
SimuBoost: Scalable Parallelization of
Functional System Simulation

Marc Rittinghaus Konrad Miller Marius Hillenbrand Frank Bellosa
System Architecture Group

Karlsruhe Institute of
Technology (KIT)

firstName.lastName@kit.edu

ABSTRACT
The limited execution speed of current full system simulators
restricts their applicability for dynamic analysis to short-
running workloads. When analyzing memory contents while
simulating a kernel build with Simics, we encountered slow-
downs of more than 5000x resulting in 10 months of total
simulation time. Prior work improved the simulation speed
by simulating virtual CPU cores on separate physical CPU
cores simultaneously or by applying sampling and extrapo-
lation methods to focus costly analyses on short execution
windows. However, these approaches inherently suffer from
limited scalability or trading accuracy for speed. SimuBoost
is a novel idea to parallelize functional full system simula-
tion of single-cores. Our approach takes advantage of fast
execution through virtualization, taking checkpoints in reg-
ular intervals. The parts between subsequent checkpoints
are then simulated and analyzed simultaneously in one job
per interval. By transferring jobs to multiple nodes, a par-
allelized and distributed simulation of the target workload
can be achieved, thereby effectively reducing the overall re-
quired simulation time. As no implementation of SimuBoost
exists yet, we present a formal model to evaluate the general
speedup and scalability characteristics of our acceleration
technique. We moreover provide a model to estimate the re-
quired number of simulation nodes for optimal performance.
According to this model, our approach can speed up con-
ventional simulation in a realistic scenario by a factor of 84,
while delivering a parallelization efficiency of 94%.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: Performance—Simulation

Keywords
Full System Simulation, Dynamic Performance Analysis, Vir-
tualization, Checkpointing, Virtual Machine Replay, Paral-
lelization, Operating System Analysis

1. INTRODUCTION
Full system simulation allows simulating an entire physical
machine on top of a host operating system (OS) and thus pro-
vides a powerful foundation to study the runtime behavior
and interaction of computer architecture, operating systems
and applications [1, 21, 29]. Since the entire execution envi-
ronment in such a system is virtual, every operation carried
out can be inspected easily. In contrast to the instrumen-
tation of applications or the OS, analysis with a simulator
does not influence the simulated machine’s state and thus
can be arbitrarily complex in time and space without dis-
torting measurements. While the focus of functional simu-
lation (a.k.a. emulation) lies in preserving functional cor-
rectness, timing models enhance the simulation accuracy by
incorporating operation latency of simulated devices. Micro-
architectural simulation further increases precision through
detailed processor- and device state models.

A well-known limitation of full system simulation is the low
execution speed offered by current simulators. Table 1 gives
an overview of the single-core execution speed in million in-
structions per second (MIPS), the time to completion (TTC)
in hours as well as the slowdown (svirt/sim) for various bench-
marks. Each workload has been run natively, in a virtual ma-
chine (VM) using KVM [10], and simulated with QEMU [4]
and Simics [14], respectively. Observing operations in a sim-
ulator slows down the execution but is essential to perform
analyses. We therefore installed memory access hooks in
both simulators to measure a realistic simulation speed for
a typical memory analysis scenario.

The slowdown incurred by functional simulation compared
to hardware-assisted virtualization is significant (31x-810x
on average). That quickly renders functional simulation im-
practical for long-running workloads (e.g., 50 days for SPEC
CPU2006). The extra slowdown for the second set of hooks
moreover shows that the execution time is very sensitive
to additional overhead. Representative sampling [23] can re-
duce the run-time overhead by limiting complex analyses to
short time frames that are representative for the analyzed
workload. However, an initial functional simulation to iden-
tify such intervals is still needed and the accuracy achievable
with this technique also heavily depends on sufficient phase
behavior in the workload, which is not always present [27].
Moreover, in some scenarios (e.g., analysis of memory du-
plication) limiting the observation window is not an option.
An acceleration technique to enable full-length analyses of
long-running workloads is thus desirable.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197544696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Bare Hw-Virt. Simulation
Metal KVM QEMU1 QEMU2 Simics1

Linux 3.7.1 Kernel Build
MIPS 2314 2122 71 14 3
TTC [h] 1.4 1.6 46.9 238 1080
svirt/sim – ≈ 1 ≈ 33 ≈ 165 ≈ 771

SPECint base2006 1.2
MIPS 3108 2989 140 15 3
TTC [h] 6 6.3 133.2 1243.2 6216
svirt/sim – ≈ 1 ≈ 22 ≈ 207 ≈ 1036

LAMMPS Lennard Jones
MIPS 2495 2642 65 22 4
TTC [h] 1.8 1.7 69.1 204.1 1123
svirt/sim – ≈ 1 ≈ 38 ≈ 113 ≈ 624
1 Empty hooks without analysis overhead.
2 Hooks measuring accessed physical pages per second.

Table 1: Measurements were taken on a dual
socket Xeon E-2420 system, virtualizing/simulating
a single-core VM. The native execution was re-
stricted to a single core, accordingly. Functional
simulation incurs an avg. slowdown of ssim ≈ 31 for
QEMU and ssim = 810 for Simics. Performing anal-
yses heavily reduces execution speed further (for
QEMU in our example ssim ≈ 162).

SimuBoost strives to close the performance gap between vir-
tualization and functional simulation. The core idea is to
run the workload in a VM, taking checkpoints in regular in-
tervals. The parts between subsequent checkpoints are then
simulated and analyzed simultaneously in one job per inter-
val. By transferring jobs to multiple nodes, a parallelized
and distributed simulation of the target workload can be
achieved, thereby reducing the overall simulation time.

As we are still working on the implementation of SimuBoost,
we cannot provide empirical results, yet. Instead we give a
first evaluation of the practical feasibility of our approach
by presenting a formal model to describe its speedup and
scalability characteristics. SimuBoost can speed up conven-
tional simulation in a realistic scenario (parameter-wise) by
a factor of 84, while delivering a parallelization efficiency of
94% according to the model.

The remainder of this paper is structered as follows: Our
approach to parallelize functional simulation is described in
Section 2. Section 3 discusses the practical feasibility and
limitations of our acceleration technique. An overview of
prior work on acceleration of full system simulation is pro-
vided in Section 4. We conclude and give a prospect on
future work in Section 5.

2. APPROACH
Our approach delivers a method for functional simulation
that provides significantly faster execution than current im-
plementations and that makes inspecting the full run-time
feasible even for long-running workloads. Current acceler-
ation techniques for functional full system simulations (a)
limit costly inspections to short time frames, trading accu-
racy for speed or (b) do not scale beyond the simulated
parallelism. SimuBoost addresses these drawbacks.

The core idea of our acceleration technique is to split the
simulation time into independent intervals that can be sim-
ulated simultaneously with conventional functional simula-
tion (see Figure 1). The benefit of taking this approach as
foundation lies in the fact that it scales with the run-time of
the simulation: the longer the simulation (including analy-
sis) takes, the more intervals can be extracted and the higher
is the degree of parallelization. Opposed to approaches that
map simulated CPU cores in a multi-core simulation to real
parallelism in the host [6, 12, 26, 31], splitting the simulation
into intervals does not limit the degree of parallelization to
the number of simulated cores. This way our method is ap-
plicable even to single-core simulations. Moreover, since the
intervals can be processed independently, it allows distribut-
ing the simulation workload across multiple hosts. To match
the number of intervals to the available hardware resources
the interval length needs to be chosen accordingly.

Simulationi[2] i[k] i[n]i[1]vCPU

Node

1

Node

2

Node

k

Node

n
Sim.

Nodes

Figure 1: The simulation is split along the time axis
into n intervals; with n being the required degree of
parallelism. Each interval is simulated on a different
node (i.e., CPU core, host, etc.).

A fundamental challenge with this approach is that every in-
terval i[k] depends on the execution of the previous interval
i[k − 1]. The simulation of i[k] thus cannot be started in
advance without knowing the simulated machine’s state at
the beginning of i[k]. We solve this problem by utilizing vir-
tualization as a fast-forward execution mode to collect state
information as quickly as possible on-the-fly (see Figure 2).

Virtualizationi[k] i[n]i[1]
vCPU

Node 0

Node 1

Node k

Node n Simulationi[n]

Simulationi[k]

Simulationi[1]

Figure 2: The workload is executed with virtualiza-
tion. Checkpoints at the interval boundaries serve
as starting points for parallel simulations.

The virtual machine that is to be inspected runs on a dedi-
cated node managed by a hypervisor such as KVM [10]. At
each interval boundary the hypervisor takes a snapshot of
the full system state (i.e., memory content, device states,
HDD data, etc.). The checkpoints then serve as starting
points for simulations. Consequently, although each simula-
tion is delayed up to the point when the respective interval
is reached in the virtualization stage, the execution speed
difference between virtualization and functional simulation
enables a parallelization of the simulation.

State Deviation
Previous work uses deterministic functional simulation to
fast-forward to the point in execution that is to be ana-
lyzed [2, 12, 14, 16, 18]. In such an environment, splitting the
simulation into intervals is feasible, because at the end of an
interval the deterministic execution delivers a machine state
that exactly matches the one representing the starting point
for the subsequent interval. This is also true if intervals are
simulated with different degrees of detail (e.g., functional vs.
micro-architectural simulation). DiST [8] bases its accelera-
tion technique on this property. However, it does not apply
to our proposed combination of virtualization and simula-
tion. Taking advantage of non-deterministic virtualization
imposes a new challenge regarding the synchronization of
fast- and slow execution modes: The execution through vir-
tualization is directly influenced by non-deterministic hard-
ware behavior such as varying disk response times. Figure
3 illustrates this for non-deterministic I/O completion:

 I/O

Simulation

Virtualization

Interrupt

Interrupt

Identical execution

Divergent execution

In
te

rv
a

l
i[

k
]

I/O issued

Checkpoint

 …

In
te

rv
a

l
i[

k
+

1
]

Figure 3: Non-deterministic behavior in the virtual-
ization causes the VM states to drift apart, leading
to a break in continuity for the simulation stage at
interval boundaries.

Since the I/O completion time with virtualization is un-
known in advance, interrupt delivery in the virtualization
and the simulation of the respective interval take place at
different times. In consequence, the subsequent execution
in both environments drifts apart. This poses a problem at
the end of an interval, because the machine state in the sim-
ulation does not match the one in the virtualization. Start-
ing the next interval’s simulation based on the checkpoint
created by the virtualization, therefore, leads to a break in
state continuity from the simulation’s perspective. As the
machine state produced by the simulation is the one that
is analyzed by the user, a disruption in continuity is highly
probable to corrupt measurements. Furthermore, analyzing
a simulation that suffers from state deviation is of question-
able use as its execution does not match the observed behav-
ior in the VM.

Non-deterministic delays in the hardware are not the only
source of state deviation. External input (e.g., network traf-
fic, user input, etc.), instructions such as Read Time Stamp
Counter (rdtsc) and the output of special devices (e.g., ran-
dom number generators) also lead to state deviation.

Coping with State Deviation
State deviation is caused by non-deterministic events in the
virtualization that do not equally appear in the simulation.
To avoid deviation, those events need to be brought into line
across both execution modes. This can be accomplished by
precisely replaying each event in the simulation (see Figure 4).

Interrupt

In
te

rv
a

l
i[

k
]

I/O issued

Checkpoint

 …

In
te

rv
a

l
i[

k
+

1
]

I/O

Log Entry

Virtualization

Simulation

log replay

Identical execution

Virtualization

Simulation

Figure 4: Non-deterministic events are logging in
the hypervisor for an replay within the simulator.

The hypervisor traps each occurrence of non-deterministic
actions in the virtualization and logs enough information to
allow the simulator replaying the event. Interrupt delivery
for instance needs to be delayed in the simulation up to
the exact execution point (instruction granularity) where it
appeared in the virtualization. For non-deterministic events
that include unpredictable input such as keyboard input or
the result of special instructions, the hypervisor additionaly
needs to capture the corresponding data.

The replay ensures that the instruction stream in both ex-
ecution environments matches and prevents a break of con-
tinuity in the simulation stage. However, to be able to ac-
cess logging information, an interval’s simulation must be
delayed until its execution finishes in the virtualization and
all events have been fully recorded. Hence, the simulation
of interval i[k] can be started when the hypervisor creates
the checkpoint for interval i[k + 1].

3. DISCUSSION
To support our approach, we first demonstrate its techni-
cal feasibility with regard to its performance requirements
and run-time overhead. To this end, we present numbers
reported in related work. We then elaborate on the speedup
and scalability characteristics of our approach by providing
a formalization that allows estimating the benefit of Simu-
Boost. We conclude the discussion with an overview of lim-
itations present in the current design.

Feasibility
The feasibility of our approach strongly depends on the abil-
ity to (a) log and replay non-deterministic events (this way,
avoiding state deviation) and (b) to keep a high virtualiza-
tion speed despite active event logging and checkpointing.

Dunlap et al. already developed a comparable logging mech-
anism with ReVirt [7] to enable intrusion analysis through
virtual machine logging and replay. Their evaluation re-
vealed that an exact replay of a virtual machine is feasible.
Their logging mechanism shows a run-time overhead of 0-8%
and a storage space requirement of up to 60 MiB per hour
of workload run-time. Retrace [22] is a trace collection tool
that employs the same technique to do deterministic replay
in the VMware hypervisor [25]. With 5% run-time overhead,
it performs similarly to ReVirt.

Remus [24] offers an efficient checkpointing mechansim for
the Xen [3] hypervisor. To achieve high availability for vir-
tual machines Remus replicates VM checkpoints at very high
frequencies. For a kernel build and 10 checkpoints per sec-
ond, the authors of Remus measured a 32% performance
penalty with a strong linear correlation between checkpoint-

ing rate and run-time overhead. As the frequency for Simu-
Boost can be lower (in the range of seconds), we estimate
the overhead to be considerably smaller (e.g., below 5%).

To capture a consistent system state, a virtual machine must
be suspended shortly for each checkpoint. The downtime in-
troduced by this operation directly prolongs the run-time of
the workload in the (serial) virtualization stage and conse-
quently delays the launch of new simulations. It is therefore
important to keep the downtime as short as possible. The
authors of Remus report a VM downtime per checkpoint as
low as 100 ms.

Speedup and Scalability
To illustrate the characteristics of our approach, we present
a formal model that describes the most important metrics:
These are Tps := the total run-time of a parallelized simula-
tion, Lopt := the optimal interval length for a given scenario,
Sopt := the speedup over conventional serial simulation, and
Nopt := the number of nodes required to achieve optimal
speedup.

Figure 5 illustrates the parameters. For simplicity reasons,
we assume the run-time of a single interval’s simulation to be
linearly proportional to L := the length of a single interval
(i.e., an interval’s run-time in the virtualization stage) with
respect to ssim := the effective slowdown between virtualiza-
tion and functional simulation—including analysis overhead.
We moreover assume the last interval to be simulated on the
virtualization node.

Let n := the number of intervals, tc := the constant VM
downtime for a checkpoint and ti := a simulation’s initial-
ization time1. Further, let slog := the slowdown in the virtu-
alization stage incurred by the logging of non-deterministic
events, Tvm := the workload’s run-time with conventional
virtualization and Tsim := the workload’s run-time with con-
ventional functional simulation. As a guiding example we
choose Tvm = 1 h = 3600 s, ssim = 100, slog = 1.08, tc =
100 ms = 0.1 s and ti = 1 s. We can then express the total
run-time of a parallelized simulation Tps as follows:

Tps(n) = slogTvm + n · tc + ti +
1

n
Tsim (1)

With Tsim = ssimTvm and n =
slogTvm

L
, we can transform

Equation 1 to express Tps in terms of the interval length L,
which is more useful in practice:

Tps(L) = slogTvm(
tc
L

+ 1) + ti +
ssim
slog

L (2)

The speedup S(L) of our approach compared to serial func-
tional simulation is then:

S(L) =
Tsim

Tps(L)

=
slogTvm · ssimL

s2logTvm(tc + L) + slogtiL + ssimL2
(3)

The speedup heavily depends on the chosen interval length
L. Figure 6 illustrates this relationship. Although the poten-

1This is the time to (potentially) migrate the checkpoint to a
different node, load it and initialize the simulated machine’s
state on the basis of the checkpointed information.

i[1] i[1]

Virtualization

i[k]

t

vCPU

Node 0
i[1]i[n] i[1]i[n] Simulation

Ltc ti

Tps

ssim L slog

1Tsim =n

Figure 5: Overview of Parameters. The simulation
of the last interval is scheduled on the virtualization
node.

60

75

90

0 10

S
pe

ed
up

oS
(L

)

IntervaloLengthoLo[s]

a) c)

b)oMax
o Speedup

Lopt

a)

b)

c)

Virtualization

Virtualization

Virtualization

Sim

Simulation

Simulation

Lopt

tc L ti
ssim

Total run-time Tps

L slog

Figure 6: The right interval length is crucial for
an optimal speedup (b). With too short intervals
(a) the VM downtime dominates and the speedup
rapidly decreases. Too long intervals (c) do not par-
allelize optimally.

tial degree of parallelization is higher for short intervals (a),
the constant time overhead to take checkpoints at each inter-
val boundary quickly becomes a limiting factor. With long
intervals (c) the overhead caused by checkpoints is much
lower. At the same time, a high interval length results in
a higher per-interval run-time in the simulation stage. A
high length thus also prolongs the simulation of the final in-
terval and by that severely delays completion. The optimal
interval length Lopt (b), on the other side, maximizes the
speedup. To find it we solve ∂

∂L
S(L) = 0 for L. Since we

can safely assume that all parameters are positive, we omit
the negative result and get:

Lopt =

√
s2logTvmtc

ssim
(4)

Sopt = S(Lopt) (5)

For our example, we thus have a speedup Sopt ≈ 84 for an
optimal interval length Lopt ≈ 2 s. To effectively achieve
this speedup a sufficient number of simulation nodes must
be supplied. Under the assumptions that the simulation of
each interval takes equally long and that nodes take over
the simulation of following intervals as soon as possible, we
can calculate the required number of nodes N for a given
interval length L as follows:

N(L) =

⌈
ti + ssim

slog
L

tc + L
+ 1

⌉
(6)

Nopt = N(Lopt) (7)

Figure 7 illustrates the rationale behind Equation 6. As new
intervals are submitted, additional nodes are allocated until
the first simulation finishes. After that, simulations can be

i[1] i[1]

Virtualization

i[2]

i[1]i[1] Simulation

t

vCPU

Node 0

Node 1

i[1]i[k]

Node N i[1]i[2] Simulation

ti + tc + L

i[1]i[n] i[n] ...

Node N+1 i[1]i[k] Simulation

i[k] Simulation

ssim L slog

Figure 7: New simulation nodes are needed until
the first interval simulation finishes. Subsequent in-
tervals can be scheduled onto previously allocated
nodes.

scheduled onto previously allocated nodes. This is because
we assume simulations to complete with approximately the
same rate than new intervals are submitted. In our example
scenario, we have to supply Nopt = 90 cores for a speedup
of 84. The efficiency of the parallelization can be expressed
as follows:

E =
Sopt

Nopt
(8)

In the example scenario we get an approximate efficiency of
94%. Hence, our approach is able to reduce the slowdown
between virtualization and functional simulation from fac-
tor 100 down to around 1.19. In practice this means, that a
workload that takes over three months to execute with con-
ventional simulation, could complete in about a single day
with SimuBoost.

Limitations
The dependency on virtualization as well as the changed
execution environment introduce a few basic conditions that
need to be considered:

Architecture. SimuBoost needs the virtualization stage to
be as fast as possible, thus hardware support for virtualiza-
tion of the target architecture should be present. As we
are not aware of any hardware virtualization that is capable
to accelerate an instruction set architecture (ISA) different
from the one running the host OS, this restricts simulations
to the host ISA. Due to the increased surface for state devia-
tion in a parallel system and the difficulty to trap multi-core
related events in the hypervisor (e.g., shared memory writes),
we also have not considered simulating multi-core machines,
yet.

Determinism. Like most of the acceleration approaches that
parallelize multi-core simulations via per-vCPU dedicated
hardware threads, our approach sacrifices strict determin-
ism for speed. However, in contrast to previous approaches,
determinism in the simulation stage remains preserved, be-
cause the simulation itself is unchanged. Repeated simula-
tions based on the same set of checkpoints are thus executed
equally. This leaves room to explore different parameters or
methods for analyses on the exact same simulation. At the
same time, the virtualization stage can provide a more realis-
tic execution flow through the influence of non-deterministic
hardware behavior.

Split Simulation. If the simulation modifies or creates state
that is not transported through the VM checkpoints, inter-
vals need to be overlapped to synchronize the states between
subsequent intervals as proposed in DiST [8]. In the case of
a cache simulation this means that both intervals would run
simultaneously until their cache states are coherent. How-
ever, such cases are not covered in the current design. More-
over, splitting the simulation into intervals requires an anal-
ysis logic that supports independently processing ranges of
the workload. Depending on the type of analysis performed
this can complicate the logic. In general, analyses that fit
into MapReduce semantic can be naturally run with our ap-
proach.

4. RELATED WORK
Table 2 lists popular full system simulators and some of the
hardware platforms that are supported as simulation tar-
gets:

Hardware Platforms Sim. Level

Bochs [13] x86-64 Functional
QEMU [4] x86-64, ARM, MIPS. . . Functional
Simics [14] x86-64, ARM, MIPS. . . Func. w. Timing
Embra [28] MIPS Func. w. Timing
COTson [2] x86-64 Func. w. Timing
Mambo [5] PowerPC Func. w. Timing
SimOS [20] MIPS, Alpha Micro-Arch.
PTLSim [30] x86-64 Micro-Arch.
MARSSx86 [18] x86-64 Micro-Arch.

Table 2: Overview of Full System Simulators

Three major approaches to accelerate simulation have been
proposed before:

Speed/Accuracy Trade-off. A commonly used practice to
make analysis via full system simulation applicable to long-
running workloads is to trade measuring accuracy for speed.
To this end, many simulators support dynamically switch-
ing between different detailed simulation modes at run-time,
thereby enabling the user to focus the analysis on short (rep-
resentative) time frames. In Simics [14] the user is able to
choose whether timing models are applied or not. MARSSx86
[18] similarly allows switching between functional and micro-
architectural simulation. PTLSim/X [30] in contrast cooper-
ates with Xen [3] to provide virtualization as an alternative
mode of execution. Concentrating analysis efforts to cer-
tain windows, however, requires the use of sampling and
extrapolation methods to generalize measurements. This in-
creases the overall complexity and is difficult to accomplish
if representative program regions are unknown. Moreover,
depending on the use-case, it may be no option at all (e.g.,
debugging of race conditions).

Parallel Multi-Core Simulation. The simulation of multi-
core machines becomes increasingly important as such sys-
tems are prevalent today. Many simulators officially or un-
officially (i.e., via 3rd party patches) support parallelized
execution by running each virtual CPU core on a dedicated
hardware thread [6, 12, 26, 31]. While achieving good speed-
ups (3.8x for a quad-core ARM simulation [6]), the approach
does not accelerate the simulation of the virtual cores them-

selves. Its scalability is therefore inherently limited by the
degree of simulated parallelism. At the same time, most im-
plementations fully give up determinism by resorting to hard-
ware arbitration in the host to order colliding memory writes.
Graphite [16] is a many-core (i.e., thousands of cores) simu-
lator, which takes parallelization a step further, distributing
the simulation workload across multiple machines. Portero
et al. expanded on these capabilities with a simulator that
also delivers timing and functional models for on-chip inter-
connection systems [19].

Division of Simulation Time. The division of simulation
time employed by our approach has already been proposed
for accelerating micro-architectural simulation. Nguyen at
al. proposed to use trace-driven simulation and to split the
trace into separate time intervals that–in a second step–can
be simulated in more detail simultaneously [17]. To gener-
ate the underlying instruction trace a preceding recording
phase with functional simulation is utilized. Equally tar-
geted at micro-architectural simulation, DiST [8] enhances
the approach by providing a robust method to cope with
the necessary model warm-up phase at the interval begin-
nings.

Further research has been invested into adjusting workloads
to efficiently use the limited computational resources in full
system simulations and to make finding promising windows
in the evaluation parameter space easier [11]. There have
also been attempts to optimize binary translated code [9, 15].

5. CONCLUSION
Leveraging virtualization to parallelize functional full system
simulation provides new possibilities to study long-running
workloads and to perform analyses that take too long with
conventional serial simulation. We have presented an ap-
proach that is capable of accelerating functional simulation
by two orders of magnitude by taking advantage of the par-
allelism available in today’s computer systems while at the
same time achieving a high parallelization efficiency. We
intend to address the current limitations and provide an im-
plementation and empirical evaluation in the future.

6. ACKNOWLEDGMENTS
The authors would like to thank Jens Kehne and James Mc-
Culler for their valuable input and technical assistance.

7. REFERENCES
[1] L. Albertsson et al. Using complete system simulation

for temporal debugging of general purpose operating
systems and workloads. MASCOT, 2000.

[2] E. Argollo et al. Cotson: Infrastructure for full system
simulation. SIGOPS, 43(1), 2009.

[3] P. Barham et al. Xen and the art of virtualization.
SOSP. ACM, 2003.

[4] F. Bellard. Qemu: A fast and portable dynamic
translator. USENIX, 2005.

[5] P. Bohrer et al. Mambo: A full system simulator for
the powerpc architecture. SIGMETRICS, 31(4), 2004.

[6] J. Ding et al. Pqemu: A parallel system emulator
based on qemu. ICPADS. IEEE, 2011.

[7] G. Dunlap et al. Revirt: Enabling intrusion analysis
through virtual-machine logging and replay. SIGOPS,

36(SI), 2002.

[8] S. Girbal et al. Dist: A simple, reliable and scalable
method to significantly reduce processor architecture
simulation time. volume 31. ACM, 2003.

[9] A. Jeffery. Using the LLVM compiler infrastructure for
optimised, asynchronous dynamic translation in
QEMU. PhD thesis, University of Adelaide, 2009.

[10] A. Kivity et al. kvm: the linux virtual machine
monitor. volume 1. Linux Symposium, 2007.

[11] A. KleinOsowski et al. Minnespec: A new spec
benchmark workload for simulation-based computer
architecture research. Computer Architecture Letters,
1(1), 2002.

[12] R. Lantz. Fast functional simulation with parallel
embra. Citeseer, 2008.

[13] K. Lawton. Bochs: A portable pc emulator for unix/x.
Linux Journal, 1996(29es), 1996.

[14] P. Magnusson et al. Simics: A full system simulation
platform. Computer, 35(2), 2002.

[15] L. Michel et al. Qemu tcg enhancements for
speeding-up the emulation of simd instructions. In
QEMU Users’ Forum, 2011.

[16] J. Miller et al. Graphite: A distributed parallel
simulator for multicores. HPCA. IEEE, 2010.

[17] A. Nguyen et al. Accuracy and speed-up of parallel
trace-driven architectural simulation. IPPS. IEEE,
1997.

[18] A. Patel et al. Marss: A full system simulator for
multicore x86 cpus. DAC. IEEE, 2011.

[19] A. Portero et al. Simulating the future kilo-x86-64
core processors and their infrastructure. Society for
Computer Simulation International, 2012.

[20] M. Rosenblum et al. Simos: A fast operating system
simulation environment. Technical report, 1994.

[21] M. Rosenblum et al. Using the simos machine
simulator to study complex computer systems.
TOMACS, 7(1), 1997.

[22] M. Sheldon et al. Retrace: Collecting execution trace
with virtual machine deterministic replay. 2007.

[23] T. Sherwood et al. Automatically characterizing large
scale program behavior. volume 30. ACM, 2002.

[24] M. Sun et al. Fast, lightweight virtual machine
checkpointing. 2010.

[25] C. A. Waldspurger. Memory resource management in
vmware esx server. SIGOPS, 36(SI), 2002.

[26] K. Wang et al. Parallelization of ibm mambo system
simulator in functional modes. SIGOPS, 42(1), 2008.

[27] V. Weaver et al. Using dynamic binary
instrumentation to generate multi-platform simpoints:
Methodology and accuracy. HiPEAC, 2008.

[28] E. Witchel et al. Embra: fast and flexible machine
simulation. SIGMETRICS, 24(1), 1996.

[29] C. Won et al. A detailed performance analysis of
udp/ip, tcp/ip, and m-via network protocols using
linux/simos. High Speed Networks, 13(3), 2004.

[30] M. Yourst. Ptlsim: A cycle accurate full system x86-64
microarchitectural simulator. ISPASS. IEEE, 2007.

[31] H. Zeng et al. Mptlsim: A cycle-accurate, full-system
simulator for x86-64 multicore architectures with
coherent caches. SIGARCH, 37(2), 2009.

