
Identification and Implementation of Authentication and Authorization Patterns in the
Spring Security Framework

Aleksander Dikanski, Roland Steinegger, Sebastian Abeck

Research Group Cooperation & Management (C&M)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
{ a.dikanski, abeck }@kit.edu, roland.steinegger@student.kit.edu

Abstract—In the development of secure applications, patterns
are useful in the design of security functionality. Mature
security products or frameworks are usually employed to
implement such functionality. Yet, without a deeper
comprehension of these products, the implementation of
security patterns is difficult, as a non-guided implementation
leads to non-deterministic results. In this paper, the Spring
Security framework is analyzed with the goal of identifying
supported authentication and authorization patterns.
Additionally, a best practice guide on implementing the
identified patterns using the framework is presented. A real
world case study is presented, in which the findings are
employed to implement security requirements in a web
application. With this approach it is possible to overcome the
gap between pattern-based security design and implementation
to implement high quality security functionality in software
systems.

Keywords - security patterns; security framework; security
engineering; authorization; authentication

I. INTRODUCTION

Security engineering aims for a consecutive secure
software development by introducing methods, tools, and
activities into a software development process [1]. As such,
each phase of the software development needs to consider
security aspects: in the analysis phase security requirements
are identified, in the design phase security functionality is
modeled in conjunction with the main business functionality
and finally, security solutions are realized in the
implementation phase.

Security patterns are an agreed upon method to describe
best practice solutions for common security problems [2].
When designing security functionality for an application
such patterns can be instantiated in the design model to cover
a certain security requirement.

The reuse of existing security functionality, i.e., in the
form of security components, frameworks or products, is
considered best practice as well, as they usually cover a great
percentage of existing security requirements. Their maturity
can usually not be achieved by implementing it completely
new, so self-made solutions should extend it as well. By
doing so, the quality of the security functionality of the
developed application is increased. Also, as the main focus
of software development lies upon the implementation of the

business functionality, the reuse of existing functionality
increases the efficiency of the implementation process.

Implementing security patterns using existing security
functionality is complicated. For one, their built-in flexibility
to support many different application contexts leads to a high
complexity, requiring a deep understanding of the internal
workings. This often raises the question, if and how the
required security patterns can be implemented with the
selected product. In such a case, the security functionality
needs to be analyzed by security experts to determine the
supported patterns.

Such an analysis is especially useful, if a model-driven
approach is used to automatically generate security-related
artifacts from design models. The identified and supported
patterns of the framework or product can be used to describe
the target platform and to generate framework artifacts from
design models. Such an approach is part of a reuse-based
security engineering approach, which we outlined in earlier
works [3].

In this paper, the capabilities of the popular open source
authentication and authorization framework Spring Security
[4] are examined. The goal thereby is to identify support for
common pattern by Spring Security and provide a reusable
catalog of best practice advice on how to implement them in
a high quality fashion. Theses informal description can be
used by developers in the need to evaluate security
frameworks as well as a guide to implementation. Also, they
can be used to describe formal transformation rules for a
model-driven approach.

The rest of this paper is structured as followed: Section 2
introduces the Spring Security framework and discusses
related work. In Section 3, the relationship of the pattern-
based framework description to our reuse-based security
engineering approach is described. The identified security
patterns and their equivalent implementation using Spring
Security are covered in Section 4. In Section 5, a real-world
case study is presented, which shows the security pattern
implementation using Spring Security. A conclusion and
outlook on future work closes the body of this paper.

II. BACKGROUND AND RELATED WORK

The following section provides a background on the
Spring Security framework and discusses related works.

Figure 1 The main classes of the Spring Security Framework

A. Background on Spring Security

Spring Security is an open source Java framework,
providing highly flexible and extensible authentication,
authorization, and access control solutions [5][6].

The modular framework consists of loosely coupled
components, which are connected using dependency
injection. The core classes and their dependencies are shown
in Figure 1. The Authentication class stores user information.
It is part of a SecurityContext class for every authenticated
user in an application. An AuthenticationManager loads this
data and which verifies the authenticity of users using
offered credentials and information from a user store [5].

To intercept secured resource access, classes extend the
AbstractSecurityInterceptor class, which is the central class
in terms of authorization. Thereby, the SecurityContext and
SecurityMetadataSource classes offer information about the
current user and the secured object respectively. Access
decisions are performed by the AccessDecisionManager,
which is also called by the AbstractSecurityInterceptor. The
AccessDecisionManager calls voters, which decide whether
access is granted or not and which can be added dynamically
to the application. Thus, the voter system abstracts from an
access control mechanism.

Although it can be used for desktop applications, the
main purpose of Spring Security is to secure web
applications based on the Java Platform Enterprise Edition
(JEE, [26]). The framework integrates with many
authentication technologies and standards, e.g., Lightweight
Directory Access Protocol (LDAP), Central Authentication
System (CAS), OpenID and OAuth. Spring Security also
provides support for basic role-based access control [6]. Due
to its flexible architecture the framework can easily be
adapted and extended to support other forms of
authentication and authorization and access control as well.

B. Related Work

Due to the identification of security patterns, the work is
based on common security pattern literature. A
comprehensive catalog of abstract and context-specific
security patterns for, e.g., operating systems, can be found in
[2]. Identity management as well access control patterns are
discussed in [7] and [8]. Patterns specific to the JEE platform
are described in [9]. Authorization patterns for the Extensible
Access Control Markup language (XACML) are discussed in
[10]. An excerpt from the patterns presented in these works
is used in this paper to show their support by the Spring

Security framework. Pattern based security engineering
processes are discussed in [11] and [12], yet they do not
consider the implementation of patterns using security
platforms.

An automated retrieval of security patterns in existing
software, such as discussed in [13] and [14], would be useful
in the identification process. Unfortunately, the retrieval rate
of the approaches is still to low to be useful for our goals.
Applying them would only show the patterns implemented in
the software not all possibilities of the security framework.
This is why a manual approach was applied.

The pattern-based platform description presented here is
a feasible enhancement to model-driven security approaches,
which is not considered by other such approaches, e.g.,
[15][16][17]. We aim at describing the target security
platform using security patterns, to simplify the
transformations and easily adapt them to new platforms.

Background information on the Spring Security
framework, its inner relations and concepts as well as its
usage can be found in the community documentation as well
as in [5] and [6]. These descriptions are not based on security
patterns and do not show all possible applications of the
framework.

III. REUSE-BASED SECURITY ENGINEERING

The pattern-based identification and description of
security functionality in existing frameworks is part of a
reuse-oriented security engineering approach, presented in
[3]. We argue for reuse of existing security functionality as
well as knowledge throughout the phases of development
processes to increase the quality and the development
efficiency of the implemented software artifacts. Security
problems, which can not be covered by existing models and
functionality, can benefit from a reuse approach by
extending or adapting them to a new context.

For one, the reuse of knowledge about possible threats
and attacks against information resources, as well as
appropriate countermeasures, is feasible in the analysis of
security requirements of an application.

The topic discussed in this paper covers the design and
implementation phase of the engineering process. In the
design phase existing security knowledge should be used to
determine possible solutions for security problems. Security
patterns offer a proven method for describing such best
practice solutions and can be integrated with common design
patterns [2]. The implementation of security solutions should
be based on existing security functionality, e.g., provided by
products, frameworks or components. These are more mature
and field tested, than a new implementation and usually offer
support for existing security standards and technologies.

Yet, to support the security engineering process, there is
a need for knowledge of the frameworks used for securing
the software product. During the design phase, knowledge
about patterns that are supported by a framework is needed
in order to avoid incompatibilities between design and
implementation. When implementing the design it is
beneficial to know how to implement a pattern with a
framework. This leads to the need of pattern identification in
security frameworks.

IV. AUTHENTICATION AND AUTHORIZATION PATTERN

IDENTIFICATION

The following section describes the pattern identification
and implementation process using the Spring Security
framework. A focus was put on authentication and
authorization patterns, as these are the focus of the
framework as well. Thereby a distinction is made between
the format of security guidelines describing policy patterns,
and architectural patterns, describing components using and
evaluating the policies.

The patterns were identified manually by using practical
experience on securing applications with the framework, its
openly accessible source code and reference documentation
as well as a book about the framework [5]. The selected
patterns to identify in the framework cover several areas
within authentication and authorization. Another reason in
favor for the selection is their publicity. Commonly known
patterns were selected from [2] and [9].

A. Authentication Patterns Description

The patterns described in this chapter are supporting
decisions in the software development process concerning
authentication.

1) Authentication Policy Patterns
We have not found an abstract authentication pattern

description in the aforementioned literature, which we deem
relevant. The Authentication Information pattern defines, that
a subject has to deliver some sort of information to prove an
association to an identity in an application.

In [9], several mechanisms to authenticate a subject are
specified, which offer three specializations of the pattern.
The distinction is made on what kind of prove has to be
presented, i.e., the subject deliver information it knows, e.g.,
a username and password, it owns, e.g., from a smartcard, or
intrinsically has or is, e.g., finger prints. Lastly, the fourth
specialization of the Authentication Information pattern is
the combination of any two or more of these three
concretions, which is called multi factor authentication.

2) Authentication Architectural Patterns
Information about known identities needs to be stored for

comparison with user input. The abstract User Store pattern
[9] defines, that user information is stored in some kind of
repository. Depending on the type of authentication
mechanism different implementations of the User Store are
required. A LDAP directory or a database, containing
usernames and passwords, are examples of User Store
pattern implementation.

Enforcing the authentication needs specification of the
required components in the software architecture and their
interplay. The Authentication Enforcer pattern [9] describes
these components and their interaction in a web-based
application. The pattern abstracts from the applied
authentication mechanism, defined through the policies, to
enhance reuse. Another aim of the pattern is to centralize
authentication functionality and therefore to reduce
redundancy.

The main component is the eponymous Authentication
Enforcer, to which authentication requests of the client are

sent to. It takes the information offered by the clients from
the request context and compares it to data in the user store.
On successful verification, a subject containing information
gained from the user store on the subject is created.

B. Authentication Patterns Identification

The main interface for implementing the Authentication
Information pattern is the Spring Security Authentication
interface, as its implementation offers information depending
on the authentication mechanism. The Authentication
interface is closely coupled to the AuthenticationProvider
that loads the user information.

Accessing storages with the Spring Security framework,
as required by the User Store pattern, is achieved through
different implementations of the AuthenticationProvider
interface. Each implementation represents a different User
Store and uses varying Authentication concretions, e.g., the
OpenIDAuthenticationProvider offers OpenID
authentication by creating an OpenIDAuthenticationToken
that implements the Authentication interface. The
AuthenticationManager uses the AuthenticationProvider to
verify authenticity of users. An AuthenticationManager and
its AuthenticationProviders can be configured using XML.
An example configuration is shown in Figure 2. The default
authentication manager is used and the custom authentication
provider class can be inserted.

In Spring Security, the Authentication Enforcer pattern is
implemented using the filter chain mechanism introduced by

(a) Authentication Enforcer Pattern

(b) Spring Security Implementation of Authentication Enforcer Pattern

Figure 2 Authentication Enforcer Pattern and Implementation with
Spring Security

the Java Servlet Specification [18]. The DefaultLoginPage-
GeneratingFilter is executed if the login URL of the
application is called and renders a login page to the client.
When the client sends the rendered login form, the
UsernamePasswordAuthenticationFilter tries to authenticate
the client using the configured AuthenticationManager.
Another example is the BasicAuthenticationFilter, which
gets the username and password from the request according
to RFC 1945 [19] and verifies authenticity. There are also
filters for CAS or OpenID authentication, because they
depend on an external user store and therefore must be
treated differently. Due to the statelessness of HTTP, the
SecurityContextPersistenceFilter is needed, which persists
the security context including the authentication in the HTTP
session before responding to a request and recovers the
security context at the beginning of the next request.

Writing an own filter for supporting, e.g., biometric
authentication is possible, too. For each filter specified in the
filter chain, there must be a Java class with the same name.
The filter chain and authentication provider offers flexibility
in adding new authentication mechanisms and user stores
needed to support the Authentication Enforcer pattern.

C. Authorization Patterns Description

This section introduces patterns that can be used to
describe or enforce authorization. Because there is a close
relationship between authentication and authorization, some
architectural patterns require authentication or even offer it.

1) Authorization Policy Patterns
The Authorization pattern [2] is used to define access

control for resources at a high level of abstraction. A subject
is assigned a right for a resource. High level of abstraction
means, that subject, right and resource are not specified
concretely and can be of any kind.

The direct interpretation of the Authorization pattern is
called Identity-Based Access Control (IBAC [2]). Due to the
structure, the concrete Subject gets directly assigned a
Permission to access a Resource in a specific way. Thus a
fine-grained definition of access control is established.
Usually IBAC is implemented using access control lists
(ACL).

Role-Based Access Control (RBAC), described as a
pattern in [2], is a specialization of the Authorization pattern,
which refines the right assignment. Instead of directly
assigning rights, a Subject gets assigned a Role, which

TABLE I. SUPPORTED AUTHENTICATION PATTERNS

Authentication Patterns Spring Security Implementation

Authentication Information

 Single and multi-factor
authentication using username-
password, OpenID, X.509
certificates, HTTP Basic and Digest
authentication (native)

 adaptable to other authentication
methods using 3rd party frameworks

User Store
 XML configuration, LDAP,

Database, properties file (native)
 adaptable to 3rd party user store

Authentication Enforcer Authentication filters for Java Servlet
filter mechanisms

(a) Role-Based Access Control Pattern

(b) Implementing Role-Based Access Control with Spring Security

(c) Policy Enforcement Point Pattern

(d) Spring Security Implementation of Policy Enforcement Point for

Method Access

Figure 3 Authorization Patterns in Spring Security

represents a set of Permissions to access a Resource. Thus, it
is possible to assign Subjects with the same access rights
using Roles among a system reducing the complexity of
rights management.

Another concretion of the Authorization pattern is
Attribute-Based Access Control (ABAC [20]). In contrast to
RBAC, Permission can be defined through expressions using
all available Attributes of Subject, Resource or Environment.

2) Authorization Architectural Patterns
Besides defining authorization policies, there are patterns

describing their enforcement, i.e., access control. An abstract
example for enforcement of access control is the Policy
Enforcement Point (PEP) pattern, also known as Reference
Monitor [2][21]. The PEP defines components and flows
needed to control access to a resource in an abstract way.
Requests to a Protected Resource shall be intercepted by the
PEP. According to Authorization Rules, which consist of
Authorization items, access is granted or denied.

Another concretion of the PEP is the Authorization
Enforcer pattern [9]. The purpose of the pattern is to control
access in a JEE application. Due to this circumstance, there
are several variations of the pattern using different Java
specifications. Requests from a Client are intercepted and
redirected to the Authorization Enforcer, which uses the
Authentication Provider to set the Permissions to the already
loaded Subject. Thus the pattern needs an authenticated
Subject, e.g., set by the Authentication Enforcer pattern.
With the Permissions of the Subject, the Authorization
Enforcer decides, whether the access is granted or rejected.

The Intercepting Web Agent (IWA) pattern [9] helps in
separating application logic from authorization and
authentication logic. It can also be used to add access control
and authentication after the development of an application.
The name already suggests that the patterns operational area
is web application development. Client requests are
intercepted by the eponymous IWA. Either the Client
authenticates itself and its authentication information is
persisted through a cookie or the Client tries to access a
Resource directly, in which case the IWA loads the
previously persisted information of the Subject. The request
is forwarded by the IWA, if the Subject is authorized.

D. Implementation of Authorization Patterns

The following section discusses implementing the
authorization patterns with the Spring Security framework.

1) Policy Pattern
Due to the voter mechanism used for access decisions,

the framework can be enhanced to support several access
control patterns, thus it supports the Authorization pattern.
The sections about ABAC, RBAC, and IBAC show different
voters supported by the framework and indicate the
flexibility. By implementing an AccessDecisionVoter, it is
possible to access external frameworks or software and to
gain extra information needed for the decision or to ask for
the decision from external software.

RBAC raises the need for defining Roles of Users. In
Spring Security Roles are called (Granted-) Authorities [5].
Authorities can be assigned to Users via configuration or
loaded from a User Store [5]. A documented best practice is

the arrangement of Authorities into hierarchies [6]. Roles are
assigned to Users and Rights are assigned to Roles. Thus a
hierarchy is built and Users are assigned several Rights
through their Role.

Rights are assigned to Roles to access a Resource. Spring
Security supports the protection of methods and URLs as
Resources [5]. In the configuration or annotation the
corresponding Right is used, as can be seen in Figure 2 (c)
and (d). Thus only Users with a Role having the Right to
modify a resource are allowed to access it. When
implementing a web application based on the REST
(Representational State Transfer) paradigm [22], the
approach of protecting URLs is preferred. Otherwise,
method security and the use of annotations according to the
Java Specification Request (JSR) 250 should be used. Thus,
the flexibility in changing the security framework is saved.

ABAC is not directly supported by Spring Security, but
can be easily implemented as shown next. Spring Security
offers the Spring Expression Language (SpEL [5]) to
describe access control. Instead of annotating a right to
methods or to a URL, expressions can be used. When
evaluating to True, access is granted. In SpEL expressions,
Attributes of the Subject or the Resource can be used and
compared, e.g., “authentication.id=#resource.ownerId“,
which evaluates to True, if the users owns the resource.

These expressions can be combined with “and” and “or”.
In general, the SpEL fulfills the requirements of the
application. When using more complex ABAC expressions,
SpEL in combination with PermissionEvaluators can be
used. For that, the expression “hasPermission” can be used
[5], for each of which the processing AccessDecisionVoter
calls appropriate PermissionEvaluators. Implementing a
PermissionEvaluator closes the gap between the needs of
ABAC and the Spring Security access control
implementation. The implementation of the Permission-
Evaluator interface can access any Attribute of the Subject,
Resource and Environment.

Spring Security offers the use of Access Control Lists
(ACL), which are commonly used to implement IBAC [2]. In
[5], the set up of a database, holding the ACL and the
configuration of Spring Security to use a database, is shown.
For each Resource an Access Control Entry can be added to
the database, giving specific Permissions to a Subject. Built-
in permissions are read, write, create, delete and administer.
These Permissions can be enhanced or replaced [5]. Besides
ACL and its Entries, the protected URLs have to be
configured or methods have to be annotated. This is done
using the “hasPermission” SpEL expression [5].

2) Architectural Patterns
The previous section showed the definition of

authorization policies with Spring Security and merely parts
of their enforcement. The framework uses a concrete PEP
for URLs and for method access control respectively. The
PEP has to handle all requests on a Protected Object. A filter
(FilterSecurityInterceptor) is used to intercept requests on
URLs and to control access on the URL. The filter
implements the AbstractSecurityInterceptor. Thus requests
on URLs are handled as described in Section II.A.

<user name="student1"... authorities="ROLE_STUDENT" />
<user name="admin" ... authorities="ROLE_ADMIN" />

(a) User definition and role assignment

<bean id="rightsToRoles"
 class="oss.access.hierarchicalroles.RoleHierarchyImpl">
 <property name="hierarchy">
 ROLE_ADMIN >ROLE_STUDENT
 ROLE_STUDENT > PERM_DELETE_POI
 …
 </property>
</bean>

(b) Role definition and permission assignment

@RolesAllowed("PERM_DELETE_POI")
public void delete(PointOfInterest poi) { … }

(c) Configuring access control on a method using annotations

<http use-expressions=”true”>
 <intercept-url pattern=”/poi/*/delete”
 access=”hasRole(PERM_DELETE_POI)”/>
</http>

(d) Configuring access control on URLs

Figure 4 Implementing Role-Based Access Control in Spring Security
(unnecessary information is stripped with “…”)

Requests on methods are intercepted using the Spring
Aspect-Oriented Programming (AOP) [23] feature. The
Spring AnnotationSecurityAspect enhances security
annotated methods. The advice of the aspect redirects
method calls to the AspectMethodSecurityInterceptor, which
is an implementation of the AbstractSecurityInterceptor
interface, as well.

Thus, requests to URLs and methods are intercepted by
the Spring Security framework and processed to enforce
access control. The AuthorizationRules are described by the
AuthorizationPolicy that is used. Method annotation and
expressions in configuration for URLs describe the concrete
Authorization for a Resource. The PEP pattern is used with
Spring Security, if the Authorization pattern is set up and the
FilterChain is configured or method security is activated [5].

The Authorization Enforcer pattern is the concretion of
the PEP for Java EE applications. Thus, the mentioned
protection of methods and URLs is an implementation of the
pattern. The Spring Security AuthenticationManager takes
the role of the Authentication Provider and the several
authentication filters as well as the AuthorizationManager
represent the Authorization Enforcer role. Thus, the
Authorization Enforcer pattern can be implemented by using
Spring Security access control. The Intercepting Web Agent
pattern cannot be applied to the method protection, because
the pattern defines application execution after access control.
Thus the implementation of the pattern is applied through
configuration of the Authentication Enforcer pattern, the
Authorization pattern and a configured URL protection.

E. Discussion

The examination of the Spring Security framework
revealed support for most known security patterns but failed
to offer developers guidance on their implementation. This
handicap has been overcome, as the proposed security
pattern implementation templates enable the efficient
mapping of pattern-based security design in future
development processes. Thus, it allows security knowledge
reuse as proposed by our security engineering approach
described in Section III.

The identification process was thereby laborious as an
intensive black box as well as white box examination of the
framework was performed. This was only possible due to the
excellent documentation and access to the framework’s
source code, which is not always the case, e.g., with
proprietary frameworks, and makes the identification more
difficult.

We tried to document the templates as independent of
any application context as possible and in the
implementation case study, discussed in the next section, we
found that the templates are well crafted and suitable. But we
do not claim completeness or efficiency. In fact, the
templates as well as the pattern to implementation mapping
may need to be adjusted to fit a specific context as well as
future versions of the framework.

V. IMPLEMENTING CASE STUDY

The knowledge described in the previous sections
combined with, e.g., use cases, misuse cases and component

diagrams has been applied to the development of the security
functionality of a web application. Spring Security was used
as the security platform used to protect the application.

A. KITCampusGuide Scenario Descriptions

The KITCampusGuide application is a navigation tool
supporting students, teachers and staff in finding and
navigating to points of interest (POI), i.e., any kind of
landmark, such as a canteen, an auditorium or offices. Due to
restricted areas on the campus and several other
requirements, the search for and display of POIs has to be
restricted. Users should be able to create private POIs, which
can only be seen and modified by themselves. As such,
management of POIs is the most relevant to security.

B. Secure Development of a POI Manager Component

A POI Management component was developed by
modeling the requirements using UML use cases. Security
analysis resulted in a need for user authentication and
authorization, when creating private POIs. An architectural
decision was made to use a single factor authentication using
username-password pairs and RBAC for authorization
policies. The security functionality is independent from the

TABLE II. SUPPORTED AUTHORIZATION PATTERNS

Authorization Patterns Spring Security Implementation

Role-Based Access Control Hierarchical roles using
GrantedAuthorities

Identitty-Based Access Control Access Control Lists

Attribute-Based Access Control Simplified implementation using
Spring Expression Language

Authorization Enforcer Aspect interceptor for method
access

Intercepting Web Agent Filter mechanism of Java
Servlets for URL access

functional logic and supports access control to restrict access
using an IWA. The architecture model was enhanced using
the appropriate pattern descriptions.

Using the previously acquired knowledge about security
patterns supported by the Spring Security framework, the
security functionality was implemented by providing
appropriate configurations to the framework and applying
annotations to relevant methods. Figure 2 shows the
necessary configurations to implement RBAC for a delete
operation on POIs. Thereby two roles are defined and
assigned to two different users. The role "ROLE_ADMIN"
inherits the permissions of the role "ROLE_STUDENT",
which in the shown example includes the permission to
delete a POI. This is controlled using an annotation for the
"delete" method as well as an authorization filter for the
URL-based "delete" operation.

C. Problems and Experiences

Finding the level of abstraction needed for the
application is an important issue during design phase. In the
case study the whole development process was traversed by
a single person and the application size was manageable. But
as the size of the application grows, this could lead to
problems. A hierarchy of patterns indicated in the previous
chapters would close the gap between a high level of
abstraction and a level close to implementation. This is
helpful in concretizing the design step by step.

VI. CONCLUSION AND FUTURE WORK

In this paper, the open source security framework Spring
Security was examined in its support for common security
patterns for authentication and authorization. Patterns for
RBAC and ABAC as well as for username/password-based
authentication were identified and appropriate best-practice
implementation templates for Spring Security were provided.
These templates can be used as a reference to implement the
mentioned patterns in other projects. Further, the benefits of
a pattern-based security framework description for a model-
driven approach were discussed and its role in a reuse-based
security engineering process was briefly explained.

In continuation of this work, the possible security design
and implementation decisions need to be captured in flexible
variation models to provide a decision support. Also, the
relationships between the patterns will be determined and
specified to identify mandatory or optional dependencies
between the design and implementation patterns. In future
research, we focus on completing the different parts of our
reuse-based security engineering process.

REFERENCES
[1] R. J. Anderson, Security Engineering, 2nd ed. Indianapolis, Ind.:

Wiley, 2008, p. 1040.

[2] M. Schumacher, E. B. Fernandez, D. Hybertson, F. Buschmann, and
P. Sommerlad, Security Patterns. Chichester, England: John Wiley &
Sons Ltd, 2005, p. 565.

[3] A. Dikanski and S. Abeck, “Towards a Reuse-oriented Security
Engineering for Web-based Applications and Services,” Proc. Seventh
International Conference on Internet and Web Applications and
Services (ICIW 2012), Stuttgart, June 2012, pp. 282–285.

[4] “Spring Security.” SpringSource Community, p. Apache License,
Apr. 2008.

[5] P. Mularien, Spring Security 3. Birmingham, Packt Publishing, 2010.

[6] M. Wiesner, “Introduction to Spring Security 3 /3.1,” SpringOne
2GX. Chicago, Oct.-2010.

[7] N. A. Delessy, E. B. Fernandez, and M. M. Larrondo-Petrie, “A
Pattern Language for Identity Management,” International Multi-
Conference on Computing in the Global Information Technology,
Guadeloupe City, March 2007, pp. 31–31.

[8] E. B. Fernandez, G. Pernul, and M. M. Larrondo-Petrie, “Patterns and
Pattern Diagrams for Access Control,” Proc. Trust, Privacy and
Security in Digital Business (TrustBus 2008), Turin, Italy, Sept. 2008,
pp. 38–47.

[9] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns, 1st ed.
Upper Saddle River, N. J.: Prentice Hall International, 2005, p. 1088.

[10] N. A. Delessy and E. B. Fernandez, “Patterns for the eXtensible
Access Control Markup Language,” Proc. 12th Pattern Languages of
Programs Conference (PLoP2005), Monticello, Illinois, USA, Sept.
2005, pp. 7–10.

[11] E. B. Fernandez, “A Methodology for Secure Software Design,” Proc.
International Conference on Software Engineering Research and
Practice (SERP’04), pp. 21–24, 2004.

[12] N. A. Delessy and E. B. Fernandez, “A Pattern-Driven Security
Process for SOA Applications,” Proc. ACM Symposium on Applied
computing, pp. 2226–2227, 2008.

[13] M. Bunke and K. Sohr, “An Architecture-Centric Approach to
Detecting Security Patterns in Software,” Proc. Third International
Conference on Engineering Secure Software and Systems (ESSoS'11),
Madrid, 2011, pp. 156–166.

[14] R. K. Keller, R. Schauer, S. Robitaille, and P. Page, “Pattern-based
Reverse-Engineering of Design Components,” Proc. International
Conference on Software Engineering, Los Angeles, 1999, pp. 226–
235.

[15] T. Lodderstedt, D. Basin, and J. Doser, “SecureUML: A UML-Based
Modeling Language for Model-Driven Security,” LNCS, vol. 2460,
pp. 426–441, 2002.

[16] M. Alam, R. Breu, and M. Hafner, “Modeling Permissions in a (U/X)
ML World,” Proc. First International Conference on Availability,
Reliability and Security (ARES), Vienna, April 2006,pp. 685–692.

[17] C. Emig, S. Kreuzer, S. Abeck, J. Biermann, and H. Klarl, “Model-
Driven Development of Access Control Policies for Web Services,”
Proc. 9th International Conference Software Engineering and
Applications (IASTED), vol. 632, pp. 069–165, 2008.

[18] “Java Servlet 2.3 Specifications,” Palo Alto, 53, Sep. 2001, last
accessed March 2012.

[19] T. Berners-Lee, R. Fielding, U. C. Irvine, and H. Frystyk, “Hypertext
Transfer Protocol (HTTP 1.0),” 1945, May 1996.

[20] E. Yuan, J. Tong, B. Inc, and V. McLean, “Attributed Based Access
Control (ABAC) for Web Services,” Proc. IEEE International
Conference on Web Services (ICWS), Orlanda, Florida, July 2005.

[21] T. E. Fægri and S. O. Hallenstein, “A Software Product Line
Reference Architecture for Security,” in Software Product Lines, no.
8, T. Käkölä and J. C. Dueñas, Eds. Berlin, Heidelberg: Springer,
2006, pp. 276–326.

[22] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures, Irvine: University of California, Irvine, 2010.

[23] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-Oriented Programming,” in Lecture
Notes in Computer Science, vol. 1241, no. 10, M. Akşit and S.
Matsuoka, Eds. Berlin/Heidelberg: Springer-Verlag, 1997, pp. 220–
242.

[24] Oracle, Java Platform, Enterprise Edition (Java EE) 6,
<http://www.oracle.com/technetwork/java/javaee/overview/index.htm
l>, last access March 2012.

