
Application-independent
Autotuning for GPUs

Martin TILLMANN, Thomas KARCHER, Carsten DACHSBACHER,
Walter F. TICHY

Karlsruhe Institute of Technology
Am Fasanengarten 5, Karlsruhe, Germany

Abstract. Autotuning is an established technique for adjusting perfor-

mance-critical parameters of applications to their specific run-time envi-
ronment. In this paper, we investigate the potential of online autotuning

for general purpose computation on GPUs. Our application-independent

autotuner AtuneRT optimizes GPU-specific parameters such as block
size and loop-unrolling degree. We also discuss the peculiarities of auto-

tuning on GPUs. We demonstrate tuning potential using CUDA and by

instrumenting the parallel algorithms library Thrust. We evaluate our
online autotuning approach with various GPUs and sample applications.

Keywords. Autotuning, GPU, GPGPU, CUDA, Thrust.

1. Introduction

Autotuning has emerged as an effective and automated technique for optimiz-
ing parallel applications. Most work in the autotuning area has concentrated on
application specific tuning parameters such as the replication factor for tasks or
the number of threads in data parallel operations. On graphic processing units
(GPUs), there are various tunable parameters that are application independent.
These parameters include the number of warps combined into blocks and the de-
gree of loop-unrolling. These parameters must be specified in every GPU call. This
paper shows how an automatic tuner can optimize block size and loop unrolling
and presents the performance gains of four examples on three current GPUs.

2. Online Autotuning

Autotuning is an automatic optimization technique that adjusts tuning param-
eters of an application or its execution environment, with the aim of optimizing
some criterion such as execution time, memory usage or energy consumption. An
online autotuner operates while the application is running and can therefore ad-
just to varying input or environment characteristics. An autotuner drives a feed-
back loop that (1) measures one or more sections of a program, and (2) adjusts
the tuning parameter configuration. A search-based algorithm such as Nelder-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197544671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Mead [1] guides the process. An autotuner may walk into local minima and settle
on a suboptimal configuration.

Many existing autotuners use application-specific knowledge about tuning pa-
rameters to speed up the search. ATLAS [2] exploits specific knowledge about ma-
trix sizes and shapes, MATE [3] tunes MPI-specific parameters, and PetaBricks [4]
chooses among alternative algorithms. Application-independent autotuners such
as Active Harmony [5] and our own autotuner [6] refrain from using such knowl-
edge in exchange for generality.

In this work, we adapt our general-purpose run-time autotuner AtuneRT to
optimize GPU kernels. AtuneRT is the successor of Atune [7], an off-line auto-
tuner. The following API calls of AtuneRT make applications autotunable:

• addParameter(&param, range, default) informs the autotuner about the
tunable variable param. The autotuner is allowed to vary param within
the range given, starting with default. The variable could be, for instance,
the number of threads to spawn.

• startMeasurement() defines the beginning of a measurement section.
Whenever control flow passes this call, the autotuner initializes measure-
ment.

• stopMeasurement() defines the end of a measurement section. The auto-
tuner stops the measurement and calculates a new tuning parameter con-
figuration.

3. Autotuning on the GPU

Modern graphics processors provide massive parallelism for a wide range of algo-
rithms. To fully utilize GPUs it is important to optimize memory access patterns,
balance workloads, and minimize control-flow costs. Optimizing on the GPU is a
non-trivial task, given the peculiarities of these multi-threading architectures [8].

3.1. Kernel launch configuration

In this work, we employ NVIDIA’s CUDA architecture. CUDA organizes threads
in a hierarchy. A group of 32 threads form a warp, and several warps form a
block. And finally, blocks are organized in a grid. Figure 1 illustrates the thread
hierarchy in CUDA.

The overall thread number for a given GPU kernel is usually dictated by the
number of data elements the kernel operates on. However the number of threads
per block, called the block size, is variable and can be chosen at run-time.

GPU resources such as temporary registers and shared memory are parti-
tioned among the warps and blocks. Due to limited resources available on the
GPU not all warps can be active at once.

Occupancy is the ratio of active warps to the total number of warps that can
run in parallel. Obviously, it is a good idea to keep as many blocks operating at
all times as possible. An important performance aspect is the trade-off between
occupancy and the workload per thread. As stated in the ”CUDA C Best Practices
Guide” [9] higher occupancy might not always result in higher performance. It



Figure 1. CUDA Thread Model. Image courtesy of NVIDIA.

can be beneficial to run applications at lower occupancy but increased workload

per thread [10].

CUDA also allows explicit loop unrolling. The unrolling factor can be specified

and it is the programmer’s responsibility to ensure best performance.

Block size, per-thread workload, and degree of loop unrolling are tuning pa-

rameters that apply to any parallel application on CUDA. These parameters are

collectively known as the kernel launch configuration.

The optimal values of these parameters are hard to determine as they not

only depend on the algorithm but also the underlying architecture of the respec-

tive GPU and the characteristics of the input data. The performance impact of

these parameters, in particular block size, is well-documented [11]. When tun-

ing optimization parameters by hand, a multitude of restrictions and hardware

idiosyncrasies have to be considered. Even though simple heuristics that maxi-

mize occupancy exists, the standard practice of finding the optimal kernel launch

configuration is trial and error.

Autotuning removes the need for hand-tuning, because it empirically searches

for the optimal configuration on any GPU. Furthermore, online autotuning allows

the application to react to changes that occur at run-time, for example changes in

the data size. As hardware-induced parameters affect the performance of almost

all GPU programs, autotuning is applicable to a wide range of software.

In order to autotune parameters that need to be known at compile time, such

as CUDA’s preprocessor command for loop unrolling, we used code instantiation

via templates. Code instantiation also benefits from compiler optimizations.



block size average time standard deviation

128 0.256 0.011

256 0.210 0.009

512 0.232 0.028

1024 0.251 0.022

Table 1. Average run-time and standard deviation of an empty kernel. All times are in
milliseconds.

3.2. Measuring execution time on the GPU

One important difference to autotuning for CPUs is that measuring execu-
tion times is less accurate on GPUs. While CPUs provide exact cycle coun-
ters, GPU computation is initiated via driver calls (which might use internal
caching/queuing) and the scheduling on the GPU is a black box for the pro-
grammer. On the GPU, one measures the time between the driver call and the
return of the result. We insert events in the execution pipeline right before and
after the kernel launch. Measuring the time difference of the events occurrences
gives the best approximation of the kernel execution time. The associated, un-
predictable overhead makes measurements on the GPU prone to inaccuracies for
short running kernels. Figure 2 illustrates the launch of a GPU kernel and the
timing events.

We used an empty kernel to measure the overhead of a kernel launch. The
kernel launch time varies with changing block sizes. Table 1 lists the average time
and standard deviation of 20 kernel launches on the GTX 680 graphics card. Many
algorithms call multiple kernel which accumulates the overhead and potential
measuring errors. It is therefore important to measure time frames that are long
enough to dampen differences in the kernel launch time.

CPU

GPU

kernel launch synchronize GPU

kernel execution time

start event stop event

Figure 2. Measuring kernel execution time with events.

In the next sections we discuss sample applications and show their behaviour
during autotuning. We evaluated them on the following three GPUs:

• Geforce GTX680 (GK104, 4096 MBytes memory, GPU clock rate 1058
MHz, memory clock rate 1502 MHz, 1536 CUDA cores)

• Geforce GTX470 (GF100, 1280 MBytes memory, GPU clock rate 607 MHz,
memory clock rate 838 MHz, 448 CUDA cores)

• Quadro 6000 (GF100GL, 6144 MBytes memory, GPU clock rate, 574 MHz,
memory clock rate 750 MHz, 448 CUDA cores)



4. Results

We evaluated autotuning on the GPU with four applications that come directly
from NVIDIA’s CUDA tool kit and are in most cases already set up for bench-
marking. The sample applications documentation discusses performance impli-
cations of the kernel launch configurations but in all cases the parameters were
selected by trial and error for one particular GPU.

4.1. Merge Sort

The merge sort sample implementation uses three different kernels to sort an ar-
ray of 222 elements. Each kernel’s block size can be configured independently. Au-
totuning these block sizes leads to a 3-dimensional parameter space. A complete
measurement of the parameter space can be seen in figure 3.

Figure 3. Merge Sort Parameter Space, block sizes of three kernels.

The three tested GPUs react similarly to changes of the kernel launch con-
figuration, however the respective optimal values are different. Table 2 lists the
achieved speed-up and how many iterations it took for the autotuner to find the
optimal parameters.

4.2. N-Body Simulation

An N-body simulation is a simulated dynamic system of mass points that influence
each others acceleration. An all-pairs approach with a computational complexity
of O(N2) is used to compute the position of each mass point in the next time
step. The implemented kernel computes the gravitation for each point by looping



default time optimal time speed-up autotuning iterations

Quadro 6000 0.0483 0.0324 32.81% 17

GTX 470 0.0457 0.0307 32.85% 20

GTX 680 0.0328 0.0234 28.64% 20

Table 2. Execution times in seconds. Speed-up of the optimal configuration relative to the default

parameters.

over the other mass points and calculating their gravitational pull. The simulation
implementation yields two parameters of interest:

• the block size of the kernel, and
• the degree of loop unrolling.

The documentation provided by NVIDIA discusses the effects of loop unrolling
in relation to the number of simulated points. However, the results presented in
the documentation use trial and error to find good values for a certain graphics
card and a fixed input size. With autotuning it is possible to find the optimal
tuning values for different hardware and varying input sizes. We measure the
performance while simulating 131072 mass points.

Figures 4 and 5 show the performance in the complete parameter space for
the Quadro 6000 and GTX 680. The GTX 470 has the same architecture as the
Quadro 6000, with the main difference being the clock speed. The performance
graphs of those two GPUs therefore have the same shape, with a small offset in
the y-axis.

The degree of loop unrolling has a significant impact on the performance of
the kernel. On the Quadro 6000 the unrolled kernel runs about 23% faster than
the a kernel without loop unrolling. Important to note is that the loop unrolling
parameter and the block size are not independent of each other, as can be seen
in figure 4. Tuning the parameters independently will result in a non-optimal
configuration.

The achieved speed-up and the number of autotuning iterations it took to
find the optimum are listed in table 3. Even though the kernel was already hand
optimized, AtuneRT was able to find a better configuration on every GPU.

default time optimal time speed-up autotuning iterations

Quadro 6000 6.361 6.304 1.0% 26

GTX 470 6.044 5.953 1.5% 20

GTX 680 2.937 2.824 3.8% 14

Table 3. Execution times in seconds. Speed-up of the optimal configuration relative to the default
parameters.

4.3. Thrust Scan

Thrust1 is a C++ template library for CUDA, similar to the Standard Template
Library (STL), providing various algorithmic building blocks, such as scan, and

1http://docs.nvidia.com/cuda/thrust/



Figure 4. N-Body simulation – Performance of the Quadro 6000.

reduction. Thrust’s algorithms either use hard-coded values or simple heuristics
to determine the block size of the CUDA kernels. We applied autotuning to these
parameters to optimize the kernel launch configuration.

We benchmarked 1000 calls to the thrust::inclusive scan-function com-
puting a prefix sum over 224 random integers. The results are listed in table 4.
The performance for all possible block sizes can be found in figure 6.

On the GTX 680 we can achieve a 13% performance gain over the non-tuned
Thrust function. Our autotuner AtuneRT confirms that 224 is the optimal block
size for the thrust::inclusive scan-function on the Quadro 6000.

4.4. Marching Cubes

Marching cubes is an algorithm often used in visualization for extracting a trian-
gular mesh of an isosurface from three-dimensional scalar fields, e.g. a computer-
tomography scan, stored as a 3D regular grid. It processes cells of the 3D grid



Figure 5. N-Body simulation – Performance of the GTX 680.

Figure 6. Performance of Thrust’s scan function.



Figure 7. Marching Cube – Performance.

Thrust Scan Marching Cubes

time in seconds block size time in seconds block size

GTX680, no tuner 2.566 224 0.170 160

GTX680, with tuner 2.223 128 0.134 128

Quadro 6000, no tuner 10.025 224 0.179 160

Quadro 6000, with tuner 10.026 224 0.179 224

Table 4. Performance measurements for Thrust scan and Marching Cubes.

independently and determines the triangles required to represent the part of the
isosurface passing through each cell.

Figure 7 shows that the best configuration of 5 warps per block for the GTX
470 and the Quadro 6000 does not transfer to the GTX 680. The optimal con-
figuration for the GTX 470 and the Quadro 6000 perform poorly on the GTX
680.

The NVIDIA CUDA samples include a marching cube implementation that
uses Thrust. Again we apply AtuneRT to the block size. The results listed in
table 4 show that the standard block size gives poor performance on the GTX
680. The autotuner achieves a 20% speed-up. A block size of 224 is as good as
the standard block size on the Quadro 6000.

5. Conclusion

We showed that autotuning is a feasible tool for optimizing GPU applications
on multiple platforms. Preparing the applications for AtuneRT was easy: Three
API calls sufficed for every example. These three calls could easily be placed
into the kernel API call. In this way, autotuning requires no extra effort for
the programmer. We showed the performance impacts of the tuning parameters
and the importance to tune them independently for each GPU. Autotuning also
provides a way to configure GPUs without having to deal with, or even know,



the hardware specifications. Our evaluation showed that the tuning parameter
space is unintuitive. For every hand-tuned sample application AtuneRT was able
to find the optimal kernel launch configuration on every tested GPU.

Due to the heterogeneity and wide variety of GPUs we expect autotuning to
become an essential part in determining tuning parameters at run-time.

References

[1] John A. Nelder and Roger Mead. A simplex method for function minimization. The

computer journal, 7(4):308–313, 1965.

[2] Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empirical optimizations
of software and the atlas project. Parallel Computing, 27(1):3–35, 2001.

[3] Anna Morajko, Tomàs Margalef, and Emilio Luque. Design and implementation of a
dynamic tuning environment. Journal of Parallel and Distributed Computing, 67(4):474–

490, 2007.

[4] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski, Alan Edelman, and Saman Ama-
rasinghe. Language and compiler support for auto-tuning variable-accuracy algorithms. In

Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation

and Optimization, pages 85–96. IEEE Computer Society, April 2011.
[5] Cristian Ţăpuş, I-Hsin Chung, Jeffrey K Hollingsworth, et al. Active harmony: towards

automated performance tuning. In Proceedings of the 2002 ACM/IEEE conference on

Supercomputing, pages 1–11. IEEE Computer Society Press, 2002.
[6] Thomas Karcher and Victor Pankratius. Run-time automatic performance tuning for

multicore applications. In Euro-Par 2011 Parallel Processing, pages 3–14. 2011.

[7] Frank Otto, Christoph A. Schaefer, Matthias Dempe, and Walter F. Tichy. A language-
based tuning mechanism for task and pipeline parallelism. In Proceedings of the 16th

international Euro-Par conference on Parallel processing: Part II, Euro-Par’10, pages
328–340, Berlin, Heidelberg, 2010.

[8] Henry Wong, Misel myrto Papadopoulou, Maryam Sadooghi-alv, and Andreas Moshovos.

Demystifying gpu microarchitecture through microbenchmarking. In Performance Anal-
ysis of Systems Software (ISPASS), 2010 IEEE International Symposium on, pages 235–

246, 2010.

[9] CUDA C Best Practices Guide, page 39. October 2012.
[10] Vasily Volkov. Better performance at lower occupancy. In Proceedings of the GPU Tech-

nology Conference, GTC, volume 10, 2010.

[11] Yuri Torres, Arturo Gonzalez-Escribano, and Diego R Llanos. Understanding the impact
of cuda tuning techniques for fermi. In High Performance Computing and Simulation

(HPCS), 2011 International Conference on, pages 631–639. IEEE, July 2011.


