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Abstract— Service providers have to monitor the quality of
offered services and to ensure the compliance of service levels
provider and requester agreed on. Thereby, a service provider
should notify a service requester about violations of service level
agreements (SLAs). Furthermore, the provider should point to
impacts on affected processes in which services are invoked. For
that purpose, a model is needed to define dependencies between
quality of processes and quality of invoked services. In order
to measure quality of services and to estimate impacts on the
quality of processes, we focus on measurable metrics related to
functional elements of processes, services as well as components
implementing services. Based on functional dependencies between
processes and services of a service-oriented architecture (SOA),
we define metric dependencies for monitoring the impact of
quality of invoked services on quality of affected processes. In
this paper we discuss how to derive metric dependency definitions
from functional dependencies by applying dependency patterns,
and how to map metric and metric dependency definitions to an
appropriate monitoring architecture.

I. INTRODUCTION

A service provider has to monitor the quality of provided
services and to ensure the compliance of service level agree-
ments (SLAs). In this context, not only functional dependen-
cies have to be considered, but also dependencies between
quality of service (QoS) and quality of process (QoP). At
runtime, a provider should notify service requesters about
SLA violations and point to impacts on affected processes.
For example, the impact of service performance on affected
processes is of special interest [1]. In order to monitor QoS,
we focus on metrics measurable at functional elements of a
service or at components implementing services. To calculate
or estimate impacts on QoP a sufficient understanding of
dependencies between service metrics and process metrics is
needed.

For that purpose, Fig. 1 illustrates our work. Models defin-
ing functional dependencies between processes and invoked
services exist like in a service-oriented architecture (SOA).
Models in Fig. 1.a and 1.b describe these dependencies on
different abstraction levels. Furthermore, models which define
dedicated metrics related to processes, services and compo-
nents implementing these services exist, too (see Fig. 1.b to
1.c).
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But a sufficient definition of metric dependencies is missing.
For that reason, we discuss the following questions in this
paper:

• Which elements are needed to define dependencies bet-
ween metrics related to processes, metrics related to
invoked services and metrics related to components im-
plementing these services (see Fig. 1.c to 1.d)?

• How have these metric dependencies to be defined to al-
low an efficient mapping of metric dependency definitions
to components of an appropriate monitoring architecture?

Therefore, this paper is organized as follows: Section II
gives an overview of the background of our work and dis-
cusses related work. Section III introduces a model to define
metric dependencies derived from functional dependencies.
Section IV describes how defined metric dependencies can
be mapped to components of a monitoring architecture. Sec-
tion V tells about some experiences gained by implementing
a demonstrator. The paper ends with a short conclusion and
an outlook of further work in Section VI.
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II. BACKGROUND AND RELATED WORK

Business-driven metric dependencies [2] between processes
and invoked services can be investigated at a business level,
at which service providers have to prove their contributions to
business, or at a system level, at which executable processes
invoke services implemented by application components. Be-
cause composing and invoking services according to business
processes is an important challenge in the context of service-
oriented architectures (SOAs), we focus on metric dependen-
cies at the system level. These kinds of dependencies can then
be the bases for measurements of metric dependencies at a
business level [3].

A. Background

As an example, we investigate an application environment
of a university. These applications provide services to sup-
port a mobile studying in Europe according to the Bologna
process. In this scenario, a lot of students for example
request information about the current status of their study
or about course offerings of future semesters to plan their
next steps. Peaks of requests can be recognized especially at
the beginning or at the end of semesters. For each request,
business processes are initiated by the university to gather
and provide necessary information for students. One example
is the process of generating a transcript of records (ToR).
This is accomplished by invoking several services based on
applications which implement functions to manage student,
course and examination data [4].

To ensure an acceptable performance [5] of generating
ToRs, it is necessary to consider the metric dependencies
between processes and invoked services and to monitor the
impact of QoS on QoP. Basically, a business process is defined
as a sequence of activities. These activities can be executed by
human beings or can be executed automatically. In our case,
we assume that the ToR generation process is fully automated
and can be implemented using, for example, the business
process execution language (BPEL) [6]. Invoked services are
implemented by applications managing student, course and
examination data. The invocation of application-based services
is done via the web. Therefore, services have a uniform
resource locator and a set of interfaces that can be utilized
to access them. Related to service functionality, provider and
requester agree on quality of service which is documented as
a service level agreement (SLA) [7].

At runtime, a service provider needs a management envi-
ronment to ensure the quality of provided services, to monitor
the SLA compliance and to notify service requesters in case
of failures. This environment should allow the measurement
of metrics of services and to calculate the impact on quality
of processes in which interfered services are invoked. In
order to implement necessary management functions and to
integrate them with existing management solutions we follow
established standards like the web-based enterprise manage-
ment (WBEM) initiative [8] and the common information
model (CIM) standardized by the distributed management
task force (DMTF). CIM defines management information

for modeling computing and business entities, enterprise and
service provider environments. It especially contains a sub
model for defining metrics [9].

B. Related Work

Defining and monitoring QoS and impacts on QoP, the QoS
UML profile [5] offers a basic terminology and structure to
model quality of services and fault tolerance. For a structured
model and a common understanding of QoS, it defines terms
“category”, “characteristic”, “dimension”, etc. As an example
the QoS category “performance” is detailed in this work.
Even though the UML profile consolidates previous work on
QoS languages and notations, model elements for defining
calculable dependencies between QoS characteristics are not
sufficiently covered.

In order to ensure response time of transactions, [10]
presents an approach for real-time load-balancing. Therefore,
an analytical QoS model via different abstraction levels is
defined: Services, transactions and nodes. With reference espe-
cially to transactions, two types of metrics or rather measure-
ments are distinguished: Raw metrics (e.g. registration time,
failed time, start and stop times) and aggregated metrics (e.g.
down time, waiting time, failed count, service time, response
time, violation rate, etc). For an efficient control mechanism,
automated actions are differed from non-automated actions.
This helps to ensure the quality of services. But for calculating
the impact on processes and business, the qualitative depen-
dencies between services and processes have to be monitored,
too.

[11] presents a platform to define, compute and analyze
business and IT metrics in relation to e-business processes
based on Web services. Therefore, a basic model for functional
dependencies between business processes, activities, services,
end-points, operations, and messages is defined in UML.
Additionally, the model contains “metrics” to be computed and
“mappings” that define how operational data can be mapped
into qualitative and quantitative measures. Furthermore, map-
pings are specified by instantiating mapping templates, and
“meters” are the instruments to compute metrics. A metric
database is structured according to data warehousing tech-
niques enabling and simplifying multi-dimensional analysis
of quality measures. Based on such a model of functional
and metric dependencies between processes and services,
management functions are needed to monitor QoS and also
to calculate the impact on QoP.

[12] presents an approach for automated and distributed
monitoring of SLAs. Defined metrics relate to processes
(according to WSFL) and services (according to WSDL).
Metric examples are response time, availability, security, cost,
etc. Each service level objective (SLO) comprises a functional
part (that refers to a system, endpoint, a process, or a set of
processes) and a guarantee part applied on the functional part.
SLA compliance can be monitored on service provider side
and on service requester side. When the evaluation of an SLA
depends on measurements from both sides, a measurement
protocol is used for transferring measurements from requester
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Fig. 2. Class Diagram Defining Metrics and Metric Dependencies

to provider. This protocol allows monitoring of dependencies
between services and processes in which services are invoked.
A method to define calculable QoS and QoP dependency
instructions as part of quality models and to map them to
the monitoring components is still missing.

[13]–[15] developed components and data structures for
creating and monitoring SLAs in relation with web services.
For the integration of the developed components with estab-
lished management approaches, [13] defines a mapping bet-
ween SLAs and CIM. Although, these components are needed
for monitoring SLA compliance, a method for modeling and
defining calculable metric dependencies is out of scope.

[16] specifies dependencies between a number of system
resources and the business impact. The aim is to optimize
SLOs from a business perspective. In order to calculate the
business impact a mathematical model is used. Even though
the followed theories and formalisms can help to model
properties of system and application-based services, it is not
the aim of [16] to monitor the modeled dependencies at
runtime.

III. MODELING METRIC DEPENDENCIES

In order to calculate or estimate the impact of QoS on
QoP, a formal model is needed specifying metric dependen-
cies between services and processes. Within a SOA, several
functional dependencies exist (e.g. between a process activity
and an invoked service operation [12], [17]) and can be
used as a basis to identify additional dependencies. Fig. 2
shows a model of these dependencies based on concepts of
well known standards like BPEL [6] and WSDL [18]. The
model only describes those concepts of standards which are
important to model functional dependencies between pro-
cess activities, service operations and service implementing
component functions within a SOA. During modeling metric

dependencies of a specific architecture, the corresponding
functional dependencies are assumed to be already described
since their identification is considered as a task within the
software development process or a binding process.

As depicted in Fig. 2, services expose interfaces with
operations. These service operations can be invoked by process
activities, which are linked in the context of a business process.
In this work, only invoking activities with a request-response
interaction pattern are focused. We assume that application-
based services are implemented by functions of application
components.

For modeling metric dependencies between services and
processes, we focus on metrics which can be measured or
calculated at runtime. Examples for such metrics are response
time, availability and performance [10], [19], [20].

A. Specifying Metric Definitions

In addition to elements and interrelations to model func-
tional dependencies, the model shown in Fig. 2 contains
concepts to define metrics and their dependencies as well.
Additional elements to define metrics and metric dependencies
are shown on the right side of Fig. 2 and are based on concepts
of the CIM metrics model [9] and the UML profile described
in [5].

As discussed in [11], the model defines elements to specify
a metric. Their semantics are explained below.

• A value of a metric dimension is received directly from
the instrumentation of a respective functional entity.

• A metric characteristic groups several dimensions or other
characteristics. A value of a characteristic is the result
of a computation: Values of corresponding characteris-
tics are computed recursively and then combined with
corresponding dimension values. The instruction how to
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combine the different values is given by a dependency
function associated with the characteristic.

• A metric category is used to group several characteristics
or other categories. An example is given by the metric
category “performance” which includes characteristics
like “availability” or “response time”. These charac-
teristics are well known as performance metrics [10],
[19], [20], whereas a universal calculation of a single
performance value is not given.

• A dependency function is associated to a characteristic.
By this concept, instructions are given how to calculate
the characteristic value based on values of other related
characteristics and dimensions. In Section III-B, a formal
model is specified in order to enable a mathematical
description of these calculation instructions.

At this point, functional dependencies as well as depen-
dencies between different metrics can be described by the
model shown in Fig. 2. In order to define metric dependencies,
these two aspects have to be combined by relating metrics to
functional entities. The binding is realized by defining units
of work based on the equivalent concept of the CIM metrics
model [9]. Semantics of this concept are described by an
example in the following paragraph.

The objects of Fig. 3 instantiate classes defined in Fig. 2.
The objects and links describe coherences of the introduced
ToR process example. Since the class diagram describes
conceptual model elements and interrelations on a meta
level, the instances represent elements of the ToR process
example but not instances at runtime. The process activity
LookupStudent uses the service operation isStudent,
which uses a component function isStudent. Correlated
links between these functional entities represent functional
dependencies.

In the described example, we want to monitor the impact of

the response time of the service operation isStudent on the
duration time of the process activity LookupStudent (see
also [3]). For this reason, a response time metric related to
the isStudent service operation is defined. For identifying
bottlenecks in the implementation of the service, metrics for
components are defined as well: A metric for waiting time
measurement and processing time measurement respectively.
The instances of DependencyFunction encapsulate infor-
mation about how to calculate metric values based on values of
correlated metrics as stated above. These dependency functions
are formalized in the following section.

B. Formalizing Metric Dependencies

We focus on calculable metrics in this work. According to
Section III-A and Fig. 2, these calculable metrics are called
“metric characteristics” and are associated with a dependency
function. This function includes information about how to
calculate a metric value based on other metric values. In
this section, we want to introduce a formalism in order to
describe dependency functions and metric characteristics in a
mathematical way. The purpose is to calculate metric values
based on well-defined functions (see Fig. 1.c and 1.d).

Formally, in the context of quality measurement, we have a
set E of functional entities (instances of UnitOfWork shown
in Fig. 2) and a set Q of values which are measured for
these functional entities. Examples for an element q ∈ Q are
“5 seconds” or “99%”. Later on, these elements of Q are used
to define “metric values” according to Fig. 2. To distinguish
between metric values and single elements of Q which are not
yet related to a metric, an element q ∈ Q is named “quality
value”.

By measuring a quality value q ∈ Q for a specific functional
entity e ∈ E, we receive a pair (e, q) ∈ E × Q. In addition
to E and Q, we define the set M of all metrics. A metric
m ∈ M can be formalized as a function which maps a quality



value q ∈ Q to a functional entity e ∈ E. In order to get sets
which can be used as domain and range of this function, we
have to define subsets of E and Q.

For a specific metric m ∈ M , not all elements of Q are
suitable (e.g. “99 %” as value for the response time metric
mresponseT ∈ M makes no sense, so the set Q|mresponseT

would
contain only time values of Q). In conclusion, we can say that
a metric m ∈ M defines a subset Q|m ⊆ Q of those elements
of Q which are suitable for m. In this context, “suitable”
means, for example, that an element q ∈ Q|m has the data
type defined for m and an appropriate unit.

If a metric m ∈ M defines a subset of Q, then m also
defines a subset of E × Q. This subset is defined below.

E × Q|m := {(e, q) ∈ E × Q : q ∈ Q|m}
In the same way, we can define a subset E|m ⊆ E in order

to describe those functional entities a specific metric m ∈ M
is measured at. With Q|m and E|m, we can define a metric
m ∈ M as a function m : E|m → Q|m. At this point, we
have described the MetricValue of Fig. 2 and the elements
of E|m × Q|m can be called “metric values”. As conclusion
of these formal definitions, we can say that a metric m ∈ M
defines a subset E|m × Q|m ⊆ E × Q which is called “the
set of metric values for metric m”.

In order to specify formal instructions for calculating the
impact of QoS on QoP, we have to formalize dependencies
as well. For the following definitions, we assume to have a
process activity p ∈ P , a service operation s ∈ S and a
component function c ∈ C with P ⊆ E, S ⊆ E and C ⊆ E.
Relations of these functional entities are also shown in Fig. 2.
For a specific metric m ∈ M , we use an index to express
the semantic of the metric (e.g. mresponseT for a response time
metric). Dependencies of used metrics also are shown in Fig. 4.
According to the previous sections, we define two types of
dependencies in the notation of logical predicates.

• Functional dependencies between entities: The predicate
dE(p, s) means, that the functionality of p depends on
the functionality provided by s.

• Dependencies between metrics: dM (mdurationT,mresponseT)
expresses the necessity of a response time value for the
calculation of a duration time value.

For the definition of a calculable dependency function as
shown below, both functional and metric dependencies have
to be considered. Given a set of k metric dependencies
dM (mq0 ,mq1) , . . . , dM (mq0 ,mqk

) and a set of n functional
dependencies dE(e0, e1) , . . . , dE(e0, en), a metric mq0 for an
entity e0 can be calculated by using a dependency function
fcalc : Qk·n → Q. This function fcalc corresponds to the
dependency function shown in Fig. 2.

mq0(e0) = fcalc
(
mq1(e1) , . . . ,mqk

(e1) ,

mq1(e2) , . . . ,mqk
(e2) , . . . ,

mq1(en) , . . . ,mqk
(en)

)

Given a dependency function fcalc and a functional entity
e0, the value of a metric mq0 can be calculated in the shown
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Fig. 4. Metric Dependency Pattern for Duration of Activities

way based on recursively calculated other values of metrics
mq1 , . . . ,mqk

. This dependency function can be represented
as an abstract syntax tree (AST), where the internal nodes are
labeled by the operators of the function and the leave nodes
represent corresponding metric dimensions. If a value of a
metric m ∈ M is not calculable but provided directly by an
instrumentation of a functional entity e (this case is described
in Fig. 2 by a metric dimension), the notation m (e) could also
be used.

As an example, Fig. 4 shows a metric mdurationT to measure
the duration of a process activity. As well, dependencies
to other metrics (e.g. dM (mdurationT,mresponseT)) are shown
and several metrics are assigned to abstract elements of a
service-oriented architecture (SOA). Information about spe-
cified metric dependencies is based on [1], [19], [20]. In
this work, a metric definition including metric dependencies
and assignments to abstract architectural components is called
a “metric dependency pattern”. According to Fig. 1, such
a pattern can be applied to a specific SOA by assigning a
concrete architectural component (Fig. 1.a) to each metric of
the pattern (Fig. 1.d).

In the following example, the metric mdurationT is calculated
for the activity LookupStudent of the ToR scenario de-
scribed in Section II-A. Related dependencies also are shown
in Fig. 3 and are formalized below.

dE(pLookupStudent, sisStudent) dE(sisStudent, cisStudent)
dM (mdurationT,mtransmissionT) dM (mdurationT,mresponseT)
dM (mresponseT,mwaitingT) dM (mresponseT,mprocessiongT)

The measurement of transmission time (time elapsing while
a message is sent over a network) in this context is a special
case. This metric can not be measured at a single functional
entity but needs information of both the sending and the
receiving entity [21]. In such a case, the receiving entity is
used in the formalism assuming that the start time could be
sent within the message. The transmission time of the response
message can not be measured in this way. In this work, we



estimate this time based on the request transmission time.

mdurationT(pLookupStudent) =

ftimeAdd
(
mrequest

transmissionT(sisStudent) ,mresponseT(sisStudent) ,

mresponse
transmissionT(pLookupStudent)

)

mresponseT(sisStudent) =
ftimeAdd

(
mwaitingT(cisStudent) ,mprocessingT(cisStudent)

)

ftimeAdd(t1, . . . , tn) =
n∑

i=1

ti

The dependency function ftimeAdd used in the example above
has the following form: All metric values are assumed to have
the same unit and the computation is just an addition of all
values. In the example, we used a rather simple dependency
function to illustrate how it is defined. In future work, the
formalism can be used to define more complex dependencies.

IV. MAPPING MODELS TO MONITORING ARCHITECTURE

To monitor the impact of SLA violations, techniques and
mechanisms are necessary to support the monitoring of de-
pendencies between application-based services and affected
processes. Monitoring the impact of QoS on QoP at runtime,
we start from the following assumptions: In our case, metrics
are only measured at the service provider, as it is not possible
to get information about the service requester’s system. At the
provider’s side service-oriented metrics either can be measured
directly at a service interface (e.g. instrumented at the message
handler of a SOAP engine), or can be calculated based on
metrics measured at components which implement a service.
Impacts of QoS on quality of processes which invoke services
are calculated or estimated according to formalized instruc-
tions as described in Section III. Non measurable but necessary
metrics lead to assumptions. For example, we assume that
the transmission time of a request message is equal to the
transmission time of the corresponding response message.

It has to be considered that only those metrics can be
measured which are offered by management capabilities of
either service interfaces or application components. Conse-
quently, an adequate monitoring architecture contains func-
tions to instrument and collect metrics as well as functions to
aggregate and compare metrics with agreed service levels. To
notify impacts on processes of the requester and report SLA
compliance, additional functions are needed. An overview of
the monitoring architecture and its components is given in the
following sections.

A. Instrumenting and Collecting Metrics

[19] discusses metrics to be measured as qualitative prop-
erties related to web services. In this work, we focus on
performance impacts of services on processes in a service-
oriented architecture (SOA).

A Web service Implementation as shown in Fig. 5
exposes its functionality via a service interface described by
WSDL [18]. Metrics related to services can either be mea-
sured at components implementing services or at the service

interface itself. Where to measure a specific metric depends
on the metric as well as the component instrumentation and
the Application Server, the service is deployed on. As
defined in Section III-A, a directly measured metric is called
metric dimension.

Dimension values can either be sent to the Metric
Collector or can be requested by the Metric Collec-
tor. Particular dimension values are provided at manage-
ment ports of either the Web service Implementation
or the Application Server. To measure dimensions at
the service interface, the Application Server (more
precisely the corresponding message handler) has to be in-
strumented. Thus, interaction and message transfer between
service provider and requester can be observed. In any case, it
should be possible to correlate a measured dimension value
with a unit of work which can be an invoked component
function, service operation or process activity. To do that,
instrumentations have to provide context information to allow
correlating metric values with units of work (see also [21]).

Another task of the Metric Collector is the transfor-
mation of dimension values into instances that are compliant
with management information standards (e.g. CIM [9]). Con-
verted values are directed to the Storage. The main task of
that component is to archive measured dimension values and
to associate these values with functional and metric entities. It
is exposing an interface to read, write and notify event-based
data that conforms to the information model specified for a
particular scenario.

B. Aggregating Metrics and Calculating Impacts

Retrieved and stored dimension values are supposed to be
processed in the Agreement Monitor. The main tasks of
this monitor are:

• Aggregating service-oriented metrics
• Calculating impacts on processes
• Notifying and reporting impacts

Therefore, the Agreement Monitor consists of three
subcomponents described below.

The Metric Aggregator is a passive component which
is triggered either by requests from the Metric Compa-
rator or by requests from the Report Generator. The
task of the Metric Aggregator is to calculate metric
values based on functional and metric dependencies. In the
following, we say “characteristic” for a calculable metric
according to Section III-A. In order to explain the functionality
of the Metric Aggregator, the introduced ToR scenario
is used. In the example, the Metric Aggregator is asked
to provide a value of the process metric “duration time” for a
specific unit of work related to the LookupStudent activity.
Relevant dependencies are shown in Fig. 3 and Fig. 4.

In the example, the input for the Metric Aggregator
is the ID for the duration time metric and the ID of the
relevant unit of work. We assume that at runtime the Metric
Aggregator knows about functional and metric depen-
dencies. For example, this information can be stored in the
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Storage and is loaded during the initialization of the ag-
gregator since it is invariant at runtime. According to Fig. 3
and Fig. 4, the process characteristic DurationTime is cal-
culated based on the dimension TransmissionTime (here
we do not distinguish between transmission times for a request
message and a response message in order to simplify the ex-
ample) and a service characteristic ResponseTime which is
based on the component dimensions ProcessingTime and
WaitingTime. In conclusion, the Agreement Monitor
knows which dimensions are relevant to calculate the duration
time of the LookupStudent activity by traversing the re-
lated metric dependencies. By traversing as well the functional
dependencies related to the relevant unit of work (that means
the reflexive aggregation of UnitOfWorkDefinition in
Fig. 2), the Metric Aggregator can determine those units
of work which are related to the relevant metric dimensions.
Based on this knowledge, the Storage is asked for the
relevant dimension values which are aggregated based on the
information of the respective DependencyFunction.

Another requirement of the Metric Aggregator also
is to keep track, if all input arguments are available to start
the calculation of the targeted aggregated metric. Therefore,
the aggregator may also write some temporary or intermediate
calculated metrics back into the Storage or use some
internal tracking. Another solution would be the utilization
of data warehouse technology [11].

The Metric Comparator compares metric values de-
fined as SLOs in SLAs with aggregated service-oriented metric
values. Before the comparison can start, SLAs have to be ne-
gotiated and stored within the Agreement Repository.
For that reason, the repository exposes interfaces as proposed
in WS-Agreement [7] to establish and provide an agreement.
Because the negotiation of SLAs is not in the focus of

this work, not all interfaces described in [7] are shown in
Fig. 5. During the validity period of an SLA the Metric
Comparator can act in three different ways:

• Active role: The Metric Comparator can continu-
ously check the compliance of a specific SLA constraint.
For example, based on historical data the last 100 units
of work related to a specific activity could be checked.

• Passive role triggered by the Storage: When a unit
of work related to a specific activity under observation
is started, an event-based message is created by the
Storage which triggers the Metric Comparator.
The event message includes the relevant unit of work ID
and so the Metric Comparator can start calculation
as described in the example above.

• Passive role triggered by a request to the GetMetrics
interface: Via the GetMetrics interface of the Agree-
ment Monitor, a unit of work ID and a metric ID
can be sent as well. Based on historical data, the related
value can be calculated and sent back to the Process
Manager.

In order to estimate the impact of quality of invoked services
on quality of affected processes, we assume context infor-
mation included in messages containing at least an identifier
that serves as reference to involved entities. Without this
information, measurement data can not be assigned to the
associated entities. Solutions to this problem are discussed in
[21].

Next to the Metric Comparator, the Report Gene-
rator summarizes monitoring information for generating a
regular report about SLA compliances.



V. IMPLEMENTATION EXPERIENCES

This section reflects experiences about the definition of met-
ric dependencies as presented in Section III and the mapping of
metric dependencies to an appropriate monitoring architecture
as described in Section IV. As proof of concept, the monitoring
architecture is implemented and the ToR generating process
described in Section II A is used to evaluate the presented
approach.

A. Demonstrator

The ToR generating process is implemented using BPEL
[6] and is deployed on the Oracle BPEL Engine. The BPEL
process invokes the service operation isStudent of the
SOAP-based web service StudentDBService described
by WSDL [18]. The components of the scenario are also
depicted in Fig. 3. The StudentDBService exposing the
isStudent operation is provided by the Apache Axis2
SOAP engine. The SOAP engine runs embedded in an Apache
Tomcat 5.5 servlet container which is used as Application
Server according to Fig. 5. The binding between the ToR
process and the service could be done statically or dynam-
ically. In our case, we assume that the binding is specified
statically during the development of the ToR generating pro-
cess.

For the measurement of metrics, there are several tech-
nologies to assist the development of a management inter-
face. Examples are the Web Service Distributed Management
(WSDM) or WS-Management. But neither WSDM nor WS-
Management give sufficient support for instrumentation. Since
application components implementing the StudentDBSer-
vice are implemented in Java, the Java Management Exten-
sion (JMX) has been considered. JMX defines an architec-
ture to instrument resources but it contains no management
information model. Since we are focused on metrics related
to response time, the Application Response Measurement API
(ARM) standardized by The Open Group [22] fits in well.
ARM contains features like identifying bottlenecks within
software components, measuring application availability and
performance as well as end-to-end transaction response time.
To implement ARM, we used the OpenARM toolkit. Its
instrumentation calls have been directly included into the
Java methods implementing the StudentDBService. For
the instrumentation of the service interface, we extended
the Apache Axis SOAP engine with a SOAP handler [23]
which counts service requests and tracks SOAP messages to
determine response time according to ARM.

In order to evaluate our approach, we implemented several
components of the monitoring architecture presented in Fig. 5.
There are alternative approaches to implement management in-
formation and their relations according to metric dependencies.
In [11] for example, a data warehouse is used. [24] presents an
approach to integrate different management applications and
information according to management processes.

In the current implementation, we decided to use tech-
nologies which are conforming to the standardized common
information model (CIM) as part of the web-based enterprise

management (WBEM) initiative [8]. Therefore, the CIM met-
rics model [9], [13] was related to functional dependencies of
the ToR generating process and the StudentDBService
as defined in Section III. Additionally, metric dependen-
cies as well as dependency functions have been extended.
Applying CIM to the monitoring architecture, the Metric
Collector has been implemented as a CIM provider and
the Storage as a CIM server. The Metric Collector
transforms metric values into CIM-conform instances of CIM
objects and forwards those to the CIM server in order to make
them persistent and ready to be used by the subcomponents
of the Agreement Monitor. The CIM server can be asked
for MetricValue instances associated with UnitOfWork
instances and corresponding MetricDimension instances.
As described in Section IV-B, metric values can be retrieved
from the CIM server, given a unit of work and a metric
dimension.

After the binding between ToR process and Student-
DBService, functional dependencies are well known and
represented in the Storage as instances of UnitOfWork-
Definition and corresponding associations. For exam-
ple, a functional dependency between the process activity
LookupStudent and the service operation isStudent
results in an association instance which describes a sub relation
between corresponding units of work (the relevant associations
of the CIM metrics model are SubUoWDef and SubUoW
respectively). In addition to the representation of functional
dependencies in the Storage component, metric dependen-
cies are included as well. For that purpose, an extension of the
CIM metrics model is used according to the model elements
shown in Fig. 2.

To enable a process manager to decide whether an instance
of a process is affected by an SLA violation or not, the impact
of a service instance on an instance of a process activity has
to be calculated. For that reason, we included information
about interaction context into the SOAP header as proposed as
well in [21]. This context information allows relating a metric
value with a unit of work instance. Aggregating metrics, this
context is used to relate metrics with the same context to one
service instance and to calculate the impact on a corresponding
process activity instance.

B. Evaluation

In Section IV, a monitoring architecture is presented which
enables monitoring the impact of QoS on QoP. This ar-
chitecture uses the metric dependency model described in
Section III. As stated in Section V-A, we decided to use a CIM
server to store measured metric values as well as dependencies.
The concrete implementation of our CIM server is based on
code of the WBEM Services project [25].

In Section IV-B, three possible roles of the Metric
Comparator are described. For the second one, the Metric
Comparator is triggered by the Storage. In this case,
the Metric Comparator is supposed to monitor one spe-
cific service invocation: When the relevant service operation
is called, the Metric Collector creates a correspond-
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Fig. 6. Evaluation Results

ing UnitOfWork instance and the Storage informs the
Metric Comparator which starts monitoring the SLA
compliance for this instance. Of course, creation of the rele-
vant UnitOfWork instances, instantiation of MetricValue
associations as well as calculation of aggregated metrics has
to be done within the duration of the service call. That
means for this scenario, all communication between Metric
Comparator and Storage as well as between Metric
Aggregator and Storage is time critical. A lower bound
for the response time of a service operation, which must not
be undercut in order to enable monitoring of a specific service
operation call, could be defined. For that reason, durations for
the critical tasks have to be evaluated.

In Fig. 6, the evaluation result for two time critical tasks
is shown. It has to be noticed, that the focus of this work
is not on performance aspects of the presented management
architecture. Therefore, the evaluation results in this section
are not supposed to show good or bad performance of our
implementation but give an impression about its behavior at
runtime. The following two components have been used for
the evaluation:

• The Metric Collector has been used to create a
unit of work and to associate a metric value.

• The Metric Aggregator has been used to calculate
the value of the metric characteristic “duration time”
shown in Fig. 3 und Fig. 4.

Both tasks have been run 10.000 times on a virtualized
system with a clock rate of 1 GHz and 512 MB RAM. In
Fig. 6, the measured duration times are shown. We decided
to use box plots in order to illustrate not only absolute values
but also the variance of the measurement. A box plot depicts
the lower quartile (box start), the median (bold line), and the
upper quartile (box end). The horizontal lines (“whiskers”)
extend to at most 1.5 times the box width and must end at an
observed value. If a value is beyond a whisker, it is depict as
an additional point.

The medians shown in Fig. 6 are 141 milliseconds (Metric

Collector) and 437 milliseconds (Metric Aggregator) respec-
tively.

VI. CONCLUSION AND OUTLOOK

In this paper we have investigated a method how to derive
metric dependencies from functional dependencies between
services and processes in which services are invoked. The in-
tention is to use calculable metric dependencies for monitoring
the impact of QoS on QoP.

A. Conclusion

For that purpose, a model has been introduced defining func-
tional dependencies between elements of a service-oriented
architecture (SOA). Thereby, we have focused on dependen-
cies between executable process activities, invoked service
operations and application components implementing these
services. Functional elements of interest have been extended
by metrics which either can be measured or calculated. These
metrics are the basis for the definition of metric dependencies.
In order to estimate the impact of QoS on QoP, we have
introduced a formalism to define calculation instructions. For
the definition of a metric dependency function, we have
applied a pattern of metric dependencies between activity
duration and response time of a service operation. In our ToR
process example, we assumed that only metrics at the invoked
service and the components implementing this service could
be measured. Metrics related to process activities have to be
calculated. As example, only a simple summation instruction
has been derived.

For monitoring impacts of QoS on QoP at runtime, the
definition of metric dependencies is based on established man-
agement standards like CIM [9]. Thus, it is possible to map
elements of the metric dependency model to components of a
standardized monitoring architecture. To measure and collect
raw metrics, services and components implementing services
have to be instrumented. To calculate metrics which relate to
processes and depend on metrics related to invoked services,
measured values have to be aggregated. The implemented
monitor aggregates metric values and compares them with
SLOs defined in SLAs. In case of SLA violation, the monitor
sends a notification about the impact to the service requester.

The monitor implementation has proofed that the model-
based definition of metric depedencies could be mapped to
standardized management solutions.

B. Outlook

At this point, we measure metrics at the service provider
and calculate metrics at the service requester. Therefore, we
derived a very simple metric dependency function to explain
our approach. In further work, we are investigating additional
factors affecting the qualitative dependencies between pro-
cesses and invoked services. Consequently, metric dependency
functions are becoming more complex. In order to keep the
balance of effort for defining and calculating dependency
functions and validity regarding the impact on processes, we
started to measure process metrics, too. Thereby, we use



process metrics to compare measured values with estimated
values and to improve derived dependency functions.

In this work, we focused on a process metric related to
only one activity as part of a process. In order to calculate the
impact of invoked services on whole processes the scope has
to be extended. Based on metric values measured at invoked
services, the impact of an activity on the whole process has
to be estimated. This is done by a process manager, who is
able to monitor and control the implementation of a process.
Therefore, not only the process logic but also the engine
executing the process has to be taken into account. Depending
on a process design, a process manager has to analyze how far
a specific QoS affects not only a specific activity but also the
quality of the whole process. An appropriate process design
can compensate temporary QoS or SLA violations.

We presented a method for the definition of metric depen-
dencies according to functional dependencies in the context of
a SOA. These metrics have to be defined business-driven [2],
in order to monitor qualitative impacts on business processes.
To facilitate the measurement of business-driven metrics, an
appropriate instrumentation of relevant functional elements has
to be ensured. Consequently, metrics have to be modeled and
implemented in connection with functional elements during
the development of a SOA. Therefore, models as shown in this
paper can be used. After the modeling of functional dependen-
cies, and based on measurable metrics, metric dependencies
should be derived automatically. Keeping this vision in mind,
further work is going on.
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