph are interconnected by motion esti-
mates computed from visual optometry. Motion estimates are computed for pairs
of poses that are in close vicinity to each other. Consecutive poses of one sur-
vey trajectory are naturally considered to be neighbors. Self overlap and areas
that overlap with other sequences are reliably and robustly found by the proposed
place recognizer. It extracts a holistic feature vector for every single image of all
mapping sequences. Thereafter, subsequences are matched to yield pairs of poses
showing the same place. The subsequence matching algorithm is globally optimal
and very efficient to compute. Once the pose graph is constructed it is solved by
state-of-the-art NLS estimation to yield a pose representation that is consistent in
all areas of self and cross overlap.
The place recognizer and pose graph optimizer was tested on a challenging data
set of three survey trajectories with forward and backward facing cameras that
contain numerous self loops each. Each sequence was tested in isolation first. Ex-
periments show that all loops are correctly found by the proposed algorithm even
in areas of visual ambiguity. Thereafter, a fourth image sequence was recorded
that overlaps with each of the three earlier ones. All areas of overlap are robustly
found and the jointly optimized pose graph consisting of all four recordings shows
no false loop closure.
Next, a set of 3D landmarks is computed and added to the visual map. Salient
image points are extracted from the recorded imagery and associated across all se-
quences. Hence, a single point in 3D is described by a set of pixel positions which
are the projections of the point into their respective image planes. An NLS solver
then extracts the 3D position of a given landmark that best explains these projec-

100 7. CONCLUSION

tions. A heuristic was proposed to prune some inappropriate landmarks from the
map that will most likely not contribute to a reliable localization estimate.
Some experimental findings are presented showing bird eye views of the estimated
landmark positions. Typical urban structures like parked cars can be seen from this
representation. Back projecting the 3D landmarks into their image plane shows
that an overwhelming majority of image points on moving objects have been iden-
tified as such and are not stored in the map data structure. Moreover, the mapping
process scales well to large environments.
The proposed mapping pipeline was extensively tested on several hundred kilome-
ters and the resulting maps were used successfully for localization. Nevertheless,
a few improvements are possible to further increase both robustness and accuracy.
First, a method to further reduce the storage requirements on the visual map ap-
pears useful as it is rather large. One solution may be to use only those landmarks
that are successfully found in image sequences of different days as these appear
to be persistent. Another exciting ground for future work is the development of
a specialized key point detector that is specifically tailored to the road surface.
This detector may even be computationally expensive as it is applied only during
mapping. Experiments show that almost one magnitude more image points are
detected during localization than there are landmarks in the map. This allows that
almost all landmarks are matched. Thus, a specialized key point detector which is
integrated into the mapping procedure could increase the localization robustness
without any need to alter the localization algorithm.
The localization method that localizes a single monocular camera relative to the
aforementioned visual map was presented in Chapter 5. It follows a three step
approach. First, a topological localization is computed. The pose of the visual
map that is closest to the current pose is found. This information is required to ini-
tialize the localizer. The proposed topological localization methods shows some
resemblance to the place recognizer reviewed above. The current camera image is
described holistically and the resulting feature vector is compared to all features
of the visual map. Choosing the pose of the map that is the nearest pose in the
space of appearances is susceptible to false alarms. Hence, a small set of promis-
ing candidate poses of the map are investigated by sequence matching which can
be computed very efficiently. Thereby, the nearest pose of the map is found with
great robustness.
The topological localization was tested on 500 equidistantly spaced starting po-

sitions of two localization test sets. The median distance until a topological local-
ization is possible was determined. Despite a few rural areas where such methods
require a substantially longer traveling distance the median is between seven and
ten meters depending on the test set. The correctness of the topological local-

101

ization was verified by a subsequent point feature matching and no single false
topological localization was computed by our method.
The second step of the localization method computes a metric pose from point
feature matches. All landmarks of the immediate vehicle vicinity (which is known
from topological localization) and their associated visual descriptors are loaded
from disk. Salient image points of the current camera image are associated with
these 3D landmarks and NLS estimation and RANSAC are used to derive a six
DOF ego pose estimate which we dubbed one-shot estimate.
Evaluating the cardinality of the inlier set of point matches for all images of all test-
ing sequences shows that a reliable feature matching is possible despite naturally
occurring changes of the environment like weather and illumination conditions.
Moreover, we note that feature density and matching quantity varies and depends
on the environment. The proposed method works best in urban environment.
Lastly, the localization algorithm stores a sliding window history of past one-shot
estimates and re-optimizes these jointly. To this end, a motion model constraint is
enforced and one-shot estimates serve as a prior in this optimization step. Hence,
the prediction of a pose shall not deviate much from the pose estimate which in
turn shall be close to its prior. As this set of constraints is overdetermined we again
resort to NLS estimation to resolve it. This step of the localization algorithm is re-
ferred to as pose adjustment.
The visual map contains no global reference as it is constructed entirely from pose
relative measurements. Hence, a localization accuracy evaluation cannot rely on
any ground truth as it is unavailable. To assess the localization accuracy we pro-
pose to compare two independent localization estimates of two independent cam-
eras mounted on the same vehicle for consistency. Both estimated trajectories are
expected to deviate by a constant offset which precisely corresponds to the offset
of the two cameras. Our experimental findings show a localization accuracy of a
few centimeters and sub degree angular precision. Moreover, we presented quali-
tative experiments of an AR system which further supports these findings. Finally,
we note that a slightly modified method has been used for automatic driving for
several hundred kilometers in total.
The experiences we made with the proposed localization method are very encour-
aging. Nevertheless, we see some room to further improve this method. We expect
the topological localization to benefit from a modified image description model.
Using a bag-of-feature surrogate instead of the holistic approach will allow the
method to work even when the camera mounting between mapping and local-
ization is varied considerably. Following this line is especially tempting to try
since point features of the camera image need to be computed for metric local-
ization already and are hence obtained without any additional computational ex-
penses. Moreover, the loss of realtime capability of the topological localization is

102 7. CONCLUSION

inevitable once the map size becomes vast (e.g. city scale and beyond). However,
state-of-the-art image retrieval methods [33] offer a solution. A key technology
seems to be a combination of hashing and efficiently storing feature vectors by
means of binary quantization. We believe that the investigation of this branch of
algorithms for topological localization is a fruitful direction of future work. Lastly,
we cannot resist to extend the pose adjustment to use more advanced motion mod-
els such the curve linear models of [60]. These, however, require the coordinate
transform from camera to vehicle coordinates to be available. We plan to estimate
this transform jointly with the poses during pose adjustment which would extend
the associated factor graph into a hyper graph representation.
Descriptors are widely used in many computer vision problems and a construc-
tion scheme to automatically assemble them was presented in Chapter 6. A set
of algorithmic building blocks are introduced which can be chained in any order.
Each such combination of building blocks (processing steps) yields one descrip-
tor each. It was shown how commonly used descriptors like BRIEF and LBP
can be computed using these blocks. The construction of HOG and SURF is elu-
cidated in Appendix A. To evaluate any given descriptor we have introduced a
fitness function to assess the suitability for place recognition under varying illumi-
nation conditions. Then a meta heuristic was used to evaluate an initial population
of random descriptors. The best performing ones are slightly modified by muta-
tion and form the next generation. Evaluation, selection and mutation are cycled
until convergence. Thereby we were able to fully automatically learn a novel de-
scriptor which is specifically designed to be robust to illumination variations and
we dubbed it DIRD. The performance of DIRD was compared to state-of-the-art
image descriptors like SURF, U-SURF, BRIEF and a simple gray value descrip-
tor. DIRD outperformed all handcrafted alternatives on an independent test set by
a significant margin. This finding speaks much in the favor of using specialized
image descriptors over general purpose ones. Moreover, DIRD can be computed
efficiently and is used for both place recognition and landmark feature matching
in all experiments.

An obvious next step is to test the feature learning method on other computer
vision problems. Preliminary tests on point matching benchmarks seem promis-
ing and we plan to further pursue this idea. An important issue that is neglected
by the proposed feature algorithm learning procedure is the unbound complexity
of the resulting descriptor. The automatically learned DIRD is light weight even
though we believe this has merely been a lucky chance. Nevertheless, enforcing
computational efficiency does not appear to be a far cry from what is presented
in Chapter 6. Each building block increases the computational complexity of the
descriptor in a deterministic and predictable manner. Hence, descriptors of high

103

computational cost can be evaluated artificially poor by the fitness function forcing
the learning framework to favor light weight chains of building blocks over heavy
weight ones.

105

A Appendix

A set of building blocks with block specific variants are presented in Chapter 6
which can be chained in an arbitrary order such that one such combination of
blocks yields one descriptor each. The set of blocks allows to span a large set
of different descriptors. BRIEF and LBP are nowadays commonly used ones and
it was shown in Chapter 6 how these can be assembled by the proposed set of
blocks. Herein, we show how the HOG [18] descriptor which is the work horse
of pedestrian detection and the SURF [6] descriptor which is the most commonly
used general purpose feature extractor can be constructed by the proposed blocks.
HOG is constructed in Section A.1 and the construction of SURF is presented in
Section A.2.

A.1 Histograms of Oriented Gradients

HOG features are widely used in pedestrian detection and classification. Next, we
show how HOG features are constructed by using the algorithmic building blocks
of Chapter 6. To this end, we first briefly review the method as presented in [18].
The region for which a HOG feature shall be computed is first partitioned into
small squared patches of size 4 × 4 pixels. Such a small patch is referred to as a
cell. For each pixel of a cell the derivative in horizontal and vertical direction are
computed and denoted by dx and dy. Thereafter, the derivatives are transformed
into a polar representation yielding orientation θ = atan2(dy, dx) and magnitude
m =

√
dx2 + dy2 for every pixel of the cell. A gradient histogram is thereafter

computed for the particular cell which has six bins. Note, that the original method
proposes to weight the orientation by the magnitude to compute the histogram.
Herein, however, we chose to compute a non-weighted histogram using the orien-
tation information only. Next, cells are merged into blocks each of which consist
of 2 × 2 cells each. The orientation histograms of the cells of one block are con-
catenated to form one feature vector for each block which is thereafter scaled to
unit norm. Several such block feature vectors are computed by shifting the block
by a fixed pixel count (referred to as block stride) and re-evaluating the block fea-
ture. This shifting procedure is continued until the entire patch is covered. All
block features are finally concatenated to form the HOG feature. We finally note
that it is possible to vary many parameters such as block stride, number of his-

106 A. APPENDIX

togram bins, cell and block sizes etc. For simplicity we have presented a default
set of parameters here.
Next, we present how to assemble the HOG descriptor from our set of building
blocks. To this end, we describe the chain of blocks and explain their respective
variants. First, we apply the derivative filter bank to yield a 2-vector (dx, dy)T

for the pixel position the descriptor is applied to. The nonlinear transform that
translates Cartesian to polar coordinates is readily available and applied thereafter
to yield (m, θ)T . The histogram of orientations is computed from the histogram
block. It uses the neighborhood ON that covers the area of the cell and has his-
togram centers C = (c1, . . . , c6) with ci = (0, iπ/3)T where the magnitude is
always zero and the orientations equidistantly cover one full rotation. Thereby,
the magnitude is irrelevant and an orientation only histogram is computed. The
repetition to block level which concatenates several such histograms for a block
is achieved by the repetition building block. The block feature is scaled to unit
norm by the normalization building block. The final HOG feature is computed
by applying the thus constructed descriptor at several positions covering the entire
patch which corresponds to the repetition operation.
HOG can be expressed by summarizing the construction steps with our building
block notation:

1. Apply derivative filter bank.

2. Nonlinearly transform from Cartesian to Polar coordinates.

3. Compute a histogram over the area of a cell with bin centers at equidistantly
spaced angles covering one full rotation.

4. Apply repetition to yield block level features.

5. Apply normalization building block to scale feature to unit norm.

6. Apply yet another repetition pattern to cover the entire patch.

Finally, we note that the original magnitude weighted histograms cannot be con-
structed by the building blocks of Chapter 6 without modification.

A.2 Speeded Up Robust Feature

It is largely agreed that SURF is the most successful feature descriptor to date as
it is fairly quick to compute and shows good general purpose performance. We
describe how SURF can be assembled by our building blocks.

A.2. SPEEDED UP ROBUST FEATURE 107

We assume that a pixel position u, v of an image I has been detected by some de-
tector. Moreover, we assume that the scale and orientation of the salient point has
been correctly detected by the detector. This is the common case where rotation
and scale invariance is required. These invariance proprieties are attributed to the
detector and not the descriptor. Henceforth, we assume a square patch of size s×s
pixels which is axis aligned and thus compensated for scale and orientation and
we show how the patch around the center pixel u, v can be described by SURF.
To this end, we briefly restate the method presented in [6] before translating it into
our building blocks vocabulary.
The square path of size s × s is tiled into 4 × 4 equally sized, non-overlapping
sub-patches. For each sub-patch a set of 5 × 5 equally spaced pixel positions
are determined such that they form a grid covering the area of the sub-patch. A
two dimensional Haar feature (dxp,k,l, dyp,k,l) is computed for each pixel position
(k, l) ∈ {1, . . . ,5} × {1, . . . ,5} of the grid where p ∈ {1, . . . ,16} denotes the
sub-patch id. These Haar features are horizontal and vertical Haar features of a
fixed scale. Thereafter, each Haar feature is weighted by a weight wp,k,l which de-
pends on the distance of the pixel to the center pixel u, v of the patch. Thereafter,
a four-vector is computed for each sub-patch p by

vp =

∑
k,l wp,k,ldxp,k,l∑
k,l wp,k,ldyp,k,l∑
k,l |wp,k,ldxp,k,l|∑
k,l |wp,k,ldyp,k,l|)

 (A.1)

where k, l sums over all twenty five grid pixels of the sub-patch p. Last all sub-
patch vectors vp are concatenated and the final vector is scaled to unit norm yield-
ing the 64 dimensional SURF feature.
Next we rephrase the aforementioned method using our blocks and variants no-

tation. The first set of blocks will perform on only one grid pixel position of
one sub-patch. The processing pipeline starts with the Haar feature filter bank.
It will compute Haar features for several scales n = 1, . . . , N in both vertical,
horizontal and diagonal direction. So far, the descriptor will compute a feature
f = (dx1, dy1, dxy1, . . . , dxN , dyN , dxyN)T for each pixel it is applied to where
dxn and dyn are horizontal and vertical Haar features as above and dxyn is the di-
agonal Haar feature of scale n. For SURF, however, we are interested in only one
particular scale n′ (which is a fixed parameter) and only the vertical and horizontal
features. To this end we subsequently apply a linear transform by multiplying the
feature vector with a matrix A. The matrix A ∈ R2×3N contains exactly one 1 in
each row and zeros otherwise. Thereby the feature obtained by matrix multiplica-
tion yields Af = (dxn′ , dyn′)

T as required. One can think of A as a “selection

108 A. APPENDIX

matrix” which picks those components of the feature vector that are required by
SURF.
Next we apply the summation block to each pixel the descriptor Af is applied
to. The neighborhood ON , however, consists only of a single pixel position offset
which is zero. Thereby the summation yields a new feature which is

∑
N dxn′∑
N dyn′∑
N |dxn′ |∑
N |dyn′ |

 =

dxn′
dyn′

|dxn′ |
|dyn′ |

 (A.2)

becauseON is only one pixel in size. The descriptor constructed so far will output
the four vector of (A.2) for a given pixel position.
This descriptor is now extended as follows. A repetition is the next processing
block. Thus, a new descriptor is constructed by using the thus far assembled one
by applying it on all 20 × 20 grid pixel positions of all sub patches and concate-
nating the outputs. This will yield a (temporary) large feature vector of dimension
20 · 20 · 4. Next, the weighting with the fixed weights wj,k,p is integrated into
our chain of building blocks. To this end, the feature vector is multiplied by a
large diagonal matrix B = diag(w1,1,1, w1,1,1, w1,1,1, w1,1,1, . . . , w5,5,16) which
contains the weights. Note that each weight is repeated four times to weight each
component of the concatenated four vectors of (A.2).
Finally, the sub patch summation of SURF is achieved by another linear trans-
form. The weighted feature is multiplied by yet another matrix C which contains
25 ones per row so that the features of one sub patch are summed each. The final
step of unit length normalization is readily contained in our set of building blocks
and hence applied last.
SURF can be expressed by summarizing the construction steps with our building
block notation:

1. Apply Haar filter bank.

2. Linear Transform with matrix A to select the two appropriate Haar features.

3. Summation over single pixel neighborhood to yield the vector of (A.2).

4. Repeat the thus constructed descriptor on all 20× 20 grid pixel positions of
all sub-patches and concatenate the output.

5. Use diagonal matrix B in another linear transform to integrate the weights
for each feature.

A.2. SPEEDED UP ROBUST FEATURE 109

6. Use yet another linear transform with matrix C to achieve the sub-patch
summation.

7. Apply normalization block.

Obviously, the two subsequent linear transforms could be summarized by one
transform with matrix CB but is kept separate here for better readability. Note,
that all matrices are fixed and are completely independent of the pixel position
u, v.

BIBLIOGRAPHY 111

Bibliography

[1] P. Agarwal and E. Olson. Variable reordering strategies for slam. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012.

[2] P. Alcantarilla, O. Stasse, S. Druon, L. Bergasa, and F. Dellaert. How to
localize humanoids with a single camera? Autonomous Robots, 2012.

[3] H. Badino, D. Huber, and T. Kanade. Visual topometric localization. In IEEE
Intelligent Vehicles Symposium (IV), pages 794–799, 2011.

[4] H. Badino, D. Huber, and T. Kanade. Real-time topometric localization. In
IEEE International Conference on Robotics and Automation (ICRA), pages
1635–1642, 2012.

[5] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping
(slam): Part ii. IEEE Robotics & Automation Magazine, 13(3):108–117,
2006.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In
European Conference on Computer Vision (ECCV), pages 404–417, 2006.

[7] J. Beck. Automatisiertes Deskriptorlernen zur Ortserkennung mit Kameras
Diplomarbeit KIT, 2012.

[8] D. Bertsekas. Incremental least squares methods and the extended kalman
filter. SIAM Journal on Optimization, 6(3):807–822, 1996.

[9] H. Beyer. The theory of evolution strategies. Spring, 2001.

[10] E. Bingham and H. Mannila. Random projection in dimensionality reduc-
tion: applications to image and text data. In International conference on
Knowledge discovery and data mining, pages 245–250, 2001.

[11] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for
recognition. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2559–2566, 2010.

112 BIBLIOGRAPHY

[12] M. Brown, G. Hua, and S. Winder. Discriminative learning of local image
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 33(1):43–57, 2011.

[13] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief: binary robust inde-
pendent elementary features. In European Conference on Computer Vision
(ECCV), pages 778–792, 2010.

[14] G. Carneiro. The automatic design of feature spaces for local image de-
scriptors using an ensemble of non-linear feature extractors. In IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 3509–
3516, 2010.

[15] O. Chum and J. Matas. Optimal randomized ransac. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 30(8):1472–1482, 2008.

[16] Eurostat European Commision. Europe in figures. 2012.

[17] M. Cummins and P. Newman. Fab-map: Probabilistic localization and map-
ping in the space of appearance. International Journal of Robotics Research,
27(6):647–665, 2008.

[18] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 886–893, 2005.

[19] A. Davison, I. Reid, N. Molton, and O. Stasse. Monoslam: Real-time single
camera slam. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), 29(6):1052–1067, 2007.

[20] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. Thorpe. Subgraph-preconditioned
conjugate gradients for large scale slam. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 2566–2571, 2010.

[21] V. Drevelle and P. Bonnifait. Global positioning in urban areas with 3-d
maps. In IEEE Intelligent Vehicles Symposium (IV), pages 764–769, 2011.

[22] Statistisches Bundesamt DSTATIS. Transport und verkehr. Statistisches
Jahrbuch 2012, 2012.

[23] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping:
part i. IEEE Robotics & Automation Magazine, 13(2):99–110, 2006.

[24] M. Fischler and R. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Com-
munications of the ACM, 24(6):381–395, 1981.

BIBLIOGRAPHY 113

[25] S. Gauglitz, T. Höllerer, and M. Turk. Evaluation of interest point detectors
and feature descriptors for visual tracking. International journal of computer
vision, pages 1–26, 2011.

[26] A. Geiger, J. Ziegler, and C. Stiller. Stereoscan: Dense 3d reconstruction
in real-time. In IEEE Intelligent Vehicles Symposium (IV), pages 963–968,
2011.

[27] J. Geusebroek, G. Burghouts, and A. Smeulders. The amsterdam library of
object images. International Journal of Computer Vision (IJCV), 61(1):103–
112, 2005.

[28] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard. A tutorial on graph-
based slam. IEEE Intelligent Transportation Systems Magazine, 2(4):31–43,
2010.

[29] R. Hartley and A. Zisserman. Multiple view geometry in Computer Vision.
Cambridge University Press, 2000.

[30] J. Heinly, E. Dunn, and J. Frahm. Comparative evaluation of binary features.
In European Conference on Computer Vision (ECCV), pages 759–773, 2012.

[31] C. Hertzberg. A framework for sparse, non-linear least squares problems on
manifolds diplomarbeit universiät bremen , 2008.

[32] B. Jähne. Digitale Bildverarbeitung. Springe, 2005.

[33] H. Jegou, F. Perronnin, M. Douze, C. Schmid, et al. Aggregating local image
descriptors into compact codes. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 34(9):1704–1716, 2012.

[34] F.R. Kschischang, B.J. Frey, and H.A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–
519, 2001.

[35] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A
general framework for graph optimization. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3607–3613, 2011.

[36] H. Lategahn, J. Beck, B. Kitt, and C. Stiller. How to learn an illumination
robust image feature for place recognition. In IEEE Intelligent Vehicles Sym-
posium (IV), Gold Coast, Australia, 2013.

[37] H. Lategahn, A. Geiger, and B. Kitt. Visual slam for autonomous ground
vehicles. In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, 2011.

114 BIBLIOGRAPHY

[38] H. Lategahn, A. Geiger, B. Kitt, and C. Stiller. Motion-without-structure:
Real-time multipose optimization for accurate visual odometry. In IEEE In-
telligent Vehicles Symposium (IV), Alcala de Henares, Spain, 2012.

[39] H. Lategahn, T. Graf, C. Hasberg, B. Kitt, and J. Effertz. Mapping in dynamic
environments using stereo vision. In IEEE Intelligent Vehicles Symposium
(IV), Baden-Baden, Germany, 2011.

[40] H. Lategahn, S. Gross, T. Stehle, and T. Aach. Texture classification by
modeling joint distributions of local patterns with gaussian mixtures. IEEE
Transactions Image Processing, 19(6):1548–1557, 2010.

[41] H. Lategahn, M. Schreiber, J. Ziegler, and C. Stiller. Urban localization with
camera and inertial measurement unit. In IEEE Intelligent Vehicles Sympo-
sium (IV), Gold Coast, Australia, 2013.

[42] H. Lategahn and C. Stiller. City gps using stereo vision. In IEEE Inter-
national Conference on Vehicular Electronics and Safety (ICVES), Istanbul,
Turkey, 2012.

[43] H. Lategahn and C. Stiller. Experimente zur hochpräzisen landmarken-
basierten eigenlokalisierung in unsicherheitsbehafteten digitalen karten. In
FAS Workshop, 2012.

[44] H. Lategahn, A. Wege, T. Graf, J. Effertz, and B. Kitt. Schnelle Berechnung
von detaillierten Belegungsgittern aus dichten Stereodisparitätsbildern. In
Sicherheit durch Fahrerassistenz, TÜV Süd, 2010.

[45] J. Levinson, M. Montemerlo, and S. Thrun. Map-based precision vehicle
localization in urban environments. In Robotics: Science and Systems Con-
ference (RSS), 2007.

[46] J. Levinson and S. Thrun. Robust vehicle localization in urban environments
using probabilistic maps. In IEEE International Conference on Robotics and
Automation (ICRA), pages 4372–4378, 2010.

[47] H. Li, F. Nashashibi, and G. Toulminet. Localization for intelligent vehicle
by fusing mono-camera, low-cost gps and map data. In IEEE International
Conference on Intelligent Transportation Systems (ITSC), pages 1657–1662,
2010.

[48] D. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional journal of computer vision, 60(2):91–110, 2004.

BIBLIOGRAPHY 115

[49] F. Lu and E. Milios. Globally consistent range scan alignment for environ-
ment mapping. Autonomous robots, 4(4):333–349, 1997.

[50] M. Milford. Visual route recognition with a handful of bits. In Robotics:
Science and Systems Conference (RSS), 2012.

[51] A. Napier and P. Newman. Generation and exploitation of local orthographic
imagery for road vehicle localisation. In IEEE Intelligent Vehicles Sympo-
sium (IV), pages 590–596, 2012.

[52] A. Napier, G. Sibley, and P. Newman. Real-time bounded-error pose esti-
mation for road vehicles using vision. In IEEE International Conference on
Intelligent Transportation Systems (ITSC), pages 1141–1146, 2010.

[53] T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and ro-
tation invariant texture classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 24(7):971–
987, 2002.

[54] J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for ef-
ficient retrieval. European Conference on Computer Vision (ECCV), pages
677–691, 2010.

[55] P. Piniés and J. Tardós. Large-scale slam building conditionally indepen-
dent local maps: Application to monocular vision. IEEE Transactions on
Robotics, 24(5):1094–1106, 2008.

[56] O. Pink. Visual map matching and localization using a global feature map.
In IEEE Computer Vision and Pattern Recognition Workshops, 2008.

[57] M. Powell. An efficient method for finding the minimum of a function
of several variables without calculating derivatives. The computer journal,
7(2):155–162, 1964.

[58] W. Press, S. Teukolsky, W. T Vetterling, and B. Flannery. Numerical recipes
in c: the art of scientific computing. 2. Cambridge: CUP, 1992.

[59] M. Schreiber, C. Knoeppel, and U. Franke. Laneloc: Lane marking based
localization using highly accurate maps. In IEEE Intelligent Vehicles Sympo-
sium (IV), Gold Coast, Australia, 2013.

[60] R. Schubert, E. Richter, and G. Wanielik. Comparison and evaluation of
advanced motion models for vehicle tracking. In IEEE International Confer-
ence on Information Fusion, 2008.

116 BIBLIOGRAPHY

[61] G. Sibley, L. Matthies, and G. Sukhatme. A sliding window filter for incre-
mental slam. Unifying perspectives in computational and robot vision, pages
103–112, 2008.

[62] G. Sibley, C. Mei, I. Reid, and P. Newman. Vast-scale Outdoor Naviga-
tion Using Adaptive Relative Bundle Adjustment. International Journal of
Robotics Research, 2010.

[63] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relation-
ships in robotics. Autonomous robot vehicles, 1:167–193, 1990.

[64] D. Stavens and S. Thrun. Unsupervised learning of invariant features using
video. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1649–1656, 2010.

[65] N. Sunderhauf, M. Obst, G. Wanielik, and P. Protzel. Multipath mitigation
in gnss-based localization using robust optimization. In IEEE Intelligent Ve-
hicles Symposium (IV), pages 784–789, 2012.

[66] N. Sunderhauf and P. Protzel. Brief-gist-closing the loop by simple means.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1234–1241, 2011.

[67] S. Thompson, S. Kagami, and M. Okajima. Constrained 6dof localisation
for autonomous vehicles. In IEEE International Conference on Systems Man
and Cybernetics (SMC), pages 330–335, 2010.

[68] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment
- a modern synthesis. Vision algorithms: theory and practice, pages 153–
177, 2000.

[69] A. Wendel, A. Irschara, and H. Bischof. Natural landmark-based monocular
localization for mavs. In IEEE International Conference on Robotics and
Automation (ICRA), pages 5792–5799, 2011.

[70] S. Winder, G. Hua, and M. Brown. Picking the best daisy. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 178–185,
2009.

[71] S. Zambanini and M. Kampel. A local image descriptor robust to illumination
changes. In Conference on Image Analysis, 2013.

Band 001 Hans, Annegret
 Entwicklung eines Inline-Viskosimeters auf Basis
 eines magnetisch-induktiven Durchflussmessers. 2004
 ISBN 3-937300-02-3

Band 002 Heizmann, Michael
 Auswertung von forensischen Riefenspuren
 mittels automatischer Sichtprüfung. 2004
 ISBN 3-937300-05-8

Band 003 Herbst, Jürgen
 Zerstörungsfreie Prüfung von Abwasserkanälen
 mit Klopfschall. 2004
 ISBN 3-937300-23-6

Band 004 Kammel, Sören
 Deflektometrische Untersuchung spiegelnd
 reflektierender Freiformflächen. 2005
 ISBN 3-937300-28-7

Band 005 Geistler, Alexander
 Bordautonome Ortung von Schienenfahrzeugen
 mit Wirbelstrom-Sensoren. 2007
 ISBN 978-3-86644-123-1

Band 006 Horn, Jan
 Zweidimensionale Geschwindigkeitsmessung
 texturierter Oberflächen mit flächenhaften
 bildgebenden Sensoren. 2007
 ISBN 978-3-86644-076-0

Schriftenreihe
Institut für Mess- und Regelungstechnik
Karlsruher Institut für Technologie
(1613-4214)

Die Bände sind unter www.ksp.kit.edu als PDF frei verfügbar oder als Druckausgabe bestellbar.

Band 007 Hoffmann, Christian
 Fahrzeugdetektion durch Fusion monoskopischer
 Videomerkmale. 2007
 ISBN 978-3-86644-139-2

Band 008 Dang, Thao
 Kontinuierliche Selbstkalibrierung von Stereokameras.
 2007
 ISBN 978-3-86644-164-4

Band 009 Kapp, Andreas
 Ein Beitrag zur Verbesserung und Erweiterung
 der Lidar-Signalverarbeitung für Fahrzeuge. 2007
 ISBN 978-3-86644-174-3

Band 010 Horbach, Jan
 Verfahren zur optischen 3D-Vermessung spiegelnder
 Oberflächen. 2008
 ISBN 978-3-86644-202-3

Band 011 Böhringer, Frank
 Gleisselektive Ortung von Schienenfahrzeugen
 mit bordautonomer Sensorik. 2008
 ISBN 978-3-86644-196-5

Band 012 Xin, Binjian
 Auswertung und Charakterisierung dreidimensionaler
 Messdaten technischer Oberflächen mit Riefentexturen.
 2009
 ISBN 978-3-86644-326-6

Band 013 Cech, Markus
 Fahrspurschätzung aus monokularen Bildfolgen für
 innerstädtische Fahrerassistenzanwendungen. 2009
 ISBN 978-3-86644-351-8

Band 014 Speck, Christoph
 Automatisierte Auswertung forensischer Spuren
 auf Patronenhülsen. 2009
 ISBN 978-3-86644-365-5

Band 015 Bachmann, Alexander
 Dichte Objektsegmentierung in Stereobildfolgen. 2010
 ISBN 978-3-86644-541-3

Band 016 Duchow, Christian
 Videobasierte Wahrnehmung markierter Kreuzungen
 mit lokalem Markierungstest und Bayes‘scher
 Modellierung. 2011
 ISBN 978-3-86644-630-4

Band 017 Pink, Oliver
 Bildbasierte Selbstlokalisierung von Straßenfahrzeugen. 2011
 ISBN 978-3-86644-708-0

Band 018 Hensel, Stefan
 Wirbelstromsensorbasierte Lokalisierung von
 Schienenfahrzeugen in topologischen Karten. 2011
 ISBN 978-3-86644-749-3

Band 019 Carsten Hasberg
 Simultane Lokalisierung und Kartierung spurgeführter
 Systeme. 2012
 ISBN 978-3-86644-831-5

Band 020 Pitzer, Benjamin
 Automatic Reconstruction of Textured 3D Models. 2012
 ISBN 978-3-86644-805-6

Band 021 Roser, Martin
 Modellbasierte und positionsgenaue Erkennung
 von Regentropfen in Bildfolgen zur Verbesserung
 von videobasierten Fahrerassistenzfunktionen. 2012
 ISBN 978-3-86644-926-8

Band 022 Loose, Heidi
 Dreidimensionale Straßenmodelle für

Fahrerassistenzsysteme auf Landstraßen. 2013
 ISBN 978-3-86644-942-8

Band 023 Rapp, Holger
 Reconstruction of Specular Reflective Surfaces using
 Auto-Calibrating Deflectometry. 2013
 ISBN 978-3-86644-966-4

Band 024 Moosmann, Frank
 Interlacing Self-Localization, Moving Object Tracking

and Mapping for 3D Range Sensors. 2013
 ISBN 978-3-86644-977-0

Band 025 Geiger, Andreas
 Probabilistic Models for 3D Urban Scene

Understanding from Movable Platforms. 2013
 ISBN 978-3-7315-0081-0

Band 026 Hörter, Marko
 Entwicklung und vergleichende Bewertung

einer bildbasierten Markierungslichtsteuerung
für Kraftfahrzeuge. 2013

 ISBN 978-3-7315-0091-9

Band 027 Kitt, Bernd
 Effiziente Schätzung dichter Bewegungsvektorfelder

unter Berücksichtigung der Epipolargeometrie zwischen
unterschiedlichen Ansichten einer Szene. 2013

 ISBN 978-3-7315-0105-3

Band 028 Lategahn, Henning
 Mapping and Localization in Urban

Environments Using Cameras. 2013
 ISBN 978-3-7315-0135-0

ISSN 1613-4214
ISBN 978-3-7315-0135-0

Schriftenreihe

INSTITUT FÜR MESS- UND REGELUNGSTECHNIK
KARLSRUHER INSTITUT FÜR TECHNOLOGIE (KIT)

028

028

9 783731 501350

ISBN 978-3-7315-0135-0

H
en

n
in

g
 L

at
eg

ah
n

M
ap

pi
ng

 a
nd

 L
oc

al
iz

at
io

n
in

 U
rb

an
 E

nv
iro

nm
en

ts
 U

si
ng

 C
am

er
as

In this thesis we present a system to fully automatically create a highly
accurate visual feature map. Moreover, a system for high precision self lo-
calization is presented. Furthermore, we present a method to automatically
learn a visual descriptor.

For consistent mapping we introduce a novel place recognizer which de-
tects areas of self overlap of the mapping surveys. Pairwise image similari-
ties are computed from holistic features and putative loop closure hypoth-
esis are refined to increase robustness to perceptual aliasing by dynamic
programming. Thereafter, a large set of 3D landmarks are automatically
extracted.

The proposed localization algorithm requires only a monocular camera.
First, the nearest pose of the map is found by an efficient search strategy
in the space of appearances. Thereafter, a two step procedure is followed
which firstly computes a rough six degrees of freedom ego pose estimate.
Secondly, a sliding window of past such estimates is jointly re-optimized
to increase robustness and enforce temporal consistency. We demonstrate
centimeter-level accuracy on several data sets.

Moreover, we present a novel method to fully automatically learn an al-
gorithm to visually describe a region around a given pixel position of an
image. A genetic algorithm iterates selection and mutation steps and au-
tomatically derives a novel descriptor which we dub DIRD (DIRD is an il-
lumination robust descriptor). We assess DIRD on a disjoint test set and
demonstrate a significant superiority over its handcrafted counter parts.

	Notations and Symbols
	1 Introduction
	1.1 Contribution
	1.2 Thesis Overview

	2 Related Work
	2.1 Localization
	2.2 SLAM
	2.3 Descriptor Learning

	3 Nonlinear Least Squares Estimation
	3.1 Definition
	3.2 Factor Graphs
	3.3 Normalization
	3.4 Solvers
	3.5 Manifolds
	3.6 Robustness
	3.7 Extended Kalman Filter

	4 Mapping
	4.1 Pose Graph Estimation
	4.2 Loop Closure Detection
	4.3 Landmark Estimation
	4.4 Map Data Structure
	4.5 Experiments

	5 Localization
	5.1 Topological Localization
	5.2 Metric Localization
	5.3 Experiments
	5.3.1 Quantitative Experiments
	5.3.2 Qualitative Experiments

	6 Descriptor Learning
	6.1 Algorithmic Building Blocks
	6.2 Learning Procedure
	6.2.1 Fitness Function
	6.2.2 Evolution Strategies

	6.3 Experiments

	7 Conclusion
	A Appendix
	A.1 Histograms of Oriented Gradients
	A.2 Speeded Up Robust Feature

	References

