
USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 279

XLH: More effective memory deduplication scanners
through cross-layer hints

Konrad Miller Fabian Franz
Marc Rittinghaus Marius Hillenbrand Frank Bellosa

Karlsruhe Institute of Technology (KIT)

Abstract
Limited main memory size is the primary bottleneck for
consolidating virtual machines (VMs) on hosting servers.
Memory deduplication scanners reduce the memory foot-
print of VMs by eliminating redundancy. Our approach
extends main memory deduplication scanners through
Cross Layer I/O-based Hints (XLH) to find and exploit
sharing opportunities earlier without raising the dedupli-
cation overhead.

Prior work on memory scanners has shown great oppor-
tunity for memory deduplication. In our analyses, we have
confirmed these results; however, we have found mem-
ory scanners to work well only for deduplicating fairly
static memory pages. Current scanners need a consider-
able amount of time to detect new sharing opportunities
(e.g., 5 min) and therefore do not exploit the full sharing
potential. XLH’s early detection of sharing opportunities
saves more memory by deduplicating otherwise missed
short-lived pages and by increasing the time long-lived
duplicates remain shared.

Compared to I/O-agnostic scanners such as KSM, our
benchmarks show that XLH can merge equal pages that
stem from the virtual disk image earlier by minutes and is
capable of saving up to four times as much memory; e.g.,
XLH saves 290 MiB vs. 75 MiB of main memory for two
VMs with 512 MiB assigned memory each.

1 Introduction

In cloud computing, virtual machines (VMs) permit the
flexible allocation and migration of services as well as the
consolidation of systems onto fewer physical machines,
while preserving strong service isolation. However, in
that scenario the available main memory size limits the
number of VMs that can be colocated on a single machine.

There may be plenty of redundant data between VMs
(inter-vm sharing), e.g., if similar operating systems
(OSes) or applications are used in different VM instances.

Moreover, previous studies have shown that the memory
footprint of VMs often contains a significant amount of
pages with equal content within a single instance (self-
sharing) [3]. In both cases, memory can be freed by col-
lapsing redundant pages to a single page and sharing it in
a copy-on-write fashion. However, such pages cannot be
identified using traditional sharing mechanisms (see § 6.1)
as the isolation of VMs leads to the so-called semantic
gap [8]; that is lost semantic information between abstrac-
tion layers. The host, for example, does not know which
ones of the guests’ memory pages represent file contents.

Prior work has made deduplication of redundant pages
possible and thereby lowered the memory footprint of
guests. In the following, we use host interchangeably
with virtual machine monitor (VMM), hypervisor, or host
OS to describe the system layer underneath the guest OS.

Paravirtualization closes the semantic gap through
establishing an appropriate interface between host and
guest [6, 18] to communicate semantic information. This
implies modifying both host and guest.

Such an interface has previously been used to help
deduplicating named memory pages—memory pages
backed by files: Satori [18] successfully merges named
pages in guests employing sharing-aware virtual block
devices in Xen [2]. Paravirtualization-based approaches
have only been used selectively and rudimentarily to make
sharing of anonymous memory (e.g., heap/stack memory)
possible, through hooking calls such as bcopy [6].

Applying these modifications to all guests and keep-
ing them compatible with the latest developments at the
kernel and hypervisor level is at least a great burden. It
might not even be possible at all to modify commercial
or legacy guests due to license restrictions or the lack of
source code. Moreover, the lack of semantic information
that the host has about guest activities is actually one of
the key features of virtualization: The host does not know
nor needs to know the OS, file system, etc. inside the
VM.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197544698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

280 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

Memory scanners mitigate the semantic gap by scan-
ning for duplicate content in guest pages [1, 25]. They
index the contents of memory pages at a certain rate, re-
gardless of the pages’ usage semantics.

Scanners have their downside when it comes to effi-
ciency. Especially the merge latency, the time between
establishing certain content in a page and merging it with
a duplicate, is higher in systems based on content scan-
ning compared to paravirtualization-based systems that
merge pages synchronously when they are established.

Memory scanners trade computational overhead and
memory bandwidth with deduplication success and la-
tency. Although the scan rate (pages per time interval) is
often variable and may be fine-tuned [10, 23], it is gener-
ally set to scan very slowly to keep the scanner’s CPU and
memory bus resource usage low. The default scan rate for
Linux/KSM is 1000 pages per second, which results in a
scan time of almost 5 minutes per 1 GiB of main memory.

XLH is our contribution that combines the key benefits
of both previous approaches. We have observed that:

• All types of memory contents (named and anony-
mous) contribute to memory redundancy.

• Many shareable pages in the host’s main memory
originate from accesses to background storage: when
multiple VMs create or use the same programs,
shared libraries, configuration files, and data from
their respective virtual disk images (VDIs).

The main contribution of this paper is to observe guest
I/O in the host and to use it as a trigger for memory
scanners in order to speed up the identification of new
sharing opportunities. For this purpose, XLH generates
page hints in the host’s virtual file system (VFS) layer,
whenever guests access their background store. XLH then
indexes these hinted pages soon after their content has
been established and thus moves them earlier into the
merging stage. In consequence, XLH can find short-lived
sharing opportunities and shares redundant data longer
than regular, linear memory scanners without raising the
overall scan rate.

We have implemented our approach in Linux’ Kernel
Samepage Merging (KSM) and evaluated its properties.
Measurements of kernel build and web server scenarios
show that XLH deduplicates equal pages that stem from
the VDI earlier by minutes and is capable of merging
between 2x and 5x as many sharing opportunities than the
baseline system. For the kernel build benchmark, XLH
performs constantly better than KSM even if the scan rate
is set 5x lower. Our evaluation shows that XLH is able
to reach its effectiveness with little to no additional CPU
overhead or loss in I/O throughput compared with KSM.

We only modify the host in our approach—XLH would
not benefit from and thus does not make use of paravirtu-
alization. In fact, due to the generality of our approach,
XLH also works for deduplicating native processes when
no virtualization is involved. Note that XLH does not
solely target disk accesses but issues hints for all I/O
that goes through the VFS interface, including network
file systems such as NFS. Overall, I/O-advised scanning
makes more effective detection of sharing opportunities
possible without the need to modify guests.

The remainder of this paper is structured as follows:
We analyze semantic and temporal memory duplication
properties in the following Section 2 to back up and mo-
tivate our approach. We then review Kernel Samepage
Merging (KSM)—the memory scanning basis for our
implementation—in Section 3 before we describe our
approach and the implementation of our prototype thor-
oughly in Section 4. In Section 5, we present the results
of our evaluation. We give an overview of related work on
memory deduplication in Section 6. Finally, we conclude
and depict future research directions in Section 7.

2 Analysis of Memory Duplication

Whether the use of deduplication techniques is effective
or not depends mainly on the target workload. Using
memory deduplication does improve a system’s memory
density if the memory footprint of the hosted applications
is sufficiently similar. This is generally the case if the
same OS, similar programs/libraries and/or data are used.

Duplication quantity An empirical study on memory
sharing of VMs for server consolidation performed by
Chang et al. found that the amount of redundant pages
can be as low as 11% but also as high as 86% depend-
ing on the OS and workload [7]. Gupta et al. measured
the amount of duplicated memory across three VMs and
found that almost 50% of the allocated memory could
be saved through memory deduplication [12]. We have
performed a study ourselves and found 110 MiB of redun-
dant memory in typical desktop workloads (LibreOffice,
Firefox). We moreover measured 400 MiB (39%) of re-
dundant data in one of our benchmarks (§ 5.2).

Duplication sources The sources of duplicated pages
and their distribution vary greatly between workloads.
Barker et al. measured the number of identical page
frames in Ubuntu Linux 10.10 while running a typical
set of desktop applications. In their study, over 50% of
identical page frames stem from process heaps. They
furthermore identified shared library based pages to be
the second largest source of duplication (43%) [3]. In a
study performed by Kloster et al., between 64% and 94%

2

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 281

of redundant data were located in page caches [14]. In
our own aforementioned analysis of desktop workloads
70% of the duplicate pages were part of the page caches
while 14% of the duplicates were not backed by files
(anonymous). The last 15% were either free or reserved
(e.g., driver pages). Although it seems to be favorable
to focus on named pages, as many sharing opportunities
can be found in page caches, a significant amount of
duplicates may stem from anonymous memory regions.
In consequence, for a deduplication system to be effective,
it needs to exploit sharing opportunities from all sources.

Temporal characteristics of duplicates In our kernel
build benchmarks, 80% of all encountered sharing oppor-
tunities lived between 30 seconds and 5 minutes. In this
scenario, using brute-force scanning to detect short-lived
sharing opportunities is not effective. Additionally, it
wastes sharing potential by identifying longer-lived shar-
ing opportunities late in the scan process. Figure 1 depicts
the significance of the merge latency on how many pages
are shared at any given point in time: The later memory
is indexed by the scanner, the later a shared page can be
established. Indexing sharing opportunities earlier adds
to the sharing potential and to longer sharing time-frames.

Saved
Pages

1
1121

KSM
XLH

Equal
Pages

t

2

Page can be deduplicated
XLH visits page KSM visits page

Figure 1: Memory scanners index pages after an expected
value of half a scan cycle. XLH visits I/O pages immedi-
ately after they are established. If a duplicate is not found
until a large proportion of the mean sharing time is over,
the deduplication effectiveness is lowered significantly.

3 Memory Scanning with KSM

Our prototype is based on Kernel Samepage Merging
(KSM) [1] which is a popular memory deduplication ap-
proach in the Linux kernel. KSM single-threadedly scans
for and merges equal main memory pages. It is not bound
to VMs but works on anonymous memory regions of any
process. However, KSM only regards specifically advised
pages (madvise) as mergeable. QEMU [4] invokes the
appropriate call for the memory of each VM.

Page States Every advised page in the host is in one
of three states: (1) frequently fluctuating, (2) sharing
candidate yet potentially unstable, and (3) shared.

Data Structures KSM allocates a tree-node containing
information such as a checksum and sequence number
linked to every advised virtual page in the host. Pages that
have changed between scan rounds (1) are not recorded
or regarded in the scan process until their modification
frequency decreases. The tree-nodes of all other pages
are linked together into two red-black trees using their
pages’ full content as the key/index. The unstable tree
(2) records pages that do not change frequently and are
in consequence suitable sharing candidates. They are
neither shared yet, nor protected from being written to—
their content is thus not stable and may be modified after
insertion. The stable tree (3), in contrast, stores pages that
have already been merged and marked copy-on-write.

Scan Process KSM searches for pages that do not
change frequently by gradually calculating a hash value
for every page. If the calculated hash differs from the
one recorded in the previous scan round, the record is
updated but the page is not inserted into either of the
trees (1). If the hash value has not changed between scan
rounds, the associated page is inserted into the unstable
tree (2), employing its content as key. If the unstable tree
already contains a page with the same content, the pages
are merged, marked read-only, and inserted into the stable
tree (3). For any subsequently scanned page, KSM first
checks if its content matches a page in the stable tree, in
which case the pages are merged immediately.

When all advised pages have been scanned, the unsta-
ble tree is dropped and the process is repeated. Only the
hash values and the stable tree remain.

4 I/O-Advised Deduplication with XLH

In the following paragraphs we discuss how XLH gener-
ates (§ 4.1), stores (§ 4.2), and processes (§ 4.3) dedupli-
cation hints interleaved with the periodic memory scan.
KSM uses the full page content as the index into its trees.
Writing to pages in the unstable tree is not prohibited;
such writes, however, may break the reachability in the
subtree of that page, thereby lowering the deduplication
effectiveness. We present two solutions in § 4.4.

4.1 Generating Deduplication Hints

When a VM reads data from a virtual disk image (VDI),
the virtual DMA controller in the host handles the request
and reads the physical disk on behalf of the guest (Fig-
ure 2). Our assumption is that the target of that DMA
transaction is a page in the guest’s page cache and thus a
good sharing candidate. We assume the same for writes:
When a page cache page in the guest is flushed to disk—a
new file is created or an old file is written— the host trans-

3

282 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

lates this into a write to the VDI. XLH detects these op-
erations and generates deduplication hints for the source
and target guest pages. In contrast to read operations on
non-cached files, writes in the guest may be not imme-
diately visible to the host as they can be delayed by the
guest’s page cache. Generally, the delay is much shorter
than the time to the next visit of a traditional memory
scanner, however.

Hypervisor

Host OS

App App

Guest OS Guest OS
Native
App

VDI File VDI File Physical
Disk

Guest
VFS Read

VDMA
Read
Host

VFS Read
Real DMA

Read

XLHHint

Figure 2: Host-VFS read and write operations are used to
trigger hints for the main memory scanner.

As opposed to previous I/O-based approaches, we did
not modify the guests in any way. Our mechanism even
works for regular, non-VM processes, thereby enabling
XLH to also deduplicate main memory efficiently in na-
tive environments (e.g., when using Zero-Install appli-
cations). Note that our approach is generic and may be
applied to other environments as well, e.g., the Win32 file
API layer. Moreover, the hint generation is fully decou-
pled from the deduplication process; there might as well
be more than one hint source and other triggers for hints,
e.g., from a page fault handler.

4.2 Storing Hints and Coping with Bursts
Hints need to be stored until they are asynchronously
processed by the memory scanner. Memory scanners
adhere to a certain scan rate, which is generally set to a
low value (e.g., 1000 pages per second) to keep the overall
impact of the scanner on the system performance within
reasonable bounds. This way, however, memory scanners
cannot always keep up with processing the number of
incoming hints. The hint rate may be constantly higher
than the scan rate, leading to an ever-growing buffer and
suggesting the use of a pruning mechanism. Moreover,
I/O is bursty; in consequence, I/O-based hints are also
issued in bursts. Some million hints can be generated in a
matter of seconds leading to a long backlog of hints and
thus to outdated hints by the time the scanner gets to them.
This effect calls for an aging mechanism.

We have at first stored our hints in an unbounded queue.
When running our benchmarks, the system eventually fell
behind to a state in which it could not find any sharing
candidates through the hinting mechanism at all, as the
hinted pages had already changed their content before
they were processed.

A bounded circular hint-stack (Figure 3), however,
proved to be an appropriate data structure to store hints
with low overhead. The hint-stack keeps the history of
the last unprocessed stack size disk accesses.

E
D
C
B
ABase

Top 2x push
F
E
D
C
B
G

Base
Top

3x pop
D
C
BBase

Top

Figure 3: Storage of hints in the bounded circular stack.

Due to the nature of a bounded circular stack, XLH
always processes the newest hints first while old hints are
overwritten when the stack is full—an automatic pruning
and aging mechanism which turned out to be fast and
robust. Periodic maintenance is not required.

The stack size is configurable through procfs. In our
benchmarks we found that XLH shares most pages if a
full stack can be processed by the memory scanner within
about 15 to 30 seconds. At KSM’s default scan rate this
results in a stack size of about 8k to 16k entries.

4.3 Processing Deduplication Hints
Our hint processing loop, depicted in Figure 4, runs in-
terleaved with the full system scan spurts (wake-ups) that
KSM already implements. XLH shares the global rate
limit set for KSM and produces roughly the same CPU-
load as an unmodified KSM with the same settings.

The interleaving ratio is configurable; hint runs hint-
processing spurts are interleaved with scan runs scan
spurts. A ratio of 0:1 corresponds to the original KSM
implementation. Our default ratio is 1:1. Using this policy,
XLH can guarantee that the linear scan, which can catch
non-I/O sharing opportunities, does not starve due to a
flood of hints.

Periodic scan

Hints left?

Get next
hint

Search in
stable tree

Page
found?

Merge page

Search in unstable
data structure

Page
found?

Merge pages and
move to stable tree

Insert page into un-
stable data structure

Calculate page hash

Page
modified?

Update hash

Yes

Get next
page

Processing
a hint?

No

YesYes

No

No

NoYes

No

Yes

Figure 4: The high-level workflow of our new hint pro-
cessing loop. When all hints have been processed before
the scan rate is exceeded, XLH continues with the linear
KSM scan to keep the rate constant.

4

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 283

When XLH is in a scan spurt, it runs the traditional
linear scanning policy, only. In a hint-processing spurt,
however, XLH processes hints as long as it has hints left
and it has not exceeded its scan allowance. The remaining
scan slots are then used for the linear scan.

Our mechanism first checks whether the hinted page’s
content is already in the stable tree. In this case, XLH
remaps the page to the one in the stable tree and frees the
hinted page. If the hinted page is not in the stable tree,
XLH calculates the checksum of the page’s content and
checks the unstable data structure. If a sharing partner is
found, XLH merges the pages and moves the resulting
page into the stable tree. If XLH cannot find a sharing
candidate it adds the page to the unstable data structure.

4.4 Degeneration of the Unstable Tree
The original KSM implementation has a heuristic that
keeps frequently written pages from being inserted into
the unstable tree. Only pages that keep the same hash
value between consecutive scan rounds are considered
(see Section 3). XLH however adds pages to the unstable
data structure when processing hints that do not have a
sharing partner at that point in time.

As pages are not marked read-only on insertion into the
unstable tree but remain writable for the VM, the location
in the tree is purely based on the content the page had
at the time of its insertion. If pages in the unstable tree
are subsequently modified, the tree may degenerate and
entire branches may become unreachable (see Figure 5).

CK… HJ…

MG… DZ… … DZ…

not reachable

reinsert

EA…
BA…

modified

Figure 5: Nodes in the unstable tree may become un-
reachable due to modification of the contained pages. In
this example, the first byte of the content of a page has
changed from ’EA...’ to ’BA...’ leading to a second page
with the content starting with ’DZ...’ to be inserted a
second time. The page duplication is not detected.

Although, the pages associated with virtual DMA op-
erations are generally part of the guest’s page cache, and
are thus modified infrequently (see Section 2), the effect
of the degeneration is not negligible and reduces the effec-
tiveness of the merging stage. Even running Linux with
an unmodified KSM reveals that almost 70% of the nodes
cannot be reached in the unstable tree after a full scan, due
to page modifications after insertion (kernel benchmark).

In KSM, a very radical approach is chosen to clean up
broken branches of the unstable tree: When a full scan has
been performed, the entire unstable tree is dropped and a

new one is built from scratch. KSM’s repair mechanism
is slowed down by our modifications as the number of
full memory scan cycles per time decreases: The scan
rate stays constant, but multiple hints can and will be
issued on the same pages during a scan cycle leading to
multiple visits of pages within a scan round. As XLH
worsens the unstable tree’s degeneration we provide two
possible solutions in our implementation and compare
their characteristics in § 5.4:

Read-Only Unstable Tree Nodes One way to counter
the more likely degeneration of the unstable tree is to
mark hinted pages that are inserted into the unstable tree
as read-only. This way XLH can use write faults on
hinted pages as a signal to remove these pages from the
unstable tree and thereby prevent the tree from degen-
erating when hinted pages are modified. That is not the
same mechanism as breaking COW pages, which happens
when writing to a page in the stable tree. The page does
not need to be copied but is only marked read-write and
removed from the unstable tree.

Unstable Hash Table An alternative option is to re-
place the unstable tree with a hash table. When a page
in the table is modified, the reachability of other pages in
the hash table is not affected as there are no inner nodes
that can be broken. However, we have to pay attention to
the runtime effects of a hash table. Traditional hash tables
work well for a fixed working set size.

5 Evaluation

We were particularly keen to see whether XLH can merge
more pages with an overhead that is comparable to KSM,
our baseline system. Consequently, we chose the amount
of main memory that is saved when deduplicating dif-
ferent workloads with fixed computational and memory
overhead settings as our prime metric in the evaluation.
After describing our benchmark setup in § 5.1, we ex-
plore the deduplication effectiveness for several different
workloads in § 5.2. As we wanted to get results that are
relatable to prior publications, we have chosen two of
the benchmarks that were used to evaluate Satori [18]:
Compiling the Linux kernel and the Apache web server
performance when serving static files to httperf [19]. We
have also mixed both benchmarks. Additionally, we have
measured how long it takes for the baseline system as well
as XLH to deduplicate the almost static memory footprint
when solely booting many VMs.

We have confirmed that the overhead stays in the area
of the baseline system using three metrics: Time spent
in the deduplication stage, total time the benchmarks re-
quire from start to completion, and the CPU usage (via

5

284 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

top) during the execution. To push our hint generation
and storage implementation to its limit, we have comple-
mented our kernel build and Apache benchmarks with
the file system benchmark bonnie++ [9]. Details can be
found in § 5.3.

Finally, we have explored the runtime impact of our
two solutions to the degenerating unstable tree problem.
In § 5.4, we show that both solutions lead to comparable
deduplication performances.

5.1 Benchmark Setup
We integrated XLH in Linux 3.4 and use QEMU [4]
with KVM—a popular virtualization environment—in
our benchmarks. KSM already provides data structures,
mechanisms and the linear scanning policy for memory
deduplication. We extended the Linux kernel by only
around 600 SLOC.

All benchmarks have been conducted on a PC with an
Intel i7 quad-core processor, 24 GiB RAM, and an SSD.
Ubuntu 11.04 served as the host and also as the guest OS.
Guests were assigned one VCPU each.

Unless specifically stated otherwise, we use the param-
eters in Table 1 for our benchmarks. The mapping of the
sleep-time between spurts and the number of slots in the
hint buffer are listed in Table 2. Intuitively, one would
need a larger hint buffer for longer wake-up intervals as
more hints aggregate between runs. Recall that XLH uses
the fixed size of the hint buffer for pruning outdated hints.

Parameter Value Description
scan run 1 Interleave each scan spurt. . .
hint runs 1 . . . with one hint spurt

pages to scan 100 # of pages to scan on wake-up
hash table size 256 K # of unstable hash slots

RAM size 512 MiB Size of virtual main memory

Table 1: Default settings in our various benchmarks.

sleep time 20 ms 100 ms 200 ms
stack size 40960 8192 4096

full scan time 44 s 220 s 440 s

Table 2: The mapping of sleep time and hint buffer slots
in our benchmarks. The time of a full scan cycle for two
VMs with 512 MiB each is also shown.

In our experiments, we first determine the maximum
available sharing opportunities without merging pages to
show how far from the optimum the different approaches
are. That is achieved with a kernel module comparable
to Exmap [5], which once per second dumps page table
information and page content digests. Then we re-run
the experiments with different configurations of KSM

and XLH. Internal information and statistics such as the
number of exploited sharing opportunities are directly
dumped from the deduplication code through sysfs.

5.2 Deduplication Effectiveness
The goal of XLH is to increase the memory density of
virtualized environments by identifying sharing oppor-
tunities more quickly. When equal pages are identified
earlier, the time that those pages are shared is extended.
Furthermore, new sharing opportunities can be detected
and shared which were previously not exploited due to
slow scan cycles.

The metric we use to compare XLH with the baseline
system KSM is the merge effectiveness at equal scan rates
and thus at equal load settings. We define the merge
effectiveness as the number of merged pages at a certain
point in time after starting the benchmark. A steeper rise
in those graphs indicates that more pages are merged in a
given time interval, which is a consequence of fewer pages
being checked before merging a page. A higher level in
those graphs indicates a greater amount of saved memory
and thus a better approach in terms of effectiveness.

In the following benchmarks, we compare XLH in
both implementation flavors, read-only tree (XLH RO)
and hash table (XLH HT), which have been described in
§ 4.4, with the KSM scanner in its vanilla implementation
(KSM) as well as with an improved KSM version that
marks the unstable tree read-only to mitigate unstable tree
degeneration (KSM RO).

Booting many VMs One of the main reasons to do
memory deduplication in a virtualization scenario is to
be able to quickly consolidate many VMs on a single
physical machine. TravisCI [22] spawns a new VM for
every compute job they run for customers. Jobs often
run shorter than 5 minutes, however. XLH performs par-
ticularly well when it comes to booting VMs as most of
the boot process consists of loading secondary storage
contents (programs, libraries) into main memory.

We have booted 25 VMs in parallel, starting 10 sec-
onds apart. When using XLH all VMs were fully booted
after 530 seconds using approximately 5 GiB of physical
memory. With KSM, the total boot time has been almost
exactly the same. However, up to this point KSM had
only merged 53% of the sharing opportunities that XLH
had had merged.

Kernel Build We have compiled the Linux kernel in
two VMs on the same host. Before performing the bench-
mark, we have fully booted the VMs and waited until the
static sharing opportunities were shared. The resulting
deduplication effectiveness for the kernel build at different
scan rates is depicted in Figure 6.

6

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 285

100 MiB

200 MiB

300 MiB

400 MiB

500 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

20 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

300 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

100 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

200 ms wake-up time

XLH HT
XLH RO

KSM
KSM RO

Figure 6: Kernel build merge performance with varying
wake-up times. The first two graphs also show the maxi-
mum sharing opportunities.

In this benchmark, our extension always performs sig-
nificantly better than KSM. For a short wake-up interval
of 20 ms XLH shares almost all available sharing oppor-
tunities. Even with those very aggressive settings, where
KSM occupies about 70% of a CPU core for its scan pro-
cess, XLH can merge 2x to 5x as many pages as KSM.
Both KSM and XLH are currently not multi-threaded and
thus limited by the speed of a single CPU core. For longer
wake-up intervals XLH also deduplicates 2x to 3x more
effectively. In this benchmark, XLH even deduplicates
more effectively than KSM if it scans 5 times slower
(Figure 7).

The following numbers are taken from the 20 ms bench-
mark: XLH detects and shares almost 10 times as many
new sharing opportunities in total (172000 vs. 17500).
When considering the sharing opportunities that both sys-
tems detect, XLH detects those opportunities 243 seconds
earlier (median) than KSM. The histogram of the time

100 MiB

200 MiB

300 MiB

400 MiB

500 MiB

 0 60 120 180 240 300 360 420 480 540 600D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

Opportunities
XLH HT (100 ms)

KSM (20 ms)

Figure 7: XLH performs constantly better than KSM in
the kernel build even if the scan rate is 5x lower.

that pages remain shared while running the benchmark
(Figure 8) shows that we can find many additional, short-
lived sharing opportunities that KSM is not capable of
detecting.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

 30,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Interval in Minutes

XLH HT
KSM

Figure 8: Histogram depicting the time. Sharing opportu-
nities stay shared throughout the kernel-build benchmark.

Apache We have set up an Apache web server to serve
random files in each one of two VMs. One httperf instance
per server requests files in a predefined order.

The request order cannot be randomized directly in
httperf. To make this benchmark less deterministic than
the previous kernel build, we emulate random access pat-
terns by statically shuffling the file names of the generated,
served files in the servers. This way, when httperf accesses
the same file name on both instances, different files will be
returned; files with the same content will in consequence
be returned at different times in the benchmark.

The total size of the served files exceeds the size of the
page cache in each VM. Yet, parts of the guests’ page
caches overlap and therefore sharing opportunities exist
even though file accesses are random.

We have configured httperf to establish 24000 con-
nections per VM and to request 20 objects per second
through each one of the connections from the Apache
web servers. The merge performance of different scan
rate configurations can be found in Figure 9.

When XLH cannot keep up with processing the stream
of requests and constantly drops hints, our effectiveness
is lowered significantly. XLH needs to process matching
hints from both virtual machines in order to merge the

7

286 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

20 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

100 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

200 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

Figure 9: Apache/httperf merge performance.

two pages. Dropping one of the potential merge partners
is enough to make the deduplication dependent on the
linear scanner to find the other page in time. The effect
of dropped hints can be easily seen when reducing the
request rate. If XLH can process most of the hints, we get
almost perfect results for all three scan rates (Figure 10).
In this benchmark we have scaled the number of requests
per second down to 1/4 of the original setting for 100 ms
wakeup time and to 1/8 for 200 ms wakeup time.

Just like in the kernel benchmark, almost 10 times as
many new sharing opportunities are detected and shared
in the full-speed 20 ms benchmark (242233 vs. 22012).
In this scenario, XLH detects those sharing opportuni-
ties 215 seconds earlier than KSM in the median. The
histogram of the time that pages remain shared while
running the benchmark is depicted in Figure 11.

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

20 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

100 MiB

200 MiB

300 MiB

400 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

100 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

 0 120 240 360 480 600 720 840 960 1080D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

200 ms wake-up time

Opportunities
XLH HT
XLH RO

KSM
KSM RO

Figure 10: Apache/httperf merge performance with scaled
request rates: No hints are dropped in these benchmarks.

 0

 20,000

 40,000

 60,000

 80,000

 100,000

 120,000

 140,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Interval in Minutes

XLH HT
KSM

Figure 11: Histogram depicting the time, sharing oppor-
tunities stay shared throughout the apache benchmark.

Mixing Scenarios We have also run a benchmark in
which both previously described benchmarks were exe-
cuted at the same time. One VM was compiling the kernel
while the other one was serving files with Apache.

In our benchmarks we can see a draw between vanilla
KSM and XLH when mixing benchmarks (Figure 12).

8

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 287

That also reflects in the total number of sharing oppor-
tunities detected. XLH merges only 11% more sharing
opportunities than KSM in the 20 ms benchmark (19483
vs. 17573). Theoretically however, KSM may be as much
as twice as good as XLH with an interleaving ratio of 1:1
in case of completely useless hints. We have not encoun-
tered such results, though. In such a case, the user of the
system may fine tune XLH through the interleaving ratio
to mitigate this effect. Moreover, in cloud computing
environments such as Amazon EC2, the provider may
colocate VMs with similar memory footprints. Although
the total number of shared pages is comparable, XLH
merges pages 110 seconds earlier in the median. The his-
tograms of XLH’s and KSM’s sharing time look similar
in this benchmark (Figure 13).

100 MiB

125 MiB

150 MiB

175 MiB

 0 120 240 360 480 600 720 840 960D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

XLH RO (20ms)
XLH RO (100ms)

KSM RO (20 ms)
KSM RO (100 ms)

Figure 12: Merge performance with mixed workloads.

 0

 5,000

 10,000

 15,000

 20,000

 25,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Interval in Minutes

XLH HT
KSM

Figure 13: Histogram depicting the time, sharing oppor-
tunities stay shared throughout the mixed benchmark.

5.3 Deduplication Efficiency

XLH does not trade memory bandwidth and CPU cycles
for the gained effectiveness; KSM can already do this
within limits if set to scan aggressively.

Total Runtime Overhead The runtime variation be-
tween XLH and the default KSM was below 1% in our
kernel build and Apache experiments. That is also true
for the throughput that we have measured with httperf. To
support the claim that XLH does not increase the system’s
load further than KSM with equal scan rates, we have mea-
sured the CPU consumption of the scanner thread when
building the Linux kernel (Table 3).

Approach 20 ms 100 ms 200 ms
XLH HT 67.05% 33.61% 16.94%
XLH RO 66.19% 34.13% 16.17%
KSM 68.75% 27.47% 16.32%
KSM RO 68.92% 28.12% 17.52%
Average 67.72% 30.83% 16.74%

Table 3: CPU consumption: mean calculated from top

measurements taken every second.

We do not raise the effectiveness by doing more work,
but by making smarter choices for when and where to
invest duty cycles. That can also be clearly seen when we
compare the number of pages that XLH needs to check
until it finds a sharing candidate. In the kernel build
scenario XLH needs to visit 2-5 pages until it finds a
sharing candidate while the linear scan needs to visit 18-
260 pages. In the Apache scenario XLH visits between
4-8 pages to find a sharing opportunity while KSM visits
16-30 pages.

Memory-Scanning Overhead XLH needs additional
memory for the hint buffer, which contains an 8-byte
pointer for each slot and locks to serialize accesses. Most
of XLH’s work is amortized by the fact that it does it in
the place of an equally costly operation of KSM. A lookup
in the stable or unstable tree costs the same whether it was
triggered by a hint or by a periodic scan. Additional CPU
cycles are needed by our hinting mechanism for storing
and retrieving hints and for marking hinted pages read-
only. Storing and retrieving hints is very cheap (O(1)).

We have confirmed that neither the VFS-based hint
trigger nor the hint buffer is a bottleneck by stress-testing
this particular subsystem via the bonnie++ [9] file system
benchmark. Figure 14 shows that the disk throughput of
our enterprise class SSD does not vary significantly when
choosing XLH over KSM.

480

500

520

540

T
h
ro

u
g
h
p
u
t

[M
/s

ec
]

Scan-Rate [ms]

Bonnie++ - Sequential Input Block - Throughput

20 100 200

XLH HT
XLH RO

KSM
KSM RO

Figure 14: Disk throughput in 30 bonnie++ runs. The
error-bars show the .05 and .95 percentiles.

9

288 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

5.4 The Unstable Tree’s Stability
KSM only inserts pages into the unstable tree if their hash
value has not changed since the last pass, whereas XLH
inserts hinted pages immediately. We have examined how
much this affects the stability of the unstable tree and the
overall memory deduplication performance.

A good metric for the stability of the tree is the ratio
between the number of nodes in the tree and the number
of nodes that can be found when searching for each node
in the tree. If a page cannot be found, it cannot be merged.
Instead, it is inserted again—this time in another place
(Figure 5). The percentage of reachable pages in the
unstable tree for the kernel build benchmark after a full
scan cycle is shown in Table 4.

Vanilla KSM Hints (all RW) Hints (hints RO)
33.6% - 53.0% 10.0% 98.9%

Table 4: Percentage of the unstable tree that is reachable
at the end of a scan cycle.

We have found that pages that are part of the page
cache are the ones that are most likely to change among
all pages in the unstable tree. That happens when a page
cache pages is written back, evicted, and replaced by
another file’s page in the guest.

Using I/O-based hints, pages from the page cache are
inserted into the unstable tree earlier than other pages.
That way, they have more time to degenerate the unstable
tree, an unwelcome side effect. To mitigate this effect, we
implemented two strategies:

Marking the Unstable Tree Read-Only One possible
strategy to keep the unstable tree from degenerating is to
mark pages that are inserted through a hint to be read-only.
To show that XLH marks the “right” pages read-only and
leaves the ones that do not degenerate the unstable tree
read-write, we have run a benchmark where our hinting
mechanism is active and all pages are unconditionally
marked read-only when they are inserted into the unsta-
ble tree. Furthermore, we have added a modified KSM
version without hinting that also marks all pages that are
inserted into the unstable tree read-only. This effectively
keeps the tree from degenerating altogether—all nodes
are always reachable. The resulting deduplication perfor-
mances are depicted in Figure 15.

In the long run, deduplication ratios depend on the qual-
ity of the unstable tree. If it degenerates, the effectiveness
of KSM drops drastically. We get much higher dedupli-
cation ratios when XLH marks all items in the unstable
tree read-only. However, there is not much benefit in also
trapping updates of pages that were added to the unstable
tree by scanning. Not marking pages read-only at all does
damage the tree.

50 MiB

100 MiB

150 MiB

200 MiB

250 MiB

 0 60 120 180 240 300 360 420 480 540 600

D
et

ec
te

d
 S

h
ar

in
g

 O
p

p
o

rt
u

n
it

ie
s

Time [s]

KSM (RW)
KSM (RO)
XLH (RW)

 XLH (only hints RO)
XLH (RO)

Figure 15: The merge performance depends heavily on
the stability of the unstable tree and the temporal locality
of unstable tree accesses.

Replacing Unstable Tree with a Hash Table Hash ta-
bles, as used in ESX [25], are a suitable choice to deal
with unstable pages without the need for marking pages
read-only or pruning degenerated data.

As KSM already calculates page hashes when scanning
for duplicates, using a page hash as index into the hash
table does not incur an extra cost. However, in contrast to
the unstable tree, the hash table cannot easily be resized
and thus does not scale well when the number of pages to
monitor for redundant data changes frequently and to a
large extent.

The performance depends highly on tuning the param-
eters to the workload at hand: If the hash table has many
fewer entries than the number of pages in the system, then
lookups become expensive due to chaining. That is also
the case in workloads that generate many pages with col-
liding hash values. Yet, we observed in our benchmarks
that the hash table approach performs as well or even
better than using a read-only unstable tree when tuned
to good values. We have used a hash table size of 256K
entries in our various benchmarks throughout the paper.

5.5 Concluding Remarks
We have shown that XLH is able to quickly deduplicate
the memory of newly booted VMs, which is especially
beneficial when sandboxing short-running jobs or migrat-
ing many VMs at once. We have further demonstrated
XLH’s superior merging effectiveness compared to con-
ventional linear memory scanners. XLH is capable of
freeing up to 5x more memory than KSM by exploiting
short-lived sharing opportunities, thereby finding 10x as
many pages with equal contents. Moreover, XHL merges
sharing opportunities 2-4 minutes earlier and thus lever-
ages existing sharing potential. We have also evaluated
XHL in an unfavorable scenario and found that it did not
worsen the sharing performance compared to KSM. We
also found XLH’s influence on workload run-time and
I/O throughput to be negligible.

10

USENIX Association 2013 USENIX Annual Technical Conference (USENIX ATC ’13) 289

6 Related Work

Virtual memory allows mapping different address space
regions to the same region in physical memory. The
underlying mapping mechanism can be used to establish
communication and to allow coordination. Mapping can
also reduce the memory footprint of processes and VMs
by sharing memory regions of identical content. XLH is
a novel approach to identify pages of same content.

6.1 Sharing of Cloned Content

In traditional systems, memory is shared between pro-
cesses on two occasions: first, when the user explicitly
requests shared memory through system calls and sec-
ond, implicitly through copy-on-write (COW) semantics,
when using process forking or memory-mapped files. In
the latter case, memory pages are shared that point to the
same file control block (i.e., an inode). When a file is
copied, a new control block is created, which points to a
copy of the same content. Due to referencing a different
control block, accessing this copy via memory-mapped
files will lead to redundant data in main memory even
if the duplicated disk blocks are later merged via block-
layer deduplication. Thus, using memory-mapped files to
deduplicate memory among different VMs is not possible,
as VMs generally do not share the same file system, but
run from separate virtual disk image (VDI) files. Our
approach, in contrast, is capable of deduplicating equal
memory pages originating from different files and even
different memory sources.

When a process is duplicated via forking, the parent’s
and child’s entire address spaces are shared using COW. If
either process writes to a page afterwards, the sharing of
the target page is broken up. Android’s Cygote uses this
property to share the Dalvik VM and the core libraries
among all processes [20]. This initial cloning has also
been used to share whole guest operating systems [15, 24].
The COW semantic only allows sharing pages that already
existed before a process or VM has been forked. Our
approach exploits the full sharing potential because it also
deduplicates equal pages that are created at run time, after
forking.

6.2 Paravirtualization

An established approach to find duplicate main memory
pages that stem from background storage is the instru-
mentation of guest operating systems with the goal to
explicitly track changes. (Cellular) Disco’s transparent
page sharing uses a deduplicating COW-disk to identify
file blocks that can be mapped to the same page in main
memory due to equal content. It also hooks calls such as
bcopy to keep track of shared content [6, 11].

The Xen [2] based Satori [18] seizes this suggestion
and uses paravirtualized smart virtual disks to infer the
sharing opportunities that stem from background storage.

Collaborative memory management (CMM) [21] uses
paravirtualized Linux guests to share usage semantics of
the guests’ virtual memory system with the hypervisor.
Its focus lies on determining the working set size of the
guests, especially by telling the hypervisor which guest
pages are unused and can thus be dropped. CMM was
implemented for the IBM System zSeries.

XenFS [26] is a prototype for a file system that is shared
between VMs and makes it possible to share caches and
COW named page mappings across VMs. Two differ-
ent approaches to shared page caches are Transcendent
Memory [16, 17] and XHive [13]. Transcendent Memory
provides a key-value store that can be used by guests to
cache I/O requests in the hypervisor. XHive practically
implements swapping to the hypervisor (i.e., move pages
from the guest to the host). It gives pages that are used
by multiple VMs a better chance to reside in memory, but
outside of the VM’s quota.

All techniques in this paragraph use paravirtualization
techniques. They need to modify the guest to work. Our
approach in turn works without such modifications and
even works with non-VM processes.

6.3 Memory Scanning

The technique of periodically scanning main memory
pages for equal content and then transparently merging
those pages to share them in a COW manner was first in-
troduced in VMware’s ESX Server [25]. Linux also uses
this technique under the name Kernel Samepage Merging
(KSM) to increase the memory density of VMs [1]. ESX
is dedicated to running VMs and thus may use memory
scanning on all memory pages while KSM only scans
pages that have been advised to be good sharing candi-
dates through the madvise system call.

The KSM and ESX content-based page sharing ap-
proaches differ mainly in the way they catalog scanned
pages: ESX calculates a hash value for every page when
scanning and stores these values in a hint table. When a
match is found in the hint table, ESX first re-calculates
the hash value of the previously inserted page to check
whether the content has changed since the last calculation.
If not, the pages are compared bit-by-bit to rule out a
hash-collision. Then, equal pages are merged, and their
hash value is inserted into another table, the shared table.

KSM also calculates hash values, but only to check
whether a page has changed between scan rounds. It
does not use those hash values to infer equality between
pages. All pages that have not changed between rounds
are inserted into a tree (the full page, not the hash value);
duplicates are found on insertion (see Section 3).

11

290 2013 USENIX Annual Technical Conference (USENIX ATC ’13) USENIX Association

The general trade-off that is involved when using mem-
ory scanners is CPU utilization and memory bandwidth
versus the time in which deduplication targets are identi-
fied. KSM and ESX both have a variable scan rate which
is configured through setting sleep times and a number of
pages that are scanned on every wake-up. Both KSM and
ESX suggest scan rates that are fast enough to merge long-
lived sharing opportunities with little overhead. However,
the current implementations are not well suited to find
short-lived sharing opportunities [7].

ESX scans pages in random order, while KSM scans
linearly in rounds. Although the original ESX paper [25]
states that it could be beneficial to define a heuristic for the
scan order, neither KSM nor ESX propose a well suited
policy to find sharing candidates more quickly. XLH is
such a suggestion.

Pages with similar content can be shared to a great
extend through storing compressed patches which are
applied on access page faults. Such approaches like Dif-
ference Engine [12] could be combined with XLH to
identify good candidates for sub-page sharing.

7 Conclusion

When it comes to consolidating many virtual machines
on a single physical machine, the primary bottleneck is
the main memory capacity. Previous work has shown that
the memory footprint of virtual machines can be reduced
significantly by merging equal pages. Identifying those
pages can be achieved through scanning for equal contents
in the host.

We have demonstrated that memory deduplication scan-
ners can be improved significantly when informing the
scanner of recently modified memory pages. XLH im-
plements this idea by telling KSM about I/O operations.
KSM then processes these pages preferably to deliver
superior performance compared to linear scanning.

We have discussed various challenges, such as I/O
bursts and degenerating data structures in KSM, and de-
scribed design alternatives. Our evaluation shows that
I/O-based hints can increase the effectiveness of mem-
ory scanners significantly without raising the overhead
imposed by the scanner. XLH finds more sharing oppor-
tunities than KSM and detects them earlier by minutes.
Thereby XLH exploits sharing opportunities within and
across virtual machines that were not detectable by linear
scanners before.

We believe that XLH is already beneficial for a variety
of use cases as it is. Therefore, we intend to release our
Linux kernel extension soon. We plan to closely analyze
memory duplication properties of NUMA architectures
to identify good deduplication policies for such systems
in the future.

References
[1] ARCANGELI, A., EIDUS, I., AND WRIGHT, C. Increasing mem-

ory density by using KSM. In Linux Symposium 2009.

[2] BARHAM, P., DRAGOVIC, B., FRASER, K., ET AL. Xen and the
art of virtualization. SOSP 2003.

[3] BARKER, S., ET AL. An empirical study of memory sharing in
virtual machines. In USENIX ATC 2012.

[4] BELLARD, F. Qemu, a fast and portable dynamic translator. ATEC
2005.

[5] BERTHELS, J. Exmap memory analysis tool. http://www.

berthels.co.uk/exmap/, 2006.

[6] BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM,
M. Disco: running commodity operating systems on scalable
multiprocessors. Transactions on Computer Systems 1997.

[7] CHANG, C.-R., ET AL. An empirical study on memory sharing
of virtual machines for server consolidation. ISPA 2011.

[8] CHEN, P. M., AND NOBLE, B. D. When virtual is better than
real. In HotOS 2001.

[9] COKER, R. The bonnie++ benchmark. http://www.coker.

com.au/bonnie++/, 1999.

[10] EIDUS, I. How to use the kernel samepage merging feature, 2009.
Documentation/vm/ksm.txt in Linux Kernel v3.0.

[11] GOVIL, K., TEODOSIU, D., HUANG, Y., AND ROSENBLUM,
M. Cellular disco: resource management using virtual clusters on
shared-memory multiprocessors. SOSP 1999.

[12] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., ET AL. Differ-
ence engine: harnessing memory redundancy in virtual machines.
Communications of the ACM 2010 Volume 53.

[13] KIM, H., JO, H., AND LEE, J. Xhive: Efficient cooperative
caching for virtual machines. Trans. on Computer Science 2011.

[14] KLOSTER, J. F., KRISTENSEN, J., AND MEJLHOLM, A. De-
termining the use of Interdomain Shareable Pages using Kernel
Introspection. Tech. rep., Aalborg University, 2007.

[15] LAGAR-CAVILLA, H. A., ET AL. Snowflock: rapid virtual ma-
chine cloning for cloud computing. EuroSys 2009.

[16] MAGENHEIMER, D., MASON, C., ET AL. Transcendent Memory
and Linux. In Linux Symposium 2009.

[17] MAGENHEIMER, D., MASON, C., MCCRACKEN, D., AND
HACKEL, K. Paravirtualized paging. WIOV 2008.

[18] MIŁÓS, G., MURRAY, D. G., HAND, S., AND FETTERMAN,
M. A. Satori: Enlightened page sharing. In USENIX ATC 2009.

[19] MOSBERGER, D., AND JIN, T. httperf - a tool for measuring web
server performance. SIGMETRICS Perf. Eval. Review 1998.

[20] PATRICK BRADY. Anatomy & Physiology of an Android. In
Google I/O Developer Conference 2008.

[21] SCWIDEFSKY, M., ET AL. Collaborative memory management in
hosted linux environments. In Linux Symposium 2006.

[22] TRAVISCI COMMUNITY. TravisCI: continuous integration ser-
vice. https://travis-ci.org/, 2012.

[23] VMWARE, INC. ESX Server 3.0.1 Resource Management Guide,
2011.

[24] VRABLE, M., MA, J., CHEN, J., ET AL. Scalability, fidelity, and
containment in the potemkin virtual honeyfarm. SOSP 2005.

[25] WALDSPURGER, C. A. Memory resource management in
VMware ESX server. SIGOPS Operating System Review 2002.

[26] WILLIAMSON, MARK. Xen Wiki: XenFS. http://wiki.

xensource.com/xenwiki/XenFS, 2007.

12

