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Abstract

The performance (i.e., resource usage, timing behaviour, and throughput)

of a system influences the total cost of ownership (TCO) as well as the

user satisfaction. Both are highly business critical metrics for software

providers. In the field of software performance engineering, performance

modelling approaches have been established that allow performance engi-

neers to evaluate design decisions with respect to performance character-

istics. However, when it comes to creating and maintaining performance

models for software systems that are based on existing services and li-

braries, current performance modelling approaches can require substantial

effort. Often, the size of the software systems, the heterogeneous technol-

ogy stacks, and the fine-grained abstraction level of the approaches make

the resulting models extremely complex and thus limit their acceptance

among practitioners. Therefore, this thesis addresses the challenge of per-

formance prediction in scenarios that involve existing software systems.

It proposes a novel goal-oriented method for experimental, measurement-

based performance modelling. The method guides performance engineers

in finding a suitable abstraction level and supports the efficient derivation

of performance models using automated statistical model inference. More-

over, it can be combined with other modelling approaches in order to limit

the modelling effort of existing subsystems. We introduce (i) a language

for the specification and execution of automatable experiment series and

(ii) present and compare different strategies for the automated, adaptive

generation of experimental designs for statistical model inference. We val-

idated the approach in a number of case studies including standard indus-

try benchmarks as well as a real development scenario at SAP. In general,
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our approach allows performance engineers to efficiently create and main-

tain accurate goal-oriented performance models of software systems that

involve complex, existing components.
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Kurzfassung

Die Performance-Eigenschaften eines Software-Systems (Ressourcennut-

zung, Antwortzeitverhalten oder Durchsatz) beeinflussen sowohl die Be-

triebskosten als auch die Zufriedenheit der Nutzer. Beides sind äußerst ge-

schäftskritische Metriken für Software-Anbieter. Im Bereich Software Per-

formance Engineering haben sich Modellierungsansätze etabliert, mit deren

Hilfe Entwurfsentscheidungen bezüglich ihrer Performance-Eigenschaften

analysiert und bewertet werden können. Zur Erstellung und Wartung von

Performance-Modellen für bereits existierende Software-Systeme oder Soft-

ware-Komponenten ist bei den existierenden Ansätzen ein erheblicher ma-

nueller Aufwand notwendig. Performance-Modelle für solche Systeme wer-

den oft sehr komplex und daher in der Praxis selten erstellt. Gründe hierfür

sind die Größe und Komplexität der Systeme, die heterogenen Technologie-

Landschaften und die fein-granulare Abstraktionsebene bei der Modellie-

rung. Die vorliegende Arbeit adressiert daher die Herausforderung Per-

formance-Modellierung bestehender komplexer Software Systeme zu ver-

einfachen. Die Arbeit führt eine neue zielgerichtete Methodik zur expe-

rimentellen, messbasierten Performance-Modellierung ein. Performance-

Experten erhalten durch die Methodik eine Hilfestellung bei der Suche

nach einer geeigneten Abstraktionsebene bei der Modellierung. Des Wei-

teren unterstützt die Methodik das effiziente Ableiten von Performance-

Modellen durch die automatisierte Kombination von Messpunktbestimmung

und statistischer Modellbildung. Darüber hinaus kann die vorgestellte Me-

thodik mit existierenden Ansätzen kombiniert werden, um deren Vorteile

zu nutzen und dennoch den Modellierungsaufwand für bestehende Teilsys-

teme möglichst gering zu halten. In der Arbeit werden (i) eine Sprache und
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ein Framework zur Spezifikation und Ausführung von automatisierbaren

Experiment Serien vorgestellt und (ii) verschiedene Strategien für die auto-

matisierte Generierung von Versuchsplänen zur messbasierten, statistischen

Modellbildung eingeführt und miteinander verglichen. Der Ansatz wurde in

einer Reihe von Fallstudien validiert. Es konnte unter anderem in einer in-

dustriellen Fallsstudie bei der SAP AG gezeigt werden, dass Performance-

Modelle für komplexe, bestehende Software-Systeme effizient und mit sehr

guter Vorhersagegenauigkeit abgeleitet werden können.
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1. Introduction

Quality aspects such as performance, security, and maintainability play an

important role in software engineering. The performance (i.e., resource us-

age, timing behaviour, and throughput) of a system influences the total cost

of ownership (TCO) as well as the user satisfaction which are highly busi-

ness critical metrics [Bix10, Dix09, JN12, Cro12]. In [Liv08], the founders

of companies like PayPal and Hotmail report on the large efforts they had

to undertake in order to keep their first application versions responsive and

make it scalable with the growing user base. To avoid these last-minute ef-

forts, it is essential to integrate performance evaluation into the overall soft-

ware engineering lifecycle and ensure early and continuous performance

awareness [Jai91]. Williams and Smith [WS03] estimate the possible finan-

cial benefit of continuous performance consideration to be several million

US-dollars in a business case for a medium sized project.

However, evaluating the performance of a system is a complex task as

it requires detailed knowledge about the software itself, the platform on

which the software runs, and the methods and tools to assess and interpret

performance metrics. Usually, performance evaluations are conducted by

performance analysts that team up with single members of the correspond-

ing development units [SMF+07]. The methods that are applied to eval-

uate performance can be grouped in two categories: scenario-based load

and regression testing and performance modelling [WFP07]. While load

and regression testing are mostly used to define and monitor quality gates

for software development, performance modelling is a suitable means to

evaluate design decisions and get a detailed understanding of a system’s

performance characteristics early in the development process. A perfor-
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1. Introduction

mance model is an abstraction of the actual software system that describes

the performance behaviour depending on the system’s usage [SW01]. For

example, the results derived by a performance model can be used to answer

what-if questions like "What happens to performance if I change the values

of configuration parameter X and Y?" or "What happens to performance if

I use design pattern A instead of B?".

Creating performance models for complex systems is a challenging task

that is subject to ongoing research in the performance engineering field

[Smi07, WFP07, Koz10]. Such complex systems are not developed from

scratch but use existing services and libraries like middleware or legacy

components, they comprise millions of lines of code designed and devel-

oped by multiple architects and hundreds of developers, and they are sub-

ject to continuous change. Performance analysts have to identify which of

the many potential system components and parameters are performance-

relevant. Moreover, they have to ensure that they have all major sources

of disturbance under control in order to draw reliable conclusions. And

ultimately, they have to quantify the relationship between the performance-

relevant parameters and the performance metric of interest in order to pro-

vide this information to developers and architects. Classical model-driven

approaches (such as surveyed in [BDIS04] and [Koz10]) require much hu-

man knowledge and effort to construct performance models of existing ap-

plications as they require a detailed description of the internal system be-

haviour. Re-engineering approaches [Kro10] can help to reduce efforts but

get complex when applied to heterogeneous technology stacks. A com-

mon issue of all performance modelling approaches is the selection of the

abstraction level. In most existing approaches, the abstraction level is too

fine-grained which indeed provides a lot of information and flexibility but

which makes the modelling process as well as the resulting models too

complex [Smi07]. In the scenarios that we address in this thesis, software

architects or developers are interested in the performance impact of very

specific changes that do not require this flexibility [Jai91, WFP07]. In gen-

2



1.1. Research Questions

eral, too much information and flexibility can sometimes lead to disinterest

due to missing comprehensibility.

In this thesis, we introduce a novel method for experimental, measure-

ment-based performance modelling which guides performance engineers

in finding a suitable abstraction level and which addresses the challenge of

dealing with existing and evolving software systems more efficiently. In

order to support the implementation of the method, we introduce (i) a lan-

guage for the specification and execution of automatable experiment series

and (ii) present and compare different strategies for the automated, adaptive

generation of experimental designs for statistical model inference. We val-

idated the approach in a number of case studies including standard industry

benchmarks as well as a real development scenario at SAP. In the industrial

case study at SAP, we designed a performance model for enterprise web

application front-ends. In general, our approach allows performance engi-

neers to efficiently create and maintain accurate goal-oriented performance

models of complex software systems.

1.1. Research Questions

In this thesis, we address three main areas:

• In the area of Performance Modelling, we aim at a better integra-

tion of performance models in industrial software development

and therefore finding ways to deal with existing and evolving

software systems more efficiently.

• In the area of Experimental Performance Evaluation, we aim at

making the process of defining and running performance evalu-

ation experiments more efficient.

3



1. Introduction

• In the area of Web Performance, we aim at increasing the perfor-

mance awareness of front-end developers in the design phase of

enterprise web application screens.

In the following, we briefly introduce the research questions that we ap-

proach in the different areas. A detailed discussion of the scientific chal-

lenges is provided in each chapter.

Performance Modelling The most recent overviews on the achieve-

ments and outstanding problems in the area of software performance mod-

elling are provided by Woodside et. al [WFP07], Smith [Smi07], and Kozi-

olek [Koz10]. A common conclusion is that although the modelling meth-

ods and tools have evolved and it has been proven that the resulting models

can provide accurate predictions for real-world software systems, there is

a need to „[...] make Software Performance Engineering (SPE) more ac-

cessible to software developers rather than requiring modelling gurus, and

to make SPE more likely to be adopted and used in development organisa-

tions.“ [Smi07]. Woodside et al. [WFP07] highlight the need for a conver-

gence between measurement-based and model-based approaches towards

more practicable and maintainable performance prediction models. A main

challenge with respect to practical scenarios is to find proper mechanisms

for determining the performance behaviour of systems or parts of a system

(e.g. legacy systems or third-party components) that cannot be modelled

formally (or only with large manual effort). Moreover, the abstraction level

of performance models needs to be better aligned to the needs of software

architects and developers [Jai91]. This can significantly reduce modelling

efforts and increase the acceptance of performance models among prac-

titioners. In this thesis, we address the aforementioned problems in the

context of modelling existing software systems and thus aim at answering

the following questions:

1. How to find a proper abstraction level for a performance model?
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1.1. Research Questions

2. How to create and maintain performance models of existing soft-

ware systems efficiently?

Experimental Performance Evaluation In industrial practice, each

performance evaluation scenario differs from another in, for example, the

system under test, the tools used to monitor the system, or the tools used

to generate load. In order to apply an experimental, measurement-based

approach we need to be able to control these heterogeneous landscapes,

i.e.,vary the values of input parameters and observe several performance

metrics [Jai91]. Given a specific test environment, we can theoretically

measure any point in the parameter space (i.e., any combination of input

parameter values). Practically, this is impossible due to the huge amount of

potential measurement points (i.e., experiments) even for simple systems.

Furthermore, in order to derive a performance model based on experimen-

tation, a large amount of different experiment series have to be conducted.

And, in order to maintain the models experiment series have to be repeated

on a regular basis. Thus, the efficient specification and automated exe-

cution of experiment series is an essential challenge that needs to be ad-

dressed. Generally, we need to approach the following research questions

in the area of experimental performance evaluation:

1. How to find a trade-off between the number of experiments and pre-

diction accuracy?

2. What is a suitable abstraction level to deal with heterogeneous sce-

narios?

3. How to specify automatable performance evaluation experiments?

Web Performance In Chapter 5, we apply our approach in the web de-

velopment domain. In this context, we address research questions in the

area of Web Performance. Work in this field is based on the observation

that a major fraction of the end-to-end response times of web applications
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1. Introduction

is spent in the front-end [Sou07, Dix09]. Thus, improving front-end per-

formance is a critical task for responsive applications. In his books [Sou07,

Sou09], Steve Souders introduced a set of basic rules to optimize front-end

performance. Inspired by these rules, tools like WebPageTest [Mee] and

others allow developers to detect and automatically resolve the most com-

mon problems. For the development of web-based enterprise applications,

companies often rely on JavaScript libraries that provide a uniform appear-

ance, as well as a set of UI elements and utility functions commonly used in

this kind of applications. Besides the classical challenges addressed by the

guidelines and tools mentioned before, UI developers and designers need

to evaluate the impact of the design of a screen on front-end performance.

This involves questions like „How many columns and rows can I add to

a table of type X in my web application without violating performance

requirements?“ or „What is the impact of back-end call Y on front-end

performance?“. Theoretically, these questions could also be answered with

the existing performance measurement and analysis tools. However, practi-

cally the effort for applying measurement-based approaches to these kind of

questions is too high, which hinders the flexible, performance-aware con-

struction and evaluation of screen designs. Moreover, the development of

a screen’s design is usually conducted before the screen is actually imple-

mented (e.g. using wireframe or mockup tools). As a consequence, early

performance feedback (prior to implementation) is essential to drive the

deployment of fast web applications [Fro13]. In order to provide this early

feedback, we need to answer the following questions:

1. How to predict the performance of web applications?

2. What are performance-relevant influences in enterprise web appli-

cation front-ends?

3. How to create a prediction model that captures all performance-

relevant aspects and predicts front-end performance based on the

planned UI design?
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1.2. Existing Solutions

As discussed in the previous section, performance modelling needs closer

integration in industrial software development processes and thus ways to

deal with existing and evolving software systems more efficiently. In the

following, we give a brief overview of approaches that deal with this chal-

lenge.

Several approaches build upon established architecture-based perfor-

mance modelling methods (e.g. as surveyed in [BDIS04, Koz10]). Con-

cerning the evaluation of already existing components, the main focus of

these approaches lies on (i) the derivation or extraction of appropriate archi-

tecture models and (ii) the estimation of resource demands and other quan-

titative data needed to parametrize the performance models. Approaches

focusing on the first issue analyse call traces [BKK09] or apply static code

analyses [KKR10] to extract models of software systems. Approaches

focusing on the second issue (e.g. [AW04, PSST06, SSN+08, TZV+08,

KPSCD09, TDZN10, HKHR11]) use benchmarking and monitoring of sys-

tems to derive model parameters. The general drawback of these approaches

is that they are bound to the assumptions of the underlying performance

model [WFP07]. For example, if a network connection is modelled with

FCFS scheduling, it won’t capture the effect of collisions on the network.

Another important issue is scalability. Creating architecture-based perfor-

mance models for large systems requires considerable effort and can be-

come too costly and error-prone as much work has to be done manually. For

the same reason, many developers do not trust or understand performance

models, even if such models are available. Concerning legacy systems and

third party software, the required knowledge to model a systems architec-

ture may even not be available at all, or the heterogeneous technology stack

makes modelling infeasible.

Existing approaches that support an experimental, measurement-based

performance evaluation process focus on (i) the efficient specification of ex-
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periments, and (ii) the (semi-) automated execution of experiments. How-

ever, none of the approaches supports the technology- and application-

independent implementation of a holistic and systematic approach to the

performance analysis of software systems such as, for example, defined by

Jain [Jai91]. Existing experiment specification languages are often bound

to the corresponding experiment management system which in turn are in

most cases bound to a specific execution environment. Nimrod/G [AGK00]

is for example a tool that allows performance analysts to conduct para-

metrised simulations in Grid environments. While the corresponding spec-

ification language supports the definition of input parameters and different

types of value assignments, it also includes parts that are very specific to

the execution of simulation models in Grid environments (such as task de-

scriptions that are supposed to run on the selected node). ZEN [PF05]

is a directive-based language which has the drawback that the experiment

meta-information is defined in the application source code. This limits its

scope to studies where the source code is available and easy to compile

and deploy, as for every experiment a recompilation and redeployment is

conducted by the corresponding experiment management system ZENTU-

RION [PF04]. Approaches such as presented by Woodside et al. [WVCB01],

Wu et al. [WW08] and Hauck et al. [HKHR11] apply experimental mea-

surements to calibrate a prediction model that has been created in an up-

stream manual step. Thus, these approaches are tied to a certain type of per-

formance models or a certain aspect of a software system. Another group

of approaches [KM97, Wor05] perform experimental analysis on data mea-

sured at system runtime. Although these approaches use the notion of ex-

perimentation, they lack the capability to systematically control the execu-

tion of experiments based on experimental designs. Approaches from other

domains, such as the ZOO experiment management system [ILGP96], lack

the capability of specifying sophisticated experiment selection strategies

for the automated control of large sets of experiments.
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1.3. Contributions

In the scope of this thesis, we proposed a novel method for experimen-

tal, measurement-based performance modelling. In order to support the

implementation of the method, we introduced (i) a language for the speci-

fication and execution of automatable experiment series and (ii) developed

and compared different strategies for the automated, adaptive generation of

experimental designs for statistical model inference. Moreover, we applied

our method in an industrial case study at SAP, where we designed a perfor-

mance model for enterprise web application front-ends. In the following,

we discuss the contributions of this work in more detail.

A Method for Experimental, Measurement-based Performance
Modelling Our novel method for experimental, measurement-based per-

formance modelling includes two main blocks: (i) a goal-oriented proce-

dure for the specification of performance models, and (ii) a process defi-

nition for the experimental derivation of goal-oriented performance mod-

els. The explicit goal-oriented specification of a performance model based

on our Purpose, Consumption, Construction methodology, supports perfor-

mance engineers in finding an appropriate abstraction level and thus avoid-

ing the construction of too detailed, general purpose performance models.

The experimental, measurement-based process allows performance engi-

neers to efficiently derive and maintain performance models of complex

software systems. Based on a well-defined test environment and a set of

initial assumptions on performance-relevant influences, performance engi-

neers start an iterative specification and execution of experiment series, in

which existing assumptions are validated and new assumptions are derived.

Once all performance-relevant influences are understood and quantifiable,

a second set experiment series is conducted that aim at deriving prediction

functions for the performance model. Finally, the accuracy of the perfor-

mance model is validated to ensure that the model is representative. In the
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scope of this thesis, we apply this method for the design of a performance

model of SAP enterprise web application front-ends.

A Language for the Specification and Execution of Automat-
able Experiment Series In order to support the method for experi-

mental, measurement-based performance modelling, we developed a novel

experiment specification language for automated performance evaluations.

Unlike other experiment specification languages, it enables the definition of

experiments independent of concrete domains, technologies or applications

which allows performance analysts to focus on the problem that is investi-

gated. Moreover, it allows performance analysts to reuse experiment def-

initions over multiple studies and share experiment meta-information and

best practices in experimental design among each other. Another benefit

of our language is the clear separation between experiment definition and

automated experiment execution which facilitates the integration of the lan-

guage in different experiment automation tools. In the scope of this work,

we also developed a framework that uses the language to automate the ex-

ecution of experiments and to iteratively combine experimental design and

analysis. Moreover, the language and the framework allow researchers and

engineers to apply and compare different experimental design and analysis

strategies. The efficient specification and execution of performance eval-

uation experiments provides a basis for different performance engineering

tasks. In this thesis, we applied the approach for deriving software per-

formance models. In other case studies, it has already been applied for

automated exhaustive performance regression testing [WWHM13] or to au-

tomatically detect performance anti-patterns [WHH13].

Automated, Adaptive Generation of Experimental Designs for
Statistical Model Inference We introduced an automated iterative pro-

cess that combines experiment selection, function inference and function

validation in order to derive experimental designs that optimize the trade-
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off between the number of executed experiments and the accuracy of mul-

tidimensional performance prediction functions. Performance analyst can

flexibly introduce, combine, and evaluate different strategies for the three

process steps. In our work, we systematically applied and evaluated (i) dif-

ferent strategies for automatically selecting new measurement points after

each iteration, (ii) different validation strategies that allow us to automat-

ically decide when to terminate the measurements, as well as (iii) differ-

ent statistical model inference methodologies that make fewer assumptions

about the underlying functional dependencies. We validated the approach

by applying the different combinations in two case studies using indus-

try standard benchmarks (SAP Sales & Distribution, SPECjbb2005). In

general, the best results have been achieved by the combination Adaptive

Equidistant Breakdown (AEB) measurement point selection, Dynamic Sec-

tor validation with Global prediction error (DSG), and Multivariate Adap-

tive Regression Splines (MARS) model inference. In the case studies our

approach allows performance engineers to automatically derive performance

prediction functions with a mean relative prediction error of less than 20%

using only up to 10% of the potential measurement points.

Performance Model for Enterprise Web Application Front-ends
In the course of applying our method for experimental, measurement-based

performance modelling in an end-to-end industrial case study at SAP. We

evaluated the impact of different screen design alternatives on front-end

performance for enterprise web applications developed with the JavaScript

library SAP UI5 [SAP13b]. Based on the experiment results, we derived

a set of heuristics to handle the large design space for web application

screens. Moreover, we designed a performance model that allows esti-

mating the impact of screen designs on performance for the three major

browsers (Internet Explorer, Chrome, and Firefox). The derived perfor-

mance model supports hundreds of UI designers and developers at SAP in

building responsive screens. It allows them to assess the effect of different
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UI design alternatives on front-end performance prior to implementation

and with minimal overhead. We validated the accuracy of the performance

model by comparing predictions to measurements for screens of two real-

world enterprise web applications developed with the SAP UI5 library. The

results show that we can predict the front-end performance for the screens

of these applications with an average prediction error of 11% across all

studied browsers. Due to the automatically executable experiments, our

approach requires only limited manual effort for updating a performance

model to system changes (e.g. new versions of the browser or the UI li-

brary).

1.4. Outline

• Chapter 2 describes the basic terms and concepts from the main

areas relevant for this thesis. We give a short general introduc-

tion to software performance engineering and a more detailed

view on performance measurements and web performance. We

present the concept of experimental design and introduce a set

of state of the art designs for the identification of performance-

relevant parameters and parameter interactions. Furthermore, we

introduce the statistical inference methods that have been applied

in the context of this thesis.

• In Chapter 3, we introduce our method for deriving goal-oriented

performance models. We describe a conceptual part that suggest

a procedure on how to approach performance modelling in the

context of a software development organisation, and an engi-

neering part that introduces a detailed process on how to derive

a performance model based on systematic, measurement-based

experimentation. We applied the process in an industrial case

study presented in Chapter 5.
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• Chapter 4 describes our work that supports the implementation

of the process introduced in Chapter 3. We present an overview

on our approach for automatically executing and analysing ex-

periments. We introduce a language for the definition of au-

tomatable performance evaluation experiments as well as a frame-

work that allows to automatically run these experiments in dif-

ferent scenarios. Moreover, we provide a detailed description

of the automated, iterative combination of experimental design

and statistical analysis in order to derive multidimensional per-

formance prediction functions. In multiple case studies, we val-

idate that the approach can be applied to real applications and

provides accurate results running only a relatively small set of

measurements.

• In Chapter 5, we apply the method introduced in Chapter 3 us-

ing the strategies and tools introduced and validated in Chapter

4 in an end-to-end industrial case study that we conducted in co-

operation with performance analysts and development groups at

SAP. We provide a detailed description of how we derived and

validated a performance model of the SAP UI5 JavaScript library

for three major browsers (Internet Explorer, Chrome, and Fire-

fox). We discuss the accuracy of the resulting performance mod-

els as well as the effort for creating and maintaining the models.

• In Chapter 6, we discuss state of the art approaches in the field

of measurement-based performance evaluation that are related

to our work presented in Chapter 4. Moreover, we discuss exist-

ing approaches in the field of performance modelling that apply

measurements in order to deal with the complexity of modelling

existing and frequently changing software systems, and compare

these approaches to the method introduced in this thesis.
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• Chapter 7 concludes this thesis. We summarise the most impor-

tant scientific contributions of our work as well as the benefits

to software performance engineering. Finally, we outline open

questions and future research directions.

14
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In this chapter, we introduce the basic terms and concepts from the main ar-

eas relevant for this thesis: software performance engineering, experimen-

tal design, and statistical inference. In Section 2.1, we give a short gen-

eral introduction to software performance engineering and a more detailed

view on performance measurements and web performance. In Section 2.2,

we present the concept of experimental design and introduce a set of state

of the art designs for the identification of performance-relevant parameters

and parameter interactions. Finally, Section 2.3 describes statistical infer-

ence methods that have been applied in the context of this thesis.

2.1. Software Performance Engineering

The term Software Performance Engineering (SPE) [Smi81, Smi82] has

been established by Connie Smith in the early 80’s and was originally fo-

cused on the use of performance prediction models to assess the perfor-

mance behaviour of a software system in the early stages of the software

development cycle. The idea was to support software architects in detecting

and solving performance problems based on well-established performance

modelling techniques like queueing network models [Laz84, BGdMT06],

stochastic petri nets [Mar95, BK02], and stochastic process algebras [Hil96,

ABC10]. Since then, the field has evolved towards modelling approaches

that hide the analytical models behind the domain-specific languages of

software architects and developers in order to simplify the modelling pro-

cess [Smi86, UH97, Poo00, Smi01, DRSS01, BDIS04, Smi07, Koz10].

Furthermore, Woodside et. al [WFP07] established a broader definition
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of software performance engineering by including „[...] the entire collec-

tion of software engineering activities and related analyses used through-

out the software development cycle, which are directed to meeting per-

formance requirements.“ They group the field in measurement-based ap-

proaches like performance testing, diagnosis and tuning, model-based ap-

proaches as introduced by Smith, and approaches that combine measure-

ments and modelling [WFP07]. The approach presented in this thesis sup-

ports software engineers in conducting measurement-based performance

evaluations. In the remainder of this section, we present the basics of per-

formance measurement which builds the foundation for our automated,

experimental performance evaluation approach introduced in Chapter 4.

Moreover, we present the state of the art regarding software performance

engineering in web development which is the area where we conducted the

industrial case study introduced in Chapter 3.

2.1.1. Performance Measurement

Performance measurement approaches can be grouped in active measure-

ment and passive measurement [MA01]. Passive measurement approaches

instrument and/or monitor a system in order to gather measurement data

but do not add additional synthetic load on the system. This approach is

also known as real user monitoring, runtime monitoring, or real-time appli-

cation monitoring [AR10]. For example, passive measurement is used to

track actual user behaviour and characterize workload or to monitor perfor-

mance metrics and get alerted when a problem occurs. Active measurement

approaches use measurement agents that simulate real user behaviour and

observe the system’s behaviour under the controlled workload [MA01]. As

the approach presented in this thesis is an active measurement approach, we

focus on this type in the remainder of this section. In the following, we de-

scribe the main components in an active measurement approach: Workload

Generation, Data Collection, and Reporting.
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Workload Basically, the term workload denotes either a real workload

or a synthetic workload [Jai91]. A real workload is one observed in a pro-

ductive system. Thus, real workloads are not repeatable and therefore gen-

erally not suitable for measurement-based performance predictions. Syn-

thetic workloads are models of real workloads with similar characteristics.

They can be applied repeatedly, are modifiable without affecting opera-

tion, may be portable to different systems, and may have built-in measure-

ment capabilities [Jai91]. Furthermore, in literature workloads are grouped

in coarse-grained benchmarks and fine-grained benchmarks while building

benchmark hierarchies [KS00, MA01, Jai91]. Thereby, the granularity of

the property that can be measured determines the granularity of the work-

load. A coarse-grained benchmark is for example a benchmark measuring

the performance of an e-commerce system. In contrast, a benchmark mea-

suring the CPU speed is considered as fine-grained.

Jain [Jai91] describes four major aspects that have to be considered when

selecting workload:

• Services Exercised: One should clearly distinct between System

Under Test (SUT) and Component Under Study (CUS) while

taking into account the purpose of the study. SUT denotes the

complete set of components of a system. CUS is a specific

component of the SUT whose alternatives should be considered.

Workload (as well as performance metrics) is determined pri-

marily by the SUT. Moreover, the workload should exercise all

services provided by the SUT.

• Level of Detail: After the SUT and the corresponding service

interfaces have been identified; the next step is to choose the

level of detail for the service request that should be generated.

Jain lists the possibilities as follows: Most frequent requests

(e.g. the addition instruction to compare ALUs), frequency of

request types (e.g. instruction mixes), time-stamped sequence
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of requests (e.g. trace of requests on a real system), average

resource demand (based on resource demand per request), and

distribution of resource demands (e.g. if there is a large variance

in the resource demands).

• Representativeness: The test workload should match the real

application. That means the arrival rate, the total resource de-

mands, and the resource usage profile should be the same or

proportional to that of the application.

• Timeliness: User behaviour often changes over time, so syn-

thetic workloads could become obsolete over time. Thus, it is

important to monitor the user’s behaviour on an ongoing basis.

To convert the logical description of the workload into actual load drivers

that run the tests, one needs to decide how to generate the load. Podelko

[Pod05] categorizes the approaches as follows:

• Record and Playback (Virtual Users): Record communication

between two tiers of a system and playback the automatically

created script. The users simulated in such kind of tools are re-

ferred as virtual users. The real client systems are not necessary

to replay the scripts. That allows simulating a high number of

users. Instead, the most important factor is the protocol used

between the considered tiers.

• Record and Playback (GUI Users): The second record and play-

back approach comprises tools that record all actions of a real

user (e.g. mouse moving and clicking). Thus, the communi-

cation between user and client GUI is recorded and replayed.

While this approach delivers real end-to-end times, the problem

is that one needs a machine for each user that has to be sim-
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ulated. This makes the approach infeasible for measurements

where a large amount of users have to be simulated.

• Manual: In some cases the manual generation of workload might

be a pragmatic option. For example, when you need to simulate

just one (or a few) user and you do not want to install a tool or

develop scripts. However, problems with manual testing are that

tests are not exactly reproducible, they cause high effort, and

thus are not feasible over longer periods or for multiple users.

• Programming: The programming approach means that a special

program is developed to generate multi-user workload. There-

fore, the API or the source code of the system under test is used.

In simple cases, this might be a time- and cost-effective solution,

if the programmer is familiar with the API of the system under

test. However, features like complex user scenarios or central-

ized test management and result analysis can drastically increase

the effort to develop and maintain such programs.

• Custom Load Generation: This is a mixed approach as it com-

bines some of the above mentioned approaches. One could de-

velop lightweight custom software clients to create the work-

load but use powerful tools to manage them and analyse the

results [PSG01]. Or one could develop programs that control

workload generation tools in order to automate measurements

[WHHH10].

Data Collection There are several ways to gather the values of the per-

formance metrics required for an analysis. Lilja [Lil05] groups them in four

categories: Event-driven, Tracing, Sampling and Indirect.
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• Event-driven: Event-driven data collection techniques gather in-

formation whenever a certain event is triggered (e.g. a method is

entered or a specific error occurs).

• Tracing: Tracing extends the event-driven techniques by adding

additional information on the system state when the event occurs

(e.g. storing which method called the method that is observed).

• Sampling: In contrast to the event-driven techniques, sampling

methods gather information at fixed time intervals. When analysing

sampled data, performance analysts need to consider that events

which only occur occasionally might not be captured by this

technique. However, data gathered via the sampling method

provides a good statistical summary of the system’s overall be-

haviour.

• Indirect: If a performance metric can not be measured directly,

performance analysts need to gather data based on which the

target metric can be derived or estimated. For example, when

using cloud-based runtime environments, direct system access

to measure CPU consumption might not be available. In such a

case, performance analysts need to collect data that is available

from the outside (e.g. service response times [KPSCD09]).

Usually, the data is recorded using either standard performance measure-

ment tools or instrumentation. Instrumentation is a methodology where

code is inserted into the system under test which gathers customized data.

The benefits of instrumentation are convenience (one can record exactly the

data that is required), data granularity (compared to standard tools one can

measure at any detail level), and control (one can turn selected measure-

ment points on and off) [SW01].
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Reporting The data that has been collected during the execution of per-

formance measurements needs to be analysed and visualized in an appropri-

ate way. Therefore, performance analyst can use, for example, spreadsheet

or charting software, advanced statistical analysis tools such as R [R F13],

or self-coded reporting software. In the course of this thesis, we mainly use

box-and-whisker plots (short: box plots) to summarize and display mea-

surement data. Box plots have been introduced by Tukey [Tuk77] and are

a powerful means to illustrate the distribution of measurement data and to

compare different data sets. Figure 2.1 shows a box plot as well as the basic

terms for its interpretation [Nat12, Tuk77]. The horizontal axis represents
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Figure 2.1.: Box plot

the factor of interest while the vertical axis represents the response variable

(i.e., the performance metric). The horizontal line within the box depicts

the median of a data set. The box itself represents the middle 50% of the

data points in the data set. The top and the bottom of the box represent the

75th and the 25th percentile which indicate that 75% or 25%, respectively,

of the data points are below this response variable value. The distance be-

tween these two values is called the interquartile range (IQR). The upper

whisker represents the largest measured data point that lies between the

75th percentile and 1.5 * IQR and the lower whisker represents the small-

est measured data point that lies between the 25th percentile and 1.5 * IQR.
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The values above or below the whiskers are depicted as extreme points and

are usually outliers.

2.1.2. Web Performance Optimisation

In our industrial case study (see Chapter 5), we apply our approach in the

context of web applications. In recent years, several studies [Bix10, Dix09],

books [Sou07, Sou09, Ste12], and tools [Mee, Yah] have been published

under the umbrella of web performance optimisation. Work in this field is

based on the observation that a major fraction of the end-to-end response

times of web applications is spent in the front-end [Dix09, Sou07]. In fact,

an investigation of the top 10 U.S. web sites has shown that all of these sites

spend less than 20% of the total response time for retrieving the HTML doc-

ument [Sou07]. Hence, improvements in front-end performance are more

likely to significantly improve the end-user experience. In our case study

presented in Chapter 5, the front-end performance metric that we aim to

improve is the CPU time consumed by the browser process between the

loading of a page is initiated (by typing a URL or clicking a link) until

the requested page is fully loaded. In the following, we describe the ba-

sic tasks that have to be performed by a browser when a user requests a

page. Figure 2.2 shows a reference architecture that adheres to most mod-

ern browsers [GG05]. The main components of a browser are:

• User Interface: Includes all visible parts of the browser except

the window that shows the screens (e.g. address bar, tool bars,

search field).

• Browser Engine: Provides a high-level interface to the rendering

engine. Moreover, it is responsible for loading URIs and simple

browsing actions (e.g. reload, forward, back).

• Rendering Engine: Creates the visual representation for a given

URI. This involves parsing HTML and XML documents, dis-
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Figure 2.2.: Reference architecture for web browsers [GG05]

playing embedded content (e.g. images), formatting contents

according to the definition in Cascading Style Sheets (CSS), as

well as calculating the exact page layout.

• Networking: Implements the file transfer protocols (e.g. HTTP

and FTP) and caches for recently retrieved resources.

• JavaScript Interpreter: Executes the JavaScript code that is em-

bedded in a web page.

• XML Parser: Responsible for parsing XML documents into a

Document Object Model (DOM) tree.

• Display Back-end: Is coupled to operating system interfaces and

provides drawing and windowing primitives as well as a basic

set of UI widgets and fonts.
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• Data Persistence: Stores data on disk. The data can be either

user-related settings and bookmarks, or web page specific infor-

mation such as cookies, caches or certificates.

With respect to front-end performance, the networking component, the

rendering engine, and the JavaScript interpreter are the most important

components. The workflow of the networking component is described

in [Ost11] and starts as soon as the user requests a page. In the first step,

the browser looks up the IP address for the given domain in a recursive

search through several caches (e.g. browser, operating system) up to the

name server of the domain. Then, the browser sends a HTTP request to the

web server and waits until the server responds with a permanent redirect

which needs to be followed or with an immediate HTML response. Next,

the rendering engine starts rendering the HTML document. In the course

of that, the browser sends additional requests to the web server in order to

fetch the files that are embedded in the HTML document (e.g. images, CSS

style sheets or JavaScript files) and are not available in the cache. For each

of these files, the browser goes through the same steps as described for the

HTML file. When using, for example, the AJAX technology [Hol08], the

browser continues the communication with the server even after the page is

fully rendered. In that way information can be added dynamically without

re-rendering the whole screen. Examples for such asynchronous requests

are online status updates on chat or social networking websites.

The handling of these JavaScript request is done by the JavaScript en-

gine (see for example Google’s V8 engine [Goo13] or the SpiderMonkey

engine of Firefox [Moz13b]). The Java Script engine is also responsible

for parsing and executing the JavaScript code in the course of the rendering

process. Whether JavaScript code is executed immediately during the ren-

dering process depends on its position in the HTML document [W3C12a].

The rendering engine is the central component of the browser. The

browsers that we use in our industrial case study are built upon the fol-

lowing rendering engines: Firefox uses Gecko [Moz13a], Chrome uses
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Webkit [App13] and Internet Explorer’s rendering engine is called Tri-

dent [Mic13]. Figure 2.3 illustrates the basic workflow of a rendering en-

gine as described in [Gar11]. Once the contents of the requested page are

Render tree
construction

Layout of the
render tree

Painting the
render tree

Parsing HTML
to construct

the DOM tree

Figure 2.3.: Basic workflow of a rendering engine [Gar11]

loaded from the networking component, the HTML parser in the rendering

engine parses the HTML document and creates the DOM tree. Moreover,

the CSS parser extracts the style information specified within the HTML

document and in external CSS files in order to create a set of style rules.

Based on the DOM tree and the style rules, the rendering engine con-

structs the render tree which contains the visual elements of a screen in the

order in which they will be displayed. Moreover, the render tree holds the

visual attributes of the elements such as color and dimensions. Non-visual

elements of the DOM tree will not be inserted in the render tree (e.g. the

head element or elements whose display attribute is set to none).

In the next step, the render tree is traversed to calculate and add layout

information (i.e., exact position and size). Each element in the render tree

contains a layout method which is invoked by its parent node. The layout

process can either be triggered for the entire tree (e.g. when a screen is

initially loaded or resized) or only for those elements that are to be updated

(e.g. when additional dynamic content is loaded).

Finally, the render tree is traversed again and the paint method of each

element in the tree is called. This method uses the browser’s display back-

end component (see Figure 2.2) to display the content on the screen. Like

the layout process, the painting can be global or incremental.

In order to help performance analysts in understanding what happens

in the browser between the time a user initiates the loading of a page (by
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typing a URL or clicking a link) until the requested page is fully loaded, the

W3C Web Performance Working Group [W3C13] recently released a set of

standards [Ste12]. These standards define APIs that, when implemented by

the browsers, provide detailed information on how long each phase of the

page-loading process takes. For a detailed description of the timings, we

refer to the specification document [W3C13].

2.2. Experimental Design

Jain [Jai91] states that „What maximum information means depends on

the purpose of the design and the analysis method which is used applied

on the data.‘ In Chapter 4, we introduce advanced experimental designs

for deriving performance prediction functions. In this section, we describe

the basic terms and concepts used in experimental design). Moreover, we

introduce three classical experimental designs that we use in the course of

this thesis for identifying performance-relevant influences and interaction

effects.

2.2.1. Basic Terms

In this section, we introduce some terms and concepts of experimental de-

sign (a.k.a. Design of Experiments (DOE)). Figure 2.4 shows the basic ex-

perimentation environment that we use in this thesis for our measurement-

based approach.

The input parameters i1 to in (a.k.a. factors) and its potential values

(a.k.a. levels) can be controlled and can be subject to variation in an ex-

perimental design. The observation parameters o1 to on (a.k.a. response

variable) are the parameters or metrics that are observed when an experi-

ment is executed. The experimental design consists of specifying the num-

ber of experiments, the number of repetitions for each experiment, as well

as the parameter value combinations for each experiment [Jai91]. Usually,

the experiment results are evaluated based on a linear model. According
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Figure 2.4.: Experiment environment

to [Nat12], for the input parameters i1 and i2 such a linear model can be

defined as follows:

o1 = β0 +β1i1 +β2i2 +β12i1i2 + ε (2.1)

Thereby, o1 denotes the observation parameter whose values are measure

for a given experiment which specifies the values of the input parameters i1
and i2. The constant value β0 describes the offset value that is independent

of the input parameters. The terms β1i1 and β2i2 describe the change in

the value of o1 for which each of these input parameters is accountable.

These effects are also called main effects. Furthermore, changes in the

value of o1 that are caused by the interaction of the input parameters i1 and

i2 are denoted by the term β12i1i2. In general, effects that are caused by

the interaction of multiple input parameters are called interaction effects.

Finally, ε describes the experimental error, and thus the deviation between

the model and the measured values which cannot be described by the other

terms.

2.2.2. Identifying Significant Main and Interaction Effects

In the following, we present three classical experimental designs that are

most frequently used for identifying the important parameters and interac-

27



2. Foundations

tion effects between parameters [Nat12, Jai91]. We also discuss the appli-

cability of the designs in the context of this thesis.

2.2.2.1. Experimental Designs

Full Factorial Designs Full factorial designs utilize every possible com-

bination of values and parameters. Hence, the number of experiments n in

a performance study with k input parameters can be calculated as

n =
k

∏
j=1

n j

where n j is the number of possible values for the jth parameter [Jai91].

Usually, for each parameter the highest (+1) and lowest (-1) values are used

in the design. This special kind of a full factorial design is called 2k design.

Table 2.1 shows an example 2k full factorial design for three parameters

(i.e., k = 3).

For our experiments, we try to use only the high and low values in order

to keep the number of experiments small. However, especially for non-

numeric values it is sometimes not possible to determine the high and low

values upfront. The advantage of a full factorial design is that it examines

all possible combinations and thus allows us to find all parameter interac-

tions. However, especially when the number of parameters is large, the

number of experiments that are to be executed can result in an overall mea-

surement time that is not feasible in real performance evaluation scenarios.

Fractional Factorial Designs If the number of experiments required by

a full factorial design is too large, a fractional factorial design might be

an appropriate alternative [Jai91]. Fractional factorial designs are similar

to full factorial designs. They are also usually applied with high and low

values and are represented in the form of a design matrix. However, in
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Experiment i1 i2 i3

1 -1 -1 -1

2 +1 -1 -1

3 -1 +1 -1

4 +1 +1 -1

5 -1 -1 + 1

6 +1 -1 +1

7 -1 +1 +1

8 +1 +1 +1

Table 2.1.: 2k full factorial design for three parameters

fractional factorial designs there is not for every combination of parameter

values an experiment executed. Instead, a subset of the full factorial de-

sign is chosen depending on the degree of interaction effects that should

be detected [Nat12]. The design generators create a full-factorial design

for a subset of the input parameters (e.g. for 2 out of 3). The values of

the remaining input parameter are derived by the design generator based on

the values of the selected parameters for the full factorial design. Table 2.2

shows such an example design where the values for the third parameter are

set to i1 ∗ i2.

Using this example design, one can derive all main effects using only

half of the experiments compared to a full factorial design. However, as the

third column is used for calculating the main effect of input parameter i3,

we cannot derive an estimate for the interaction i1 ∗ i2 that is separate from

an estimate of the main effect for i3. This overlapping of effects is called

confounding or aliasing [Nat12].The degree to which estimated main ef-

fects are confounded with interaction effects is described by the resolution
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Experiment i1 i2 i3

1 -1 -1 +1

2 +1 -1 -1

3 -1 +1 -1

4 +1 +1 +1

Table 2.2.: 23−1 fractional factorial design

of a design. The higher the resolution of a design, the less confounded

is the design, but the more experiments are required. The most important

resolution levels are [Nat12]:

• Resolution III designs where main effects are confounded with

two-parameter interactions and thus only main effects can be es-

timated reliably.

• Resolution IV designs where no main effects are confounded

with two-parameter interactions, but two-parameter interactions

are confounded with each other. Thus main effects and some

two-parameter interactions can be estimated reliably.

• Resolution V designs where no main effect or two-parameter

interaction is confounded with any other main effect or two-

parameter interaction, but two-parameter interactions are con-

founded with three-factor interactions. Thus all main effects and

all two-parameter interaction effects can be reliably estimated.

While such designs can significantly reduce the number of experiments,

they require the assumption that interaction effects of a certain degree are

negligible.
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Plackett-Burman Designs If one can make the assumption that interac-

tion effects are completely negligible, Plackett-Burman designs can be very

efficient designs to identify main effects [Nat12]. Compared to full factorial

and fractional factorial designs, the Plackett-Burman designs require fewer

experiments. However, this efficiency comes with the cost that interaction

effects cannot be detected.

Table 2.3 gives an overview on the characteristics of the three experimental

designs introduced in this section. The four columns include the name of

the experimental design, the number of experiments required for the ex-

perimental design, the effects that can be detected by a design, and a clas-

sification for the number of parameters n for which the design is usually

applied.

Design Experiments Detectable Effects # Parameters

Full

Factorial
2n Main,

Interaction
small

Fractional

Factorial
2n−k Main,

partially Interaction
medium/large

Plackett-

Burman
n+1 only Main large/very large

Table 2.3.: Overview of experimental designs with n parameters and two

values for each parameter

The classification for the number of parameters is kept on an abstract

level as the concrete number depends on the time it takes to execute a sin-

gle experiment. This time differs strongly between performance evaluation

scenarios but has to be considered when selecting an experimental design.

Hence, when selecting an experimental design, the performance analyst
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has to consider the interaction effects that should be detected as well as the

number of experiments that is executable in a reasonable amount of time.

The three designs are integrated in the SoPeCo framework (see Chapter

4), so that a performance analyst can simply select and configure a proper

design which is then executed automatically by the framework.

2.2.2.2. Analysis

In the course of this thesis, we use three techniques to analyse the mea-

surement data derived by the three experimental designs presented in Sec-

tion 2.2.2.1: Box plots, two-way interaction plots, and analysis of variance

(ANOVA).

Box plots can be useful to test the distribution of the observed values

(see also Section 2.1). Moreover, they can be used as a visual test to see

if changing the value of an input parameter has a significant effect on the

values of a observation parameter.

Two-way interaction plots visualize all main effects and two way inter-

actions for designs with more than one parameter [HH04]. The rows and

columns are defined by the Cartesian product of the parameters. The diag-

onal panels show box plots to illustrate the main effect of a parameter. The

off-diagonal panels show standard interaction plots. Each point in a plot is

the mean of the observation parameter conditional on the values of the two

parameters that are investigated. Each line in a plot connects the means for

a constant value of a trace parameter. If the lines for the two parameters run

parallel, there is no interaction effect between these parameters.

ANOVA is a method for comparing different samples against each other.

The basic idea behind ANOVA is to determine and compare the variation

caused by random errors within one sample and the variation between the
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samples. In our experiments, we mainly apply Factorial ANOVA (i.e., we

compare multiple input parameters where each parameter has at least two

values). In the following, we introduce Factorial ANOVA based on an ex-

ample with two input parameters A and B that is described in [Nat12]. For a

detailed description of ANOVA we refer to [Jai91] and [Nat12]. Assuming

we have K measurements at each combination of I values of parameter A

and J values of parameter B, we define the following model:

yi jk = m+ai +b j +(ab)i j + ei jk (2.2)

The equation says that the kth measured value for the ith value of parameter

A and the jth value of parameter B is the sum of the following components:

the common value (grand mean m), the effect of the value for parameter A

(ai), the effect of the value for parameter B (b j), the interaction effect be-

tween A and B ((ab)i j), as well as the residual (ei jk). Table 2.4 summarizes

the calculation of variations and forms the basis for determining if the val-

ues of a parameter are significant.

The ratio of the mean square for the parameter or parameter interactions,

respectively, and the residual mean square follows an F distribution with de-

grees of freedom as shown in Table 2.4. Hence, if the F0 value is significant

at a given confidence level, there is a significant effect present in the data

that is caused by the parameter or the parameter interaction, respectively.

2.3. Statistical Inference

Statistical inference is the process of drawing conclusions by applying statis-

tics to observations or hypotheses based on quantitative data [HTF09]. The

goal is to determine the relationship between input and output parameters

observed at some system (sometimes also called independent and depen-

dent variables). Statistical inference of performance metrics does not re-

quire specific knowledge on the internal structure of the system under study.
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Source Sum of Squares DoF Mean Square F0

A SSA = IK ∑(ȳi..− ȳ...)2 I −1 MSA = SSA/(I −1) MSA/MSE

B SSB = JK ∑(ȳ. j.− ȳ...)2 J−1 MSB = SSB/(J−1) MSB/MSE

Interaction SSI = K ∑∑(ȳi j.− ȳi..− ȳ. j.− ȳ...)2 (I −1)(J−1) MSI = SSI/((I −1)(J−1)) MSI/MSE

Residuals SSE = ∑∑∑(ȳi jk − ȳi j.)
2 IJ(K −1) MSE = SSE/(IJ(K −1))

ȳi.. =
1

JK
∑J

j=1 ∑K
k=1 yi jk

ȳ. j. =
1

IK
∑I

i=1 ∑K
k=1 yi jk

ȳi j. =
1

K
∑K

k=1 yi jk

ȳ... =
1

IJK
∑I

i=1 ∑J
j=1 ∑K

k=1 yi jk

Table 2.4.: Factorial ANOVA table for two input parameters [Nat12]

However, statistical inference can require assumptions on the kind of func-

tional dependency of input and output variables. The inference approaches

mainly differ in their degree of model assumptions. For example, linear

regression makes rather strong assumptions on the model underlying the

observations (it being linear) while the nearest neighbour estimator makes

no assumptions at all. Most other statistical estimators lie between both

extremes. Methods with stronger assumptions, in general, need less data to

provide reliable estimates, if the assumptions are correct. Methods with less

assumptions are more flexible, but require more data. For our black-box in-

ference approach presented in Chapter 4, we focus on flexible methods with

less assumptions about the underlying functional dependencies. In the fol-

lowing, we introduce four methods that fulfill this characteristic and that

have been applied in the course of this thesis.
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2.3.1. Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) [Fri91] is a non-para-

metric regression technique which requires no prior assumption as to the

form of the data. The method fits functions creating rectangular patches

where each patch is a product of linear functions (one in each dimen-

sion). MARS builds models of the form f (x) = ∑k
i=1 ciBi(x), the model

is a weighted sum of basis functions Bi(x), where each ci is a constant co-

efficient [Fri91]. MARS uses expansions in piecewise linear basis functions

of the form [x− t]+ and [t − x]+. The + means positive part, so that

[x− t]+ =

{
x− t , if x > t

0 , otherwise

and

[t − x]+ =

{
t − x , if x < t

0 , otherwise

The model-building strategy is similar to stepwise linear regression, ex-

cept that the basis functions are used instead of the original inputs. An in-

dependent variable translates into a series of linear segments joint together

at points called knots [CW00]. Each segment uses a piecewise linear basis

function which is constructed around a knot at the value t. The strength

of MARS is that it selects the knot locations dynamically in order to opti-

mize the goodness of fit. The coefficients ci are estimated by minimizing

the residual sum-of-squares using standard linear regression. The residual

sum of squares is given by RSS = ∑N
i=1(ŷi − y)2, where y = 1

N ∑ ŷi, N is the

number of cases in the data set and ŷi is the predicted value.

2.3.2. Classification and Regression Trees (CART)

CART is a simple and popular method for tree-based regression and clas-

sification. Tree-based methods partition the feature space into a set of rect-
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angles, and then fit a simple model in each one [HTF09]. Figure 2.5 illus-

trates an example with output Y and input parameters X1 and X2. CART

Figure 2.5.: Regression tree model [HTF09]

first splits the space into two regions, and models the output parameter by

the mean of Y in each region. Then one or both of these regions are split

into two more regions, and this process is continued, until a stopping rule

is applied. For example, in the left panel of Figure 2.5, there is a split at

X1 = t1. After that, the region X1 ≤ t1 is split at X2 = t2 and the region

X1 > t1 is split at X1 = t3. Finally, the region X1 > t3 is split at X2 = t4.

The result of this process is a partitioning into the five regions R1,R2, ...,R5

shown in the figure. The corresponding regression model

f̂ (X) =
5

∑
m=1

cmI{(X1,X2) ∈ Rm}

predicts Y with a constant cm in region Rm [HTF09]. The right panel of Fig-

ure 2.5 depicts a perspective plot of the prediction surface from the model

above. The decision when and where to split is based on the criterion min-

imisation of the sum of squares ∑(yi − f (xi))
2 where the best ĉm is the
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average of yi in region Rm: ĉm = ave(yi|xi ∈ Rm). Finding the best pair of

splitting variable and split point in terms of minimum sum of squares is

done via a greedy algorithm (see [HTF09] for details). The implementation

that we use in our case studies is part of the rpart package [TAR11] of the

statistic tool R.

2.3.3. Genetic Programming (GP)

Genetic Programming (GP) aims at deriving computer programs or mathe-

matical equations and is thus well-suited for symbolic regression [Koz93].

GP does not require any assumptions about the input/output parameter de-

pendency and optimizes the structure of the equation simultaneously with

the coefficients. It uses an iterative approach to approximate an optimal

solution [Koz93]. During each iteration (generation), the population, con-

sisting of a certain number of individuals, evolves. This evolution is per-

formed by reproducing, mutating and crossing-over individuals of the pre-

vious generation. Each individual represents a candidate solution and has

a fitness value expressing the quality of the solution. The aim is to maxi-

mize the fitness over many generations. The individuals in GP are usually

represented as tree structures and recombinations are tree operations such

as randomly exchanging subtrees between two trees. The GP algorithm ap-

plied in this thesis is specially optimized for the inference of performance

prediction functions [FH12]. To improve the generalisation of the result

models, the GP algorithm further applies techniques to prevent overfitting.

Figure 2.6 depicts the idea of GP applied to software performance engi-

neering [FH12]. In the first step, GP is initialized with randomized data.

After the initialisation, the genetic algorithm begins to evolve the individ-

uals. The evolution starts with an evaluation of individuals by using the

measurement data (Step 2). Then, the algorithm selects and reproduces

fit individuals (Step 3 and 4) and repeats steps 2-4 for a given number of

iterations (generations). Finally, the algorithm terminates (Step 5) when
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Figure 2.6.: Genetic programming

a given termination criteria, such as the desired accuracy level or runtime

constraints, are fulfilled. The result of the algorithm is a performance pre-

diction function expressed through a mathematical equation.

For example, the goal of the GP algorithm might be to find the func-

tion f̂ (x1,x2), which predicts the dependent variable responseTime using

provided measurement data. Two input parameters x1 and x2 influence the

responseTime. The algorithm receives independent response time measure-

ments with different input configurations (values for x1, x2). To evaluate

the fitness of each individual, the algorithm calculates the averaged relative

error based on the provided training data. New individuals are created by

recombining the genes (represented as trees) of two individuals. The trees

comprise operators (e.g. +, -, *, /) serving as inner nodes and constants
and variables (here x1, x2) serving as leaves. When the evolution of indi-

viduals finishes, the algorithm returns the fittest individual representing the

prediction function identified by the algorithm. The exemplary individual
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in the centre of Figure 2.6 depicts one possible representation for the curve

( f̂ (x1,x2) = 2∗ x1 +0.1∗ x2
2) in the internally-used tree representation.

2.3.4. Kriging

Kriging is a generic name for a family of spatial interpolation techniques

using generalized least-squares regression algorithms [LH08]. It is named

after Daniel Krige who applied the method to a mineral ore body [Kri51].

Examples of Kriging algorithms are Simple, Ordinary, Block, Indicator,

or Universal Kriging. In [LH08], the authors provide a comprehensive re-

view of multiple Kriging algorithms as well as other spatial interpolation

techniques. Generally, the goal of spatial interpolations is to infer a spatial

field at unobserved sites using observations at few selected sites. According

to [LH08], nearly all spatial interpolation methods share the same general

estimation formula:

Ẑ(x0) =
n

∑
i=1

λiZ(xi)

where the estimated value of an attribute at the point of interest x0 is rep-

resented by Ẑ, the observed value at the sampled point xi is Z, the weight

assigned to the sampled point is λi, and the number of sampled points used

for the estimation is represented by n. Furthermore, the semivariance (γ)

of Z between two data points is an important concept in geostatistics. It is

defined as:

γ(xi,x0) = γ(h) =
1

2
var[Z(xi)−Z(x0)]

where h is the distance between point xi and x0 and γ(h) is the semivari-

ogram (commonly referred to as variogram)[LH08].

Figure 2.7 shows an example variogram with an exponential variogram

model. The nugget (or nugget effect) is a contribution to variability without

spatial continuity [Swi06]. The range is the distance where the model first

flattens out and the sill is the value at which the variogram model reaches

the range.
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Figure 2.7.: Sample variogram

The Kriging implementation [Peb04] that we applied in our experiments

uses the Ordinary Kriging algorithm to estimate unknown points. As de-

scribed above the estimated values are computed as simple linear weighted

average of neighboring measured data points. The weights are determined

from the fitted variogram with the condition that they must add up to 1

which is equivalent to the process of reestimating the mean value at each

new location [DGL].

As in geostatistics the problems typically have two input parameters (the

geo-coordinates), we could not find an implementation of Kriging that al-

lows more than two input parameters. Hence, we decided to combine Krig-

ing with Classical Multidimensional Scaling (CMDS) [CC00] in order to

use the method for problems with more than two input variables. Using

CMDS we reduce the dimensionality of the input parameter space from n
to 2. The implementation [R D11] takes a set of dissimilarities and returns

a set of points such that the distances between the points are approximately

equal to the dissimilarities. We selected CMDS as although it reduces the

dimensions it keeps the distances between the different points which is an

essential characteristic for combining it with Kriging.
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While existing performance modelling approaches have demonstrated the

value of early performance feedback, the effort to create and maintain the

models is still large. Especially in practical scenarios where models have

to integrate existing components such as middleware, platforms, or third-

party services, software vendors struggle to value the return on investment

(ROI) of performance modelling. The modelling approaches often require

information and flexibility which complicates the model construction. Such

a flexibility is not required in most cases. Stakeholders in the software

development process are usually interested in answering what-if questions

that are important for their design decisions.

Moreover, the success of performance engineering in practical scenarios

depends on the performance awareness of an organisation and how good

performance engineering is integrated in the software development pro-

cess [SMF+07]. For example, Shopzilla.com did a complete re-development

of their software and made performance a design decision that has been

considered during the whole software development cycle [Dix09]. As a

consequence, page views increased by 25%, conversion rate increased from

7% to 12% and infrastructure costs have been halved.

In this chapter, we introduce our approach for goal-oriented performance

modelling. The approach consists of two parts:

• a conceptual part that suggest a procedure on how to approach

performance modelling in the context of a software development

organisation, and
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• an engineering part that introduces a detailed process on how to

derive a performance model based on systematic, measurement-

based experimentation.

For the first part, the approach adopts the Why? How? What? model

that has been introduced by Sinek [Sin09] in the field of inspirational lead-

ership. This approach can help to explicitly derive the goal of the perfor-

mance model before the modelling process actually starts. The core idea

is to state the purpose of the performance model first. Why do you need

a performance model? If that purpose is clearly stated and project leads

belief in the Why, one can start looking into How a performance model can

help to fulfil the purpose. In this step, we suggest to adopt approaches like

Design Thinking [Bro09] or The Lean Startup [Rie11] from the field of in-

novation building. Such approaches can help to figure out what developers

and architects actually need to develop faster software. If there is a clear

understanding about How a performance model can fulfill a purpose, one

can start to define What needs to be done in order derive this performance

model.

As a result of the first part, we get a specification of a goal-oriented

performance model. We define a goal-oriented performance model as an

abstraction of a software system which is specifically tailored to the needs

of the stakeholders in a certain scenario. To actually derive the models, we

propose a measurement-based, experimental process that neglects internal

details of a system. Measurements are an established performance eval-

uation methodology in practice. Hence, expertise and professional tools

are already available. Our experimental process leverages these tools and

expertise and provides guidance towards the derivation of a performance

model. Moreover, each experiment provides already valuable insights, in-

dependent of the resulting performance model.

This chapter is structured as follows. Section 3.1 introduces the scien-

tific challenges in the field of performance modelling that we address with

our approach. Section 3.2 describes the idea of goal-oriented performance

42



3.1. Scientific Challenges

models and provides a template for specifying goal-oriented performance

models. Moreover, two example scenarios are provided for further illus-

tration. In Section 3.3, we introduce our measurement-based, experimental

process for deriving goal-oriented performance models. The limitations

and assumptions of the approach are discussed in Section 3.4. Finally, Sec-

tion 3.5 summarises the chapter and highlights the scientific contributions.

3.1. Scientific Challenges

The scientific challenges in the field of performance modelling that we ad-

dress in this chapter are as follows:

• How to find a proper abstraction level for a performance
model? Performance engineering in general and especially cre-

ating and maintaining performance models always requires ef-

fort and expertise. Hence, software vendors need to invest in

creating and maintaining performance models. As this invest-

ment has to be made upfront (i.e., before the product is actually

developed or shipped to customers), its value is often unclear

and not directly visible. This is also a reason why the accep-

tance of performance modelling in practical communities is still

low [SMF+07]. Besides the size and complexity of the software

system that is subject to modelling, the selection of the abstrac-

tion level for creating a performance model is an important fac-

tor for the effort and thus the investment required to create and

maintain a performance model. Hence, it is subject to research

to identify methodologies that support software vendors in find-

ing the balance between modelling effort and a clear return on

investment [Smi07].

• How to create and maintain performance models of exist-
ing software systems efficiently? Today’s software systems
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are usually built on existing software (middleware, legacy appli-

cations, or third party components) and rarely developed from

scratch. Reflecting the influence of such existing and often very

complex components on the performance of the software that

is under development is a large challenge in the field of perfor-

mance modelling [WFP07]. While there are many established

approaches for modelling a software system that is built from

scratch, those approaches face problems when it comes to com-

plex existing components. The approaches do not scale with

respect to size and complexity of software systems and thus they

require considerable effort and can become too costly and error-

prone as much work has to be done manually. Concerning legacy

systems and third party software, the required knowledge to mo-

del the systems may even not be available at all. Furthermore,

companies continuously adapt their applications to changing mar-

ket requirements and technological innovations which requires

an efficient way of maintaining the performance models during

the software lifecycle [SMF+07, WFP07, Smi07].

3.2. Specifying Goal-oriented Performance Models

The acceptance of software performance engineering in industry is not only

a matter of having proper modelling and analysis approaches. A significant

factor for a successful implementation is also the commitment of software

vendors to integrate performance engineering in the software development

process and to explicitly provide resources for such tasks [SMF+07]. In

order to get that commitment, we propose to specify a clear goal using the

procedure presented in this chapter. A clear and systematic specification of

the goal of a performance model, allows performance engineers to decide

on a proper abstraction level for model derivation which can limit the effort

for creating and maintaining performance models.
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The proposed procedure arose from combining best practices described

in literature of the performance engineering domain [SW01, Jai91, BCR94]

and other domains [Sin09, Bro09, Rie11], industrial experience reports

[SMF+07, Dix09, JN12], and our own experience gathered in the course of

conducting different performance projects at SAP (see for example Chap-

ter 5). In the following sections, we provide a description of how to apply

the Why? How? What? approach [Sin09] in the context of performance

modelling, as well as two example specifications from the SAP context in

which we applied our overall approach.

3.2.1. Purpose, Consumption, Construction

The Why? How? What? model has been introduced by Sinek [Sin09] in

the field of inspirational leadership. The actual target group of the model

are companies and people that are in a leadership position. The basic idea

of the approach is that if, for example, one wants to start a successful com-

pany, create a successful product, or convince other people of something,

one should start with the Why. The Why defines the higher purpose, e.g.

what is the main driver of a company. The How says how this purpose is

fulfilled by the company. And finally, the What describes the product or

service that the company sells. In the following, we adopt this approach

and map it to the performance modelling domain, i.e., we define which

information performance engineers should gather in order to describe the

why, how, and what of a performance model. This approach can help to

explicitly derive the goal of the performance model before the modelling

process actually starts and to identify the required abstraction level for the

actual performance modelling process.

Purpose (Why?)
The core idea is to state the purpose of the performance model first. Why

do you need a performance model? As the derivation and maintenance of
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a performance model requires effort and commitment from several experts,

it is very important to identify and clearly state the benefits of having a per-

formance model. It should become clear that, for example, the performance

model can help to reduce efforts of target stakeholders, or to significantly

increase product quality.

Consumption (How?)
If the purpose is clearly stated and project leads belief in the why, one can

start looking into how a performance model can help to fulfil the purpose.

In this step, we suggest to adopt approaches like Design Thinking or The

Lean Startup from the field of innovation building. Such approaches can

help to figure out what developers and architects actually need to develop

faster software. Defining the concrete needs of those stakeholders that are

supposed to consume the results provided by the performance model helps

to identify the required resources and limits the scope of the performance

model. The definition should include the concrete target stakeholders, the

task that is supported by the predictions, the (sub-)system that should be

modelled, the usage profiles that are used as input to the model, and the

level of desired prediction accuracy. In order to further cut the modelling

efforts to what is really needed for supporting the target stakeholders in

their tasks, it is important to specify in advance how the model should be

consumed by the stakeholders. This includes for example how the inputs

for the performance model are provided and how the results are presented

to the stakeholder. The simpler the model consumption, the less effort is

put on the stakeholders and thus it becomes more likely that the predictions

are actually considered and lead to better product quality.

Construction (What?)
If there is a clear understanding about how a performance model can fulfil

a purpose, one can start to define what needs to be done in order derive this

performance model. This includes the selection of the actual method for
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the derivation process. In order to evaluate early lifecycle architectural de-

sign decisions, tools like the Palladio Component Model or the approaches

surveyed in [Koz10] might be appropriate. In scenarios where large parts

of the system that is to be modelled already exist, approaches like the one

presented in this thesis might be the best choice. Details on the model

derivation process proposed in this thesis are presented in Section 3.3.

3.2.2. Examples

In the following, we provide two example scenarios for how to specify

goal-oriented performance models using our Purpose, Consumption, Con-
struction approach. The first example deals with the effect of screen design

on front-end performance and has been implemented in an industrial case

study at SAP which is introduced in detail in Chapter 5. The second exam-

ple illustrates the application of goal-oriented performance models in the

context of the development of data models using the Java Persistence API.

3.2.2.1. Effect of Screen Design on Front-end
Performance

Purpose
In today’s web applications front-end performance contributes significantly

to the overall user experience [Sou07] and thus affects business-critical

metrics like conversion rate. Often, performance problems are caused by

flawed screen designs [Fro13]. Changing the design of a screen in late de-

velopment cycles implies large efforts and high costs. Hence, the effect of

the screen design should be considered as early as possible. At SAP there

are hundreds of developers using the SAP UI5 JavaScript library to build

web application front-ends. Having a performance model that allows de-

velopers to easily evaluate the performance of their screen design, would
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significantly reduce the need for setting up and running performance tests

by each individual developer. Moreover, it would significantly reduce the

number of performance problems that are casued by flawed screen designs.

Hence, the efforts to construct and maintain the performance model by an

expert team are relatively small compared to the efforts that are necessary

to achieve the same test coverage without the performance model (i.e., each

developer needs to setup and run performance tests for each screen).

Consumption
The performance model should support developers in designing respon-

sive web application screens by warning them when the design contains

potential performance problems. Therefore, the model should predict the

influence of different UI elements, their configuration and their interference

on performance. The focus of the model is on screens developed with the

SAP UI5 library, influences of custom coding or other libraries can be ne-

glected. Furthermore, the model should be derived for a reference client

machine and current versions of the most common browsers (Internet Ex-

plorer, Firefox, and Chrome). Thereby, it is important that the model re-

flects performance influences accurately for the reference setup. The trans-

ferability to other machine sizes or browser versions is neglectable. For the

given scenario, we identified two potential consumption channels: a web-

based prediction tool and an integration in a screen design editor. The web-

based tool allows designers to quickly evaluate different screen designs by

varying the screen configuration based on check boxes, sliders and input

fields. It is a valuable tool for making rough estimations about front-end

performance before actually starting the screen design. It helps answering

questions like „How many columns and rows can I add to a table of type

X in my web application without violating performance requirements?“ or

„What is the impact of back-end call data size on front-end performance?“.

Moreover, the web-based prediction tool can be used in developer trainings

to clarify the impact of bad screen designs on front-end performance. The
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second consumption channel is the integration of the prediction model in a

screen design editor used by developers to create SAP UI5 based web ap-

plications. Having the prediction integrated in the editor allows us to give

immediate feedback on the expected performance while the screen is under

development. Developers can get a warning when the screen design does

not meet SAP’s performance requirements and detailed views.

Construction
To derive the prediction model an experimental, measurement-based pro-

cess is applied. The experiments are conducted using a screen generator

software that allows to generate screens with different SAP UI5 library el-

ements and configurations. The performance of the generated screens is

measured on the latest versions of the main browsers on a test client ma-

chine.

3.2.2.2. Effect of Data Model Design on Application
Throughput

Purpose
In data-centric applications, the data model can significantly limit perfor-

mance and scalability of the overall application. When developing the data

model it is often unclear to developers, how different design decisions or

usage profiles affect the application’s performance. Setting up and running

performance tests that are tailored towards data model performance require

special expertise and cause significant overhead for developers. Standard

benchmarks such as provided by SPEC [SPE12] and TPC [TPC13] do not

test broad enough in order to enable a detailed understanding of perfor-

mance characteristics of a particular data model. SAP offers a Java-based

cloud plattform on which Independent Software Vendors (ISVs) can de-

velop and run their applications. A major component of this plattform is
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the persistence service that can be accessed using the Java Persistence API

(JPA). Supporting ISVs in developing scalable JPA-based data model de-

signs is an additional feature of the platform that helps SAP’s customers to

run their software faster and more efficient. Deriving a performance model

that maps the service usage (i.e., the design of the JPA data model and its

expected usage profile) to the expected performance and providing that in-

formation to the ISVs can have positive effects on customer satisfaction and

platform sales.

Consumption
The performance model should support developers in designing scalable

JPA-based data models by providing them information about the expected

performance of the data model under development. The performance char-

acteristics of the data model should be estimated for different reference

workload types which represent common usage patterns in business appli-

cations. Moreover, the performance model should only be derived on the

reference test platform. Instead of providing exact prediction numbers, it is

sufficient to provide relative estimates on the performance characteristics of

different data model variants under different reference usage profiles. De-

velopers can use the feedback provided by the model to continuously track

the performance impact of changes applied to the data model, and to evalu-

ate design alternatives with respect to data model entities (e.g. distribution

of attributes across entity classes) and entity usage (e.g. number of paral-

lel reads). We aim at two scenarios of developer support: (i) continuous

tracking of the performance impact of changes applied to the data model,

and (ii) evaluating design alternatives with respect to data model entities.

For the first usage type, the performance feedback relates to the currently

focused data model entity and the performance values are updated when

changes are applied to the software artefact. Figure 3.1 sketches how this

could look like in the IDE of the developer.
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Figure 3.1.: Immediate feedback in the IDE

While the developer is developing the entity Person and adding addi-

tional attributes, the performance feedback view on the right side of the

figure shows how the changes affect the average response time for persist

and remove operations on this entity for a predefined test workload.

In the second scenario, developers directly compare different implemen-

tation alternatives against each other in order to understand the performance

characteristics of each alternative. Figure 3.3 shows an example for this

kind of feedback.

Figure 3.2 sketches the two implementation alternatives. The functional

requirement for the developer is to store 32 numbers in a Container entity.

Alternative 1 implements this requirement by adding 32 fields of type Long
to the entity. Alternative 2 uses a list field that can hold values of type Long.

Figure 3.3 illustrates the performance feedback view for that example. It

shows the throughput that can be achieved for the insert, update, remove,

and persist operations using the respective alternative. In the example, the

throughput that can be achieved with Alternative 1 is 4 times higher than

with Alternative 2.
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Figure 3.2.: Two design alternatives

Figure 3.3.: Evaluation of design alternatives
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Construction
To derive the prediction model an experimental, measurement-based pro-

cess is applied. The experiments are conducted using a JPA benchmark-

ing framework [WWHM13] that allows us to automatically create, run and

analyse tailored benchmark applications. The Benchmark Framework is

parametrisable via information specified in a JPA Benchmark Model (e.g.

the characteristics of the data model that is to be tested). In the construction

step the modelled information is used to trigger the generation of code and

configuration files, and package the benchmark application to a deployable

unit. In the execution phase the benchmark application is deployed to the

test platform for which the performance model is to be derived. Having this

framework in place allows us to efficiently experiment with different data

model characteristics and derive a performance model.

3.3. Systematic, Measurement-based Experimentation

To derive goal-oriented performance models, we propose a measurement-

based, experimental approach. The approach consists of the four basic steps

depicted in Figure 3.4

1. Define Context: Includes all tasks that are necessary to set up the

test environment and to prepare experimentation (e.g. finding

and documenting known issues and finding a proper reference

system and performance metric).

2. Understand Performance Behaviour: An iterative process where

assumptions about performance-relevant influences are identi-

fied and tested. Moreover, proper heuristics and analysis meth-

ods for performance model derivation are identified.
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3. Derive Performance Model: Based on the knowledge gained in

the previous process step, a set of experiments is defined and

executed in order to derive the performance prediction functions

of the performance model.

4. Validate Performance Model: Includes a comparison of the pre-

dictions made by the performance model with measurements

from a real systems in order to further validate if the assumptions

and heuristics are valid and all relevant performance influences

have been captured.

The process illustrated in Figure 3.4 is based on a method for experiment-

based performance model derivation introduced by Happe [Hap08]. As

with the performance evaluation process described by Jain [Jai91], Happe

highlights that the design of a performance model should be driven by a

specific goal that directs and limits the design effort to the factors that are

important for the specific scenario. To define the performance goal prop-

erly, we propose to apply the template introduced in Section 3.2. Another

important characteristic of the process is its highly iterative nature around

the core activities. In the following, we provide a detailed description of

the four process activities that should be implemented by an experts team

consisting of performance analysts and domain experts.

3.3.1. Define Context

In the first step, the experts team needs to define the context of the experi-

ments. This includes the interpretation and the refinement of the informa-

tion provided in the performance evaluation template (see Section 3.2). All

information and known issues in the context of the performance evaluation

scenario need to be gathered and properly documented. Another major task

in this process step is setting up the test environment that is to be used for

running the experiments. The experts team has to prepare the hardware and
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software used for the system under test as well as for supporting tasks like

load generation and monitoring. Furthermore, in some cases an artefact

generation component needs to be developed (see Section 3.2). Based on

the goal of the performance model, the performance metrics that should be

used for prediction have to be defined. Usually, these are response time,

throughput, or resource utilisation metrics [Jai91]. Ultimately, the test en-

vironment has to expose an interface that allows the experts team to vary

the values of a set of input parameters and observe the values of a set of

output parameters (i.e.,the performance metrics of interest). In summary,

the results of this process step are as follows.

• A sound documentation of the performance evaluation goal and

the known facts and issues in the context of the evaluation sce-

nario.

• A ready-to-use test environment that provides an interface for

varying input parameter values and observing performance met-

rics.

3.3.2. Understand Performance Behaviour

The goals of this activity are

a) to get a sound understanding of the basic performance character-

istics of the system under test, and

b) to minimize the parameter space for model derivation.

The first goal involves, for example, questions like:

• What are the performance-critical system components and pa-

rameters in the scenario?

• Does the selected metric provide a sufficient description of the

performance characteristics of the system?
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• What are potential measurement biases and how to avoid or con-

trol them?

Once a proper measurement environment is in place and a basic under-

standing of the performance-critical parameters has been established, the

experts team needs to identify how to minimize the parameter space for

model derivation. Usually, the amount of performance-critical parameters

is too large to derive a single prediction function (see also "curse of dimen-

sionality"). Instead, proper abstractions and heuristics have to be identified

that limit the parameter space. Here, the following example questions are

to be answered:

• Which parameters can be neglected?

• What are reasonable boundaries for parameter values?

• Are their groups of parameters that can be measured in isolation?

• What are appropriate analysis methods to derive functional rela-

tionships between parameters?

To answer the questions introduced above, we propose the process illus-

trated in Figure 3.5.

Identify Assumptions In the first step of the process, performance ana-

lysts identify a set of assumptions with respect to the relevant performance

influences. This can be done based on experience in the scenario context

or documentation. In our industrial case study presented in Chapter 5, we

build upon a rich base of screens that have already been available to identify

potential contributors to front-end performance. Based on this knowledge,

we came up with a set of assumptions. For example, one assumption that

we test in Chapter 5 states: „The larger the number of UI elements on a

screen, the lower the front-end performance.“
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Define Experiments to Test Assumptions Once an initial set of assump-

tions has been identified, the experts team defines a set of experiments that

explicitly test the assumptions and quantify the influences. For example,

in our industrial case study we defined experiments to capture the effect

of different configurations of an UI element on performance. To guide the

experiment design and help performance analysts in resolving the issues

that come with this task, we propose to apply the SoPeCo approach intro-

duced in Chapter 4 of this thesis. Especially if multiple parameters are to be

varied, the number of required experiments may grow exponentially. This

behaviour is known as curse of dimensionality [HTF09]. In this case, good

experimental designs (such as those proposed in Chapter 4.4) can help to

keep the number of experiments manageable.

Run Experiments and Analyse Results Once the experimental designs

have been defined, performance experts can run the experiments and anal-

yse the results. We use the SoPeCo approach (see Chapter 4) to automate

the experiment execution and to collect the relevant data. To analyse the

results, different techniques can be appropriate depending on the experi-

ments executed and the questions to be answered. If, for example, perfor-

mance analysts want to check if a certain parameter affects performance,

fractional factorial experimental designs (see Chapter 2.2) can be a proper

choice. The experiment results and the analyses may point out missing as-

sumptions and influences that need to be tested in further experiments.

In summary, the results of the activities introduced in this section, which

are part of the overall process depicted in Figure 3.4, are as follows.

• A set of validated assumptions with respect to relevant perfor-

mance influences in the scenario.
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3.3.3. Derive Performance Model

Based on the assumptions and heuristics that have been identified in the

previous process step, a set of experiments is defined that aims at deriving

performance prediction functions. The defined set of experiments is auto-

matically executable and thus the construction of the prediction function

can be easily repeated if the system is updated or a new parameter has to

be added. The main question that is to be answered in this process step

is „How to combine the different experiment results into a single perfor-

mance model?“ Therefore, we propose to implement the process illustrated

in Figure 3.6.

Define Experiments for Model Derivation In the first step, the learn-

ings from the previous experiments are used to define the complete set of

experiments that is necessary to derive the required prediction functions.

For example, in our industrial case study we define an experiment for each

performance-critical UI element which derives the functional relationship

between the number of this UI elements on a screen and the performance

of the screen.

Run Experiments and Analyse Results In this step, the experiments

are automatically executed on the test environment. Moreover, the analysis

results are checked for any issues (e.g. failed measurements, too many

outliers, performance behaviour differs from assumption).

Construct Prediction Functions In order to construct the prediction func-

tions of the performance model, the experts team has to combine the func-

tions derived by model fitting, regression techniques, or machine learning
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(e.g. as introduced in Chapter 4.4.2) with the assumptions and heuristics

derived in the previous process step. In our industrial case study (see Chap-

ter 5), we come to the assumption that different UI elements do not inter-

fere with each other and thus their performance influence on the front-end

performance is additive. This assumptions heavily reduces the number of

required experiments and allows us to construct the performance model by

adding up the prediction functions for each UI element.

In summary, the result of the process step introduced in this section is a set

of prediction functions that support stakeholders in the software develop-

ment process in conducting the tasks stated in the performance evaluation

goal.

3.3.4. Validate Performance Model

The prediction functions derived in the previous process step form a perfor-

mance model that captures the known assumptions and influences tested by

the experiments. However, the model needs to be validated before it can be

used in practice. The validation aims at answering the following questions.

• Are the assumptions and heuristics good enough to derive an

accurate performance model?

• Are there any influences in the validation objects that have not

been captured by the performance model?

This validation is the final step in the process illustrated in Figure 3.4.

The predictions provided by the performance model have to be compared

to measurements of a real system as there is a good chance that some major

influences are still missing. If this is the case, further experiments have to

be added and the prediction model has to be refined.
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applied by the target groups. In our case study (see Chapter 5), UI designers

and developers can use the predictions provided by the performance model

to asses front-end performance of web applications for different browsers

before the screens are actually implemented.
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3.4. Discussion of Assumptions and Limitations

In the following, the limitations and assumptions of the general perfor-

mance model construction approach that is presented in this chapter will be

discussed. As the performance model construction builds upon the SoPeCo

approach introduced in Chapter 4, it inherits all the assumption and limita-

tions described in Chapter 4.6. Additionally, we see the following restric-

tions.

Number of Experiments In order to deal with the complexity of real-

world software systems, we use experiments to derive assumptions and

heuristics that enable us limit the number of experiments that are to be

executed. For example, in the case study presented in Chapter 5, we could

reduce the number of experiments due to the assumption that different UI

elements do not interfere with each other and thus are additive. If it is not

possible to limit the number of experiments, the approach might not be ap-

plicable due to the curse of dimensionality [HTF09] that occurs when too

many parameters have to be varied in combination.

Transferability of Models The performance models that are derived

using the approach presented in this chapter are focused on a very specific

goal. On the one hand, this allows performance analysts to deal with the

complexity of the systems and limits the complexity of the resulting per-

formance model. On the other hand, it reduces the transferability of the

performance model to other scenarios and goals. However, in similar sce-

narios the measurement environment as well as some of the experiment

definitions can be reused to create a performance model.

Also the fact that the performance model is only valid for the test sys-

tem on which it has been derived limits its transferability. However, as

described in Section 5.4, the capability to rerun experiments on different

systems with minimal manual effort compensates the restricted generality.
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Availability of Model Inputs When conducting the experiments po-

tential usage and configuration parameter values are varied and used to

derive a performance model. While at the time of experimentation these

values are set by the corresponding tools in the measurement environment,

they have to be accessible at the time when the performance model is used

for prediction. For example, in order to assess the performance of the de-

sign of a web application screen, the developer has to provide the corre-

sponding design characteristics as an input to the model. These inputs can

be provided manually (e.g. via the web application introduced in Section

5.4) or automatically by a supporting tool (e.g. the „what you see is what

you get“ editor also described in Section 5.4). In the course of the case

study, we also tried to derive the inputs from a regular source code editor

by parsing the JavaScript code. However, this failed due to the vast amount

of potential representations of the same JavaScript code and the complexity

of the parser.

3.5. Summary and Contributions

In this chapter, we introduced a novel approach for software performance

modelling that aims at being tightly integrated in the software develop-

ment process. We presented a procedure for specifying goal-oriented per-

formance models using the Purpose, Consumption, Construction method-

ology, as well as an experimental, measurement-based process for deriving

performance models. Our measurement-based approach is close to the in-

dustrial practice and thus more likely to be applied by practitioners than

other approaches.
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• A process definition for the experimental derivation of goal-orien-

ted performance models.

In summary, the approach allows performance analysts to efficiently de-

rive and maintain goal-oriented performance models of complex software

systems. Based on these models developers, software architects or adminis-

trators can asses the performance impact of their design decisions with only

minimal overhead. The goal-oriented specification of the models increases

the probability of creating a performance model that is actually adopted in

development organisations. The iterative and measurement-based nature of

the experimental derivation of performance models helps to deal with com-

plex software systems as many tasks can be supported or automated by an

appropriate experimentation infrastructure (see Chapter 4).
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4. Automated Performance Evaluation
Experiments

The overall goal of this thesis is to provide a practical means to performance

analysts that helps them in constructing performance models of software

systems. In Chapter 3, we introduced our overall approach for deriving

goal-oriented performance models based on systematic experimentation.

In this chapter, we introduce an approach to support performance analysts

in deriving such goal-oriented performance models efficiently. Figure 4.1

illustrates the basic idea of the approach that has been introduced in Chapter

.
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Figure 4.1.: Experimental performance evaluation

We assume that a measurement environment is in place that allows us

to vary the values of a set of input parameters and observe the values of a

set of output parameters. The parameters can either belong to the system

under test or to a measurement utility such as a benchmark application, a

monitoring tool or a load driver. In the following, we refer to a concrete

measurement environment that has a defined set of input and observation

parameters as performance evaluation scenario or just scenario. Our sys-
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tematic experimentation approach enables performance analysts to define

a set of experiments based on the input and observation parameters. An

experiment is defined as a concrete valuation of input parameters for which

the values of one or many observation parameter are gathered. Moreover,

we define an experiment series as a set of experiments derived by an ex-

perimental design [Nat12]. If, for example, the measurement environment

allows us to set the number of users simulated by a load driver and observe

the average response time for this users, the performance analyst could de-

fine an experiment series that investigates the effect of a growing number

of users on the average response time of the system under test. Experiment

series are executed and analysed automatically. Depending on the goal of

the experiment series, the performance analyst gets information about the

performance-relevance of input parameters, interaction effects between in-

put parameters or a description of the functional relationship between a

set of input parameters and an observation parameter of interest (such as

the functional relationship between the number of users and the average

response time).

This chapter introduces our approach to automatically execute and anal-

yse experiments that target a specific goal. The approach is called SoPeCo,

named after the Software Performance Cockpit framework that we devel-

oped to implement and derive the contributions of this thesis. SoPeCo eases

the definition of performance evaluation experiments and combines exper-

imental design and analysis in an automated, iterative way which allows

deriving goals efficiently. Another benefit of the approach is that once the

experiments are defined and the measurement environment is in place, one

can simply rerun the experiments whenever necessary (e.g. due to a new

version of a component in the measurement environment). The SoPeCo

framework allows performance analysts to apply the approach in different

scenarios including different technologies and tools. Based on the capa-

bilities of the SoPeCo approach presented in this chapter, we can automat-
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ically run systematic series of experiments to derive performance models

for complex software systems (see Chapter 3).

The chapter is structured as follows. In Section 4.1, we illustrate the sci-

entific challenges when implementing an automated performance engineer-

ing approach. Section 4.2 provides an overview on the SoPeCo approach.

In Section 4.3, we introduce a language for the definition of performance

evaluation experiments as well as an architecture that allows to automati-

cally run these experiments in different scenarios. A detailed description

of the automated, iterative combination of experimental design and statis-

tical analysis follows in Section 4.4. In multiple case studies, we validate

that the approach can be applied to real applications and provides accurate

results running only a small set of measurements (Section 4.5). Finally,

Section 4.6 lists limitations of the approach and Section 4.7 summarises

the chapter.

4.1. Scientific Challenges

As described above, our approach is based on the assumption that we have

an existing test environment on which we can vary the values on input pa-

rameters and observe several performance metrics. Theoretically, we can

measure any point in the measurement environment (i.e., any combination

of input parameter values) . Practically, this is impossible due to the huge

amount of potential measurement points (i.e., experiments) even for simple

systems. Moreover, performance measurements are indeterministic, which

requires the repeated execution of a single experiment in order to get statis-

tically stable results. Hence, each experiment that is required for a perfor-

mance evaluation is costly and endangers the practicability of the approach.

The scientific challenges in the field of measurement-based performance

evaluations that arise from these circumstances are as follows:

• How to derive accurate prediction functions efficiently? Find-

ing the trade-off between accuracy and efficiency is the main
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research challenge when trying to quantify the relationship be-

tween one or many factors and the response variable. The num-

ber of potential measurement points is a function of the number

of factors and their levels which results in a space that is impos-

sible to measure completely. Moreover, real software systems

usually do not show a simple (e.g. linear) behaviour for this

relationship. Hence, performance engineering research needs to

investigate what kind of models can be used to quantify this rela-

tionship. Furthermore, smart experimental designs are required

that provide enough and proper measurement data to fit these

models accurately and with the least number of measurement

points possible.

• What is a suitable abstraction level to deal with heteroge-
neous scenarios? In industrial practice, each performance eval-

uation scenario differs from another in, for example, the system

under test, the tools used to monitor the system, or the tools used

to generate load. How to cope with this variety of technologies,

tools and potential performance behaviours in a unified approach

is subject to research.

• How to specify automatable performance evaluation exper-
iments? Performance evaluation projects are often conducted

over a certain period of time until a problem has been fixed or

a new release is tested. In most cases, the environment setup

and the experiments that have been conducted are not clearly

documented [SMF+07]. However, especially these tasks require

a lot of effort and knowledge. Providing a means to document

this knowledge and transfer it between the stakeholders of differ-

ent performance evaluation projects would significantly improve

productivity. The challenge is to define a language that allows to
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reuse assets across a wide range of different performance eval-

uation projects. Moreover, the language has to encapsulate all

information necessary to automatically execute and analyse ex-

periments.

4.2. Overview

Based on the research challenges identified above, the main goals of the

SoPeCo approach are

• simplifying and unifying the definition of performance evalua-

tion experiments,

• automating the execution of experiments based on a definition,

as well as

• providing methods and heuristics that optimize the trade-off be-

tween result accuracy and the number of required measurements

in different, heterogeneous real-world performance evaluation projects.

Figure 4.2 outlines the main activities in an experiment-based perfor-

mance evaluation and indicates how these activities are supported by the

SoPeCo approach. Following this process, performance analysts can evalu-

ate the performance properties of complex systems by applying systematic

experimentation in a goal-oriented way. Our process for deriving goal-

oriented performance models presented in Chapter 3, includes the activities

presented in this chapter in several steps. The SoPeCo framework (see

Section 4.3) allows performance analysts to capture important information

and automate common tasks within this process. Based on the manual def-

inition of a scenario (Scenario Definition) and one or more experiments

for that scenario (Experiment Definition), the SoPeCo framework automat-

ically executes the experiments (Experiment Execution). The loop between
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Experiment Definition 

Experiment Execution 

Result Analysis 

Scenario Definition 

Performance Analyst 

Activity 

Automated 

Change of Activity 

Figure 4.2.: Overview on the SoPeCo approach

the Experiment Execution and the Result Analysis activity (see Figure 4.2),

reflects the iterative combination between these activities targeting the au-

tomated derivation of experimental designs that optimize the trade-off be-

tween result accuracy and the number of required experiments (see Section

4.4). After the results have been analysed, the performance analysts might

need to adjust the scenario or the experiment definitions and re-run the eval-

uation in order to improve the evaluation results or get more insights.

Jain [Jai91] lists a set of common mistakes done by performance an-

alysts within these activities. To avoid these mistakes, he introduces a

systematic approach consisting of ten steps that guide analysts through

a performance evaluation process (similar process guidelines are defined

in [MA01] and [SW01]). In the remainder of this section, we describe how

the ten steps defined by Jain are integrated in and supported by our ap-

proach. For a detailed description of the ten steps we refer to [Jai91] .

Scenario Definition The Scenario Definition activity comprises all steps

that need to be done by a performance analyst before the actual experimen-

tation begins. This includes:
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1. State goals and define the system: One main mistake in many

performance evaluation projects is that the goal is not set prop-

erly. Analysts often start with gathering vast quantities of mea-

surement data or building models that are supposed to answer

any design question. However, the proper way is to consider

carefully what the goals of the study are. Based on these goals

the performance analyst can define which components to include

in the system under test (SUT), which performance metrics to

measure or which workloads to choose. Once these decisions

are made, the performance analyst can set up the test environ-

ment which comprises the SUT, monitoring tools and load gen-

eration tools. This is a manual task that has to be done by the

performance analyst together with the other stakeholders of the

study (e.g. development groups or system administrators). In

our approach, we assume that the goals are clearly defined and

the test environment is ready-to-use.

2. List services and outcomes: Listing the services the SUT pro-

vides and the potential outcomes of these services is a prepara-

tory step for the next step which is selecting the criteria based on

which performance should be compared.

3. Select metrics: In performance evaluations metrics are usually

related to timing behaviour, throughput and resource consump-

tion [Jai91]. It is important to select those metrics that help un-

derstanding the questions that need to be answered in order to

achieve a certain goal. Moreover, performance analysts have to

check whether these metrics can be monitored in the test envi-

ronment. There might be cases where a metric cannot be moni-

tored because the overhead would be too high or the instrumen-

tation of a system component is too complex. Once the met-
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rics are defined by the performance analyst, they can be docu-

mented using the experiment specification language included in

the SoPeCo framework [WHF13] (see Section 4.3). In general,

the language-based definition of a performance evaluation sce-

nario, as proposed in this thesis, has the advantages that (i) the

information is captured in a structured way and thus it is less

likely that the analyst forgets to add important information, (ii)

the information can be reused in the definition of different ex-

periments possibly conducted by different performance analysts,

and (iii) the information can be processed automatically by a cor-

responding tooling. In the experimental design terminology the

metrics are called response variables (see Chapter 2.2.1).

4. Select workload: Depending on the goal of the performance

evaluation different workloads can be selected by the perfor-

mance analyst. For the success of the study it is important that

the workload is representative for the scenario that is subject to

evaluation. However, deriving and characterizing workloads is

out of the scope of this thesis. In the SoPeCo approach, we as-

sume that the performance analyst has identified a set of appro-

priate workloads and thus also workload parameters that can be

varied in the experiment series.

5. List parameters: As with the metrics, the performance analyst

has to define which parameters potentially affect performance

and thus should be included in the experiments. These param-

eters are either system parameters, such as component configu-

rations and feature selections, or workload parameters like user

request characteristics and instruction mixes. Like the metrics,

the parameters are documented using the experiment specifica-

tion language of the SoPeCo framework [WHF13] (see Section
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4.3). The list of parameters and metrics might need to be ad-

justed after some experiments have been conducted and analysed

(see Figure 4.2).

Experiment Definition Once the scenario for the performance evaluation

project is properly defined, the performance analyst can start designing ex-

periments. Mapped to Jain’s systematic approach to performance evalu-

ations [Jai91], the Experiment Definition activity comprises the following

steps:

6. Select factors to study: For each experiment, the performance

analyst has to specify which input parameters should be var-

ied and how. The performance analyst specifies this informa-

tion using the experiment specification language included in the

SoPeCo framework [WHF13] (see Section 4.3). The framework

provides several ways to express the possible values of a param-

eter (e.g. a list of values or a range of values). Moreover, the

language as well as the framework are designed to enable the

flexible introduction of new parameter variation strategies.

7. Select evaluation technique: In this step, Jain lists three main

techniques for performance evaluation: analytical modelling, sim-

ulation, and measuring. The performance analyst has to chose

the one he wants to use for the study. Although the SoPeCo

approach could also be used for the efficient execution of exper-

iments based on simulation models, the focus of this thesis is on

measurement-based performance evaluations.

8. Design experiments: Depending on the complexity of the sce-

nario, the design of experiments (or experimental design) can

be one of the most complex and error-prone steps in a perfor-
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mance evaluation (see for example the list of common mistakes

in experimental designs listed by Jain [Jai91] ). In this step, it

has to be decided which experiments (i.e., one concrete valua-

tion of input parameters) should be executed. The challenge for

the performance analyst is to select the values in a way that the

experiments provide maximum information and can be executed

within a limited period of time. With our SoPeCo approach, we

support the performance analyst in this task by providing a set

of sophisticated methods that dynamically create experimental

designs for common performance evaluation questions (see Sec-

tion 4.4):

a) What are the most performance-relevant factors?

b) Which factors interact with each other?

c) What is the functional relationship between the levels

of a list of factors and a response variable?

Using our approach, the performance analyst does not have to

create the experimental design. He only has to select one of

the methods that we provide for the respective question. These

methods dynamically create the experimental design based on

the iterative application of measurements, statistical methods and

result validation (see Section 4.4). In the following paragraphs,

we describe how this interaction between Experiment Execution
and Result Analysis is applied in the SoPeCo approach in order

to answer the three questions stated above.

Experiment Execution Usually the execution of an experiment is only

triggering the start of a measurement. Hence, Jain does not list this step in

his systematic approach to performance evaluation [Jai91]. However, in the

SoPeCo approach the Experiment Execution is the connector between the
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automated derivation of experimental designs based on a strategy defined

in the Experiment Definition and the Result Analysis activity. That is, we

shift tasks that are usually conducted manually by the performance analyst

to the automated Experiment Execution activity which makes this activity

an important part of the approach. In Section 4.3, we describe in detail how

we automate this step in the SoPeCo framework [WHHH10] and combine

it with analysing the measured data and deriving smart, goal-driven exper-

imental designs for different real-world performance evaluation projects.

Result Analysis The Result Analysis activity includes the two final steps

of Jain’s systematic approach [Jai91].

9. Analyse and interpret data: This step requires the most experi-

ence and knowledge as the performance analyst has to decide,

for example, which methods to choose to analyse data, when the

results are good enough to draw conclusions, or if there has been

a mistake in the experiment definition. In our approach, we au-

tomate many analysis and interpretation tasks based on a set of

heuristics. Hence, we support the performance analyst in mak-

ing these decisions. In addition, the SoPeCo approach analyses

the data with respect to the question which further experiments

are likely to provide the maximum information gain and thus

dynamically creates the experimental design [WKH11]. More-

over, our analyses are usually black-box analyses, i.e.,without

making strong assumptions about the underlying functional de-

pendencies. this increases the range of scenarios in which our

automated approach can be applied.

For the three main performance evaluation questions outlined in

step 8, we analyse and interpret the data as follows. For ques-

tions a) and b), we combine existing experimental designs that

are executed automatically. The problem behind question c) is

subject of research in this thesis. The space of potential experi-
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ments spanned by the input parameters and their possible values

is growing exponentially with the number of parameters. Thus,

it is even more important to accurately quantify the functional

relationship with the least possible amount of measurements. If

the performance analyst has to do this with existing approaches,

he has to execute a set of experiments using a manually prede-

fined experimental design. Furthermore, he has to determine the

underlying model, i.e.,the type of the relationship (e.g. a linear

relationship), in order to fit the model using the measured data as

training data (see Chapter 2.3). In a next step, the analyst has to

conduct additional measurements to validate whether the model

is accurate enough. If not, further experiments are required to

extend the training data for the model fitting process.

Executing these steps manually is not efficient (usually too many

experiments are executed that do not provide significant infor-

mation gain), error-prone (there might not be enough and suit-

able validation measurements so that a bad model fit in a certain

area might not be detected), complex (in real software systems

the underlying models are usually not trivial and do not follow

a certain rule), and finally causes a lot of effort (determining the

model, running the measurements, analysing the data). In Sec-

tion 4.4.2, we introduce an approach that combines experimental

design, statistical model inference and model validation in or-

der to derive the functional relationship between a list of input

parameters and a performance metric of interest. The approach

iterates automatically over the three tasks until a prediction func-

tion with a sufficient accuracy has been derived. We developed

and compared different algorithms that derive experimental de-

signs which efficiently fit a model (i.e.,using as few experiments

as possible). Moreover, we evaluated a set of statistical regres-

sion and interpolation methods that make less assumptions about
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the underlying functional dependencies and thus are able to rep-

resent a large set of functions. This allows us to fit accurate

prediction functions for real applications without knowing any

details about the internal behaviour of the application. The auto-

mated, black-box inference of prediction functions [WHKF12]

makes our approach applicable to a large set of scenarios and

frees the performance analyst from the manual tasks described

above.

10. Present Results: This final step deals with the communication

of the evaluation results to the corresponding target groups. Al-

though Jain [Jai91] already mentions that it is important to present

the results in an understandable way, he basically means that

one should avoid statistical jargon and plot correct graphs. In

our approach, we aim at going one step further and integrate the

evaluation results in the daily life of the stakeholders in the soft-

ware development process [Wes12]. In Chapter 3, we present an

industrial case study where we provide direct performance feed-

back to UI developers by integrating the evaluation results in the

design process of web application front-ends.

In the following sections, we provide a detailed introduction of our con-

tributions that support performance analysts in implementing the presented

process.

4.3. Experiment Definition and Execution

Each performance evaluation project is different. Projects differ for ex-

ample in their goals, the system under test, the workload type, and the

monitoring tools. However, as described in the previous section, there are

tasks that are common to all performance evaluation projects (e.g. defining

the parameters and metrics to study, triggering measurements, gathering
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measurement data, analysing measured data). Hence, in order to enhance

reusability and automate common tasks, it is important to distinct between

those parts of a project that are scenario-specific and those that are to be

conducted for every experiment-based performance evaluation. Moreover,

the commonalities between projects have to be expressed in a well-defined

way in order to allow for knowledge exchange between projects and pro-

vide a basis for automating tasks.

In this section, we present an approach for handling different projects in

a unified way. Section 4.3.1 introduces the abstract syntax of a language for

the definition of scenarios and experiments [WHF13]. The language can be

used to describe experiments for any performance evaluation project. When

applied by a concrete syntax (e.g. a graphical editor) it directs the perfor-

mance analyst through the experiment definition process and reduces the

risk of making common mistakes (such as those described by Jain [Jai91]).

Moreover, it increases maintainability and reusability of experiment defini-

tions due to the specified semantics that allows other performance analysts

to comprehend existing definitions. Another benefit of such a language is

that it captures the information in a machine-readable form and thus pro-

vides the basis for the automated execution of experiments described in

Section 4.3.2. The capability to automatically execute experiments inde-

pendent of the actual performance evaluation project [WHHH10, WH11] is

a basic prerequisite for the work presented in Chapter 3. Without automa-

tion it would not be feasible to derive performance models for real-world

software systems based on experimentation (such as demonstrated in Chap-

ter 5). The large amount of experiments that need to be conducted would

make a manual execution too time-consuming for the performance analyst.

4.3.1. Experiment Specification Language

This work introduces a novel experiment specification language [WHF13]

that forms a basis to capture information required to implement a system-
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atic performance evaluation process (such as described by Jain [Jai91] or

Smith [SW01]). Unlike other languages, it enables the definition of ex-

periments independent of concrete domains, technologies or applications

which allows performance analysts to focus on the problem that is investi-

gated. Moreover, it allows performance analysts to reuse experiment def-

initions over multiple studies and share experiment meta-information and

best practices in experimental design among each other. Another benefit

of our language is the clear separation between experiment definition and

automated experiment execution which facilitates the integration of the lan-

guage in different experiment automation tools.

Section 4.3.1.1 outlines the requirements for the design of the language.

Section 4.3.1.2 introduces the abstract syntax of the language in form of a

UML diagram and explains its design rationale. Section 4.3.1.3 provides

an example SoPeCo experiment definition.

4.3.1.1. Requirements

In this section, we outline the requirements that drive the design of the

experiment specification language.

Targeting Automated Experiment Execution The goal of the approach

presented in this thesis is to run goal-oriented performance evaluation ex-

periments automatically. Hence, we require a language that has the capa-

bilities to express experimental designs in way so that they can be auto-

matically executed and analysed. For example, we need to describe what

parameters to vary in which way or how to analyse the measured data to

achieve a certain goal.

Supporting a Broad Range of Scenarios As we do not want to focus

on evaluating the performance only for a certain software domain, the lan-

guage should not include any domain-specific elements nor should it pre-
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define a fixed set of goals, experimental designs, or analysis strategies. Fur-

thermore, it should be independent of the programming language and the

experiment automation tool used to implement the automated experiment

execution.

Flexible Extensibility The third requirement arises from the first two re-

quirements. As the language should be independent of a concrete automa-

tion tool implementation and support the automated execution and analysis

of experiments without explicitly defining concrete strategies, we need to

allow automation tool implementations to flexibly adapt to concrete goals,

domains, or scenarios. That means it is up to experiment automation tool

implementations to provide a set of parameter variation strategies, experi-

mental design methods, or result analysis techniques. Hence, our language

has to provide an abstract syntax that sets the frame for an automated per-

formance evaluation but is flexibly extensible by a concrete syntax imple-

mented in an experiment automation tool. As a result of this thesis, we

provide a hosted version of the SoPeCo framework [WHW+13] that in-

cludes implementations of commonly used methods as well as a concrete

web-based syntax for the experiment specification language.

4.3.1.2. Abstract Syntax and Informal Semantics

Due to the requirements describe above, we decouple the generic abstract

syntax, presented in this section, from a concrete implementation that would

(i) provide the concrete syntax and additional semantics (e.g. concrete anal-

ysis strategies), and (ii) automate the experiment selection and execution

(as realized by the SoPeCo framework (see Section 4.3.2) in our approach).

Thus, we also shift tasks like type safety and misuse checks to the experi-

ment automation tool in order to keep the language independent and flexi-

bly extensible. We implemented the abstract syntax in XML format. How-
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ever, for the purpose of illustration we present it in the form of UML class

diagrams.

In the following, we refer to a concrete performance evaluation project

as a scenario. According to the systematic performance evaluation process

introduced in Section 4.2, a clear definition of the scenario should be the

first step of any performance evaluation. Figure 4.3 shows the Scenari-
oDefinition as the root element of the abstract syntax.

ScenarioDefinition
name : String
description : String

MeasurementEnvironmentDefinitionMeasurementSpecification
name : String

11..*

Figure 4.3.: Scenario Definition

A ScenarioDefinition is identified by its name and should have a de-

scription. In the description attribute the performance analyst can provide

information concerning the scenario set up and evaluation goals. Further-

more, a ScenarioDefinition contains exactly one MeasurementEnvi-
ronmentDefinition and one or many MeasurementSpecifications.

MeasurementEnvironment: The measurement environment denotes the

complete set of systems and tools involved in the performance evaluation.

This includes the system under test as well as load generation tools or mon-

itoring applications. In the MeasurementEnvironmentDefinition the

performance analyst defines the parameters and metrics that can be con-

trolled or measured by the measurement environment.

We introduce the notion of namespaces in order to group parameters and

allow for duplicate parameter names in different contexts (e.g. a parameter

CPUUtilisation for different machines in the measurement environment)

if needed (see Figure 4.4). Each ParameterDefinition is contained in

a ParameterNamespace which is structured hierarchically. Besides the

name, a ParameterDefinition has a description, a type and a role. The

ParameterRole indicates whether the parameter value can be controlled
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ParameterNamespace
name : String

MeasurementEnvironmentDefinition ParameterDefinition
name : String
type : String
role : Parameter Role

«enumeration»
ParameterRole

- INPUT
- OBSERVATION

1

0..*

0..*

Figure 4.4.: Measurement Environment Definition

(i.e., it is an input to the measurement environment) or measured (i.e., it

is observed by the measurement environment). The type can be specified

by a textual representation. For the purpose of general applicability, we do

not introduce detailed typing in the model as types are often technology-,

domain- or application-specific (see also Section 4.3.1.1). Hence, the con-

crete types have to be interpreted by corresponding tooling that uses the

language. The description field allows performance analysts to specify ad-

ditional semantics with respect to the parameter such as to which compo-

nent it belongs or what possible values are.

MeasurementSpecification: The MeasurementSpecification deals

with the specification of experiments based on the scenario and the parame-

ters defined in the MeasurementEnvironmentDefinition. Figure 4.5 il-

lustrates the measurement specification part of the abstract syntax. A Mea-
surementSpecification contains one or many ExperimentSeries-
Definitions. We define an experiment series as a set of experiments that

are designed to answer a specific question. An experiment is defined as one

concrete valuation of all input parameters (a.k.a. factor level combinations

in experimental design terminology [Jai91]). An ExperimentSeriesDef-
inition contains all information necessary to automatically derive exper-

iments that fulfil the purpose of the experiment series. Possible purposes

of an experiment series are, for example, the identification of performance-
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relevant parameters, the identification of parameter interdependencies, or

the quantification of functional dependencies between input parameters and

an observed performance metric.

MeasurementSpecification
name: String

ExperimentSeriesDefinition
name : String

ExperimentTerminationCondition

ExplorationStrategy

ParameterValueAssignment

ConstantValueAssignment
value : String

ParameterDefinition

AnalysisConfiguration

ExtensibleElement
name : String

ConfigurationNode
key : String
value : String

DynamicValueAssignment

1..*

1

1

1..*

0..*

1

0..*

Figure 4.5.: Measurement Specification

Each ExperimentSeriesDefinition contains exactly one Experi-
mentTerminationCondition, exactly one ExplorationStrategy, and

one or many ParameterValueAssignments. For the purpose of uni-

versality and extensibility, we do not include concrete implementations of

these elements in the abstract syntax (see also Section 4.3.1.1). If we would

for example integrate the concrete ExplorationStrategy elements in the

abstract syntax, we would have to adjust the language for each new Explo-
rationStrategy. Instead, we introduce a generic element that serves as

an extension point and provides the information required by these concrete

implementations. This ExtensibleElement is identified by its name and

can contain a list of key value pairs for its Configuration (see Section
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4.3.1.3). Please note that in a concrete syntax (i.e., the view for the per-

formance analyst), these extensions look like regular language elements.

Hence, the performance analyst does not have to specify the names of

the extensions or the configuration keys but selects existing extensions and

specifies only the values for the configuration.

• ParameterValueAssignment: Specifies the parameters that are

to be controlled in the experiment series and defines the possible

values for each parameter. The possible values can either be de-

fined via a ConstantValueAssignment or a DynamicValue-
Assignment. The ConstantValueAssignment simply defines

a fixed value which does not change throughout the experiment

series. The DynamicValueAssignment allows the performance

analyst to define different types of value assignment such as a

linear variation rule with a minimum value, a maximum value

and a step size, or a simple comma separated list of values. We

use the ExtensibleElement to flexibly define concrete value

assignment strategies. For example, a dynamic value assign-

ment with name “Linear Value Assignment” will at runtime be

resolved to the implementation of Linear Value Assignment pro-

vided by its corresponding plugin. Based on the list of Param-
eterValueAssignments in an ExperimentSeriesDefini-
tion one can calculate the size of the measurement space (i.e.,

the number of potential experiments). The actual selection of an

experiment is part of the experimental design which is derived

by an ExplorationStrategy.

• ExperimentTerminationCondition: Due to the stochastic

nature of performance measurements, all samples that we take

for an experiment have different values. This requires repea-

ted sampling for an experiment in order to minimize the ef-
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fect of errors and outliers and derive statistically significant res-

ults [Jai91]. The ExperimentTerminationCondition speci-

fies when enough repetitions for an experiment have been con-

ducted. Examples are a fixed number of repetitions, a certain

time frame in which the experiment is repeated, a certain con-

fidence interval that has to be achieved, or a combination of

the aforementioned conditions. Similar to parameter value as-

signments, termination conditions are also defined by Extensi-
bleElements. For example, a NumberOfRepetitions termina-

tion condition will be resolved at runtime to a concrete imple-

mentation that is provided by an extension with the same name.

• ExplorationStrategy: Specifies the strategy for exploring

the input parameter space (i.e., the input parameter value combi-

nations are selected). This strategy can, for example, implement

a simple one-at-a-time experimental design [Nat12] or more so-

phisticated strategies such as those presented in Section 4.4. In

the latter case, the strategies use different analysis methods in or-

der to derive goal-oriented, efficient experimental designs. Hence,

an ExplorationStrategy can contain multiple AnalysisCon-
figurations. Both, the exploration strategies as well as the

analysis methods are modelled as an ExtensibleElement that

allows performance analysts to flexibly bind them to available

implementations.

Based on the information described above, large parts of a performance

evaluation can be automated (see Section 4.3.2). However, it is subject to

research to come up with appropriate methods for automated experiment

selection, experiment termination, and experiment analysis methods that

support performance analysts in evaluating complex software systems. This

work aims at facilitating these research activities by providing a common
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language that allows scientists and engineers to combine and compare dif-

ferent methodologies in a unified and structured way (such as demonstrated

in this thesis).

4.3.1.3. Example

To demonstrate the usage and complete the description of the language,

Figures 4.6 to 4.8 show an example of a scenario definition in form of a

diagram. It contains at least one representative instance for each abstract

syntax element of the language (enclosed in angle brackets, <<Element-

Class>>). We use a representation that is close to the abstract syntax in

order to highlight the links to the previously introduced language elements.

For the SoPeCo framework, we developed a concrete syntax in form of a

web-based editor in order to improve the user experience for the perfor-

mance analysts [WHW+13].

The example illustrates an experiment definition for a customisation

project of an SAP ERP 2005 application. In this project, a performance

analyst addresses the problem of customizing an SAP ERP application in-

stallation to an expected customer workload. The workload of an enterprise

application can be coarsely divided into batch workload (background jobs

like monthly business reports) and dialogue workload (user interactions like

displaying customer orders). This workload is dispatched by the applica-

tion server to separate operating system processes, called work processes,

which serve the requests [Sch06]. Among other tasks, such as sizing the

underlying hardware, the IT administrator of an SAP system has to allocate

the available number of work processes (depending on the size of the ma-

chine) to batch and dialogue jobs, respectively. To support the IT admin-

istrator, the performance analyst has to find the optimal amount of work

processes required to handle the dialogue workload of a sales and distribu-

tion scenario with the constraint that the average response time of dialogue

steps should be less than one second. In order to derive this information, the
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performance analyst documents this scenario using our experiment speci-

fication language (see Figures 4.6 to 4.8) and runs an automated perfor-

mance analysis based on this specification. Please note that for illustration

purposes we do not include the complete set of experiment series and pa-

rameters required for a successful enterprise application customisation in

the example.

<<Measurement Environment Definition>> 

<<Scenario Definition>> 
name = “SAP ERP 2005 Customization” 
descr = “Experiments to derive a performance-optimized 
configuration for SAP ERP 2005 on-premise installations.” 

<<Measurement Specification>> 
name = “Dialogue Work Process Configuration” 

Figure 4.6.: Example for Scenario Definition

The measurement environment definition (Figure 4.7) contains two pa-

rameter namespaces, one for the input parameters and one for the obser-

vation parameters. In this example setup, the input parameters are (i) the

number of active users in the sales and distribution (SD) scenario (numS-
DUsers) and (ii) the number of work processes (WPs) for dialogue work-

load (numDialogueWPs). The observed parameter is the average response

time for the dialogue steps (avgDialogueResponseTime).

The measurement specification (Figure 4.8) defines the experiment se-

ries that should be conducted on the measurement environment in order to

meet the scenario goal. In the example, the performance analyst wants to in-

fer a function that describes the relationship between the two input parame-

ters and the observation parameter (i.e., f (numSDUsers, numDialogueWPs)
= avgDialogueResponseTime). Therefore, the experiment series definition

contains two dynamic value assignments that describe the possible values

for each input parameters. In the example, the values are specified via

a “Linear Variation” assignment which means that the parameter can take

any value between min and max in the defined step width (i.e., 3, 4, 5, and 6
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<<Measurement Environment Definition>> 

<<Parameter Namespace>> 
name = “input” 

<<Parameter Namespace>> 
name = “observation” 

<<Parameter Definition>> 
name = “numSDUsers” 
descr = “The number of active users for the 
sales & distribution scenario.” 
role = INPUT

<<Parameter Definition>> 
name = “numDialogueWPs” 
descr = “The number of application server 
work processes that have been allocated to 
handle dialogue workload.”
role = INPUT

<<Parameter Definition>> 
name = “AvgDialogueResponseTime” 
descr = “The average response time of all 
executed dialog steps in a test scenario.” 
role = OBSERVATION 

Figure 4.7.: Example for Measurement Environment Definition

for the number of dialogue work processes). The number of potential exper-

iments in the experiment series is 4∗30 = 120. Using an experiment termi-

nation condition, the performance analyst determines that every experiment

should be repeated 30 times. Moreover, the performance analyst defines

the “Random Breakdown” method as an exploration strategy. This method

runs iteratively, and randomly selects a fixed number of experiments in each

iteration (see Section 4.4.2.1). Moreover, it derives a prediction function

based on the data measured by the already executed experiments. There-

fore, the Multivariate Adaptive Regression Splines (MARS) [Fri91] method

is defined using the analysis configuration. As a last step in each iteration,

the method validates whether the prediction function is accurate enough. In

the example, the performance analyst specifies that the function is accurate

enough if the mean relative prediction error on the validation data is less
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<<Measurement Specification>>
“Di l W k P C fi ti ”

<<Experiment Series Definition>>
name = “Model Inference Series”

<<Experiment Termination Condition>>
name = “NumberOfMeasurements”

name = “Dialogue Work Process Configuration”

name NumberOfMeasurements

<<Configuration Node>>
key = “numMeasurements”; value = “30”

<<Dynamic Value Assignment>>
name = “Linear Variation”name Linear Variation
parameter = “input.numSDUsers”

<<Configuration Node>>
key = “min”; value = “1”

<<Configuration Node>>
key = “max”; value = “90”

<<Configuration Node>>
key = “step”; value = “1”

<<Dynamic Value Assignment>>
“ ”name = “Linear Variation”

parameter = “input.numDialogueWPs”

<<Configuration Node>>
key = “min”; value = “3”

<<C fi ti N d >><<Configuration Node>>
key = “max”; value = “6”

<<Configuration Node>>
key = “step”; value = “1”

<<Exploration Strategy>><<Exploration Strategy>>
name = “Random Breakdown”

<<Configuration Node>>
key = “desiredModelAccuracy”; value = “0.2”

<<Configuration Node>>

<<Analysis Configuration>>
name = “MARS”

<<Configuration Node>>
key = “numExperimentsPerIteration”; value = “5”

Figure 4.8.: Example for Measurement Specification
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than 20%. If this is the case, the exploration strategy terminates and the

execution of the experiment series is finished.

Based on the information provided in this example, the performance

analyst can automatically run the experiments for customizing an SAP ERP

application installation to an expected customer workload. Moreover, he or

his colleagues can reuse the specification for customizing the installations

of other customers.

4.3.2. Automated Experiment Execution

Based on the information specified in the experiment definition, the SoPeCo

framework automatically executes and analyses a series of experiments. A

description of the automated process as well as the basic architecture of

the SoPeCo framework and its design rationale [WHHH10, WH11] can be

found in Appendix A.

4.3.3. Summary

We introduced a novel approach for automating software performance eval-

uations in a wide range of scenarios. Our approach consists of an experi-

ment specification language [WHF13] and a framework for the automated

execution of experiments [WHHH10, WH11]. The experiment specifica-

tion language is flexibly extensible and provides all necessary information

to execute the defined experiments automatically. Moreover, the language

supports performance analysts in defining proper experiments and enables

reuse among different stakeholders and performance evaluation scenarios.

In the following sections, we introduce and evaluate a set of strategies for

the automated combination of experimental design and statistical analyses

that target at finding a good trade-off between the number of experiments

that are to be executed and the accuracy of the analysis result.
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4.4. Automated Combination of Experimental Design and
Statistical Methods

In the previous section, we introduced the basic experiment automation

process of the SoPeCo approach. In the following, we describe how we

leverage this process to implement advanced methodologies that support

the performance analyst in efficiently evaluating the performance of com-

plex software systems [WKH11, WHKF12]. We combine experimental

designs with statistical analysis methods in order to provide an integrated

solution to answer three main performance evaluation questions:

1. What are the performance-relevant parameters?

2. Which parameters interfere with each other?

3. What is the functional relationship between a set of parameters

and a performance metric of interest?

To support answering the first two questions, we integrated several state-

of-the art experimental design methods into the SoPeCo framework. Full

factorial, fractional factorial and Plackett-Burman designs are examples

that are well-understood and often applied for performance analyses [Jai91,

JE06]. In Chapter 2.2, we present these designs and provide an overview

that supports performance analysts in selecting a proper design for a spe-

cific application scenario.

In Section 4.4.2, we introduce an approach to support performance ana-

lysts in answering the third question. Following the goals of this thesis, the

approach is designed to meet the requirements listed in Section 4.4.1.

4.4.1. Requirements

Automating as much as Possible In order to support performance ana-

lysts in evaluating the performance of software systems efficiently we need
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to automate as many tasks as possible. Furthermore, the automated execu-

tion of experimental designs is a key prerequisite to keep the experiment-

based approach presented in this thesis feasible for real-world scenarios.

Limited Assumptions about System Under Test Statistical analysis

methods can require assumptions on the kind of functional dependency be-

tween input and output variables. The methods mainly differ in their degree

of model assumptions. For example, linear regression makes rather strong

assumptions on the model underlying the observations, while the nearest

neighbour estimator makes no assumptions at all. Most other statistical

estimators lie between both extremes. In general, methods with stronger

assumptions need less data to provide reliable estimates, if the assumptions

are correct. Methods with less assumptions are more flexible, but require

more data (see also 2.3). As we aim at a flexible approach that is appli-

cable to a wide range of scenarios, we focus on flexible methods with less

assumptions about the underlying functional dependencies.

Using a Minimum Set of Experiments Running a single experiment on

a software system in order to get performance measures takes time. Often

it requires warm-up runs, multiple repetitions to get stable numbers and

clean-up procedures. Moreover, when varying the values of multiple pa-

rameters in an experiment series, the „curse of dimensionality“ [HTF09]

leads very quickly to a parameter space that is not measurable in a reason-

able amount of time. Hence, approaches are required that gain maximum

information with as few experiments as possible [Jai91].

4.4.2. Automated Inference of Performance Prediction
Functions

Inferring functional relationships from quantitative data is required in many

disciplines. Various regression and interpolation techniques exist that can
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be used to estimate the value of an unknown point in a partially measured

space [HTF09]. In the following, we refer to the data based on which the

relationship between parameters is inferred as training set. Moreover, we

refer to the data that is used to determine the quality of the estimates as

validation set. We assume that theoretically we can measure any point in

the parameter space. However, as this is in most cases not feasible, we have

to provide a means to decide which points we should add to the training and

validation set in order to derive an accurate prediction function. In general,

the quality of the estimation depends on four main factors:

Number of Known Points Usually, a larger number of known points in-

creases the probability to derive a good estimation.

Structure of Known Points At least as important as the number of known

points is the structure of the known points, i.e., if the space is covered prop-

erly. Having many points from a certain area in the space, but none from

other areas will most likely not result in a good overall estimation. In or-

der to achieve best results, the structure of the points should be aligned to

the combination of underlying functional relationship and applied inference

method.

Appropriateness of Inference Method The proper selection of an infer-

ence method that is able to fit the underlying dependency is another crucial

step when inferring functional relationships from measurement data.

Deviation in Measured Values Due to the stochastic nature of perfor-

mance measurements, all samples that we take for a certain point in the

parameter space have different values [Jai91]. Hence, the value that we de-

rive for a single point is always different from the real value for this point.

This deviation can influence the quality of estimations.

The challenge addressed by the approach presented in this section is to find

a trade-off between automatically deriving an accurate prediction function
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and executing only a minimal set of experiments. Moreover, the approach

should be applicable to a large set of scenarios and thus should not make

too many assumptions about the functional dependencies that are to be in-

ferred. In particular, we answer the following questions:

1. What are appropriate statistical inference methods to derive per-

formance prediction functions without knowing the underlying

dependencies?

2. What are appropriate strategies for automatically selecting mea-

surement points in a parameter space?

3. Which measurement point selection strategies and statistical in-

ference methods are good or bad matches with respect to the

trade-off between number of measurement points and prediction

accuracy?

4. How to derive prediction functions with sufficient accuracy us-

ing a minimal set of measurements?

In the context of this thesis the value of a single measurement point is

derived by an experiment (see Section 4.3.1). The basic procedure of our

approach for finding a good trade-off between number of experiments and

prediction accuracy is depicted in Figure 4.9.

[Acceptable

[Not Acceptable Prediction Error]

Determine and
Execute

Experiments

Derive Prediction
Function

Validate
Prediction
Function

[Acceptable
Prediction Error]

Figure 4.9.: Overview on automated, iterative function inference

We use an automated iterative approach that executes new experiments

until a prediction function with sufficient accuracy has been inferred. Within
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one iteration the following steps are executed. The first step is determining

and executing a set of experiments. We developed different strategies that

decide which and how many experiments are selected in each iteration (see

Section 4.4.2.1). In the next step, a statistical analysis is conducted to de-

rive a prediction function based on the data measured so far. In Section

4.4.2.3, we introduce multiple inference methods that meet the require-

ments of the approach. Once the prediction function has been derived, it

is automatically validated against the data in the validation set using one

of the strategies described in Section 4.4.2.2. The validation provides a

prediction error metric for the inferred prediction function. If this error is

below a predefined threshold, the process terminates. If the error is above

the threshold, a new iteration is started.

Figure 4.10 illustrates the process by a simplified example with a single

controlled parameter. The underlying functional relationship between the

controlled parameter and the performance metric of interest follows an ex-

ponential model (as indicated by the solid exponential curves in the graphs

on Figure 4.10).

In the first step, the algorithm runs two experiments and adds the values

t1 and t2 to the training set (see Figure 4.10(a)). Then, a linear function

is derived from the data in the training set (dashed line in Figure 4.10(b)).

In the next step, the prediction function is validated. For this purpose, two

more experiments are executed and the values v1 and v2 are added to the

validation set. Now, the measured values in the validation set are com-

pared to the predicted values for those points and the difference between

the measured and the predicted values is calculated (indicated by Δp and

the vertical dotted line in Figure 4.10(c)). As Δp is larger than the prede-

fined threshold, a second iteration is started running an additional experi-

ment and adding the value t3 to the training set (see Figure 4.10(d)). Based

on the new training set, a stepwise linear function is derived (dashed lines

in Figure 4.10(e)). Finally, the new predictions are compared to the mea-

sured values v1 and v2 in the validation set and the prediction error Δp is
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Figure 4.10.: Example for iterative function inference

calculated again (see Figure 4.10(f)). Now, the prediction error is smaller

than the predefined threshold and the algorithm terminates.

In the remainder of this chapter, we introduce different methodologies

and strategies to implement and combine the three steps of the process.

Moreover, we validate the efficiency and prediction accuracy of the ap-

proach in different case studies (see Section 4.5).

4.4.2.1. Experiment Selection Strategies

In the following, we describe three concrete experiment selection strategies

that implement the iterative process described above. The Random Break-
down algorithm selects a number of random experiments in the whole pa-

rameter space. In contrary, the adaptive strategies continuously split the

parameter space in different sectors and select new experiments in those

sectors that have the worst prediction accuracy. Thereby, the Adaptive Ran-
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dom Breakdown algorithm randomly selects experiments within a sector,

while the Adaptive Equidistant Breakdown algorithm follows an equidis-

tant pattern when selecting new experiments in a sector.

Random Breakdown The Random Breakdown algorithm randomly se-

lects a number of experiments in each iteration of the process outlined

in Figure 4.9. The selected experiments are always distributed across the

whole parameter space. The algorithm is formalized in Algorithm 4.1 and

illustrated in Figure 4.11 using an example with two controlled parameters.

Iteration 1 Iteration 2 Iteration n

…
p1 p1 p1

p2 p2 p2

Figure 4.11.: Example for Random Breakdown

At the beginning of the algorithm the training set T is empty. V is a

predefined validation set that contains n randomly selected validation ex-

periments. The set of experiments E from which the strategy can select

candidates is defined by the number of all possible experiments in the pa-

rameter space e1, . . . ,em minus the experiments that have been selected for

the validation set V . The algorithm can be configured via two parameters.

εmaxPredErr is a threshold that defines at which prediction error the algorithm

can terminate. This threshold allows performance analysts to adjust the

trade-off between prediction accuracy and number of executed experiments

according to their needs. εexpPerIter denotes the number of experiments that

are to be executed in each iteration. Hence, it allows performance analysts

to control the length of a single iteration. In some cases it might be more ef-

ficient to execute more experiments before conducting an analysis while in

other cases one wants to build the prediction models more frequently. This
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Algorithm 4.1 Random Breakdown
1: err := ∞
2: T := {}
3: V := {v1, . . . ,vn}
4: E := {e1, . . . ,em}\V
5: Initialise configuration values εmaxPredErr, εexpPerIter

6: while err > εmaxPredErr ∧E �= {} do
7: Eiter := εexpPerIter random experiments from E
8: Execute all experiments in Eiter
9: T := T ∪Eiter

10: E := E \Eiter
11: Build prediction function using T
12: Predict points in V and calculate err
13: end while

mainly depends on the size of the parameter space, the time it takes to get

one measurement point and the time it takes to conduct an analysis. In the

body of the algorithm, a loop is executed until the prediction error is less

than εmaxPredErr or all possible experiments have been executed. In each

iteration of the loop εexpPerIter random experiments are selected, executed

and added to the training set T . Then, the prediction function is derived

based on the training set and the predictions are compared against the data

in the validation set V .

The benefit of the random breakdown strategy is its simplicity. More-

over, it is not prone to local over-optimisations. However, it also does not

optimize the structure of the selected experiments with respect to the anal-

ysis. Hence, it is possible that a lot of experiments are executed that do not

provide much information gain. See Section 4.5, for a detailed discussion.

Adaptive Equidistant Breakdown In contrast to the algorithm de-

scribed above, the Adaptive Equidistant Breakdown algorithm as well as
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the Adaptive Random Breakdown algorithm (described in the next para-

graph) take the locality and the size of single sector prediction errors into

account when determining experiments for the next iteration. Both adaptive

algorithms split the parameter space in sectors depending on the locality of

the points with the largest prediction errors. We assume that a new ex-

periment in the area with the highest prediction error raises the accuracy

of the overall prediction function at most. Thus, only those sectors that

have a prediction error larger than the predefined threshold will be split

into equidistant sub sectors and only in these sub sectors new experiments

will be selected.

In the following, we describe the algorithm in detail. First, we introduce

some basic data types, variables and functions followed by a listing of the

algorithm (see Algorithm 4.2) and a figure illustrating the basic idea by an

example (see Figure 4.12).

We define E = {�e|�e ∈ Fi} as a set of all possible experiments in a mul-

tidimensional parameter space with normalized values F = [0..1]. Ele-

ments of E are declared as �e. Let the elements �e1 �=�e2 be two positions

describing the multidimensional space. Function fcenter : E ×E → E re-

turns the center of the two given experiments which is calculated by the

element-wise arithmetic middle of the two vectors. This center is again

an experiment named �ecenter. Furthermore, function fcorners : E ×E → E∗

returns a set of all corner points of the embraced space given by �e1 and

�e2 (i.e., E∗ ⊂ E). A corner point is an experiment �ecorner that contains

only the minimal or maximal possible value of an input parameter in a

multidimensional space. In addition, let errsector ∈ R
+ describe the error

of the prediction function in a multidimensional space called sector that

is defined by two corner points �ecorner1 and �ecorner2. Furthermore, S =

{�ecorner1 ×�ecorner2 × errsector|�ecorner1 ∈ E ∧�ecorner2 ∈ E ∧ errsector ∈ R
+}

is defined as the set of sectors in a multidimensional space. Q ⊂ S is a

priority-controlled queue which contains sectors where the error of the pre-

diction function runs out of the acceptable threshold. The order of priority
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is based on errsector. The training set T holds the measurement results of

the experiments used to create a prediction function. V is the validation set

used to calculate the prediction error. With respect to the contained exper-

iments Q, T , and V are mutually disjoint. The function fpredict : E → R

creates a prediction results for a specific experiment�e based on the data in

the training set T . The parameter εmaxPredErr ∈R
+ is predefined by the per-

formance analyst and gives an option to control the expected accuracy and

thus the runtime of the iteration process. To derive the validation set which

is used to calculate the prediction error, the performance analyst can choose

between three strategies V S = {vs|vs ∈ {DSL,DSG,RV S}}, where DSL is

the Dynamic Sector with Local scope, DSG is Dynamic Sector with Global
scope, and RV S is the Random Validation Set strategy (see Section 4.4.2.2

for a detailed description of the validation strategies). For the sake of sim-

plicity, we illustrate only the DSL validation strategy in Algorithm 4.2 and

Algorithm 4.3. In general, all methods are based on the assumption that the

prediction error of the derived function for fcenter(e1,e2) is representative

for the error in the spatial field embraced by�e1 and�e2.

After setting the preconditions, the actual experiment selection starts

with a loop over Q in line 7 of Algorithm 4.2. Within this loop, those sec-

tors with the highest error are selected for further processing and stored in

the set I (lines 8 to 15). Starting at line 16, the algorithm iterates over the

selected sectors and executes the experiments that define the corners of the

sector as well as the experiments that lies in the center of the sector (lines

17 to 20). Furthermore, it calculates the prediction error errsector for these

sectors (lines 21 and 22). If errsector is greater than the defined εmaxPredErr,

new sub sectors are created to be measured in further iterations (lines 24-

28). If the errsector is less than εmaxPredErr and the validation strategy is one

of the Dynamic Sector strategies (see also Section 4.4.2.2), the current sec-

tor is used for validation (line 30). To provide faster convergence against

the underlying performance functions it brings significant advantages to ex-

ecute this breadth-first approach over all sectors with the same prediction
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Algorithm 4.2 Adaptive Equidistant Breakdown

1: �e1 := (1,1, . . . ,1)
2: �e2 := (0,0, . . . ,0)
3: errsector := ∞
4: T := {}
5: V := {}
6: Q := {<�e1,�e2,errsector >}
7: while Q �= {} do
8: I := {}
9: Sort Q descending by errsector

10: repeat
11: stmp1 := first sector in Q
12: Q := Q\{stmp1}
13: I := I ∪{stmp}
14: stmp2 := first sector in Q
15: until stmp1.errsector > stmp2.errsector

16: for all s in I do
17: E := fcorners(s.�e1,s.�e2)
18: Execute all experiments in E and add results to T
19: �ecenter := fcenter(s.�e1,s.�e2)
20: rmeasured := measured value for�ecenter
21: rpredicted := fpredict(�ecenter)

22: errsector :=
|rmeasured−rpredicted |

rmeasured
23: if errsector > εmaxPredErr then
24: for all�e in E do
25: stmp :=<�e,�ecenter,errsector >
26: Q := Q∪{stmp}
27: T := T ∪{< rmeasured,�ecenter >}
28: end for
29: else
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30: V :=V ∪{s}
31: end if
32: end for
33: for all s in V do
34: rmeasured := measured value for s.�ecenter.

35: rpredicted := fpredict(�ecenter)

36: s.errsector :=
|rmeasured−rpredicted |

rmeasured
37: if s.errsector > εmaxPredErr then
38: V :=V \{s}
39: Q := Q∪{s}
40: end if
41: end for
42: end while

43: for all s in V do
44: rmeasured := measured value for s.�ecenter.

45: T := T ∪{< rmeasured,�ecenter >}
46: end for
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error errsector. It ensures that the algorithm goes deeper in those areas with

the highest prediction faults. Since nearly all interpolation or regression

techniques cannot absolutely avoid the influence of new elements in T onto

preliminary well predicted sectors, the validation repository V is checked

for negative effects in sectors that have been well predicted before the last

modifications (lines 33 to 41). If for any sector s in V the prediction is

not accurate enough, the sector is returned to Q and thus measured in more

detail in later iterations. We expect that the heuristic converges more ef-

ficiently if a new measurement has only local effects on the interpolation

function. Finally, all elements from V are copied to T as the experiments

have been executed before and thus the data is available but not yet added

to the training data (lines 43-46). Figure 4.12 illustrates the experiment se-

lection process of the Adaptive Equidistant Breakdown strategy based on

two controlled parameters p1 and p2. The red points mark the experiments

that have been used in the training set. For the sake of readability, we do

not show the experiments used for validation.

I i 1 I i 2 It tiIteration 1
p1

…

Iteration 2
p1

Iteration n
p1

p2 p2 p2

Figure 4.12.: Example for Adaptive Equidistant Breakdown

The benefit of the strategy is the smart coupling between experiment se-

lection, prediction function derivation and validation. The fact that new ex-

periments are selected in those areas where the highest prediction error has

been observed can result in a faster convergence against the desired over-

all prediction accuracy defined by the performance analyst. Moreover, the

strategy is very economical with respect to the number of executed experi-

ments. However, a drawback of the strategy is that the decision if the points
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in a sector are represented accurately enough is based on a single center

point experiment which might lead to wrong conclusions. The Adaptive

Random Breakdown Strategy presented in the following paragraph aims at

compensating this drawback by selecting multiple random experiments for

each sector.

Adaptive Random Breakdown The Adaptive Random Breakdown

algorithm is very similar to the Adaptive Equidistant Breakdown algorithm.

It also takes the locality and the size of single sector prediction errors into

account when determining experiments for further iterations. The only dif-

ference to the Adaptive Equidistant Breakdown algorithm is that instead of

selecting only the center point of the sector, the Adaptive Random Break-

down algorithm selects a given number of random experiments within the

sectors. Figure 4.13 illustrates the selection process based on two controlled

parameters.

Iteration 1 Iteration 2 Iteration n

…
p1 p1 p1

…
p2 p2 p2

Figure 4.13.: Example for Adaptive Random Breakdown

The frame of the algorithm as well as the basic data types and variables

correspond to Algorithm 4.2. The main difference in Algorithm 4.3 is that

the function frandom : E × E → ER which returns n random experiments

(ER ⊂ E) located in a sector s replaces function fcenter. Thus, the training

set T and the validation set V contain the set of randomly selected exper-

iments ER and the corresponding measured results RM = {rm|rm ∈ R
+}.

The predicted results are stored in an array RP = {rp|rp ∈ R
+}. The num-
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ber of experiments that are selected in each iteration can be configured by

the performance analyst.

Compared to the Adaptive Equidistant Breakdown Strategy, more exper-

iments are selected within an iteration which can lead to a faster termina-

tion in critical sectors (due to less necessary sector splits). However, that

depends on the size of the parameter space, the configured number of exper-

iments per iteration, the applied inference method and the complexity of the

underlying function. In Section 4.5, we discuss the interaction between the

different combinations of problems, experiment selection strategies, vali-

dation strategies and inference methods in detail.

4.4.2.2. Validation Strategies

The decision on how to derive the data for the validation of the prediction

function can be a crucial one for the automated experiment selection ap-

proach presented in this thesis. As with the experiment selection for the

training set, the number of experiments and the structure of selected exper-

iments determine the quality of the validation set. However, while a larger

validation set leads to better results, it also requires more time to execute

these experiments. As the number of executed experiments is the metric

we want to minimize in our approach, it is important to find and add those

points to the validation set that provide maximum information gain (i.e.,

which are most likely to improve the prediction accuracy). In the algo-

rithms introduced in Section 4.4.2.1, we have already implicitly shown two

strategies for adding experiments to the validation set. In the remainder of

this section, we introduce and discuss the validation strategies applied in

this thesis in more detail.

Random Validation Set In this strategy, a set of random experiments

out of the whole parameter space is used to determine the accuracy of the

prediction model during the automated iterative process depicted in Fig-

ure 4.9 . The size of the validation set can be defined by a performance
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Algorithm 4.3 Adaptive Random Breakdown

1: �e1 := (1,1, . . . ,1)
2: �e2 := (0,0, . . . ,0)
3: errsector := ∞
4: T := {}
5: V := {}
6: Q := {<�e1,�e2,errsector >}
7: while Q �= {} do
8: I := {}
9: Sort Q descending by errsector

10: repeat
11: stmp1 := first sector in Q
12: Q := Q\{stmp1}
13: I := I ∪{stmp}
14: stmp2 := first sector in Q
15: until stmp1.errsector > stmp2.errsector

16: for all s in I do
17: E := fcorners(s.�e1,s.�e2)
18: Execute all experiments in E and add results to T
19: ER := frandom(s.�e1,s.�e2)
20: RM := measured values for ER

21: RP := fpredict(ER)

22: errsector :=
∑ER.size

i=1
|RM [i]−RP[i]|

RM [i]
ER.size

23: if errsector > εmaxPredErr then
24: for all e in E do
25: stmp :=<�e,ER,errsector >
26: Q := Q∪{stmp}
27: T := T ∪{< RM,ER >}
28: end for
29: else
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30: V :=V ∪{s}
31: end if
32: end for
33: for all s in V do
34: RM := measured values for s.ER.

35: RP := fpredict(ER)

36: s.errsector :=
∑ER.size

i=1
|RM [i]−RP[i]|

RM [i]
ER.size

37: if errsector > εmaxPredErr then
38: V :=V \{s}
39: Q := Q∪{s}
40: end if
41: end for
42: end while

43: for all s in V do
44: RM := measured values for s.ER.

45: T := T ∪{< RM,ER >}
46: end for
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analyst. In each validation run, all experiment results in the validation set

are compared to the predicted values of the prediction model, and the aver-

age relative prediction error is calculated.

The advantages of this strategy are that the validation experiments are

distributed across the whole parameter space and that the performance ana-

lyst can control the size of the validation set and thus its significance. How-

ever, the disadvantages are that a large validation set requires the execution

of many experiments that cannot be used for function building, it can cause

long processing times of the validation step, and due to the random selec-

tion of the experiments we might not get enough validation experiments in

those areas that are the most critical.

Dynamic Sector The Dynamic Sector validation is a strategy devel-

oped to further improve the efficiency of the adaptive breakdown algorithms

(see Section 4.4.2.1). Thus, it is closely connected to the adaptive algo-

rithms and can only be applied in combination with one of these. The goal

of the strategy is to minimize the measurement overhead for the validation

step but providing enough validation points in order to confidently calcu-

late the prediction error of the derived function. The strategy uses only

experiments that have been measured anyway during the breakdown of the

parameter space by the respective algorithms. After a new experiment has

been executed, the strategy decides based on the prediction error in the cor-

responding sector whether the new experiment result will be part of the

validation set or training set. If the prediction error of a sector is below a

predefined threshold, the adaptive algorithms do not further split the sector

(as formalized in Algorithm 4.2 and 4.3). The experiments measured in the

course of this last split will not be added to the training set but to the valida-

tion set. After each iteration of the adaptive algorithms, the strategy checks

the prediction errors of the sectors in the validation set. If a change in the

model during an iteration causes the prediction error in a sector to go above

the predefined threshold, the experiment results for this sector will be re-
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moved from the validation set and added to the training set. Moreover, the

sector is split in multiple sub sectors in order to execute more experiments

in the critical sector. Hence, the experiments that are part of the validation

set change dynamically based on the sector prediction errors at a certain

point in time. The validation terminates the overall measurement process if

(i) all sectors have a prediction error that is less than the predefined thresh-

old (in the following referred to as Dynamic Sector validation with Local

prediction error scope (DSL)), or (ii) the average prediction error of all sec-

tors is less than the predefined threshold (in the following referred to as

Dynamic Sector validation with Global prediction error scope (DSG)).

The advantages of this strategy are that it requires no additional measure-

ments in order to build a validation set and that the size of the validation set

grows with the number of splits executed by the adaptive algorithms. As

the number of splits is an indicator for the complexity of the function that

has to be predicted, we get more validation points if we have to infer a more

complex function. However, the fact that only those experiments measured

by the breakdown algorithm are used for the validation set implies that the

confidence of the calculated prediction error relies on the quality of the

breakdown algorithms.

4.4.2.3. Statistical Inference Methods

In this section, we introduce four analysis methods that can be applied in

the presented approach. It is not a goal of this thesis to develop a novel

function inference method or to compare all existing approaches and find

the best one. Instead, we aim at demonstrating that our approach provides

good results by integrating state of the art analysis methods. Furthermore,

we want to demonstrate that the flexibility of the approach allows to com-

bine different experiment selection algorithms with different analysis meth-

ods. This flexible combination of methods allows scientists and engineers

to benchmark new experimental design and analysis strategies against state
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of the art approaches. In the course of this thesis, we focus on flexible

analysis methods that make less assumptions about underlying functional

dependencies and thus are generally applicable to a large set of scenarios.

In the remainder of this section, we briefly introduce and discuss the four

analysis methods applied in the course of this thesis. A detailed descrip-

tion of the methods is provided in Chapter 2.3. In Section 4.5, we apply

the different combinations of analysis methods and experiment selection

strategies to several problems and discuss which combinations are good

and which are bad matches.

Multivariate Adaptive Regression Splines (MARS) Multivariate

Adaptive Regression Splines (MARS) [Fri91] is an analysis method which

has already been successfully employed in software performance engineer-

ing [CW00, HWSK10]. MARS is a non-parametric regression technique

which requires no prior assumption as to the form of the data. The method

fits functions creating rectangular patches where each patch is a product of

linear functions (one in each dimension) [Fri91]. We selected this method

due to its general applicability and the good results that have been reported

in existing performance engineering literature.

Classification and Regression Trees (CART) CART is a simple

and popular method for tree-based regression and classification. Tree-based

methods partition the feature space into a set of rectangles, and then fit a

simple model in each one [HTF09]. CART has also been successfully ap-

plied in recent performance evaluation case studies [WAA+04, TDZN10].

Moreover, it is a very simple predictor that can analyse a large data sets

very quickly.

Kriging Kriging is a generic name for a family of spatial interpolation

techniques using generalized least-squares regression algorithms [LH08].

It is named after Daniel Krige who applied the method to a mineral ore
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body [Kri51]. Generally, the goal of spatial interpolations is to infer a spa-

tial field at unobserved sites using observations at few selected sites. The

underlying assumption that values that are closer to each other are more

likely to have a similar effect on the metric of interest is also true for most

performance evaluation studies which is why we decided to include Krig-

ing in the list of methods studied in the course of this thesis. Moreover, it

demonstrates one of the main benefits provided by the presented approach,

which is the relatively simple application and evaluation of analysis meth-

ods from other research fields into software performance engineering.

As in geostatistics the problems typically have two input parameters (the

geo-coordinates), we could not find an implementation of Kriging that al-

lows more than two input parameters. Hence, we decided to combine Krig-

ing with Classical Multidimensional Scaling (CMDS) [CC00] in order to

use the method for problems with more than two input variables. We se-

lected CMDS as although it reduces the dimensions it keeps the distances

between the different points which is an essential characteristic for com-

bining it with Kriging.

Genetic Programming (GP) Genetic Programming (GP) aims at de-

riving computer programs or mathematical equations and is thus well-suited

for symbolic regression [Koz93]. GP does not require any assumptions

about the underlying dependency and optimizes the structure of the equa-

tion simultaneously with the coefficients. The GP algorithm that we apply

in the course of this thesis has been published by Faber and Happe [FH12]

and is specially optimized for the inference of performance prediction func-

tions. This example demonstrates another benefit of the approach which is

that it allows to benchmark novel analysis methods against existing state of

the art.
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4.4.3. Summary

We introduced an automated iterative process that combines experiment

selection, function inference and function validation in order to derive ex-

perimental designs that optimize the trade-off between the number of ex-

ecuted experiments and result accuracy [WKH11]. Our approach, which

is integrated in the SoPeCo framework presented in Section 4.3, allows

performance analyst to flexibly introduce, combine, and evaluate different

strategies for the three process steps. The set of strategies that we presented

aim at fitting the functional dependency between a set of input parameters

and a performance metric of interest without making strong assumptions

about the underlying model. As a result, we get 32 possible combinations

of strategies that we applied to three case studies. The results of this evalu-

ation are presented in the following section.

4.5. Validation

In this section, we evaluate and discuss the applicability, efficiency and

accuracy of the approach introduced in this chapter. The Software Per-

formance Cockpit (SoPeCo) introduced in Section 4.3 allows Performance

Analysts to define and automatically execute performance evaluation ex-

periments in different scenarios. Moreover, as presented in Section 4.4, our

approach enables the flexible combination of experiment selection and data

analysis strategies for the automated and efficient inference of performance

prediction functions (see Section 4.4.2).

We applied the approach in two real-world scenarios and a set of simu-

lated functions in order to answer the following questions.

Q1 Can we automatically derive accurate prediction functions in dif-

ferent scenarios using only a small subset of all possible exper-

iments and without making assumptions on the underlying de-

pendencies?
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Q2 What are appropriate statistical inference methods to derive per-

formance prediction functions without knowing the underlying

dependencies?

Q3 What are appropriate strategies for automatically selecting ex-

periments in a parameter space?

Q4 Which experiment selection strategies and statistical inference

methods are good or bad matches?

In general, we consider a method as good or appropriate if it yields a

good trade-off between the number of executed experiments and the accu-

racy of the prediction functions. Hence, the metrics that we use in the case

studies to compare the different combinations against each other are the

following.

Metric 1: The number of selected experiment (NE) compared to the pos-

sible number of experiments spanned by the parameter space. We

aim at generating an accurate prediction model with only a minimal

set of experiments.

Metric 2: The time it takes to execute NE experiments (ET) in hours (h)

or days (d). This metric is calculated as the product of the number

of executed experiments (NE) and the average execution time for a

single experiment. The time for analysing the measured data is not

included in this metric. Moreover, we discuss the ET metric only in

the context of the real-world use cases.

Metric 3: The mean relative error (MRE) of the predictions (in %). To

derive this metric, we measured the complete set of possible exper-

iments within the parameter space and used the measured data as

the validation set. This validation set is independent of the training
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and validation sets used during the derivation of the prediction mod-

els. The validation sets used for this MRE metric aim at the general

validation of the approach, which is why measured all points in the

parameter space.

Metric 4: The mean relative error alone can sometimes cause misleading

conclusions. For example, in cases where a large (simple) part of a

function is fitted very well, the mean relative error can be under a

certain threshold although there might be an important area where

the predictions are bad. That is why we also use the metrics LT15,

LT30, and Highest Error (HE) as an indicator for the reliability of

the predictions. The first two metrics define the percentage of pre-
dictions that have a prediction error that is less than 15% (LT15) or
30% (LT30), respectively. HE is the highest single point prediction

error (in %) observed in the validation.

Based on these metrics, we discuss the results of our case studies. The

following subsections are structured as follows. In Section 4.5.1, Section

4.5.2, and Section 4.5.3 we describe a case study using simulated functions

and two real-world case studies. After an introduction to each case study,

we list the five best and worst performing combinations of experiment selec-
tion algorithm, validation strategy and model inference technique (Comb).
Moreover, we briefly comment the results. A detailed evaluation and dis-

cussion of the overall results is then provided in Section 4.5.4. Table 4.1

gives an overview on the abbreviations used in the result tables for the dif-

ferent methodologies.

The selection of the best five and the worst five entries in the tables is

based on a combined consideration of the aforementioned metrics. The

goal of the evaluation is to identify those combinations that provide a good

trade-off between the number of experiments and the prediction accuracy.

Figure 4.14 illustrates the process that we applied to select the best combi-

nations. The threshold εMRE determines the mean relative prediction error
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Abbreviation Methodology

RB Random Breakdown

AEB Adaptive Equidistant Breakdown

ARB Adaptive Random Breakdown

RVS Random Validation Set

DSL Dynamic Sector Validation \w Local Scope

DSG Dynamic Sector Validation \w Global Scope

MARS Multivariate Adaptive Regression Splines

CART Classification and Regression Trees

Kriging Kriging

GP Genetic Programming

Table 4.1.: Abbreviations in result tables

that is considered as acceptable by the performance analyst in the respective

scenario. For the scenarios presented in this section, we set εMRE = 30%

following standard performance literature [MA01]. From all the combi-

nations that yield a MRE that is less than εMRE , we select the five that

required the least number of experiments. For the five worst combinations

we selected those that could not find a trade-off (i.e.,very large number of

experiments and/or very large prediction error). Please note, that although

we list only the top five and the worst five combinations (for the sake of

readability), we considered all results when deriving our conclusions. The

complete list of results can be found in Appendix B. Moreover, we also

consider the second threshold (εNE ) depicted in Figure 4.14 in our discus-

sion. The number of required experiments determines the time it takes to

derive a prediction function. If NE gets too large, the required measurement

time might render the approach inappropriate for a certain scenario,
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Number of
Experiments

NE

Top5

Mean Relative
Prediction Error

MRE

Figure 4.14.: Selecting the best combinations

4.5.1. Simulated Functions

In this case study, we test the approach against two functions that simulate

typical performance behaviour of software systems. The reason for this

case study with simulated functions is to test the approach in a clean envi-

ronment where we know the function that we try to fit and where we do not

have to deal with fluctuating or misleading measurement results. The goal

is to later on identify those combinations that work in clean environments

but have problems when dealing with real world measurement data.

Context Table 4.2 shows the two functions that we selected for this case

study.

For function f1, we configured the domain for each of the three input

parameters (x0, x1, x2) from 1 to 20 in steps of 1. Thus, the total number of

possible experiments is 8000. For function f2, we configured the domain

for each of the five input parameters (x0, x1, x2, x3, x4) from 1 to 10 in steps

of 1 which calculates to 10000 possible experiments.
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Nr. Function

1 f1(�x) = 0.025 · exp(0.35 · x0)+0.81 · x1 +0.08 · x2
2 +100

2 f2(�x) = 0.005 · exp(0.999 · x0)+105.5 · ( x1
(5.1+x1)

)

+7.8 · x2 +
1

0.66x3 +0.58 · x2
4 +100

Table 4.2.: Simulation functions for function inference validation

Results Table 4.3 and Table 4.4 outline the five best and worst perform-

ing combinations of experiment selection algorithm, validation strategy,

and statistical model inference method for the two simulated functions of

this case study.

Table 4.3 shows that for function f1 in Table 4.2 the combination of

Adaptive Equidistant Breakdown (AEB) and Dynamic Sector validation

with global error calculation (DSG) performed very good with all statis-

tical model inference techniques and outperformed all other combinations

of measurement point selection and validation strategy. For function f2

in Table 4.2 the results are not that clear (see Table 4.4), although AEB

is still the dominating measurement point selection strategy. Especially in

combination with CART and MARS models, the Dynamic Sector valida-

tion with local error calculation (DSL) performed as good as DSG when

fitting function f2. When looking at the five worst combinations for the

two equations, the combination of Adaptive Random Breakdown (ARB)

measurement point selection and Random Validation Set (RVS) validation

strategy does not seem to be efficient.

4.5.2. Enterprise Application Customisation

This case study has already been introduced in Section 4.3.1.3. It de-

scribes a customisation project of an SAP ERP 2005 application. In this
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Top 5

Comb NE MRE HE LT15 LT30

AEB DSG MARS 22 2.4 9.9 100.0 100.0

AEB DSG GP 22 5.3 14.9 100.0 100.0

AEB DSG CART 22 8.8 22.1 85.3 100.0

AEB DSG Kriging 36 4.4 24.1 97.2 100.0

ARB DSG MARS 41 0.6 2.0 100.0 100.0

Worst 5

Comb NE MRE HE LT15 LT30

AEB DSL Kriging 288 8.5 26.8 85.7 100.0

ARB RVS Kriging 304 5.0 19.1 94.5 100.0

RB RVS GP 314 2.6 12.3 100.0 100.0

ARB DSL GP 909 1.7 7.9 100.0 100.0

ARB RVS GP 974 1.6 5.4 100.0 100.0

Table 4.3.: Results for function f1 (Table 4.2)

project, a performance analyst addresses the problem of customizing an

SAP ERP application configuration to an expected customer workload (see

also [Sch06]). The workload of an enterprise application can be coarsely di-

vided into batch workload (background jobs like monthly business reports)

and dialogue workload (user interactions like displaying customer orders).

This workload is dispatched by the application server to separate operating

system processes, called work processes, which serve the requests [Sch06].

At deployment time of an SAP system the IT administrator has to allocate

the available number of work processes (depending on the size of the ma-

chine) to batch and dialogue jobs, respectively. With the performance pre-

diction function derived in this case study, we enable IT administrators to

find the optimal amount of work processes required to handle the dialogue

120



4.5. Validation

Top 5

Comb NE MRE HE LT15 LT30

ARB DSL CART 103 10.9 48.8 73.1 96.8

AEB DSG MARS 114 5.5 30.7 80.4 99.8

AEB DSL MARS 114 5.5 30.7 80.4 99.8

ARB DSG MARS 134 1.4 8.1 100.0 100.0

ARB DSL MARS 134 1.4 8.1 100.0 100.0

Worst 5

Comb NE MRE HE LT15 LT30

ARB RVS CART 603 9.9 43.2 77.4 98.3

ARB RVS GP 640 7.1 26.9 90.6 100.0

ARB RVS MARS 1002 1.0 5.4 100.0 100.0

ARB RVS Kriging 1002 12.6 43.2 64.4 94.6

ARB DSG CART 3215 11.2 46.7 71.0 98.0

Table 4.4.: Results for function f2 (Table 4.2)

workload with the constraint that the average response time of dialogue

steps should be less than one second.

Context The system under test consists of the enterprise resource plan-

ning application SAP ERP2005 SR1, an SAP Netweaver application server

and a MaxDB database (version 7.6.04-07). The underlying operating sys-

tem is Linux 2.6.24-27-xen. The system is deployed on a single-core vir-

tual machine (2,6 GHz, 1024KB cache). To generate load on the system

we used the SAP Sales and Distribution (SD) Benchmark [SAP12]. This

standard benchmark covers a sell-from-stock scenario, which includes the

creation of a customer order with five line items and the corresponding de-

livery with subsequent goods movement and invoicing. Each benchmark

user has its own master data, such as material, vendor, or customer master
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data to avoid data-locking situations [SAP12]. The performance metric of

interest is the average response time of dialogue steps (AvgResponseTime).

The input parameters in this setup are (i)

• the number of active users (NumSDUsers) where the domain

ranges from 60 to 150 and

• the number of work processes for dialogue workload (NumDialo-

gueWPs) varied from 3 to 6.

Thus, we are looking for the function

f (NumSDUsers,NumDialogueWPs) = AvgResponseTime. (4.1)

The full parameter space consists of 360 experiments. The range of val-

ues measured for the AvgResponseTime is between 125 ms and 3500 ms.

The execution of a single experiment (including repetitions to control mea-

surement noise) takes approximately one hour, which means that in the

worst case the IT administrator has to measure 15 days in order to deter-

mine the optimal configuration. We do not aim at modelling the complete

ERP system and varying all potential configuration, workload and tuning

parameters of a system at once. Instead, the goal is to provide a practical

automated evaluation that helps the administrator to determine the optimal

allocation of work process for a given workload type and a given system

configuration. In the process of enterprise application customisation this is

only one question among many others which is why it is important to pro-

vide a flexible, automated approach that does not make assumptions about

underlying functional dependencies.

Results Table 4.5 shows the five best and worst performing combina-

tions of our prediction approach. Even the worst combination can derive a

prediction model with an acceptable prediction error while requiring only

one fourth of the measurement points. For the combinations that performed
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best, the result is even better. For the combination of Adaptive Equdistant

Breakdown (AEB), Dynamic Sector Global (DSG) and Genetic Program-

ming (GP) we were able to build a prediction model with an average relative

prediction error of 8.7% using only 21 measurement points. The Kriging

method in combination with AEB and DSG also performed very good with

a relative prediction error of only 6% and 38 required measurement points.

Thus, applying our approach can reduce the time necessary to derive an

optimal configuration from 15 to one or two days of measurement. Here,

one can see that although we varied only two independent parameters it is

essential to provide efficient evaluation methods in order to derive results

in a reasonable time frame.

Top 5

Comb NE ET MRE HE LT15 LT30

AEB DSG GP 21 21h 8.7 36.0 81.8 98.7

AEB DSG Kriging 38 38h 6.0 43.3 88.3 96.1

ARB DSG MARS 38 38h 7.3 31.8 89.6 98.7

AEB DSG MARS 53 43h 7.4 31.7 87.0 98.7

AEB DSL Kriging 54 54h 2.8 38.8 94.8 98.7

Worst 5

Comb NE ET MRE HE LT15 LT30

AEB RVS CART 69 69h 31.7 92.9 26.0 51.3

ARB RVS CART 77 77h 28.7 92.0 35.1 57.9

ARB DSG CART 77 77h 28.7 92.0 35.1 57.9

ARB DSL CART 77 77h 28.7 92.0 35.1 57.9

RB RVS CART 77 77h 28.7 92.0 35.1 57.9

Table 4.5.: Results for enterprise application customisation case study
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4.5.3. Java Virtual Machine Tuning

The Java Virtual Machine (JVM) is one of the most important components

when it comes to performance tuning of a Java-based applications [Jam,

Shi03]. However, getting the best performance out of the JVM often re-

quires detailed hand tuning of command line options with respect to heap

sizes or garbage collection. In this case study, we address the problem of

tuning the parameters of a JVM to the special characteristics of an applica-

tion. The application that we use in our experiments is the SPECjbb2005

Java Server Benchmark [SPE05]. The benchmark emulates a three-tier

client/server system (with emphasis on the middle tier) and exercises the

implementations of the JVM, JIT (Just-In-Time) compiler, garbage collec-

tion, threads, as well as some aspects of the operating system [SPE05]. The

system modelled by the benchmark is a wholesale company, with ware-

houses that serve a number of districts. Customers initiate a set of oper-

ations, such as placing new orders or requesting the status of an existing

order. Additional operations are generated within the company, such as

processing orders for delivery or entering customer payments [SPE05].

Context The system under test consists of the SPECjbb2005 benchmark

(configured to run with 10 warehouses), Java HotSpot(TM) Client VM

(build 17.0-b17), and Microsoft Windows XP Professional Version 2002

SP3. The software runs on a standard desktop dual-core machine with 3

GHz per CPU and 3.5 GB RAM. The performance metric of interest in this

scenario is the average throughput of a benchmark run (AvgT hroughput)
measured in SPECjbb2005 bops (business operations per second). The in-

put parameters are as follows (see [Ora12] for a detailed description of the

parameters):

• the heap size (HeapSize) where we configured the possible vari-

ation from 300 MB to 950 MB in steps of 25 MB,
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• the garbage collector (GarbageCollector) implementation which

is either SerialGC, ParallelGC, or ConcMarkSweepGC,

• a boolean value that indicates whether biased locking (Biased-

Locking) is enabled,

• the survivor ratio (SurvivorRatio) varied from 10 to 42 in steps

of 8, and

• the new generation ratio (NewGenerationRatio) which is ex-

pressed in a share of the total heap size ranging from 10% to

40% and varied in steps of 10%.

Thus, we are looking for the function

f (HeapSize,GarbageCollector,BiasedLocking,SurvivorRatio,

NewGenerationRatio) = AvgT hroughput.
(4.2)

The full parameter space consists of 3240 experiments. The range of values

measured for the AvgT hroughput is between 970 bops and 37000 bops. In

this case study, the execution of a single experiment takes approximately

five minutes (including required repetitions to control the measurement

noise).

Results Table 4.6 outlines the five best and worst performing combina-

tions in this case study.

The results show that this case study was the most complex in terms

of inferring a prediction function without knowing the underlying model.

Even the best combinations have a highest prediction error (HE) of 300

to 400 percent. However, the overall error as well as the efficiency of the

prediction models built by the first three combinations is still acceptable,

which demonstrates the robustness of these combinations. One reason for
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Top 5

Comb NE ET MRE HE LT15 LT30

RB RVS MARS 276 23h 20.7 403.1 77.1 86.7

AEB RVS MARS 342 29h 20.3 301.4 73.6 87.0

RB RVS Kriging 365 30h 25.3 955.1 73.7 86.9

AEB DSG MARS 1076 90h 16.3 259.8 79.1 88.0

AEB DSL MARS 1325 110h 17.3 287.9 79.8 88.0

Worst 5

Comb NE ET MRE HE LT15 LT30

ARB DSG Kriging 1001 83h 73.0 964.0 46.7 65.0

ARB DSL Kriging 1011 84h 76.3 957.8 42.6 62.4

RB RVS GP 1388 116h 26.9 485.3 47.3 74.9

ARB DSL MARS 2027 169h 23.9 384.4 70.2 85.3

AEB RVS CART 3111 259h 26.4 432.5 68.8 82.3

Table 4.6.: Results for JVM tuning case study

the complexity of this scenario is that we included an enumeration vari-

able (GarbageCollector) and a boolean variable (BiasedLocking) where

we do not necessarily have monotonically increasing values which makes

prediction harder for most of the statistical analyses techniques. Moreover,

the large highest error values are an indicator that the granularity that we

selected for the parameter variations was not fine-grained enough. Obvi-

ously, there are areas in the parameter space where we did not have enough

information in order to build an accurate model. However, for these ex-

periments we had to limit the parameter space to 3240 measurement points

as we had to measure the full space upfront in order to compare the dif-

ferent strategies and validate the results. The case study also demonstrates

that it is an important precondition that the performance analyst properly

selects the input parameters and domains. Furthermore, it is important to
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note that the high relative prediction errors occur only in experiments where

the measured throughput is low and the workload is high. In experiments

with such heavy workloads, the system can get unstable and other effects

might disturb the measurements. To avoid these situations, a performance

analyst should conduct a set of preliminary experiments that determine the

point where the workload gets to heavy for the given system configuration.

Moreover, in such cases a rather small absolute deviation has a higher im-

pact on the relative error metric (the range of values goes from 970 bobs

to 37000 bops, the standard deviation of errors is for the RB RVS MARS

combination 2826 bobs).

4.5.4. Evaluation

In this section, we discuss the results of the case studies presented in Sec-

tion 4.5.2 and Section 4.5.3 as well as the conclusions that we can draw

out of them. We start by evaluating the four statistical model inference

techniques in isolation and then summarize the results.

Classification and Regression Tree (CART) is a very fast method

that built all the prediction models in the case studies in milliseconds. The

prediction results were good for the simulated functions. However, in the

real case studies the results were poor, especially with respect to the relia-

bility of the predictions. According to our experiments, CART works best

in combination with Adaptive Equidistant Breakdown (AEB) or Random

Breakdown (RB) measurement point selection and Random Validation Set

(RVS) validation. It does not work very well with the Dynamic Sector (DS)

validation strategies.

Genetic Programming (GP) achieved very good results in fitting the

simulated functions as well as in the enterprise application customisation

scenario. However, it was not able to efficiently derive a prediction function
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in the JVM tuning scenario. The best results have been achieved in combi-

nation with AEB measurement point selection and DSG or RVS validation,

respectively. It did not work very well with the combination Adaptive Ran-

dom Breakdown (ARB) and RVS. The biggest problem of the GP approach

is its runtime. In average, it took the approach approximately 20 minutes to

build a prediction model which adds up to a large amount of analysis time

when using in it in our iterative process (see Figure 4.9).

Kriging is in terms of runtime somewhere in the middle between CART

and GP. It becomes slower with increasing number of measurement points

which is mainly caused by the classical multidimensional scaling (CMDS)

implementation that we run before the actual prediction model is built using

the Kriging implementation (see Section 4.4.2.3). In general, the results of

the simulated functions and in parts also the results of the JVM tuning sce-

nario have shown that our approach with the CMDS in combination with

Kriging is working and able to derive accurate prediction models. How-

ever, the best results could be achieved in the enterprise application cus-

tomisation scenario, where we varied only two input variables and thus the

dimension reduction step has not been executed. In this scenario, Kriging

has been a very efficient method. Like GP, it worked best with the combi-

nations AEB/DSG and AEB/RVS and delivered the worst results with ARB

measurement point selection.

Multivariate Adaptive Regression Splines (MARS) is the only me-

thod that achieved very good results in all case studies. From a runtime per-

spective MARS was also able to build prediction models within seconds (at

least with the size of the training data in our scenarios). It worked most ef-

ficiently in combination with AEB measurement point selection and DSG

validation. Good results have also been achieved with the combinations

AEB/RVS and RB/RVS. The worst results with ARB measurement point

selection.
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In summary, MARS together with AEB measurement point selection and

DSG validation has been the only combination that achieved very good re-

sults in all case studies. Only for the enterprise application customisation

case study, GP and Kriging performed slightly better (but also in combi-

nation with AEB/DSG). CART turned out to be the worst method, and is

based on our experiences not suited for black-box inference of Software

Performance Curves. Kriging and GP are in general able to fit black-box

models and can be good alternatives to MARS. Especially, if there is only

one or two input parameters but a large number of measurement points

Kriging can be an efficient option. The main problem with GP is the time it

takes to create a prediction model which makes it not the perfect option for

an iterative approach with repeated generation of prediction models. Re-

garding the measurement point selection algorithms and validation strate-

gies there is a clear tendency that AEB is the most efficient algorithm that

provides especially in combination with DSG and RVS validation the best

results independent of the analysis method. The prediction models derived

by the simple RB are in most cases very accurate and reliable. However,

compared to AEB it required in most cases more measurement points to

build the model.

4.5.5. Threats to Validity

For the function inference approach presented in this section, we see the

following threats to validity:

Internal Validity

• Due to the large space of potential experiments and the com-

plexity of the studied software systems, we cannot measure all

possible experiments in reasonable time. Hence, we restricted
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the domains of the input parameters to a space that is completely

measurable. This restriction influences the results.

• We are also aware that the non-determinism of performance mea-

surements can cause false interpretations [GBE07]. For the dif-

ferent scenarios, we repeated experiment executions until we

reached a proper confidence interval for the mean values.

• Most advanced analysis methods can be configured by different

parameters. This configuration of an analysis method influences

the function fitting process (e.g. in case of Multivariate Adaptive

Regression Splines). In our case studies, we applied the default

configurations of the respective analysis method implementation

as we do not aim at an optimized solution.

External Validity

• To increase external validity we used real-world software sys-

tems in our validation case studies. The investigated benchmark

applications represent a large set of practical applications and it

has been shown that our approach provides good results indepen-

dent of the considered system. However, the evaluation results

are not automatically transferable to all software systems. As

described in Section 4.5.4, the assumptions made by the analy-

sis method have to match the model that is to be fitted in order

to be able to derive a good estimator.

4.6. Discussion of Assumptions and Limitations

In the following, the limitations and assumptions of the SoPeCo approach

that is presented in this chapter will be discussed.
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Test System Availability A precondition for the measurement-based

approach of this work is that a test system is available on which the ex-

periments can be conducted. This includes the system under test as well

as additional software and tools required to execute experiments. For ex-

ample, our approach does not provide load drivers or monitoring software.

The focus of the SoPeCo approach is only on the experimentation process.

In contrast to other approaches, we abstract from the concrete scenario by

providing a flexible extension mechanism in our SoPeCo framework (see

Section 4.3).

Parameter Availability We can only include those parameters in our

experiments that can be controlled by a piece of software or that can be

measured at runtime without adding too much overhead to the system. For

example, it might not always be possible to measure the CPU utilisation of a

system under test as this requires access to the operating system or difficult

sampling mechanisms [CG05]. In such cases, other metrics have to be used

to achieve the goal of the performance evaluation. Kraft et al. [KPSCD09]

use for example response time measurements to estimate CPU resource

demands.

Abstraction of Test System In most cases, experiments are not exe-

cuted on the actual real-world system. Instead a dedicated test instance is

used to run the experiments. The test system is often a smaller abstraction

of the real system. This has to be taken into account when interpreting the

experiment results and deriving conclusions.

Drawing Conclusions from Incomplete Data Another core assump-

tion of our approach is that it is possible to draw proper conclusions from

incomplete data. Hence, we assume that it is possible to estimate a large

set of unknown points correctly if the subset of measured points and the

analysis method is properly chosen.
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4.7. Summary and Contributions

In this chapter, we introduced a novel approach for automating software

performance evaluations. The approach implements a systematic experi-

mentation process and enables performance analysts to run performance

evaluations more structured, more efficient, and in a more goal-oriented

way. Moreover, the approach allows researchers and engineers to apply

and compare different experimental design and analysis strategies.

The contributions of this chapter are the following:

• An experiment specification language that forms the basis for

capturing information required to conduct goal-oriented perfor-

mance evaluation experiments. The language supports a broad

range of scenarios and allows for flexible scenario-specific ex-

tensions.

• A framework architecture that enables automated experiment ex-

ecution based on our experiment specification language. Key

characteristics of the architecture are the iterative combination

of experimental design and analysis and the flexible introduction

and use of components.

• A method that automatically classifies parameters in performance-

relevant and -irrelevant based on state of the art experimental

designs.

• Combination and evaluation of multiple experimental design and

statistical inference techniques for deriving functional relation-

ships efficiently and without making assumptions on the under-

lying model.
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The presented approach provides a basis for different performance en-

gineering tasks. In the remainder of this thesis, we demonstrate how the

approach can be used for deriving software performance models. More-

over, the approach has already been applied for automated exhaustive per-

formance regression testing [WWHM13] or to automatically detect perfor-

mance anti-patterns [WHH13].
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Goal-Oriented Performance Models

In this chapter, we present an end-to-end industrial case study that we con-

ducted in cooperation with performance analysts and development groups

at SAP. We apply the goal-oriented performance modelling approach in-

troduced in this thesis in a real-world context in order to demonstrate its

applicability, accuracy and efficiency. Hence, we aim at answering two

main questions:

1. Can we derive an accurate performance model that solves a real-

world problem?

2. What are the efforts to apply the approach in a real-world sce-

nario?

The remainder of this chapter is organized as follows. We introduce

the context and the design of the study in Section 5.1. In Section 5.2, we

present the scenario that we address in the course of the study. Section 5.3

describes how we implemented the process described in Chapter 3 using

the methodologies introduced in Chapter 4. In Section 5.4 we outline and

discuss the results. In Section 5.5, threats to validity are discussed and

finally Section 5.6 summarizes the chapter.

5.1. Context

The study has been conducted at SAP AG [SAP13a], one of the largest

providers of enterprise software and software-related services worldwide.

The stakeholders in the study are coming from three different groups. The
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first group is the performance engineering team of the research department

of SAP, which includes the author of this thesis. The second group is a

team of performance analysts. The team acts as a service team to develop-

ment groups, and is the main contact for performance-related tasks in the

company. The third group is a team that develops an HTML5/JavaScript-

based UI library named SAPUI5 [SAP13b]. The library is used by other

development groups to build web application front-ends.

The stakeholders as well as the scenario of the case study arose from

the context in which this thesis has been created. Performance engineer-

ing research at SAP aims at supporting software developers in avoiding or

fixing performance problems while minimizing the required efforts and ex-

pert knowledge. SAPs performance analysts observed that very often the

reason for bad front-end performance of enterprise web applications is an

overloaded design of the screen (e.g. too many UI elements). Existing

approaches were not able to deal with the complexity of the involved tech-

nology, the frequent changes in the system under test, or the large amount

of developers that need to be supported. This led to the application of our

work in the scenario introduced in the following section.

5.2. Scenario

For the development of web-based enterprise applications, companies often

rely on JavaScript libraries that provide a uniform appearance, as well as a

set of UI elements and utility functions commonly used in this kind of ap-

plications. At SAP, one of these libraries is the HTML5/JavaScript-based

UI library named SAPUI5 [SAP13b]. Besides the classical challenges of

web performance optimisation [Sou07, Sou09], UI developers and design-

ers need to evaluate the impact of the design of a screen on front-end per-

formance. This involves questions like „How many columns and rows can

I add to a table of type X in my web application without violating perfor-

mance requirements?“ or „What is the impact of back-end call Y on front-
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end performance?“. Theoretically, these questions could also be answered

with the existing performance measurement and analysis tools. However,

practically the effort for applying measurement-based approaches to these

kind of questions is too high which hinders the flexible, performance-aware

construction and evaluation of screen designs. Moreover, the development

of a screen’s design is usually conducted before the screen is actually im-

plemented (e.g. using wireframe or mockup tools). As a consequence,

early performance feedback (prior to implementation) is essential to drive

the deployment of fast web applications.

In the presented case study, we applied our approach to derive a perfor-

mance model that predicts the expected performance of a screen. Based

on the structure of the page, the UI elements used, and the service calls,

our performance model estimates the expected front-end performance for

the three major browsers (Internet Explorer, Firefox, Chrome). The pre-

dictions are used to give designers and developers early feedback about the

expected front-end performance of their design. The approach does neither

require that the application is implemented, nor that the developers conduct

performance measurements. See Chapter 3.2 for a detailed introduction of

the scenario using the proposed template for specifying goal-oriented per-

formance models.

5.3. Execution

In this section, we describe how we derived a performance model for the

scenario described in Section 5.2. The construction of the performance

model has been a joint project of the research team, performance analysts,

and SAPUI5 library developers. In the remainder of this section, we present

the results from implementing the process introduced in Chapter 3 (see 3.4).
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5.3.1. Define Context

The first step of the process is to define the evaluation goal and the experi-

mentation landscape as well as to document the known issues in the context

of the scenario.

5.3.1.1. Performance Evaluation Goal

To describe the performance evaluation goal, we follow the Purpose, Con-
sumption, Construction approach introduced in Chapter 3.2.

Purpose
In today’s web applications front-end performance contributes significantly

to the overall user experience [Sou07] and thus affects business-critical

metrics like conversion rate. Often, performance problems are caused by

flawed screen designs [Fro13]. Changing the design of a screen in late de-

velopment cycles implies large efforts and high costs. Hence, the effect of

the screen design should be considered as early as possible. At SAP there

are hundreds of developers using the SAP UI5 JavaScript library to build

web application front-ends. Having a performance model that allows de-

velopers to easily evaluate the performance of their screen design, would

significantly reduce the need for setting up and running performance tests

by each individual developer. Moreover, it would significantly reduce the

number of performance problems that are casued by flawed screen designs.

Hence, the efforts to construct and maintain the performance model by an

expert team are relatively small compared to the efforts that are necessary

to achieve the same test coverage without the performance model (i.e., each

developer needs to setup and run performance tests for each screen).

Consumption
The performance model should support developers in designing respon-

sive web application screens by warning them when the design contains
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potential performance problems. Therefore, the model should predict the

influence of different UI elements, their configuration and their interference

on performance. The focus of the model is on screens developed with the

SAP UI5 library, influences of custom coding or other libraries can be ne-

glected. Furthermore, the model should be derived for a reference client

machine and current versions of the most common browsers (Internet Ex-

plorer, Firefox, and Chrome). Thereby, it is important that the model re-

flects performance influences accurately for the reference setup. The trans-

ferability to other machine sizes or browser versions is neglectable. For the

given scenario, we identified two potential consumption channels: a web-

based prediction tool and an integration in a screen design editor. The web-

based tool allows designers to quickly evaluate different screen designs by

varying the screen configuration based on check boxes, sliders and input

fields. It is a valuable tool for making rough estimations about front-end

performance before actually starting the screen design. It helps answering

questions like „How many columns and rows can I add to a table of type

X in my web application without violating performance requirements?“or

„What is the impact of back-end call data size on front-end performance?“.

Moreover, the web-based prediction tool can be used in developer trainings

to clarify the impact of bad screen designs on front-end performance. The

second consumption channel is the integration of the prediction model in a

screen design editor used by developers to create SAP UI5 based web ap-

plications. Having the prediction integrated in the editor allows us to give

immediate feedback on the expected performance while the screen is under

development. Developers can get a warning when the screen design does

not meet SAP’s performance requirements and detailed views.

Construction
To derive the prediction model an experimental, measurement-based pro-

cess is applied. The experiments are conducted using a screen generator

software that allows to generate screens with different SAP UI5 library el-
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ements and configurations. The performance of the generated screens is

measured on the latest versions of the main browsers on a test client ma-

chine.

5.3.1.2. Metric

The requirements for a metric that describes front-end performance are that

i) it relates to the actual user experience, ii) it is measurable, iii) it is re-

producible, iv) it is predictable, v) and it is influenced by the design of the

screen. Previous measurements at SAP have shown that more than 70%

of the end to end response time for typical enterprise web applications are

spent in the browser. Standard web performance literature backs this as-

sumption [Sou07]. This 70% of the end-to-end response time, include all

client-side activities performed by the browser. For example parsing ac-

tivities, JavaScript execution, DOM construction, and rendering [Sou07,

Sou09]. Recently, the W3C Web Performance working group [W3C13] has

published a standardisation recommendation that defines an interface for

web applications to access timing information related to navigation and el-

ements from the browser [W3C12b]. While the metrics that can be derived

by this information (e.g. DOM processing time or total page load time)

provide fine-grained insights in which browser tasks the time is spent, none

of these metrics fulfils the requirements stated above. The metrics either

leave parts out (e.g. the DOM processing time does not include the in-

fluence of back-end connection establishment) or include influences, such

as network latency, that are not controllable and may disturb our measure-

ments. Instead, we decided to use the browser CPU time as an indicator for

front-end performance. We define the browser CPU time (short: CPU time)

as the CPU time of the browser process consumed after a request has been

sent to the application server until the full web application is displayed (see

Figure 5.1). This includes all front-end activities performed by the browser

and can be considered as the fastest achievable front-end performance, as
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it excludes disturbances caused by network latency and blocking requests.

However, it is important to note that although the browser CPU time is a

proper metric to determine the impact of design decisions on front-end per-

formance and thus an excellent candidate for the prediction scenario, it does

not replace the measurement of other metrics when aiming at, for example,

optimizing the performance of an existing screen.

Figure 5.1.: Browser CPU time metric

5.3.1.3. Test Environment

In order to execute the experiments, we used the following components (see

Figure 5.2):

• A test client machine that has the browser versions installed

for which the performance models are to be constructed. Our

experiments were performed on a Lenovo Laptop with an In-

tel(R) Core(TM)2 Duo CPU T7300 @2GHz processor, 4 GB
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RAM, and the Windows 7 Enterprise operating system. We con-

ducted all experiments on the three major browsers: Chrome

22.0.1229.94 (CH), Firefox 16.0.2 (FF) and Internet Explorer

9.9.0.8112.16421 (IE). Moreover, the client machine has to pro-

vide the capabilities (i) to control the browsers (start, stop, call

url) via a parametrizable interface and (ii) to monitor the CPU

time consumed by the browser between a request has been sent

to the server and the point where the complete screen is loaded

and displayed. Therefore, we installed a satellite component of

the SoPeCo framework (see Chapter 4.3), that uses the Java li-

braries Selenium and Sigar to perform these tasks.

• Furthermore, a second machine is required that runs an instance

of the SoPeCo framework. This instance allows us to define,

execute and analyse experiments and handles the connection to

the components on the test client.

• Finally, we need a web server that hosts a screen generator com-

ponent. This screen generator has to have the capability to create

screens based on the parameters transferred via the url. For our

experiments, we developed a screen generator that creates SA-

PUI5 based screens with the UI element type manifestations and

quantities given in the url (e.g. the url

mygen.org/?table.rows=5&table.cols=5&table.quantity=2

would create a screen with two tables both with five columns and

five rows).

The SoPeCo instance transfers the information about the experiment

(e.g. which browser to use, how many repetitions, parameter values for

screen generation) to the test client. The test client prepares the experiment

(e.g. killing all unnecessary processes, starting the browser, constructing

the url that defines the screen) and triggers its execution by calling the url

that transfers the screen specification to the screen generator component on
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<<device>> 
Experimentation Server 

<<web server>> 
Apache Tomcat 

<<artifact>> 
SoPeCo 

<<device>> 
Reference Test Laptop 

<<operating system>> 
Windows 7 Enterprise 

<<artifact>> 
SoPeCo Satellite 

<<artifact>> 
Test Screen 

<<browser>> 
Chrome, Firefox, IE 

<<device>> 
Test Server 

<<web server>> 
Apache Tomcat 

<<artifact>> 
Screen Generator 

Figure 5.2.: Experimentation landscape

the web server. The screen generator generates the HTML and JavaScript

files based on predefined code snippets. Then, the files that make up the

screen are transferred to the client browser, which starts the rendering pro-

cess. Once the screen is fully loaded, the experiment results are transferred

back to the SoPeCo instance. This loop is repeated for each screen that is

tested in an experiment series.

Furthermore, each screen is measured multiple times as performance mea-

surements are of a stochastic nature and thus always include a certain er-

ror [Jai91]. To deal with this error, measurements are usually repeated until

a certain confidence band has been reached that is considered as sufficient

for the corresponding scenario. However, although a larger number of rep-

etitions means that the calculate mean value is more stable, it also causes

additional measurement time. As measurement time is in most cases a lim-

ited resource, we have to find a trade-off between the accuracy and mea-

surement time. Therefore, we conducted a series of test runs with different

screens and calculated the 95% confidence intervals for the mean value us-

ing different sample sizes. Figure 5.3 depicts an example that demonstrates

how the confidence interval changes when the number of repetitions is in-

creased. The graph shows that the improvements in the confidence band
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are getting smaller, with an increasing sample size. We decided to conduct

50 repetitions for each run and remove the outliers so that we end up be-

tween 30 and 50 valid samples per experiment. This results in an average

measurement time of approximately 10 minutes for each experiment.
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Figure 5.3.: 95% confidence intervals for different sample sizes

5.3.1.4. Known Issues

The following issues have been identified by the different stakeholders and

should be considered in the modelling process:

• Overloaded Screens: Developers sometimes tend to place too

much information on a single screen. This results in complex

page structures and way too many UI elements. To render such

screens, the browser requires multiple seconds. Figure 5.4 shows

a real example of such an overloaded screen.
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Figure 5.4.: Overloaded screen

• Nesting: Nested structures are created by layout containers in or-

der to arrange the UI elements of a page. The analysis of screens

with bad performance characteristics has indicated that often a

high nesting level has been responsible for bad performance.

• Data Transfer: Performance measurements on service calls have

shown that the amount of data that is transferred from the server

to the client does not only influence the network delay but also

the browser CPU activity.

• Configuration: A good example on how misconfiguration of a

UI element can affect front-end performance has been published

in [Lep12]. There, a rotating banner has been configured to load

the images in parallel, instead of loading the visible image first.

This was one reason for the bad performance of the web applica-

tion screen. But also simple configuration options such as how
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many visible columns and rows are added to a table can affect

the performance of a screen.

• Browser: The performance of the rendering engines of different

browsers differs significantly [KH11]. Moreover, browser ven-

dors strive to constantly improve their performance. Hence, per-

formance characteristics of screens might change between dif-

ferent browsers and browser versions. Moreover, optimisation

effects such as caching can influence performance measurements

and have to be considered.

5.3.2. Understand Performance Behaviour

The next main block in the goal-oriented performance modelling process

(illustrated in Figure 3.4) is to get an understanding of the performance

influences in the scenario. In the following sections, we describe the as-

sumptions that we defined with respect to relevant performance influences

(Section 5.3.2.1) as well as the experiments that we conducted in order to

test the assumptions (Section 5.3.2.2).

5.3.2.1. Initial Assumptions

Table 5.1 lists the assumptions that we investigated in order to get a pro-

found understanding of the performance characteristics of SAP UI5-based

web application screens. The assumptions are based on the known issues

outlined in Section 5.3.1.4 and address the major aspects that vary from one

web application to another: the number and type of UI elements used (A1,

A2, and A3), the configuration of UI elements (A4), the type and number

of service calls (A5), and the structure of the screen (A6 and A7). Un-

derstanding and quantifying the effect of these influencing factors, allows

predicting the expected front-end performance of a web application.
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ID Assumption

A1
Performance worsens with an increasing

number of UI elements on the screen.

A2
There is only a small subset of UI elements

that affects performance significantly.

A3
Different UI elements do not interfere

with respect to performance.

A4
For some UI elements the configuration

can affect performance.

A5
The number of service calls and the amount of data that

is transferred by a service call affect front-end performance.

A6
Deeply nested structures have a negative effect

on the performance of a screen.

A7
The performance influence of a UI element

depends on its placement in the layout structure.

Table 5.1.: Initial assumptions on relevant performance influences
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5.3.2.2. Experiments to Test Assumptions

In this section, we present the experiments that we defined, executed and

analysed in order to test the assumptions on performance relevant influ-

ences. Moreover, we tested how we can quantify the relevant influences in

order to integrate them in a performance model.

A1: Performance worsens with an increasing number of UI el-
ements on the screen. In order to test this assumption, we executed

a series of experiments where we investigated how the CPU time changes

if we only increase the number of UI elements. Figure 5.5 displays the

browser CPU time for a screen containing 1 to 5 tables in all three major

web browsers. Analysing the results we can make two main observations:
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Figure 5.5.: Browser CPU time for 1 to 5 tables in different browsers

the browser CPU time increases (almost) linearly with the number of tables,

i.e., each table requires the same amount of browser CPU time. The slope
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of the curve is different for each browser, i.e., the front-end performance

heavily depends on the browser (and its version).

While in this first set of experiment series we placed only UI elements

of the same type on a screen, Figure 5.6 illustrates the effect of combining

different UI elements. In the depicted example, we varied the number of

buttons from 0 to 500 and the number of tables from 0 to 5. Again, we

can observe the same behaviour as in the previous experiments: CPU time

increases almost linear (indicated by the smooth plane in the three dimen-

sional space).
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Figure 5.6.: CPU time for button/table mixes (Firefox)

In fact, we observed a similar behaviour for all UI elements that we

tested. Hence, to quantify these influences we could derive the functional

relationship between the number and type of UI elements on the screen and

the CPU time consumed by the browser to display the screen. However,

varying the quantity of all UI elements and the potential combinations in a

149



5. Industrial Case Study on Deriving Goal-Oriented Performance Models

single experiment series would not be feasible due to the exploding param-

eter space. Therefore, we need to test if we can apply heuristics that allow

us to limit the parameter space that is to be measured. Assumptions A2 and

A3 aim at finding such heuristics.

A2: There is only a small subset of UI elements that affect
performance significantly. In the previous series of experiments, we

could observe that different UI elements have a different influence on per-

formance. Figure 5.7 illustrates these different influence. To derive the

influence, we executed an experiment series where we placed for each type

of UI element a single instance on a plain screen. The numbers in Figure

5.7 are calculated by subtracting the CPU time for the plain screen from the

CPU time for the screen with the single UI element.
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Figure 5.7.: CPU time cost for adding a single UI element on a plain screen

Furthermore, the slope for increasing, for example, the number of but-

tons has been very small. Hence, we make the assumption that the perfor-

mance influence of such simple UI elements is quite small and thus does
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not need to be investigated in detail. Figure 5.7 shows that the bulk of

elements has a rather small impact. Hence, to simplify the model construc-

tion process and to reduce the number of required measurements, we make

the assumption that UI elements that do not have a large influence can be

regarded as a group that we call simple UI elements. To quantify the in-

fluence of a simple UI element, we define a single, fixed cost value for all

the UI elements in this group. We derive this cost value for each browser

by measuring the performance costs introduced by one representative (e.g.

button) of those simple UI elements group.

A3: Different UI elements do not interfere with respect to per-
formance. To further limit the number of measurements that are to be

conducted in the performance model construction activity, we test the as-

sumption that different UI elements do not interfere with respect to perfor-

mance. If this assumption holds, the relationship between the performance

influence of different UI elements would be additive. Thus, we could de-

rive the functional relationship between number of UI elements and CPU

time separately for each UI element (i.e., without measuring all possible

combinations) and then simply add up the different functions. In order to

test the assumption, we conducted a set of experiment series using fraction

factorial designs with resolution 5 (i.e.,main effects and two-factor inter-

action effects are not confounded (see Chapter 2.2.2.1)). We analysed the

measurement results using Factorial ANOVA (see Chapter 2.2.2.2). Figure

5.8 shows the results for a selected set of UI elements. The figure shows for

each factor and two-factor interaction, whether there is a significant main

or interaction effect, respectively. Thereby, the null hypothesis is always

that there is no significant effect. The 1− p value indicates the probability

that the hypothesis can be rejected. The values in Figure 5.8 reveal that

all main effects are significant with a high probability. For the two-factor

interactions the null hypothesis can not be rejected with a significant prob-

ability. Hence, the results show that making the assumption that different
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                                              Df  Sum Sq Mean Sq   F value     Pr(>F)
BUTTON                                         1   59914   59914   11.6077   0.000685 ***
RADIOBUTTONGROUP                               1  708941  708941  137.3506  < 2.2e-16 ***
TABLE                                          1 7200617 7200617 1395.0510  < 2.2e-16 ***
DROPDOWN                                       1  360143  360143   69.7742  2.404e-16 ***
IMAGE                                          1  652397  652397  126.3956  < 2.2e-16 ***
BUTTON:RADIOBUTTONGROUP                        1   13380   13380    2.5923   0.107724
BUTTON:TABLE                                   1       5       5    0.0010   0.974920
RADIOBUTTONGROUP:TABLE                         1    9188    9188    1.7802   0.182455
BUTTON:DROPDOWN                                1    7673    7673    1.4865   0.223068
RADIOBUTTONGROUP:DROPDOWN                      1    1628    1628    0.3153   0.574562
TABLE:DROPDOWN                                 1    5684    5684    1.1013   0.294260
BUTTON:IMAGE                                   1     368     368    0.0712   0.789647
RADIOBUTTONGROUP:IMAGE                         1    2325    2325    0.4505   0.502287
TABLE:IMAGE                                    1    1373    1373    0.2660   0.606171
DROPDOWN:IMAGE                                 1     327     327    0.0633   0.801427
BUTTON:RADIOBUTTONGROUP:TABLE                  1     901     901    0.1745   0.676198
BUTTON:RADIOBUTTONGROUP:DROPDOWN               1     297     297    0.0575   0.810467
BUTTON:TABLE:DROPDOWN                          1    1949    1949    0.3777   0.538999
RADIOBUTTONGROUP:TABLE:DROPDOWN                1    6998    6998    1.3559   0.244553
BUTTON:RADIOBUTTONGROUP:IMAGE                  1       1       1    0.0002   0.989250
BUTTON:TABLE:IMAGE                             1    5264    5264    1.0199   0.312815
RADIOBUTTONGROUP:TABLE:IMAGE                   1       1       1    0.0002   0.988533
BUTTON:DROPDOWN:IMAGE                          1     984     984    0.1907   0.662461
RADIOBUTTONGROUP:DROPDOWN:IMAGE                1    1804    1804    0.3495   0.554534
TABLE:DROPDOWN:IMAGE                           1    3768    3768    0.7301   0.393078
BUTTON:RADIOBUTTONGROUP:TABLE:DROPDOWN         1     202     202    0.0391   0.843351
BUTTON:RADIOBUTTONGROUP:TABLE:IMAGE            1      66      66    0.0128   0.909891
BUTTON:RADIOBUTTONGROUP:DROPDOWN:IMAGE         1    6000    6000    1.1624   0.281240
BUTTON:TABLE:DROPDOWN:IMAGE                    1      18      18    0.0034   0.953442
RADIOBUTTONGROUP:TABLE:DROPDOWN:IMAGE          1    3089    3089    0.5984   0.439374
BUTTON:RADIOBUTTONGROUP:TABLE:DROPDOWN:IMAGE   1    8967    8967    1.7373   0.187809
Residuals                                    928 4789913    5162

---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 5.8.: ANOVA result for testing UI element additivity
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UI elements do not interfere with each other is valid and thus can be ap-

plied when constructing the performance model. However, so far we used

only UI elements in its standard configuration when conducting our ex-

periments. In the following, we investigate the performance influence of

different configuration options of a UI element.

A4: For some UI elements the configuration can affect perfor-
mance. Many UI elements provide different configuration options. For

example, a developer can set the number of columns and rows of a table,

or the height, width and color of a button. While some of these configu-

ration options will not affect performance (such as the color of a button),

others are more likely to have a significant influence (e.g. the number of

rows in a table). In the following, we describe the experiment series that we

conducted in order to test this assumption and to quantify the influence of

different UI element configuration parameters on performance. As an ex-

cerpt from the experiment series that we conducted, we present the results

for the UI elements table and image.

For the tables we investigated the following configuration parameters:

• ROWS - the number of table rows

• COLS - the number of table columns

• EDIT - indicates if the fields of the table can be edited by the

user

• SEL - indicates how rows of the table can be selected (one at a

time, multiple at a time, or none)

To determine which configuration parameters affect performance, we

chose to apply a full factorial design with the four parameters described

above. Figure 5.9 shows the result of the visual analysis.

The box plots indicate for each configuration parameter whether its ef-

fect is significant or not. One can see that changing the row selection mode

does not change the consumed CPU time significantly. Making the table
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Figure 5.9.: Effect of table configuration parameters on CPU time
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editable does also not affect CPU time significantly. However, changing

the number of columns and rows affects CPU time significantly. When

looking at the interaction plots for these two parameters one can also see

that there is a significant interaction effect between the number of rows and

the number of columns (i.e., the higher the number of columns in a table,

the higher is the effect of the number of rows on CPU time).
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Moreover, we investigated how different cell types affect performance.

Therefore, we executed an experiment series were we placed a single table

with a single column on a plain screen and varied the type of the cells in the

column. The cell types that we investigated are TextField, TextView, Link,

Rating, and Check. Figure 5.10 shows the result of the experiment series in

a boxplot.
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Figure 5.10.: Effect of table cell types on CPU time

The results reveal that only the CPU time costs for the column with the

Rating cell type are significantly different from the CPU time costs for the

other cell types.

In summary, the experiment series on understanding the effect of config-

uration parameters on the CPU time costs for displaying a table have shown

that we need to include the number of rows, the number of columns and the

cell type in our prediction function as these parameters significantly affect
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For the images, we investigated the following configuration parameters:

• Height - the visible height of the image

• Width - the visible width of the image

• Size - the data size of the image

Again, we conducted an experiment series using a full factorial design

with two levels (high and low) for each parameter and analysed the result

using Factorial ANOVA. We varied the parameters Height and Width be-

tween 100 px and 1000 px and the parameter Size between 104 KB and 955

KB. Figure 5.11 shows the measurement results in a box plot.
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Figure 5.11.: Effect of image configuration parameters on CPU time

The plot reveals that the image size does not affect CPU time, while

the height and width of an image do affect CPU time. The ANOVA result

shown in Figure 5.12 confirms the result of the visual analysis. There is a

significant main effect for the configuration parameters Height and Width
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                   Df  Sum Sq Mean Sq F value    Pr(>F)
HEIGHT              1   94010   94010 14.7908 0.0001552 ***
WIDTH               1   78409   78409 12.3362 0.0005338 ***
SIZE                1   12298   12298  1.9349 0.1655600
HEIGHT:WIDTH        1   28471   28471  4.4794 0.0353721 *
HEIGHT:SIZE         1     421     421  0.0663 0.7970431
WIDTH:SIZE          1    1206    1206  0.1897 0.6635346
HEIGHT:WIDTH:SIZE   1      12      12  0.0019 0.9651640
Residuals         232 1474595    6356
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 5.12.: Effect of image configuration parameters on CPU time

(ANOVA)

on CPU time. Moreover, there is a significant interaction effect between

these two parameters. The parameter Size does not affect performance on

a significant level. However, please note that although the image size does

not affect the CPU time metric that we use to build the front-end perfor-

mance model, it has to be considered carefully as it definitely affects the

end-to-end response time of a screen.

In summary, the assumption that some configuration parameters influence

the performance cost of a UI element significantly can be considered as

valid. In our case study, we determined for each UI element that is not

considered as simple (see experiment results for assumption A2), which

configuration parameters actually influence its performance cost and how

these costs can be quantified.

A5: The number of service calls and the amount of data that is
transferred by a service call affect front-end performance. In

the previous experiments, we used data that has been hard coded in the

JavaScript source file. However, in real scenarios the data usually comes

from a back-end system. To retrieve this data from the back-end system,

OData [OAS13] and JSON [Cro13] are two common data representation

alternatives for enterprise applications that are both supported by the in-

157



5. Industrial Case Study on Deriving Goal-Oriented Performance Models

vestigated SAPUI5 library. In the following, we describe the experiment

series that we conducted in order to understand the effect of OData and

JSON service calls on browser CPU time. For all experiments, we used the

publicly available Northwind service provided by odata.org [OAS13]. The

service is accessible via a REST interface and supports both, JSON and

OData format.

In the first set of experiment series, we investigated if the number of

service calls affects performance. Therefore, we conducted experiments

where we systematically increased the number of service calls executed by

a screen. Figure 5.13 shows the results for the two data formats.
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Figure 5.13.: Effect of service calls on browser CPU time

The graph shows that for both data formats the CPU time increases with

the number of service calls. Although both service calls used the same

query, there is a significant difference in performance. We assume that the
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reason for this difference is that the OData format requires much more data

to describe the same content than the JSON format.

In the next set of experiment series, we investigated whether the increase

in CPU time is actually caused by the number of service calls or by another

metric. The metrics that we investigate in the following experiment series

are the following.

• CALLS: the number of service calls that are executed when a

screen is loaded

• DATA: the total amount of data (in KB) that is transferred to the

client (i.e., the sum of data transferred by each service call)

• RT: the total number of round trips between client and server in

order to transfer the data for all service calls on a screen

Table 5.2 lists the screens that we used in our experiment series for the

OData calls. Screens A to E contain a single service service call, while

screens F to R contain different combinations of the service calls from

screen A to E. Hence, we test a broad set of screens with different man-

ifestations of the three metrics that we want to investigate.

The measurement results for the screens listed in Table 5.2 are illustrated

as box plots in Figure 5.14.

When comparing the measured CPU times for the different screens, we

can make the following observations:

• The measured CPU time of screens B, C and D, reveal the influ-

ence of the amount of data that is transferred by a service call.

All three screens contain the same number of service calls (1)

and a similar number of round trips (2 to 5), but differ in the

amount of data (B: 146 KB, C:84 KB, D:34 KB). One can see

that the CPU time correlates with the amount of data as screen B

required the most CPU time and screen D the least.
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SCREEN CALLS RT DATA

A 1 10 599

B 1 5 146

C 1 2 84

D 1 3 34

E 2 10 292

F 6 16 304

G 4 12 136

H 8 24 273

I 12 36 408

J 16 48 544

K 20 60 680

L 24 72 816

M 2 4 168

N 4 8 336

O 6 12 504

P 8 16 672

Q 10 20 840

Table 5.2.: Screens used for OData service call experiments
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Figure 5.14.: Effect of service calls on browser CPU time (detailed)

• With respect to the number of service calls and the number of

round trips, the results do not reveal a significant influence on

CPU time. To the contrary, when we compare the measured

CPU time for the screens E, F, N and I, we can assume that

the number of calls and the number of round trips do not af-

fect CPU time. All of the four screens transfer a similar amount

of data while the number of calls (2 to 12) and the number of

round trips (8 to 36) vary significantly between the four screens.

Hence, if the number of calls or the number of round trips would

have an effect on performance, the measured CPU time for the

four screens should differ significantly. However, as illustrated

in Figure 5.14, the measured CPU times for the four screens do

not differ at a significant level.

In summary, the measurement results revealed that the number of calls is

not a sufficient metric to describe the influence of OData-based service calls

on front-end performance. Instead, the total amount of data transferred by

the service calls of a screen is actually the metric that properly describes

the influence of OData-based service calls on front-end performance.
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In the next set of experiment series, we analysed if we get the same

results for JSON-based service calls. Table 5.2 lists the screens that we

used for the JSON calls. Screens A to H contain a single service service

call, while screens I to R contain different combinations of the service calls

from screen A to H. The measurement results for the screens listed in Table

SCREEN CALLS DATA

A 1 4

B 1 50

C 1 37

D 1 535

E 1 62

F 1 93

G 1 501

H 1 1071

I 2 99

J 4 95

K 15 93

L 2 8

M 4 16

N 8 32

O 16 64

P 2 186

Q 3 279

R 4 372

Table 5.3.: Screens used for JSON service call experiments

5.3 are illustrated as box plots in Figure 5.15.

When comparing the measured CPU times for the different screens, we

can make the following observations:
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Figure 5.15.: Effect of JSON-based service calls on browser CPU time

(detailed)

• The number of round trips for the single service calls A to H is

always one, i.e., the JSON calls are not split in multiple round

trips. Thus, we can skip the number of round trips metric in

further experiments.

• The measured CPU time of screens A to H also indicate that the

amount of data that is transferred by a JSON-based service call

does not affect browser CPU time. Screens A to H contain the

same number of service calls (1), but differ in the amount of data

(ranging from 4 KB to 1071 KB). One can see that the CPU time

does not correlate with the amount of data as screens A to H

require almost the same browser CPU time.

• To test if the number of calls has a significant influence on brow-

ser CPU time, we compare the measured CPU time of screens

I, J and K. The three screens consume nearly the same amount

of data (between 93 KB and 99 KB), but differ in the number

of calls that are executed by the screens (I: 2, J:4, K:15). When

looking at the measurement results shown in Figure 5.15, one

can see that the CPU time consumed by screen K is significantly
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higher than the CPU time consumed for screens I and J. Thus,

we assume that the cause for the higher CPU time for screen K

is the higher number of calls.

In summary, the measurement results revealed that in order to describe

the influence of JSON-based service calls on the browser CPU time, it is

sufficient to consider the relationship between CPU time and the number

of calls on a screen. The results of a Factorial ANOVA analysis which are

listed in Figure 5.16 confirm these assumptions. Based on the findings of

            Df  Sum Sq Mean Sq  F value    Pr(>F)
CALLS        1 30258.9 30258.9 314.8829 1.772e-11 ***
DATA         1    70.6    70.6   0.7351    0.4047
Residuals   15  1441.4    96.1
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Figure 5.16.: ANOVA result for testing performance-relevant parameters of

JSON-based service calls

these experiment series, we assume that we can quantify the influence of

JSON-based service calls by deriving a prediction function that describes

the relationship between the total number of JSON-based service calls on a

screen and the browser CPU time.

A6: Deeply nested structures have a negative effect on the per-
formance of a screen. In this set of experiment series, we analysed

the effect of nested structures (e.g. nested tables and div containers) on

browser CPU time. Nested structures are usually created by layout con-

tainers in order to arrange the UI elements of a page. For example a Matrix

Layout is mapped to an HTML table with rows and cells. In our exper-

iments, a nesting level of two conforms to two Matrix Layouts A and B
where B is contained in a cell of A. The analysis of existing applications

suggested that especially nesting is important. Nesting is critical if its width

and height relate to the size of the browser (also known as percent sizing).
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In other words, the layout is elastic as it scales with the size of the browser

window. Such scaling can be especially computation intensive. Figure 5.17

shows the browser CPU time for Chrome, Firefox and Internet Explorer for

a critical nesting level varying from 0 to 14.
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Figure 5.17.: Effect of critical nesting on browser CPU time

While critical nesting does not affect the browser CPU time in Internet

Explorer and Firefox, Chrome’s browser CPU time grows exponentially for

a nesting level larger than 10. As it is a general best practice to keep the

critical nesting of a screen below 10, and as only Chrome seems to have

an issue with critical nesting, we decided to ignore the nesting level when

creating a performance model.

A7: The performance influence of a UI element depends on its
placement in the layout structure. With the experiment series intro-

duced in the following, we aim at testing the assumption that the placement
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of the UI element in the structure of the screen affects its CPU time costs.

Therefore, we need to understand the effect of placing a UI element in a

leaf node compared to any other node in the UI tree. The placement may

affect the layout computation of the browser and thus can be important for

browser CPU time. In our experiments, we analysed the effect of three

strategies for distribution:

1. all UI elements are placed in one leaf node of the UI tree (Leaf),

2. all UI elements are equally distributed among all UI containers

on the screen (Round Robin), and

3. all UI elements are randomly distributed among all UI containers

(Random).

Figure 5.18 illustrates the results of the experiments. The results show
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Figure 5.18.: Effect of UI element placement on browser CPU time

only little variation between the different distribution strategies. Also the
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confidence intervals are stable. This behaviour suggests that placement has

no significant effect on browser CPU time. Hence, we do not consider the

placement of the UI elements when creating the performance model.

5.3.2.3. Results

Based on the experiment series that we executed in order to test our ini-

tial assumptions (see Table 5.1), we could improve our understanding of

the front-end performance characteristics of different SAPUI5-based UI el-

ements. The experiment series as well as the results are properly docu-

mented and can be easily repeated if, for example, the performance team

wants to test the assumptions again for a new set of browser versions. In

summary, the systematic experimentation process led to the validated as-

sumptions listed in Table 5.4.

These validated assumptions, as well as the other findings from the con-

ducted experiment series form the input for the next process step which is

the construction of a performance model. How we implemented this activ-

ity in the case study is presented in the following section.
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ID Assumption

A1
Performance worsens with an increasing

number of UI elements on the screen.

A2
There is only a small subset of UI elements

that affects performance significantly.

A3
Different UI elements do not interfere

with respect to performance.

A4
For some UI elements the configuration

can affect performance.

A5

Depending on the type of service call,

either the amount of data (OData) or the number of calls (JSON)

affect front-end performance.

A6
Deeply nested structures have a negative effect

on the performance of a screen in some browsers.

A7
The performance influence of a UI element is

independent of its placement in the layout structure.

Table 5.4.: Validated assumptions on relevant performance influences
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5.3.3. Derive Performance Model

The performance model introduced in this section quantifies the relation-

ship between the construction of a web application screen and the browser

CPU time for different browsers. The model is created based on two inputs:

1. the assumptions and heuristics yielded from the experiments in-

troduced in the previous section, and

2. a set of additional experiments for the derivation of functional

dependencies.

In the following, we define a performance model for web application

screens as well as a process to derive a concrete instance of this model for

applications built using the SAP UI5 library.

If a screen S of a web application consists of the UI elements e1, ...,en,

we write: S = e1 · ... · en where · denotes the composition of UI elements

(e.g. a screen that consists of tables, buttons, and text fields). Hence, when

a UI developer creates a screen S, he evaluates e1 · ... · en. We assume this

composition as associative and commutative (i.e., the UI elements can be

arbitrarily placed on the screen).

Furthermore, we define φ(S) as the front-end performance of screen S
which is in our case expressed as the browser CPU time consumed to load

the full screen (see also Section 5.3.1). Following the additivity and place-

ment assumptions, we state that the performance of the UI element compo-

sition is the sum of the performance values of the individual UI elements

(φ(e1), ...,φ(en)) and a constant offset (εS).

φ(S) = φ(e1 · ... · en)+ εS = φ(e1)+ ....+φ(en)+ εS (5.1)

The offset εS describes the browser CPU time consumed to load an empty

screen. This includes for example the CPU time required to load the UI

libraries and the CSS files (i.e.,all components of a screen that are indepen-

dent of a certain UI element).
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Depending on its properties p1, . . . , pk (e.g. number of columns and rows

of a table), a UI element e yields different front-end performance charac-

teristics. We estimate the performance value of UI element e as

φtype(p1, . . . , pk) (5.2)

Moreover, we derive an offset value εtype for each UI element type that

has a performance relevant property. This offset value captures the basic

performance costs of a UI element when a first instance is placed on a

screen (e.g. caused by loading and interpreting the JavaScript code that

contains the sources for the UI element).

In order to derive an instance of such a prediction model for the SAP UI5

library and the three major browsers, we followed our systematic process

introduced in Chapter 3.3.3. In the following, we give a detailed description

of how we implemented this process in our industrial case study.

5.3.3.1. Define, Run and Analyse Experiments for Model
Derivation

In this section, we describe the experiment series that we conducted in or-

der to derive the performance value estimators required for Equation 5.1.

Leveraging the result of the validated assumption that only a subset of all

UI elements affects performance significantly (see A2 in Table 5.4), we

group them in simple types and complex types.

For the simple elements, we do not conduct a detailed evaluation of the

properties. Instead, we just determine a general performance value estima-

tor based on an experiment series conducted with a representative element

from this group. Examples for such simple UI element types in our study

are buttons, text views, or labels.

As a result of the experiments conducted in the previous process step (see

Section 5.3.2), we consider the following UI elements as complex: Table,

RowRepeater, Image, Toolbar, Shell, TabStrip, and Header. For each com-
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plex UI element, we derive a prediction function that describes the rela-

tionship between the performance-relevant parameters of a UI element and

the browser CPU time (i.e., we derive φtype(p1, . . . , pk) for those proper-

ties that are considered as performance-relevant). In order to deal with the

large parameter space, we derive these multidimensional functions using

the Adaptive Equidistant Breakdown (AEB) exploration strategy in com-

bination with a Dynamic Sector validation with Local scope (DSL) and

Multivariate Adaptive Regression Splines (MARS) analysis (see Chapter

4.4.2). This combination has been proven to produce reliable estimators

using only a small subset of potential experiments (see Chapter 4.5). Fig-

ure 5.19 shows a screenshot of the SoPeCo UI, where the configuration of

the exploration strategy and the analysis strategy is displayed.

Figure 5.19.: Configuration of parameter space exploration for function

derivation

In the following, we describe the experiment series as well as the anal-

ysis results for the simple element representative, the complex UI elements

171



5. Industrial Case Study on Deriving Goal-Oriented Performance Models

and the screen offset. Like in Section 5.3.2, we focus on the Firefox browser

when describing the experiments and results.

Screen Offset (εS): As a first step, we determine the CPU time con-

sumed by the browser to process the basic screen layout in which we place

the different UI element types for our experiments. Therefore, we define

and run an experiment that measures an empty screen. As a result we get

the screen offset εS = 420ms. Figure 5.20 shows the distribution of the

measured values in a box plot diagram. As discussed in Section 5.3.1, the

variance is quite high, which is why we repeat each measurement at least

30 times.

350 400 450 500 550

Figure 5.20.: Range of measured values for screen offset

Simple Elements (φSimple): To determine the estimator for the UI ele-

ments that we consider as simple, we conduct an experiment series in which

we use the UI element Button as a representative for this group. The only

performance-relevant parameter of simple elements is the number of ele-

ments placed on a screen. The parameter space for this experiment is listed

in Table 5.5.

Varied Parameter Variation

Button.Quantity Linear: Min(1), Max(100), Step(1)

Total Number of Experiments: 100

Table 5.5.: Parameter space for derivation of φSimple
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To select the experiments for model fitting, we used our adaptive equidis-

tant breakdown algorithm, which executed 9 experiments. As a result we

got the linear function shown in Equation 5.3 that describes the relation-

ship between the number of buttons (or in general simple UI elements) on

a screen and the CPU time required by the browser to display the screen.

CPU = 440+1.943456∗Quantity (5.3)

The coefficient of determination for the linear regression is R2 = 0.92. Fig-

ure 5.21 shows the 9 data points and the fitted function. The prediction

error is in most cases less than 5%.
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Figure 5.21.: Linear regression for Button (i.e., SimpleElement)

performance

To derive the offset value for simple elements (εSimple), we calculate the

CPU time required for a single simple element using Equation 5.3 and sub-

tract the offset of the blank screen (εS). To determine φSimple, we subtract

the the sum of the two offsets εSimple +εS) from the linear function listed in

Equation 5.3.

Table (φTable): .

The first complex UI element for which we derive a prediction function is

the Table element. The Table element is one of the most often used el-

ements in enterprise applications, and in our study also the one with the

highest impact on front-end performance (see Figure 5.7). As a result of
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the previous process step (see Section 5.3.2.2), we know that three config-

uration parameters affect performance: the number of rows, the number of

simple columns (represented in the following by text field columns), and

the number of rating columns. Hence, in our experiment series we varied

the parameters as listed in Table 5.6. When selecting the ranges in which

Parameter Variation

Table.Quantity Linear: Min(1), Max(5), Step(1)

Table.Rows Linear: Min(1), Max(30), Step(1)

Table.SimpleCols Linear: Min(0), Max(30), Step(1)

Table.RatingCols Linear: Min(0), Max(1), Step(1)

Total Number of Experiments: 9.300

Table 5.6.: Parameter space for derivation of φTable

we vary the parameters, we considered in all experiment series that we

do not create screens that are unlikely to occur in practice (e.g. tables with

more than one rating column) and that exceed a certain CPU time (as we are

not interested in predicting CPU time behaviour under extreme load situa-

tions). The step size is chosen to be as fine-grained as necessary in order to

allow our adaptive parameter space exploration algorithm to gather enough

points in areas where the prediction model needs more data to provide an

accurate result (see Chapter 4.4.2). When considering the parameters and

the variation granularity shown in Table 5.6, the potential parameter space

for deriving a prediction function consists of 9.300 potential experiments.

However, using our automated combination of experiment selection and

statistical analysis allows us to derive prediction functions with only a small

fraction of these experiments (see Chapter 4.5). For the Table UI element,

we could derive the following multidimensional linear prediction function

using only 52 experiments (i.e., 0,56%).

CPU = 630.6861
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−0.9837964∗Rows

−1.451458∗SimpleCols

−706.4417∗RatingCols

+5.741513∗Quantity

+0.005112995∗Rows∗SimpleCols

+48.38323∗Rows∗RatingCols

+46.90708∗SimpleCols∗RatingCols

+1.603063∗Rows∗Quantity

+3.421011∗SimpleCols∗Quantity

+237.0174∗RatingCols∗Quantity

−3.089817∗Rows∗SimpleCols∗RatingCols

+1.069729∗Rows∗SimpleCols∗Quantity

−12.56101∗Rows∗RatingCols∗Quantity

−14.18982∗SimpleCols∗RatingCols∗Quantity

+0.9006174∗Rows∗SimpleCols∗RatingCols∗Quantity

(5.4)

The calculated coefficient of determination R2, is 0.99 for the linear func-

tion shown in Equation 5.4 which indicates that the prediction function fits

the data well. In addition to the coefficient of determination, we validated

the accuracy of the prediction function already during its derivation using

our iterative process introduced in Chapter 4.4.2. Figure 5.22 shows the

residual plot from the generalized cross validation which also confirms that

the function provides accurate predictions. Finally, to determine the offset

value for table elements (εTable), we calculate the CPU time required for a

single table element using Equation 5.4 and subtract the offset of the blank

screen (εS). To determine φTable, we subtract the the sum of the two offsets

εTable + εS) from the linear function listed in Equation 5.4.
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Figure 5.22.: Residuals vs. fitted values for linear function on Table

performance

Image (φImage): To derive a performance prediction function for images,

we vary the parameters listed in Table 5.7. As our experiment series ex-

Parameter Variation

Image.Quantity Linear: Min(1), Max(10), Step(1)

Image.Width Linear: Min(1), Max(1000), Step(10)

Image.Height Linear: Min(1), Max(1000), Step(10)

Total Number of Experiments: 10.000

Table 5.7.: Parameter space for derivation of φImage

ecuted in the previous process step have shown that the size of an image

does not affect browser CPU time (see Section 5.3.2.3), we only include

the performance-relevant configuration parameters height and width in the

prediction function. With the chosen variation granularity this results in

10.000 potential experiments. However, due to our automated combination
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of experiment selection and statistical analysis, we could derive the follow-

ing MARS prediction function using only 21 experiments (i.e., 0,21%).

CPU = 483.5

+0.03131313∗max(0,Width−505)

−0.04292929∗max(0,505−Width)

+0.026∗max(0,Height −500)

−0.04387755∗max(0,500−Height)

−0.9642857∗max(0,Quantity−5)

−3.669643∗max(0,5−Quantity)

+2.020202e−05∗max(0,Width−505)∗max(0,Height −500)

−7.070707e−06∗max(0,505−Width)∗max(0,Height −500)

−0.0001752216∗max(0,Width−505)∗max(0,500−Height)

+5.462791e−05∗max(0,505−Width)∗max(0,500−Height)

+0.01189033∗max(0,Width−505)∗max(0,Quantity−5)

+0.01038961∗max(0,Width−505)∗max(0,5−Quantity)

−0.001528571∗max(0,Height −500)∗max(0,Quantity−5)

+0.003160714∗max(0,Height −500)∗max(0,5−Quantity)

(5.5)

The coefficient of determination for the derived MARS function is R2 =

0.97. Figure 5.23 shows the residual plot from the generalized cross val-

idation which also reveals that the model fits the data well. To determine

φImage, we calculate the offset values εImage and εS and subtract the sum of

the two values from the function outlined in Equation 5.5 in order to get

only the estimation for the performance costs of additional images added to

the screen.
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Figure 5.23.: Residuals vs. fitted values for MARS function on Image

performance

RowRepeater (φRowRepeater): The next complex UI element is called

RowRepeater. Besides the quantity of the RowRepeater, the number of

rows that are displayed by a RowRepeater have a significant effect on the

performance of a screen. Hence, in our experiment series to derive a predic-

tion function for screens containing RowRepeaters, we vary these parame-

ters as listed in Table 5.8. As the number of potential appropriate values for

Parameter Variation

RowRepeater.Quantity Linear: Min(1), Max(10), Step(1)

RowRepeater.Rows Linear: Min(1), Max(30), Step(1)

Total Number of Experiments: 300

Table 5.8.: Parameter space for derivation of φRowRepeater

the two varied parameters is not very high, the parameter space consists of

only 300 potential experiments. However, running 300 experiments would

take already 2 days. With our adaptive breakdown methodology, we de-
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rived the MARS function shown in Equation 5.6 using only 86 experiments

which could be executed in 12 hours.

CPU = 742.6767

+12.6454∗max(0,Rows−9)

−25.48596∗max(0,9−Rows)

+24.57518∗max(0,Quantity−6)

−31.63405∗max(0,6−Quantity)

+2.622546∗max(0,Rows−9)∗max(0,Quantity−5)

−2.301101∗max(0,Rows−9)∗max(0,5−Quantity)

−1.45611∗max(0,9−Rows)∗max(0,Quantity−8)

+2.422541∗max(0,9−Rows)∗max(0,8−Quantity)

(5.6)

The coefficient of determination R2 = 0.99 for the derived MARS function

indicates a good prediction accuracy. The residual plot (Figure 5.24) from

the generalized cross validation also shows that the model fits the data well.

As with the other UI elements, we determine φRowRepeater by calculating the

offset values εRowRepeater and εS and subtract the sum of the two values from

the function outlined in Equation 5.6 in order to get only the estimation for

the performance costs of additional RowRepeater elements added to the

screen.

TabStrip (φTabStrip): The TabStrip UI element does not have any perfor-

mance-relevant configuration parameters. We tested if the number of tabs

has a significant influence on CPU time, which is not the case as can be

seen in the box plot depicted in Figure 5.25. Hence, we varied only the

number of TabStrips on a screen (from 1 to 5 in steps of 1) and derived the
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Figure 5.24.: Residuals vs. fitted values for MARS function on RowRe-

peater performance

linear function shown in Equation 5.10.

CPU = 467.4+16∗Quantity (5.7)

The coefficient of determination for the linear regression is R2 = 0.99. Fig-

ure 5.26 shows the five data points and the fitted function. To determine

φTabStrip, we calculate the offset values εTabStrip and εS and subtract the

sum of the two values from the linear function in Equation 5.10.

Toolbar (φToolbar): The UI element Toolbar does not have any perfor-

mance-relevant configuration parameters. Hence, we conducted an experi-

ment series were varied only the number of Toolbars on a screen (from 1 to

10 in steps of 1) and derived the linear function shown in Equation 5.8.

CPU = 457.1333+7.484848∗Quantity (5.8)
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Figure 5.25.: Influence of the number of tabs on browser CPU time
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Figure 5.26.: Linear regression for TabStrip performance

The coefficient of determination for the linear regression is R2 = 0.94. Fig-

ure 5.27 shows the ten data points as well as the fitted function. As with

the other UI elements, we calculate the offset values εToolbar and εS and

subtract the sum of the two values from the linear function in Equation 5.8

in order to determine φToolbar.

Header (φHeader) and Shell (φShell): Header and Shell are UI elements

that occur only once on a screen. Moreover, none of their configuration

parameters has a significant influence on performance. Hence, φHeader and

φShell are constant values derived by simply measuring a screen that con-
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Figure 5.27.: Linear regression for Toolbar performance

tains a Header or a Shell, respectively, and subtract the screen offset εS

from the measured values. Figure 5.28 shows the measurement results for

the two experiment screens in a box plot diagram. This results in the fol-

 HEADER  SHELL
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0
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Figure 5.28.: Measured browser CPU times for Header and Shell

lowing values for φHeader and φShell :

φHeader = 28 (5.9)

φShell = 75 (5.10)

OData-based Service Call (φOData): In Section 5.3.2.2, we presented

our experiment series for understanding the performance influence of OData-
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based service calls. The results revealed that the total amount of data that

is transferred by the service calls is the only service call parameter that

affects front-end performance. Hence, to build a prediction function for

OData-based service calls and derive φOData, we consider only this param-

eter. We use the measurement results (Figure 5.14) derived for the screens

listed in Table 5.2 as training data for the MARS analysis. The resulting

MARS function is listed in Equation 5.11.

1181.766

+2.317290∗max(0,DATA−336)

−2.336814∗max(0,336−DATA)

(5.11)

The coefficient of determination for the function is R2 = 0.97 and indicates

a good prediction accuracy. The residual plot derived by a generalized cross

validation is depicted in Figure 5.29 and confirms the quality of the MARS

model.
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Figure 5.29.: Residuals vs. fitted values for MARS function on OData-

based service call performance
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Finally, we calculate the offset value εS and subtract it from the MARS

function shown in Equation 5.11 in order to determine φOData.
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JSON-based Service Call (φJSON): In Section 5.3.2.2, we also pre-

sented our experiment series for understanding the performance influence

of JSON-based service calls. In contrast to OData-based service calls the

only parameter that affects the front-end performance of a screen that in-

cludes JSON-based service calls is the number of calls on the screen. Hence,

to build a prediction function for JSON-based service calls and derive φJSON ,

we consider only this parameter. We use the measurement results (Figure

5.15) derived for the screens listed in Table 5.3 as training data for a Linear

Regression analysis. The resulting regression function is listed in Equation

5.12.

CPUtime = 440.9531+9.147735∗CALLS (5.12)

The coefficient of determination for the function is R2 = 0.94 which in-

dicates a good prediction accuracy. Figure 5.30 shows the measured data

points as well as the fitted function. The plot also reveals that the func-

tion fits the data well. Like with the other elements, we calculate the offset
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Figure 5.30.: Linear regression for JSON-based service calls

values εJSON and εS and subtract the sum of the two values from the linear

function in Equation 5.12 in order to determine φJSON .
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5.3.3.2. Construct Prediction Functions

In the previous section, we introduced the experiment series that we con-

ducted in order to derive the performance estimators φtype(p1, . . . , pk) as

well as the offset value for the different UI element types εtype and the

screen offset value εS. Now, we can compose these terms to a prediction

function that predicts the browser CPU time for a screen S as shown in

Equation 5.1. As the function φtype(p1, . . . , pk) returns the performance cost

of a certain UI element type in a particular configuration, we need to add

up the performance costs of the different configurations of each UI element

type. Hence, we define two additional variables: #Type denotes the total

number of UI elements of a certain type on a screen, and #TypeCon f igs
denotes the number of different configurations of a certain UI element type

on a screen. Equation 5.13 shows how we derive the prediction functions

in our scenario.

φ(S) = εS +min(1,#Simple)∗ (εSimple +φSimple(Quantity)),

+min(1,#Image)∗ (εImage +
#ImageCon f igs

∑
i=1

φImage(Height,Width,Quantity))

+min(1,#Table)∗ (εTable

+
#TableCon f igs

∑
i=1

φTable(#SimpleCols,#RatingCols,#Rows,Quantity))

+min(1,#RowRepeater)∗ (εRowRepeater

+
#RowRepeater

∑
i=1

φRowRepeater(#Rows,Quantity))

+min(1,#TabStrip)∗ (εTabStrip +φTabStrip(Quantity))

+min(1,#Toolbar)∗ (εToolbar +φToolbar(Quantity))

+min(1,#Header)∗φHeader()

+min(1,#Shell)∗φShell()

+min(1,#OData)∗φOData(Data)
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+min(1,#JSON)∗φJSON(#Calls)

(5.13)

Since different browsers show different behaviours with respect to front-

end performance, we derived the performance model shown in Equation

5.13 for three important browsers (Firefox, Chrome, and Internet Explorer).

We listed the concrete values and functions for the corresponding imple-

mentations of Equation 5.13 in Appendix C. As all experiments introduced

in Section 5.3.3.1 and Section 5.3.3.2 have been defined using our experi-

ment specification language (see Chapter 4.3.1), we can automatically run

the same experiments for other browsers. Having this set of automatically

executable experiments has the benefit that it limits the effort for creating

or updating the functions for new browsers browser versions or UI library

versions.

5.3.4. Validate Performance Model

The constructed prediction function instances are abstractions of the real

behaviour that is based on assumptions, heuristics and statistical inference.

Hence, it has to be validated that the estimated performance values suffi-

ciently reflect the behaviour of real screens. The goal of our validation is

to judge prediction accuracy and thus the utility of our heuristics and the

practicability of our approach. Therefore, we compare our predictions with

actual performance measurements.

We selected twelve real-world screens built with the SAP UI5 library.

Six screens are taken from demo applications provided by the SAP UI5

development team. These screens cover a broad spectrum of different man-

ifestations of the two most important control types in business applications,

namely tables and service calls. The other six screens are taken from a

real application called Networking Lunch. Networking Lunch is a social

enterprise application where people can search for other people interested
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in the same topic and setup a joint lunch meeting. Figure 5.31 outlines the

content of the twelve validation screens which is also the the input to our

performance prediction functions.

demo1 demo2 demo3 demo4 demo5 demo6
1 ODataCall (10KB) 1 ODataCall (106KB) 1 ODataCall (72KB) 1 ODataCall (38KB) 1 ODataCall (542KB) 1 ODataCall (380KB)
1 Header 1 Table (5SC,10R) 1 Table (4SC,10R) 1 AppHeader 2 Table (14SC,10R + 5SC,1R) 1 Table (10SC,10R)
7 Simple 1 AppHeader 1 AppHeader 7 Simple 1 AppHeader 1 AppHeader

2 Simple 22 Simple 2 Simple 25 Simple

nwlunch1 nwlunch2 nwlunch3 nwlunch4 nwlunch5 nwlunch6
3 JsonCalls (4KB) 1 Shell 1 Shell 1 Shell 2 JsonCalls (1KB) 1 Shell
1 Shell 2 JsonCalls (1KB) 3 JsonCalls (1KB) 2 JsonCalls (2KB) 1 Shell 1 Table (2SC,1R)
2 RowRepeater (1R) 2 Tables (4SC,1R + 2SC,1R) 1 Table (3SC,1R) 1 RowRepeater (1R) 4 Simple 1 JsonCall (1KB)
1 Image (W:440,H:300) 12 Simple 2 RowRepeater (1R) 22 Simple 3 Simple
7 Simple 7 Simple

Figure 5.31.: Overview of the control types on the validation screens

We measured the browser CPU time of all screens on the same test client

and with the same browser versions for which we derived our prediction

model. We also ensured that the validation screens use the same version of

the SAP UI5 library as our screen generator. Generally, the process for mea-

suring the real screens was equal to the process for measuring the generated

screens during our experiments (see Section 5.3.1). To make sure that we

compare only the browser CPU times for processing the controls that are

added to the basic layout of an application, we also measured the offset

values for the two web applications, i.e.,we measured the browser CPU

time consumed by a blank screen in the corresponding application frame

(εPvalidation). To determine the offset value for our predictions εPprediction , we

add the difference between the offset value used for a blank screen con-

structed by our screen generator (εPpagegen ) and the offset value measured

for a blank screen in the validation application to the prediction offset value

εPvalidation . With this adjustment of the offset value, we avoid that influences

like login procedures or loading of additional libraries affect the prediction

result.

To determine the prediction accuracy, we calculate the absolute predic-

tion error (i.e., the difference between actual and predicted performance) in
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ms and the relative prediction error in percent:

error =
actual − predicted

actual
∗100%.

Following standard literature [MA01], we consider a relative prediction er-

ror of less than 30% as acceptable.

Page Measured Predicted Abs. Error Rel. Error Measured Predicted Abs. Error Rel. Error Measured Predicted Abs. Error Rel. Error
nwlunch1 881 ms 1050 ms 169 ms 19% 934 ms 1065 ms 131 ms 14% 722 ms 763 ms 41 ms 6%
nwlunch2 1123 ms 1043ms 81ms 7% 952 ms 945 ms 7 ms 1% 760 ms 785 ms 25 ms 3%
nwlunch3 1341 ms 1194 ms 147 ms 11% 1217 ms 1251 ms 34 ms 3% 1026 ms 900 ms 126 ms 12%
nwlunch4 952 ms 1026 ms 74 ms 8% 936 ms 1045 ms 109 ms 12% 795 ms 746 ms 49 ms 6%
nwlunch5 788 ms 851 ms 63 ms 8% 769 ms 687 ms 82 ms 11% 650 ms 579 ms 71 ms 11%
nwlunch6 1067 ms 992 ms 75 ms 7% 1019 ms 899 ms 120 ms 12% 830 ms 720 ms 111ms 13%
demo1 646 ms 721 ms 75 ms 12% 523 ms 471 ms 52 ms 10% 430 ms 402 ms 28 ms 7%
demo2 1018 ms 1189 ms 170 ms 17% 861 ms 972 ms 111 ms 13% 695 ms 821 ms 126 ms 18%
demo3 1014 ms 1128 ms 114 ms 11% 842 ms 918 ms 76 ms 9% 735 ms 750 ms 15 ms 2%
demo4 661 ms 758 ms 96 ms 15% 546 ms 536 ms 10 ms 2% 495 ms 473 ms 22 ms 4%
demo5 2058 ms 2057 ms 1 ms 0% 1841 ms 2123 ms 282 ms 15% 2045 ms 2131 ms 86 ms 4%
demo6 1482 ms 1702 ms 220 ms 15% 1503 ms 1719 ms 216 ms 14% 1356 ms 1633 ms 277 ms 20%

Chrome Firefox InternetExplorer

Figure 5.32.: Validation results

In Figure 5.32 we show the results for the twelve validation screens.

The average relative prediction error across all screens and browsers is 10%

(i.e., an average absolute prediction error of 82 ms). For 88% of the pre-

dictions, the relative prediction error is less than 15% and there is no real

outlier with an error higher than 30%. The prediction accuracy is similar

between all three investigated browsers (between 9% and 11% average er-

ror). Also between the two applications, we could not observe a general

difference with respect to prediction accuracy (average relative prediction

errors are 9% for Networking Lunch and 10% for the Demo Application).

For the screen demo6, we overestimate the CPU time in all three browsers

relatively high. The same is true for screen demo5 in the Firefox browser.

These overestimations are most likely caused by the estimation function

for the OData service calls as these contribute largely to the estimated

overall CPU time for these screens. Hence, in order to further improve

the prediction accuracy of the performance model, we could run further

experiments to improve the regression function for OData calls. For the
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screen nwlunch1, we also overestimate the CPU time in Chrome and Fire-

fox, which in this case is caused by the image predictions. Again, more

training data can help to improve these predictions in the future. However,

in general the predictions are very accurate and we do not tend towards

a general over- or underestimation. We assume that the prediction errors

are in most cases cÂ´caused by the statistical nature of the measurement

results.

5.4. Discussion of Results

Based on the results and experiences gathered through the execution of the

industrial case study, we discuss in the following the questions stated at the

beginning of this chapter.

Can we derive an accurate performance model that solves a
real-world problem? The models that we derived for the front-end

performance prediction in three different browsers, have an average rela-

tive prediction error of 10% which can be considered as very accurate (see

also Section 5.3.3 for a detailed discussion of the model accuracy). Having

these models allows SAP to solve the problem that UI developers or de-

signers create web application screens without being aware of the influence

of their design decisions on front-end performance. The existing approach

to deal with this problem is that developers have to measure the front-end

performance of their implemented screens in order to ensure that the de-

sign meets SAP’s performance requirements. However, this approach has

several disadvantages:

• Measuring each screen causes a lot of overhead to the already

tight schedules in software development projects. Especially if

developers are not familiar with performance measurement tools

and practices, the overhead is too large and the screens are only

rarely tested for performance.
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• If a performance problem is caused by an inappropriate design of

the screen, the costs for fixing the problem in late development

cycles can be very high. It might be necessary to change the

implementation of multiple screens to solve an issue while still

providing the same functionality or information.

Figure 5.33.: Front-end performance prediction tool

We identified two ways how UI developers can leverage the results pro-

vided by the models to create responsive web application screens with only

very limited overhead. The first way is through a web application that al-

lows to easily evaluate the front-end performance of different design alter-

natives. Figure 5.33 shows a screenshot of the web-based prediction tool.

Using the web interface, developers can provide the intended design of

a screen and get a prediction of the expected front-end performance for the
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three major browsers. It is also possible to get a detailed pie chart for each

browser that shows which UI elements and UI element configurations con-

tribute the most to the eventually bad performance. The web application

is hosted internally and provides an easy accessible means for developers

of SAP UI5 based web application screens to assess if their screen design

meets SAP’s performance requirements. Moreover, it is used in developer

trainings at SAP in order to increase the performance awareness of devel-

opers.

The second way of using our performance models at SAP is the integra-

tion of performance predictions in the SAP UI5 UI editor tooling. The tool

call SAP UI5 App Designer is a „what you see is what you get“editor for

the development of SAP UI5 based web applications. The predictions can

be integrated into the tool so that the developers get an alert if their design

does not meet the performance requirements.

We believe that the application of our performance models in the two

presented ways will improve the front-end performance of SAP’s SAP UI5

based web application screens. However, only an empirical study, which is

out of the scope of this thesis, could validate this causal relationship.

What are the efforts to apply the approach in a real-world sce-
nario? The industrial case study that has been presented in this chapter

shows that it is possible to derive an accurate performance model to pre-

dict the front-end performance of web application screens. In the following

we discuss the efforts necessary to implement the approach, i.e., to create

and maintain the performance models. These efforts are the metric that we

use derive a conclusion for the practical applicability. Although we did not

conduct a controlled experiment to track the actual efforts, we can provide

rough estimates that allows the reader to classify the necessary efforts.

In the following, we discuss the efforts necessary to implement the dif-

ferent usage variants outlined in Table 5.9. To provide rough estimates on
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the efforts, we assign to each variant whether its implementation is a matter

of days, weeks or moths.

ID Variant Effort

V1 Creating a model for a further UI library. months

V2 Creating a model for a further device. weeks

V3 Creating a model for a further browser. weeks

V4 Updating the model for a new library version days

V5 Updating the model for a new browser version days

Table 5.9.: Usage variants

V1: Creating a performance model for a further UI library. Often, soft-

ware development organisations use multiple libraries for the development

of web application screens. Extending the measurement environment to

support a new library requires already much less efforts than creating a

performance model for a completely new scenario. Most parts of the mea-

surement environment can be reused (e.g. devices and measurement tool-

ing). Also many experiment definitions can be reused and automatically

executed for the new library. The largest efforts in that variant is the adjust-

ment of the screen generator for the new library and the verification if the

assumptions and heuristics defined for library A are also true for library B.

V2: Creating a performance model for a further device. Web appli-

cations have to run on multiple devices with different characteristics (e.g.

desktop, laptop, or tablet). When testing the front-end performance of a

web application, different client setups should be considered. If a perfor-

mance model has to be derived for a new device, one main effort is the

installation of the measurement tooling and the preparation of the device to

minimize factors that disturb measurements (e.g. killing unnecessary pro-

cesses, configuring browsers). All the experiment definitions can be reused

and executed automatically. In some cases it might be necessary to adjust

the domains of some parameters due to the changed hardware capabilities.
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Another main effort is again the verification if the assumptions and heuris-

tics also hold for the new device.

V3: Creating a performance model for a further browser. If a perfor-

mance model should be derived for a new browser, the measurement envi-

ronment has to be extended in order to support the new browser (e.g. auto-

matically control the browser via Selenium, disable all disturbing browser

configurations). While all the experiment definitions can be reused and ex-

ecuted automatically, the assumptions and heuristics have to be verified for

the new browser.

V4: Updating a performance model for a new library version. If the

version of the UI library for which a performance model has already been

derived is updated, performance analysts can simply rerun all experiments

and test if the assumptions and heuristics are still valid. In case the library

update includes new UI elements or new configuration options, the screen

generator has to be extended and the corresponding experiments have to

be defined or updated. As a side effect, the experiments can also identify

performance regressions introduced by library changes. In cases where the

library is developed in-house (such as the SAP UI5 library at SAP), this is

another benefit of the approach that justifies the efforts.

V5: Updating a performance model for a new browser version. Besides

the updates caused by new library versions (V5), an update due to a new

browser version is one of the most frequently occurring task. As with V5,

the manual efforts required to perform this task is kept at a minimum by our

approach. Performance analysts can simply rerun the defined experiments

and verify if the assumptions and heuristics are still valid.

In summary, creating an initial performance model for a scenario requires

some effort. However, as this effort is mainly in understanding the per-

formance behaviour of the system it is in most cases well worth to be

spent. Moreover, our approach shifts the efforts to a small team of per-

formance analysts and domain experts while the large bulk of developers
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can just leverage the results to evaluate performance with nearly no effort.

A big problem of most existing performance modelling approaches is the

large effort to maintain the models and update them due to frequent system

changes. In our approach, a model update is mainly automatically con-

ducted by simply rerunning the predefined experiments which has been a

major argument for the performance analysts at SAP to apply the approach

in future. In general, the fact that our measurement-based approach is close

to the existing practice increased the acceptance and trust among practition-

ers. As the performance analysts at SAP are going to adopt the approach

for their daily work, we conclude that the approach is efficient enough to

be applied in practice.

5.5. Threats to Validity

The results presented in Section 5.4 demonstrate that our approach can ac-

curately predict the front-end performance of enterprise web applications

and is efficient enough to be applied in practice. However, it is important

to note the threats to validity of our approach in order to understand its

applicability.

5.5.1. Internal Validity

The selection of the case study was given by the context in which the thesis

has been conducted. The author of the thesis has been employed by the re-

search department of SAP and the case study has been initiated by a trigger

from SAP’s performance analysts team that identified the need to support

UI developers and designers in assessing the performance effect of their

screen designs. Moreover, the author of the approach has been part of the

team that executed the case study which can affect the quality of the results

in a positive way (Experimenters Bias).
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5.5.2. External Validity

Small Validation Set The screens evaluated in Section 5.3.3 are only

part of two web applications. Both are very different in type and front-

end performance. One represents a typical enterprise web application for

processing data, the other a social enterprise application. Even though the

predictions complied to measurement for the presented web applications, a

broader set of validation scenarios is required, to ensure its general appli-

cability.

Custom JavaScript Code Our prediction focuses on the influence of

UI elements and service calls on front-end performance. This is a reason-

able assumption for typical enterprise applications. However, developers

often add custom JavaScript code to process data, to create new controls

or to change configuration. This custom code will add to the browser CPU

time and thus to front-end performance. While such custom code played

only a minor role in the web applications used for our model validation,

it may have huge effects on front-end performance in other cases. How-

ever, our goal is to give early feedback on front-end performance, thus, we

cannot consider such effects in our prediction.

Single Library In our industrial case study at SAP, developers of web

applications usually use only the SAP UI5 library to build a web applica-

tion front-end. The library encapsulates other common JavaScript libraries.

In other development environments, especially non-enterprise web applica-

tion development, it is often the case that multiple libraries are combined to

develop the front-end code. Moreover, additional style definitions can af-

fect front-end performance in standard web sites [Sou07] which could have

been neglected for the enterprise web applications developed with the SAP

UI5 library and the corresponding pre-defined styles.
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No All-in-One Solution The purpose of the performance model de-

rived in the course of the case study is to help designers and developers

of SAP UI5 based web application screens to assess the effect of differ-

ent design alternatives prior to implementation. However, the approach is

no replacement for continuous performance tests to measure and evaluate

the actual performance of an application and avoid common performance

problems such as those described by Souders [Sou07, Sou09].

5.6. Summary and Contributions

In this chapter, we presented an industrial case study that we conducted at

SAP. In the case study, we applied our approach to derive a goal-oriented

performance model for predicting the front-end performance of SAPUI5-

based web applications. The derived performance models supports hun-

dreds of UI designers and developers at SAP in building responsive screens.

Hence, we showed that performance analysts can derive a performance

model that solves a real-world problem using our approach. The average

relative prediction error of the derived performance model was below 10%.

Due to the automatically executable experiments, our approach requires

only limited manual effort for updating a performance model to system

changes.

In summary, the contributions of this chapter are

• An industrial experience report on applying the approach intro-

duced in this thesis including a discussion of model accuracy and

modelling efforts.

• A performance model for front-end performance predictions that

allows developers and designers of enterprise web applications

to assess the effect of different UI design alternatives on front-

end performance prior to implementation.
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In this chapter, we present related research work in the field of software per-

formance engineering [SW01, Smi07, WFP07]. Our approach contributes

to two main areas:

1. measurement-based performance evaluation (Section 6.1), and

2. combining measurements with performance modelling (Section

6.2).

Accordingly, we group the related approaches discussed in this chapter. For

each group of related work, we define a set of criteria based on which we

classify the existing approaches and outline the distinction to the approach

presented in this thesis.

6.1. Measurement-based Performance Evaluation

In this section, we discuss state of the art approaches in the field of measure-

ment-based performance evaluation that are related to our work presented

in Chapter 4. Section 6.1.1 focuses on approaches that support experimen-

tal performance evaluation. In Section 6.1.2 we present approaches that

apply statistical inference methods to evaluate the performance of software

systems.

6.1.1. Experimental Performance Evaluation

The need for a systematic and holistic performance evaluation process has

been first described by Raj Jain in his book about the art of computer sys-
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tems performance analysis [Jai91]. Jain emphasizes that proper experimen-

tal designs can help to reduce analysis costs and introduces a systematic

process. Similar process definitions have been introduced by Smith and

Williams [SW01] and Menasce and Almeida [MA01]. In the following, we

discuss research approaches that deal with supporting the practical imple-

mentation of such systematic processes by providing proper frameworks,

tools and methodologies for experimental performance evaluation.

Table 6.1 provides an overview on the discussed approaches by classi-

fying them based on the following criteria:

• [ExpDef] Indicates if the approach provides a means to define

experiments in a standardized way.

• [Auto] Indicates if the approach supports the automated execu-

tion of experiments.

• [FlexDes] Indicates if the approach allows performance analysts

to flexibly add new experimental designs.

• [Indep] Indicates if the approach is independent of a concrete

technology or scenario.

In summary, none of the related approaches outlined in Table 6.1 can be

classified in the same way like the SoPeCo approach presented in Chapter

4 of this thesis. To the best of our knowledge we are the first that enable

the flexible introduction of experimental designs for automated experiment

executions in a wide range of scenarios.

In the following, we provide a description of the approaches listed in Ta-

ble 6.1.

Thakkar et al. [THHF08] provide a conceptual description of a frame-

work that aims at supporting performance analysts in deriving measurement-

based performance models. The authors describe seven steps that are to

be executed by the performance analyst in the lifecycle of measurement-
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Approaches ExpDef Auto FlexDes Indep

Thakkar [THHF08] � � � �

Woodside [WVCB01],

Vetland [VW97]
� � � �

Prodan [PF05, PF04] � � � �

Abramson [ASGH95, AGK00] � � � �

Ioannidis [ILGP96] � � � �

Jung [JPS07] � � � �

Miller [MCC+95],

Karavanic [KM97]
� � � �

Hauck [HKHR11] � � � �

Worringen [Wor05] � � � �

Table 6.1.: Related work for experimental performance evaluations

based performance modelling: test enumeration, test reduction, environ-

ment setup, test execution, test transition, test analysis, and model building.

In order to reduce the required number of actually needed test runs the au-

thors suggest to use domain knowledge or statistical analyses technique s

such as Main Screen Analysis [YKM+05] and two-way ANOVA [SM05].

Moreover, the authors highlight the need for application-specific extensibil-

ity. The authors also estimate the effort necessary to customize the frame-

work to for other applications. However, the authors remain open how to

design such a framework and how their solution can be actually customized

to other applications. Moreover, the approach does not consider the formal

definition of experiments.

Woodside et al. [WVCB01] and Vetland et al. [VW97] describe a work-

bench that supports the automated execution of experiments to derive re-

source functions. A resource function describes the demands of a software

component with respect to the infrastructure that runs it, in dependence of
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the configuration and the usage of the component. The authors use the

resource functions to parametrise performance models. The workbench

allows performance analysts to define experiments based on a simple lan-

guage. Parameter variations can be, for example, specified in a list or in a

sequence. The workbench also executes the experiments automatically by

calling test scripts that trigger the measurement tools and the system under

test. Finally, the results are stored in a central repository and a function

fitting component derives the resource functions from the measured data.

However, the approach lacks the capability to introduce experimental de-

signs that optimize the trade-off between the number of experiments and the

accuracy of the resource function. Moreover, the workbench does not pro-

vide the capabilities to add custom parameter types, parameter variations,

or analysis methods.

ZEN [PF05] is a directive based experiment specification language that

aims at supporting performance analysts in specifying and controlling the

execution of large number of experiments. ZEN defines four types of di-

rectives. Substitute and assignment directives for the flexible specification

of parameter values through string substitution semantics or value assign-

ments, respectively. Constraint directives to restrict the number of experi-

ments and thus define the experimental design, and performance behaviour

directives to specify the performance metrics that are to be observed in

an experiment. The authors also provide an experiment management sys-

tem called ZENTURIO [PF04] that employs the ZEN language for perfor-

mance studies of parallel applications on cluster and grid architectures. The

drawback of such a directive-based language is that the experiment meta-

information is defined in the application source code. This limits the scope

to studies where the source code is (i) available and (ii) easy to compile

and deploy, as for every experiment a recompilation and redeployment is

necessary. Moreover, the reusability of experiment definitions is limited.

Nimrod [ASGH95] and its successor Nimrod/G [AGK00] are tools that

allow performance analysts to perform parametrised simulations over net-
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works of loosely coupled workstations. Performance analysts describe ex-

periments in a declarative plan file that is then used to run experiments in

parallel on a grid environment. The corresponding specification language

allows to define input parameters and different types of value assignments

(such as value ranges). However, the language also includes parts that are

very specific to the execution of simulation models in grid environments.

Moreover, the tool does not support the definition of experimental designs

and data analysis methods that allow for more sophisticated experiment se-

lection strategies.

Ioannidis et al. [ILGP96] introduced an experiment management envi-

ronment called ZOO. Although the authors mainly developed the tool for

the physical and life sciences domain, they report on the very similar life-

cycle of experimental studies in different domains. And indeed, the archi-

tecture of their approach is very close to the architecture described in this

work. With respect to the experiment specification language, Ioannidis et

al. introduce a meta-schema that has to be used by a scientist to create a

schema for the experiment. It allows scientists to define parameters, param-

eter values and relationships between parameters. However, the language

lacks features to describe properties for the automated control of experi-

ments such as experimental designs and analysis methods.

In [JPS07], Jung et al. introduce an approach for the automatic instru-

mentation of applications called Mulini that is based on AOP and code gen-

eration techniques. They weave non-functional specifications into staging

implementations in order to explore large configuration parameter spaces.

They apply their approach to bottleneck detection of a reference application

called RUBiS [OW209]. Mulini automatically monitors, collects, and anal-

yses a significant number of performance metrics in iterative staging exe-

cutions. For the bottleneck detection scenario, multiple tools and software

have been integrated, many different performance metrics have been mea-

sured, and a large number of staging trials with changes of configuration

parameters has been executed. To achieve this, they used Mulini to gener-
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ate the necessary workload drivers, monitors and deployment scripts and to

connect to monitoring utilities. While the approach of Jung et al. allows

the collection of large amounts of data and the evaluation of the influence

of different parameters, the authors neither perform any further analysis on

the collected data (such as symbolic regression or machine learning tech-

niques) nor do they optimise the number of required measurements using

sophisticated experimental designs.

Hauck et al. [HKHR11] provide an infrastructure for the definition and

execution of experiments that aim at deriving performance-relevant prop-

erties and behaviours of the runtime environment of an application (e.g.

operating system or virtualisation software). The authors use the results of

the measurements to enhance an existing architecture-based performance

model [BKR09]. Their approach, called Ginpex, includes a meta-model

that allows performance analysts to define experiments and a set of pre-

defined experiment templates based on which executable experiment appli-

cations are generated. These experiment applications conduct automated

performance measurements that automatically detect and quantify the perfor-

mance-relevant parameters of the runtime environment. Unlike our ap-

proach, Hauck et al. focus on a very specific scenario. Moreover, the ex-

periment definition is closely coupled with the measurement environment.

Miller et al. [MCC+95] propose Paradyn, a tool for the automatic di-

agnoses of performance problems. They apply dynamic instrumentation to

control the instrumentation in search of performance problems. Paradyn

starts looking for high-level problems for a whole application and, once the

general problem is found, inserts further instrumentations to find more spe-

cific causes. Karavanic and Miller [KM97] developed an experiment man-

agement system for their work on performance problem diagnosis based on

different executions over the lifetime of an application. The authors intro-

duce a language that allows to specify the parameters that characterize an

execution in a Program Event. However, Karavanic and Miller focus on
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the detection of performance problems from execution traces and do not

measure parameter spaces systematically.

Worringen [Wor05] also introduced an approach to manage and anal-

yse the results of experiment executions. The tool called perfbase supports

the definition of experiments in an XML file that conforms to a perfbase-

specific document type definition (DTD). The DTD allows performance

analysts to specify experiment meta-information, like the analysts name

and data usage restrictions, as well as a description of parameters and their

types. However, as the goal of the approach is to extract experiment infor-

mation from past executions in order to search for performance problems in

the historical data, the tool lacks capabilities to define parameter value vari-

ations and experimental designs for the systematic control and execution of

experiments.

6.1.2. Function Inference

Inferring functional relationships from measured data using statistical anal-

yses and machine learning techniques is a commonly applied methodology

in a variety of disciplines [HTF09]. In the following, we present and clas-

sify research approaches that deal with inferring functional relationships

between the configuration and workload parameters of a software system

and a performance metric of interest (i.e., response time, throughput, or

resource utilisation). To classify the approaches, we apply the following

criteria:

• [ConExp] Indicates if the approach uses controlled experiments

to derive the measurement data used for the function inference,

i.e., if the configuration and workload parameters are varied in a

systematic way.

• [MultDim] Indicates if the approach supports the inference of

multi-dimensional functions.
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• [Opt] Indicates if the approach supports optimizing the trade-off

between the number of measurement points and the accuracy of

the inferred function.

• [Assump] Indicates to what extend the approach requires assump-

tions on the kind of functional dependency (e.g. it being linear).

Table 6.2 provides an overview on the related research presented in this

section.

Approaches ConExp MultDim Opt Assump

Courtois [CW00] � � � few

Reussner [RSPM98] � � � many

Wang [WAA+04] � � � few

Nadeem [NYPF06] � � � many

Pacifici [PSST06] � � � many

Kraft [KPSCD09] � � � many

Table 6.2.: Related work for measurement-based function inference

Two of the presented approaches formed the starting point for our re-

search, and influenced the methodologies presented in Chapter 4.4.2. One

of them is the approach introduced by Courtois and Woodside [CW00], the

other one is the approach introduced by Reussner et al. [RSPM98]. The

approach of Courtois and Woodside is also the only one that can be classi-

fied in the same way as our approach. In the following, we give a detailed

presentation of the two foundational approaches as well as other related

research.

Courtois and Woodside [CW00] highlight the need for sophisticated ex-

perimental designs to automatically infer performance prediction functions.

The goal of their research is to derive the resource demands of a software

component by systematically measuring performance metrics in depen-
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dence of configuration and input parameters. The authors provide exam-

ples where simple linear regression techniques are not sufficient to model

the performance behaviour measured in a real software system. In order to

fit such complex functions without human intervention, they use their ex-

periment automation workbench [WVCB01] in combination with the Mul-

tivariate Adaptive Regression Splines (MARS) [Fri91] method. Moreover,

Courtois and Woodside introduce a heuristic calculation for the accuracy

of the resource function that is based on a measure provided by MARS

as well as a heuristic strategy to select new experiments with the goal to

get a resource function with a certain target accuracy using as few exper-

iments as possible. The accuracy and the robustness that can be achieved

by the approach is demonstrated in two case studies. The methodology

allows performance analysts to automatically fit non-linear and even dis-

continuous functions while considering the trade-off between the number

of experiments and the accuracy of the prediction model. The promising re-

sults described by Courtois and Woodside motivated the research presented

in this thesis. In our work, we extended their research by providing a means

to flexibly combine different strategies for the automated and iterative ex-

periment selection, function inference and function validation.

Reussner et al. [RSPM98] introduce an approach to benchmark and

compare different OpenMPI implementations. Their approach combines

performance metrics with linear interpolation techniques to assess the im-

plementation’s overall performance behaviour. To maximise the informa-

tion gain of subsequent experiments, they identify those points with the (po-

tentially) largest error in the current prediction model. While this approach

presents another starting point for our work, it is limited to the evaluation

of a single parameter and simple linear interpolation techniques that are not

suited for multi-dimensional scattered data.

Wang et al. [WAA+04] predict the performance of storage devices based

on functions that they derived using the Classification and Regression Tree

(CART) [HTF09] method. The approach allows to predict the performance
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of a device depending on the input workload and does not require any

knowledge of the device internals. The input workload is described by

four parameters: arrival time, logical block number, request size in number

of disk blocks, and read write type. To train the CART model the authors

used a set of real-world traces. Hence, the input parameters are not varied

systematically. In the presented case study the approach yields models with

a median relative prediction error between 15% and 47%. The authors con-

clude that the training workloads play a critical role in model accuracy and

highlighted the need for proper synthetic workload generation techniques.

Due to the promising results presented by Wang et al. and the fact that

CART does not require assumptions on the underlying functional relation-

ship, we decided to include CART in the list of methods for our function

inference approach.

An approach for the prediction of application execution times in grid

environments has been introduced by Nadeem et al. [NYPF06]. The pre-

dictions are used to support decision making with respect to the efficient

usage of grid resources. The authors introduce an experimental design that

allows to extrapolate the prediction function derived on a single grid re-

source to other grid resources. First, one experiment is executed on each

grid resource. Then, the fastest grid resource is chosen and a full factorial

design with all performance-relevant input parameter values of the applica-

tion is executed on this basis resource. The resulting measurement data is

used as the training set for the predictions. To minimize the number of ex-

periments, the approach normalizes the performance behaviour derived on

the basis resource and assumes that the normalized performance behaviour

of an application for different input parameter values on different grid re-

sources are similar. Based on this assumption the training data for other

grid resources is simply calculated. The actual prediction is conducted via

a lookup in the training data or an estimation based on the nearest refer-

ence value. The optimisation of the number of experiments that are to be

executed is very specific to grid environments. The authors do not try to
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minimize the number of experiments necessary to derive a proper training

set for prediction the application performance on a single grid resource.

Pacifici et al. [PSST06] introduce an approach for dynamic estimation

of resource demands by analysing multiple kinds of web traffic using CPU

utilisation and throughput measurements. They formulate and solve the

problem using linear regressions. In order to deal with practical issues that

lead to unstable measurement data (e.g. insignificant flows, colinear flows,

background noise), the authors introduce mechanism like flow rejection,

flow combining, noise reduction and smoothing. The technique produces

estimates with an accuracy of factor 2. However, the approach aims at fit-

ting resource demands dynamically from data observed at system runtime

and thus differs significantly from the systematic experimental function in-

ference proposed in this thesis. The challenges that are to be solved by

the approach of Pacifici et al. are rather on how to prepare existing data

for optimal function fitting than on systematically finding a minimal set of

measurement points for fitting a function with a certain accuracy target.

The approach presented by Kraft et al. [KPSCD09], deals with the prob-

lem of determining resource demand functions for system where utilisation

measurement is difficult or unreliable, for example virtualised systems or

third-party services. They apply a linear regression method and the max-

imum likelihood technique for estimating resource demands of different

workload classes based on response time measurements. While especially

the Maximum Likelihood methodology provided robust accurate results in

multiple scenarios, the approach requires assumption on scheduling strate-

gies and the general form of the distribution before starting the estimation

activity. Furthermore, the authors do not consider the trade-off between the

number of measurements and the accuracy of the estimation.
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6.2. Performance Prediction Models

The use of performance prediction models to assess the performance be-

haviour of a software system has been established by Connie Smith under

the term Software Performance Engineering (SPE) [Smi81, Smi82]. Since

then a lot of research has been conducted in this field and several authors

surveyed the progress and defined outstanding problems [Smi86, UH97,

Poo00, Smi01, DRSS01, BDIS04]. The most recent overviews are pro-

vided by Woodside et. al [WFP07], Smith [Smi07], and Koziolek [Koz10].

A common conclusion is that although the modelling methods and tools

have evolved and it has been proven that the resulting models can pro-

vide accurate predictions for real-world software systems, there is a need to

„[...] make SPE more accessible to software developers rather than requir-

ing modelling gurus, and to make SPE more likely to be adopted and used

in development organisations.“ [Smi07]. Woodside et al. [WFP07] high-

light the need for a convergence between measurement-based and model-

based approaches towards more practicable and maintainable performance

prediction models. Our approach aims at filling this gap between research

and practice or between measurement-based and model-based performance

evaluation, respectively. A main challenge with respect to practical sce-

narios is to find proper mechanisms for determining the performance be-

haviour of systems or parts of a system (e.g. legacy systems or third-party

components) that cannot be modelled formally (or only with large manual

effort). In the following, we focus on discussing performance prediction

approaches that also apply measurement-based techniques to reduce the

manual modelling effort. A more general discussion of model-based ap-

proaches is provided by Balsamo et al. [BDIS04] and Koziolek [Koz10].

To classify the approaches we use the following criteria (see also the re-

search challenges outlined in Chapter 3.1):

• [ProcDef] Indicates if the approach contains a process definition

that guides practitioners through the modelling process.
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• [ModExist] Indicates if the approach addresses the problem of

efficiently modelling already existing software systems.

• [Maint] Indicates if the approach addresses the problem of ef-

ficiently maintaining performance models of existing software

systems that are subject to frequent changes.

• [ToolInd] Indicates if the approach is independent of a certain

type of modelling tool or technique.

• [ScenInd ] Indicates if the approach is independent of a specific

scenario.

Table 6.3 gives an overview on the approaches that are discussed in this

section. In general, none of the approaches can be classified in the same

way as the approach presented in this thesis. The approach introduced by

Avritzer et al. [AW04] is the most related as it proposes a similar proce-

dure for constructing performance models in practice. In the following, we

provide a detailed discussion of the related works.

Avritzer and Weyuker [AW04] present an approach that uses perfor-

mance measurement results to build a simulation model for performance

prediction. The introduced process suggests a goal-oriented modelling ap-

proach. Based on systematic measurements potential bottlenecks are iden-

tified and the according performance-relevant parameters are defined. To

construct the prediction model, the authors propose the use of state tran-

sition diagrams [CD94] for modelling the software system. The resulting

state transition models are then automatically transferred in a simulation

model. The basic process defined by the authors is similar to the process

introduced in this thesis. The work presented in this thesis could be used to

support the performance analyst in conducting the measurement required to

build the simulation model in the process defined by Avritzer and Weyuker.

However, in complex software systems it might be hard for performance

analysts to create and maintain the manually constructed state transition

diagrams.
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Approaches ProcDef ModExist Maint ModInd ScenInd

Avritzer

[AW04]
� � � � �

Jin [JTHL07] � � � � �

Wu [WW08] � � � � �

Krogmann

[KKR10]
� � � � �

Mos [MM02] � � � � �

Sandeep

[SSN+08]
� � � � �

Thereska

[TDZN10]
� � � � �

Tariq

[TZV+08]
� � � � �

Table 6.3.: Related work for performance prediction models
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Jin et al. [JTHL07] introduce an approach called BMM that combines

benchmarking, production system monitoring, and performance modelling.

Their goal is to predict the performance characteristics of real-world legacy

systems that are subject to exorbitant growth. In the planning phase of

the presented process, the performance analyst has to identify the factors

that affect the applications’ performance. Moreover, the performance ana-

lyst has to select a proper modelling method (e.g. analytical or simulation)

and build the model. Then, to calibrate the model goal-oriented produc-

tion system monitoring and test system benchmarking is conducted and

the measured results are correlated. The correlation aims at validating the

measured data and removing or normalising data peculiarity. After that,

the model is validated in an iterative process until a sufficient accuracy has

been reached. While the approach supports performance analysts in prop-

erly calibrating an existing performance model during system evolution, it

still requires the upfront definition of a performance model. Therefore, the

approach could be complemented by the approach presented in this thesis

in order to further reduce the manual efforts in building prediction models

for already existing software.

Wu and Woodside [WW08] present an approach similar to Jin et al.

[JTHL07] aiming at calibrating existing performance models while the sys-

tem evolves. The work of Wu and Woodside specifically deals with two

problems. The first is estimating service demands that cannot be measured

directly. The authors propose the use of Kalman Filters [Jaz70], to estimate

such hidden parameters. The second problem is to decide automatically

when a model is properly calibrated. To solve this issue they introduce an

extended version of a Kalman Filter that controls the model calibration loop

and stops when a certain condition is satisfied. However, as with the model

calibration approach of Jin et al. [JTHL07], the performance analyst is not

supported in building the initial model of the existing software system.

Krogmann et al [KKR10] introduce an approach that uses a genetic

search algorithm to reverse engineer architecture-based performance mod-
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els from existing source code. The reverse engineered performance models

are instances of the Palladio Component Models (PCM) [BKR09] and aim

at supporting software architects in their design decisions (e.g. by esti-

mating the impact of using caches on performance). The approach uses

benchmarks to characterize the performance behaviour of different runtime

environments so that a single performance model can be used to predict

the performance on different runtime environments. To map the runtime

environment capabilities with the resource demands of the software com-

ponents, Krogmann et al. use bytecode analysis. The benchmark that is

executed on the runtime environment determines the performance of Java

bytecode instructions. To determine the resource demands of the existing

application components they use symbolic execution and a tool called By-

Counter [KKR08] that identifies the bytecode instructions executed by the

component. While the authors validated that the approach can provide ac-

curate predictions, it is limited to Java-based applications and not suitable

for heterogeneous environments. Furthermore, deriving and maintaining

the models for large software systems can require large manual efforts.

Mos and Murphy [MM02] introduce the COMPAS framework which

targets the identification of performance issues in component based soft-

ware systems. COMPAS is based on three modules. A monitoring module

captures performance data by inserting proxy components into the archi-

tecture of the target system. The gathered data is then used by a modelling

module that builds various UML models. These models are further en-

hanced by a performance prediction module that allows to simulate and

analyse the models. Based on this approach, Parsons and Murphy [PM08]

built a framework for the detection of performance anti-patterns in compo-

nent based systems. In addition to the COMPAS framework, they use byte

code analysis as monitoring technique. Although the approach simplifies

the model building process, it is focused on component-based applications

that are developed from scratch using a rather homogeneous technology

stack such as the Java Enterprise Edition platform [Ora13]. Hence, port-
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ing the approach to a different scenario requires a lot of effort. Moreover,

the derived performance models can become very large and thus hard to

calibrate and maintain in a real-world environment.

The CLUEBOX toolkit introduced by Sandeep et al. [SSN+08] sup-

ports performance analysts in deriving performance prediction models by

only analysing performance log data gathered at runtime. The authors ap-

ply several machine learning techniques (e.g. Principal Feature Analy-

sis [LCZT07] and Random Forest [Bre01]) on runtime logs to derive the

performance-relevant parameters and the prediction model. Moreover, the

approach aims at reducing the effort for system administrators to identify

the root-cause of a performance anomaly. However, as the target scenario

of this approach is early performance anomaly detection on productive sys-

tems, it lacks capabilities to create performance models that support, for

example, software architects or software developers in proactively evaluat-

ing design decisions.

Thereska et al. [TDZN10] present an approach that uses data gathered

from a large set of client installations to create a performance model. The

goal of the model is to help answering what-if performance questions with

respect to a reconfiguration of a client system (e.g. upgrading from Win-

dows Vista to Windows 7 or doubling the amount of memory). To cre-

ate the models the authors apply the Classification and Regression Tree

(CART) [HTF09] technique in combination with a similarity search algo-

rithm. The CART model is trained with the large data set gathered from

Microsoft client installations. This is also the major limitation of this ap-

proach, as it is only applicable on popular applications that are installed on

many observable client systems with different configurations.

Another approach that aims at creating performance models for answer-

ing what-if deployment and configuration questions is introduced by Tariq

et al. [TZV+08]. Their performance prediction tool called WISE includes

an algorithm that learns the functional dependencies between performance-

relevant parameters and service response times and represents these depen-
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dencies in a Causal Bayesian Network (CBN) [Pea00]. The training data

is derived from traces that are obtained from existing installations. More-

over, WISE provides a simple query interface that allows to describe what-

if question based on their scenario specification language. While WISE

is applicable to a larger set of scenarios than the approach introduced by

Thereska et al. [TDZN10]., it also lacks the capabilities to build prediction

models in scenarios where the runtime data is not available or not sufficient.

6.3. Summary

In this chapter, we introduced research that is closely related to the ap-

proach presented in this thesis. We introduced the state of the art regarding

(i) measurement-based performance evaluation and (ii) performance mod-

elling in combination with measurements.

In the field of measurement-based performance evaluation, we presented

approaches that showed the value of systematic, experimental processes

and the importance of an appropriate experiment specification language

for a specific domain. However, none of the presented approaches en-

ables the flexible introduction of experimental designs for automated exper-

iment executions independent of the concrete scenario. Hence, the exper-

iment specification language and the corresponding framework presented

in Chapter 4 extend the state of the art presented in this chapter. More-

over, we introduced state of the art approaches with respect to the in-

ference of performance prediction functions. Two of the presented ap-

proaches [RSPM98, CW00] formed the starting point for our research, and

influenced the methodologies presented in Chapter 4. We extended this and

the other related research work by systematically evaluating methodologies

for the automated, iterative combination of experiment selection, statistical

model inference, and model validation for the derivation of multidimen-

sional performance prediction functions.
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Out of the existing performance modelling approaches [BDIS04, Koz10],

we discussed those approaches in detail that deal with evaluating and mod-

elling performance of existing software systems. The main difference be-

tween our approach presented in Chapter 3 and the state of the art ap-

proaches is the abstraction level on which the models are derived. Ex-

isting approaches are in most cases extensions to classical architecture- or

simulation-based performance modelling and thus are bound to the abstrac-

tion level and the capabilities of the underlying modelling techniques.
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In this chapter, we conclude this thesis by summarising the main contribu-

tions and validation results in Section 7.1, describing the benefits for per-

formance engineers, software developers and software development organi-

sations in general (Section 7.2), and finally introducing ideas and directions

for future work in Section 7.3.

7.1. Summary

In this thesis, we presented a method for experimental, measurement-based

performance modelling. The implementation of the method required the

definition, execution, and analysis of a large number of experiment series.

In order to support performance engineers in conducting these tasks, we

introduced (i) a language and a framework for the specification and exe-

cution of automatable experiment series and (ii) presented and compared

different strategies for the automated, adaptive generation of experimental

designs for statistical model inference. The accuracy and the efficiency of

our approach has been validated in a number of case studies using stan-

dard industry benchmarks such as SAP Sales & Distribution [SAP12] and

SPECjbb2005 [SPE05]. Furthermore, we demonstrated the applicability

of our approach in a real-world scenario, where we derived a performance

model that supports UI designers and developers at SAP in designing high-

performance enterprise web application front-ends. In the following, we

give a brief summary of the main contributions and validation results of

our work.
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A Method for Experimental, Measurement-based Performance
Modelling We developed a performance modelling methodology that

combines measurements with statistical modelling in an iterative, experi-

mental process. In order to find a suitable abstraction level for the per-

formance model, we proposed a goal-oriented specification procedure that

adopts existing best practices[BCR94, Jai91, SW01, Hap08, Sin09, Rie11].

The actual modelling process allows performance engineers to efficiently

derive and maintain performance models of complex software systems.

Based on a well-defined test environment and a set of initial assumptions on

performance-relevant influences, performance engineers start an iterative

definition and execution of experiment series in order to understand and

quantify all performance-relevant influences. Then, a performance model

is derived using statistical model inference and extensively validated. In the

scope of this thesis, we applied this method for the design of a performance

model of SAP enterprise web application front-ends.

Language and Framework for the Specification and Execution
of Automatable Experiment Series To support performance engi-

neers in conducting large amounts of experiments, we developed a novel

experiment specification language. In order to find a suitable abstraction

level for the design of the language and to ensure that the language is in-

dependent of concrete domains, technologies or applications, we applied it

across a wide-range of different scenarios. In addition to the language, we

developed a framework that uses the specified experiment information to

automate the execution of experiments and to iteratively combine experi-

mental design and analysis.

Automated, Adaptive Generation of Experimental Designs for
Statistical Model Inference The capabilities of the experiment speci-

fication language and the experiment automation framework introduced be-

fore, allowed us to develop and compare a set of strategies for the automated
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derivation of multidimensional performance prediction functions. We de-

signed an iterative process that combines experiment selection, function

inference and function validation in order to automatically derive experi-

mental designs that optimize the trade-off between the number of executed

experiments and the accuracy of multidimensional performance prediction

functions. We validated the approach by applying the different combina-

tions in two case studies using industry standard benchmarks (SAP Sales &

Distribution, SPECjbb2005). In general, the best results have been achieved

by the combination Adaptive Equidistant Breakdown (AEB) measurement

point selection, Dynamic Sector validation with Global prediction error

(DSG), and Multivariate Adaptive Regression Splines (MARS) model in-

ference. The case studies have shown that our approach allows performance

engineers to automatically derive performance prediction functions with a

mean relative prediction error of less than 20% using only up to 10% of the

potential measurement points.

Performance Model for Enterprise Web Application Front-ends
To demonstrate the applicability of the overall approach in an end-to-end

case study, we derived a performance model for web application screens

developed with the SAP UI5 JavaScript library. The industrial case study

has been conducted in cooperation with performance analysts and develop-

ment groups at SAP. We validated the accuracy of the performance model

by comparing predictions to measurements for screens of two real-world

enterprise web applications in three browsers (Internet Explorer, Firefox,

and Chrome). The results show that the approach is applicable to a real

world scenario and that the derived performance models can predict the

front-end performance with an average prediction error of 11% across all

studied browsers. Due to the automatically executable experiments, our

approach requires only limited manual effort for updating a performance

model to system changes (e.g. new versions of the browser or the UI li-

brary).
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7.2. Benefits

The results of this thesis support three main roles: Performance Engineers,

Software Architects/Developers, and Researchers. In the following, we de-

scribe how each of these roles benefits from our work.

Performance Engineers Our goal-oriented performance modelling me-

thod introduced in Chapter 3, helps performance engineers to focus their

modelling effort on performance influences that are actually relevant for

the consumers of the performance model (e.g. software architects or devel-

opers). The close upfront communication between performance engineers

and model consumers makes it more likely that the models are actually

adopted in the software development process. Moreover, it helps perfor-

mance engineers in finding a suitable abstraction level for the performance

models and thus in avoiding to model too many unnecessary details.

Compared to existing architecture-based modelling approaches, there is

no need to re-engineer the internals of existing, complex software system

(e.g. the rendering engines of different browsers). This can save a lot of ef-

fort for performance engineers when creating and maintaining performance

models. Moreover, it allows performance engineers to build performance

models even for those systems where information about the internal archi-

tecture and behaviour is not available at all (e.g. third-party software).

The experiment specification language as well as our framework to au-

tomate the execution of experiments presented in Chapter 4 support perfor-

mance engineers in several ways. The clear separation between technical

tasks, and the experimentation and analysis process allows performance

engineers to focus on understanding the performance behaviour of the sys-

tem. There is no need to write custom scripts to automate experiment ex-

ecution or gather measurement data. Moreover, they can share experiment

specifications and knowledge in order to create a performance knowledge

base [WFP07].
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Our methodology for automatically deriving experimental designs for

fitting multi-dimensional performance prediction functions helps perfor-

mance engineers in deriving more accurate functions with less effort and

in less time. There is no need to manually select the data points used for

function fitting. Such a manual selection often leads to either too many

data points with little information gain or not enough data points in ar-

eas where the analysis method requires more information in order to fit an

accurate model. The automated, iterative combination of experiment selec-

tion, function inference and function validation, introduced and validated

in Chapter 4, reduces the probability of badly fitted areas and optimizes the

trade-off between the number of experiments and accuracy of the prediction

function.

Software Architects/Developers Tailoring a performance model to

the needs of the stakeholders that consume the the information provided by

the model as suggested in Chapter 3, helps these stakeholders (usually soft-

ware architects or developers) in getting the information they actually need

in the granularity they need it. It also helps software developers to better

understand the model output as well as the general value of having a perfor-

mance model. Often, the use of performance models can significantly re-

duce the overhead for quality assurance which allows developers to design

better software with less effort (see for example our case study presented

in Chapter 5). Moreover, as performance models are usually applied in the

design phase of a product, performance problems can be detected early, and

thus are easier to fix.

Researchers The framework that we introduced in Chapter 4 has been

published as an open source project [WHW+13]. Researchers in the perfor-

mance engineering community frequently conduct measurements and anal-

yses. Examples are case studies for their work, resource demand estima-

tions for a modelling approach or running benchmarks to demonstrate scal-
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ability of a developed system. There are already common scenarios that are

used by a wide range of researchers e.g. the SPEC benchmarks [SPE12],

CoCoME [RRMP08] or the Dell DVD Store [JM11]. However, control-

ling and analyzing these scenarios is done by each researcher every time

anew, although it is often the same procedure. If the components to control

these scenarios (or any other kind of application) as well as components

for data analysis and data exports would be available as part of an open

source project, researchers could benefit from the work of others and save

a lot of time when conducting measurements and thus focus on their ac-

tual research. Hence, we provide a platform for interested researchers to

cooperate and share their work.

The flexible extensibility of our iterative approach for automatically fit-

ting multidimensional performance prediction functions (see Chapter 4),

allows researchers to compare different existing algorithms and analysis

methods with minimal effort. Moreover, novel algorithms and analysis

methods can be benchmarked against state of the art methodologies using

the same scenario (e.g. as shown in [FH12]).

In general, our work provides new capabilities to develop novel perfor-

mance engineering approaches that are based on executing large sets of

experiment series. See Section 7.3 for a number of examples.

7.3. Future Work

In the following, we provide pointers for research extending the work con-

ducted in this thesis.

Experimental Function Inference In the scope of this thesis, we de-

veloped and compared a set of experiment selection algorithms and analysis

methods for deriving multidimensional performance prediction functions.

However, as this set is not complete, further algorithms and analysis meth-

ods can be developed and compared based on our work. Moreover, the

222



7.3. Future Work

different algorithm/analysis combinations should be applied to more case

studies in order to get a better understanding on their suitability for different

performance evaluation scenarios.

Performance-Aware Development of Web Application Screens
With respect to our case study presented in Chapter 5, we plan the fol-

lowing enhancements in future work. The derived performance model will

be validated with more SAP UI5 based applications and possibly extended

with additional performance-relevant UI elements. Moreover, the predic-

tion function will be integrated in a web-based „what you see is what you

get“ editor for SAP UI5 based applications and thus rolled out to a larger

group of developers. A future direction that requires more in-depth re-

search is the extension of the front-end performance predictions towards

an end-to-end performance feedback which includes network and back-end

performance. Here, we might have to combine our measurement-based per-

formance modelling approach with simulation- or architecture-based ap-

proaches.

Further Developer Feedback Scenarios In existing case studies,

performance models are often used to evaluate architectural design deci-

sions and thus, mainly targeting software architects in the design phase.

However, as we have shown in our industrial case study, performance mod-

els can also be valuable during software development. At SAP an addi-

tional developer feedback scenario has already been initiated that follows

the ideas presented in this thesis. There, the approach is applied to derive

a performance model that predicts the response time of database queries

based on the structure of the query and the size of the database. The model

aims at providing immediate feedback to developers of database queries

with respect to the expected performance characteristics of the query. In

this context, several additional research challenges need to be solved. As

an example, it is subject to research how to determine the workload that
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is to be used for model building as it has to be representative for a large

set of applications. Another example that is subject to research is how the

workload used for model building can be mapped to the workload that is

provided by the developers as an input to the model.

A Generic Model For Developer Feedback Scenarios Once more

experience in building performance models for developer feedback has

been gathered, one can start to identify common objects and patterns across

the scenarios and further simplify the performance model construction pro-

cess of such scenarios. We envision a generic meta-model that allows per-

formance engineers (in collaboration with domain experts) to formally de-

scribe different domains (e.g. web application UIs or database queries).

This comprises the development artifact (e.g. a web page or a query) and

its properties (e.g. the type of stylesheet or type of database connection),

individual elements of an artifact (e.g. a button or select statement) and its

properties (e.g. the maximum number of buttons on a page or the expected

number of rows returned by a select query), the relationships between com-

ponents (e.g. that tables or queries can be nested) as well as the properties of

the relationship (e.g. the maximum nesting depth). Moreover, performance

engineers can specify different execution platforms (e.g. the browser type

or the database version) for which he or she wants to derive the prediction

functions. Based on the resulting model instance, a set of standard exper-

iment series can be derived by a model to model transformation. In these

experiment series, it is checked which elements, relationships, and proper-

ties influence the performance metric of interest how the parameters interact

with each other. The automated generation of experiment series definitions

saves time and ensures that the most important aspects are considered by

the performance engineer.

Industrial Experience Reports The goal-oriented specification of per-

formance models prior to the actual modelling process (proposed in Chap-
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ter 3) has been derived based on our experience of applying performance

modelling in an industrial context at SAP. Many industry reports from ap-

plying approaches like Design Thinking [Bro09] and The Lean Startup

[Rie11] have shown that early and continuous hands-on discussions with

target groups can increase the adoption of products and reduce development

efforts. It would be interesting to see more industrial experience reports on

how a goal-oriented procedure in the context of performance modelling can

affect the adoption of the models among developers and the effort to create

the models.

Combination with Architecture-based Performance Modelling
In some scenarios, it can be beneficial to combine our measurement-based

modelling approach with existing architecture-based approaches like the

Palladio Component Model (PCM) [BKR09]. In such approaches architec-

tural models of a software system are annotated with performance-relevant

information such as resource demands and branching probabilities. Then,

the architectural models are transformed to analytical models, such as stoch-

astic Petri nets, stochastic process algebras, and queueing models [BH07]

or to discrete-event simulations [PK05, LB05].

For the integration of architecture-based and measurement-based per-

formance analysis, we assume that some parts of the system are already

available (for example, 3rd party services or software artefacts) and other

parts are to be designed. Then, the performance analysis could follow the

process shown in Figure 7.1.

Software architects specify the system’s components, behaviour, de-

ployment, and usage (System Modelling). This activity results in a System
Model that describes the newly developed parts as well as its usage. In order

to consider the effect of existing parts in performance analysis, we include

them in the prediction model using the approach presented in this thesis.

From a set of Measurements, we get Performance Data of the system which

is used for Model Inference. The resulting statistical performance models
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System Modelling

Integration

Prediction

Model Inference

MeasurementRequirements
Software Components

System
Model

Complete
Performance
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Performance
Data
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Performance 
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Legend
Workflow

Flow of Artefact

Change of Activity

External Services
3rd Party Artefacts

Figure 7.1.: Overview of integrating goal-oriented performance models

with architecture-based approaches [WHW12]

have to be integrated with or made available in architecture-based predic-

tion approaches (Integration). This step merges both model types and cre-

ates a common basis for further performance analysis (Prediction). Based

on the Performance Predictions, software architects and performance ana-

lysts can then decide about design alternatives, plan capacities, or identify

critical components.

The presented process has already been applied in two case studies which

have been introduced in [HWSK10, WHW12]. A more detailed description

of the technical integration is provided in [WHW12].

Exhaustive, Tailored Performance Regression Testing The ca-

pability to efficiently define and run a large set of experiments, is also valu-

able for performance engineering tasks other than performance modelling.

In performance regression testing, the probability of actually observing an
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issue as well as the effort for identifying its root cause is highly depen-

dent on the number and quality of performance tests executed on a regular

basis [HHF13]. Applying a systematic, experimental approach can help

to increase the number and quality of performance regression test signifi-

cantly. At SAP our approach has already been applied to conduct system-

atic performance regression tests for the persistence service of the SAP

HANA Cloud platform [WWHM13]. Our experimental approach helps

performance engineers to identify performance-critical test cases that can

be automatically executed on a nightly basis. Figure 7.2 shows a perfor-

mance regression that we observed after having the automated tailored ex-

periments in place.

Figure 7.2.: Identified regression [WWHM13]

The graphs show the measured throughput for two experiments over a

certain period of time. The experiment on the left side executes a named

query that retrieves all instances of an entity in a certain data model. The

experiment on the right side executes a query that stores a number of in-

stances of the same entity to the database. The graph on the left side of

Figure 7.2 shows that for this experiment a performance regression of fac-

tor 4 has been introduced. As the tests run on a nightly basis, we have

been able to identify the root cause for the issue very quickly which hap-

pened to be an update of the database version that has been conducted at

that day. An interesting observation is that the regression has only been ob-

served in one test out of the set of experiments. The experiment shown on

the right side of Figure 7.2 does, for example, not show a performance re-
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gression. This observation underlines the assumption that more and tailored

performance tests increase the probability of detecting a performance issue.

Moreover, knowing the exact conditions under which a problem occurs and

under which not can be very helpful in fixing a performance issue.

Performance Problem Diagnosis In scenarios where an existing soft-

ware system already contains performance and scalability issues, perfor-

mance models might not help to find the root cause of the problem. How-

ever, the capability of efficiently running a large set of systematic experi-

ments supports approaches that target such scenarios. Wert et al. [WHH13,

Wer13] introduce such an approach that uses the systematic experimenta-

tion capabilities presented in this thesis, in order to detect performance and

scalability issues in existing software systems and identify the root cause.

The approach is based on the observations that particular performance prob-

lems share common symptoms, and many performance problems described

in literature are defined by a particular set of root causes [WHH13]. Based

on a hierarchical structure of performance problems, their symptoms, and

their root causes, the approach executes a series of systematic experiments

that first test for symptoms and then search for more specific performance

problems and their root cause.

Systematic Guidance in Solving Performance and Scalability
Problems The approach introduced by Heger [Heg13], applies the ex-

perimental, measurement-based performance modelling approach presented

in this thesis in order to (i) evaluate different solutions to a given perfor-

mance problem and (ii) recommend the best solution to a developer. The

approach is illustrated by an example where a developer discovered a soft-

ware performance bottleneck manifested in the resource pool for database

connections [Heg13]. The known solutions of performance experts are (1)

to increase the amount of resources available in the connection pool, (2) to

replace the connection pool implementation, or (3) to reduce holding times
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of database connections. Based on a generic evaluation plan for each so-

lution, a set of systematic experiment series are executed for the specific

scenario. In these experiment series, the influence of connection pool pa-

rameters on performance is determined (1), prediction functions for alterna-

tive connection pool implementations are derived (2), and code statements

that can be moved to reduce holding times are identified (3). Finally, the re-

sults of the experiments presented to developers which can make trade-off

decisions if necessary.
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A. Software Performance Cockpit

We developed a framework called Software Performance Cockpit (SoPeCo)

[WHHH10, WH11, WHW+13] to implement the approach presented in

this thesis. It allows performance engineers to define, execute and analyse

experiment series very efficiently. Moreover, it is designed to be flexibly

adapted to different performance evaluation scenarios and to flexibly add

new experimental design and analysis strategies.

A.1. Motivation

Today’s software often builds upon a large stack of runtime and middle-

ware components. Examples are virtual machines, operating systems, or

browsers, as well as application, messaging, or database servers. More-

over, applications run on different hardware like desktop PCs, laptops,

or mobile devices. Thus, performance analysts have to assess data from

various distributed locations and interfaces. Moreover, performance ana-

lysts can choose from a wide range of sophisticated tools for instrument-

ing and monitoring applications (e.g. Compuware dynaTrace [Com13] or

NewRelic [New13]), as well as for simulating usage behaviour (e.g. HP

LoadRunner [HP13] or Apache JMeter [Fou13]). As a result, test environ-

ments for performance evaluations are usually very heterogeneous. How-

ever, a performance analyst requires a unified view on the measurement

data in order to analyse them properly. In general, having a common inter-

face to control and monitor the components of any test environment, allows

performance analysts to reuse automation and analysis strategies in differ-

ent scenarios.
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A.2. Goals

SoPeCo pursues the following goals:

• Automation: A typical performance evaluation project requires

the execution of a large set of experiments. Manually triggering

the measurements and gathering the measured data is very time-

consuming and inefficient. Hence, SoPeCo aims at automating

this process.

• Separation of Concern: A typical scenario in scientific or in-

dustrial performance evaluation projects is that the performance

analyst spends a lot of time setting up the test environment or

looking for appropriate analysis or data visualisation tools. To

enable the performance analyst to focus on the problem to be

studied, we target a clear distinction between the different tasks

in the performance evaluation process. This distinction facili-

tates that for example the system administrator sets up the test

Environment, a component expert instruments a component, and

a statistics expert provides an analysis method.

• Adaptability: The goals of performance evaluations are also very

diverse. While, for example, in some scenarios the performance

analyst wants to identify a list of performance-relevant param-

eters, he might want to determine a functional relationship be-

tween a set of parameters in other scenarios. To support these

goals a variety of methodologies and strategies exist or are de-

veloped by scientists or engineers. For example, different goals

require different strategies to select experiments (i.e., the com-

bination of input parameter values to be measured), terminate

them, or analyse their results. A goal of SoPeCo is to facilitate

the flexible introduction and use of such strategies by perfor-

mance analysts. Moreover, SoPeCo should allow scientists and
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engineers to easily benchmark novel strategies against the state

of the art.

• Reusability: Although test environments and evaluation projects

are very diverse, there is still potential to reuse components and

knowledge developed by others. With SoPeCo, we aim at sup-

porting reusability at different points in the evaluation process.

Examples are components that control or monitor a certain piece

of software, or appropriate analysis methods to solve a certain

problem type.

A.3. Architecture

Based on the objectives described above, we developed a framework ar-

chitecture that provides the basis for the practical implementation of the

approach presented in this thesis. Figure A.1 shows the basic architecture

of SoPeCo.

Experiment Series
Exploration Plugins Visualization

Parameter Variation Plugins
Measurement Environment

ControllerSoPeCo Engine

Persistence

Type Assignment Plugins

Analysis Plugins
uses

Framework
Core Component

Framework
Extension

Figure A.1.: SoPeCo Architecture
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The central component is the SoPeCo Engine which orchestrates the

other components and constitutes the main entry point for the application

logic of the framework. The Visualisation component, on top of the

SoPeCo Engine, is the user-friendly interface to the performance analyst

that wants to conduct performance evaluation experiments. The Persis-
tence component is responsible for storing and loading experiment def-

initions, measurement data, and analysis results. In order to trigger an

experiment, the SoPeCo Engine passes the parameter values for this spe-

cific experiment to the Measurement Environment Controller. As its

name implies, this component controls the execution of single experiments

on the actual measurement environment. This includes tasks like setting

configuration parameters in the system under test, starting the load driver,

and gathering monitoring data via different channels. Hence, the Measure-
ment Environment Controller is the interface between the generic and

the scenario-specific part of a performance evaluation.

The decision which experiments are to be executed on the measurement

environment is taken by an Experiment Series Exploration Plugin.

These plugins implement different experimental design strategies that se-

lect a set of experiments from the complete experiment space spanned by

the experimentation parameters and its values (see Chapter 4.4). The strate-

gies also decide on the order in which experiments are executed and deter-

mine when an experiment series can be terminated.

The basic definition of a parameter (i.e., name, description, type, po-

tential values) depends on the scenario-specific measurement environment

on which the experiments are to be executed. As our goal is to provide a

scenario-independent approach, we also use an extension mechanism for

the definition of parameter types and potential values. Which values a sin-

gle parameter can take, can be specified via the parameter variation strate-

gies provided by different Parameter Variation Plugins. Examples

are a linear variation defined by a minimum value, a maximum value and a

step size, or a variation based on a set of values specified in a comma sepa-
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rated string. The Type Assignment Plugins map type names to source

code objects which allows the flexible introduction of new types if this is

required by a specific measurement environment.

The interface that connects the framework to the scenario-specific mea-

surement environment comprises the following actions:

• Initializing Measurement Environment: When a new measurement

environment controller is registered at the framework its initialisa-

tion method is called. The concrete action performed by this method

depends on the concrete scenario. Possible actions are setting of tool

configurations, starting monitoring software, or generating test data.

• Preparing Experiment Series: In this step, the controller prepares

the measurement environment for a series of experiments with a col-

lection of value assignments that remain constant in the series.The

corresponding method call can for example be used to set config-

uration parameters of system components or measurement tooling

components.

• Run Experiment: In this step, the conroller runs a single experiment

on the measurement environment. The parameter values that should

be used in the experiment are provided by the framework based on

the experiment definition of the performance analyst. The result

of this method call is a list of measured values for each observed

performance metric.

• Finalize Experiment Series: Once all experiments of an experiment

series are executed, this method is called by the framework to enable

the measurement environment controller to clean up the measure-

ment environment. Depending on the scenario, this can for example

include cleaning caches, reseting test data, or stopping monitoring

software.
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In order to analyse the data derived by a set of experiments, the SoPeCo

framework provides different Analysis Plugins. These plugins provide,

for example, methods to determine statistical metrics such as a confidence

level or methods to derive the functional relationship between parameters.

Moreover, the analyses can be used by sophisticated exploration strategies

(such as those presented in Chapter 4.4) in order to support a specific eval-

uation goal.

The flexible architecture presented above has the following benefits:

1. It separates the scenario-specific measurement environment from

the general experimentation tasks.

2. It allows researchers and engineers to implement and test novel

experimental design or analysis strategies.

3. It allows performance analysts to select a proper experimental

design and analysis strategy for their specific experiment goal.

4. It allows performance analysts to run performance evaluation ex-

periments automatically and repeatedly.

In the following section, we demonstrate the usage of the framework

based on the enterprise application customisation scenario introduced in

Section 4.3.1.3.

A.4. Example

In this section, we continue the example introduce in Chapter 4.3.1.3. The

goal of the performance analyst is to derive a functional relationship be-

tween the number of benchmark users, the number of work processes al-

located to dialogue workload and the average response time for dialogue
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steps. Using this function, the performance analyst can derive the perfor-

mance-optimal configuration for an SAP ERP application installation in a

customer-specific setup. Figure A.2 sketches out a sample instantiation of

the SoPeCo framework.

Vi li tiMARS VisualizationAnalysis

SAP Enterprise
ApplicationSoPeCo Engine Load Driver

MonitoringFull Exploration
Strategy

Customization
ME Controller

SoPeCo Engine

SAP ERP 2005

Load Driver
Linear Parameter

Variation

…
Persistence

Scenario specific
Measurement EnvironmentSoPeCo CoreSoPeCo Extensions

Figure A.2.: SoPeCo Example

The block to the right is the scenario-specific part which consists of a

set of hardware resources hosting the ERP application, a load driver that

simulates user behaviour and a monitoring tool that measures different

performance metrics (such as the average response time of the dialogue

steps). Moreover, the scenario-specific part contains a Measurement En-
vironment Controller implementation that acts as the connector be-

tween SoPeCo and the measurement environment. The controller gets the

values of the input parameters for each experiment and triggers the respec-

tive components. If the experiment Exp{numSDUsers=100; numDialogue-

WPs=5} should be executed on the measurement environment, the con-

troller configures the application server to allocate 5 work processes for

dialogue workload and triggers the load driver to run with 100 simulta-

neous users. When the measurement is finished, the controller reads the

measured response time from the log provided by the monitoring tool and
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returns this as experiment result to the SoPeCo Engine. The SoPeCo En-
gine forwards the result to the persistence component which stores it for

example in database. The Full Exploration Strategy and the Linear
Parameter Variation shown on the left side of Figure A.2 are two ex-

ample SoPeCo extensions responsible for determining which experiments

to execute. The Linear Parameter Variation Plugin provides an it-

erator for numeric parameter values that is configured by the experiment

definition of the performance analyst which specifies for example that the

number of users parameter can take values from 1 to 500 in steps of 1.

The Full Exploration Strategy is a simple experimental design strat-

egy that triggers every possible combination of input parameter values as

experiment. Finally, the MARS Analysis extension derives the functional

dependency between the input parameters and an observed metric using

the Multivariate Adaptive Regression Splines [Fri91] technique. Using this

function, the performance analyst can derive the performance-optimal con-

figuration for the customer’s ERP application.

numSDUsers
P numSDUsers

G

numDialogWPs

P=x

numDialogWPs

Figure A.3.: General Cutting Curve

Figure A.3 illustrates a straight-forward approach for the usage of the

function in that scenario.As the performance function

P = f (numSDUsers,numDialogWPs)

depends on two parameters, there is no single value defining the best con-

figuration. Instead, the optimum is defined by the cutting curve, which is
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calculated by fixing the average response time (P) to the target threshold x
(e.g. one second). In other words, we calculate the function G as the cutting

edge between P and the P = x plane where x is the threshold we want to

guarantee. The resulting function G = f (numDialogWPs) defines a con-

vex set for numSDUsers> 0, numDialogWPs> 0 and numSDUsers<=G.

Hence, every point < numSDUsers∗,numDialogWPs∗> within the convex

set represents a feasible configuration for the given average response time

threshold.
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C. Prediction Functions of Industrial Cased
Study

In the following, we present the concrete values and functions used for

predicting the screens in Chapter 5. The corresponding general prediction

function is described in Equation 5.13 in Chapter 5.3.3.2.

C.1. Prediction Function for Firefox

εS = 420

εSimple = 18.3

φSimple = 1.943456∗QUANT ITY

εImage = 15.3
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C. Prediction Functions of Industrial Cased Study

φImage = 48.2+0.03131313∗max(0,WIDT H −505)

−0.04293∗max(0,505−WIDT H)+0.026∗max(0,HEIGHT −500)

−0.04387∗max(0,500−HEIGHT )−0.964∗max(0,QUANT ITY −5)

−3.669∗max(0,5−QUANT ITY )+0.00002∗max(0,WIDT H −505)

∗max(0,HEIGHT −500)−0.000007∗max(0,505−WIDT H)

∗max(0,HEIGHT −500)−0.000175∗max(0,WIDT H −505)

∗max(0,500−HEIGHT )+0.000055∗max(0,505−WIDT H)

∗max(0,500−HEIGHT )+0.01189033∗max(0,WIDT H −505)

∗max(0,QUANT ITY −5)+0.01038961∗max(0,WIDT H −505)

∗max(0,5−QUANT ITY )−0.001528571∗max(0,HEIGHT −500)

∗max(0,QUANT ITY −5)+0.003160714∗max(0,HEIGHT −500)

∗max(0,5−QUANT ITY )

εTable = 210.5

φTable = 0.9837964∗ROWS−1.451458∗SIMPLECOLS

−706.4417∗RAT INGCOLS+5.741513∗QUANT ITY

+0.005∗ROWS∗SIMPLECOLS+48.38∗ROWS∗RAT INGCOLS

+46.907∗SIMPLECOLS∗RAT INGCOLS+1.603∗ROWS∗QUANT ITY

+3.4∗SIMPLECOLS∗QUANT ITY +237∗RAT INGCOLS∗QUANT ITY

−3.08∗ROWS∗SIMPLECOLS∗RAT INGCOLS

+1.06∗ROWS∗SIMPLECOLS∗QUANT ITY

−12.56101∗ROWS∗RAT INGCOLS ∗QUANT ITY

−14.18982∗SIMPLECOLS∗RAT INGCOLS ∗QUANT ITY

+0.9006174∗ROWS∗SIMPLECOLS∗RAT INGCOLS ∗QUANT ITY

εRowRepeater = 322.7
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C.2. Prediction Function for Chrome

φRowRepeater = 12.6454∗max(0,ROWS−9)−
25.48596∗max(0,9−ROWS)+24.57518∗max(0,QUANT ITY −6)

−31.63405∗max(0,6−QUANT ITY )+2.622546∗max(0,ROWS−9)

∗max(0,QUANT ITY −5)−2.301101∗max(0,ROWS−9)

∗max(0,5−QUANT ITY )−1.45611∗max(0,9−ROWS)

∗max(0,QUANT ITY −8)+2.422541∗max(0,9−ROWS)

∗max(0,8−QUANT ITY )

εTabStrip = 47.4

φTabStrip = 16∗QUANT ITY

εToolbar = 37.1

φToolbar = 7.484848∗QUANT ITY

φHeader = 48

φShell = 95

φOData = 761.766+2.317290∗max(0,DATA−336)

−2.336814∗max(0,336−DATA)

φJSON = 20.9531+9.147735∗CALLS

(C.1)

C.2. Prediction Function for Chrome

εS = 300

εSimple = 6.3

φSimple = 0.6180106∗QUANT ITY

εImage = 9.95
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φImage = 0.0045∗WIDT H +0.0076∗HEIGHT +1.258∗QUANT ITY

+0.000008∗WIDT H ∗HEIGHT +0.001∗WIDT H ∗QUANT ITY

+0.001∗HEIGHT ∗QUANT ITY

+0.0000048∗WIDT H ∗HEIGHT ∗QUANT ITY

εTable = 115.6

φTable = 16.22777∗QUANT ITY −2.94197∗ROWS∗SIMPLECOLS

−26.7864∗ROWS∗RAT INGCOLS

+2.818925∗SIMPLECOLS∗RAT INGCOLS

+20.47580∗ROWS∗QUANT ITY

+5.270141∗SIMPLECOLS∗QUANT ITY

+5.667817∗RAT INGCOLS ∗QUANT ITY

+2.03301∗ROWS∗SIMPLECOLS∗RAT INGCOLS

+5.654935∗ROWS∗SIMPLECOLS∗QUANT ITY

+57.29617∗ROWS∗RAT INGCOLS ∗QUANT ITY

+2.364257∗SIMPLECOLS∗RAT INGCOLS ∗QUANT ITY

−1.638865∗ROWS∗SIMPLECOLS∗RAT INGCOLS∗QUANT ITY

−13.35∗ROWS−3.84∗SIMPLECOLS−158.6∗RAT INGCOLS

εRowRepeater = 162.3
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C.3. Prediction Function for Internet Explorer

φRowRepeater = 401+18.25758∗max(0,ROWS−13)

−25.53951∗max(0,13−ROWS)+46.31842∗max(0,QUANT ITY −5)

−70.33231∗max(0,5−QUANT ITY )+0.9303674∗max(0,ROWS−7)

∗max(0,QUANT ITY −5)−4.30947∗max(0,7−ROWS)

∗max(0,QUANT ITY −5)−1.20965∗max(0,13−ROWS)

∗max(0,QUANT ITY −5)+4.669123∗max(0,13−ROWS)

∗max(0,5−QUANT ITY )+1.655087∗max(0,ROWS−13)

∗max(0,QUANT ITY −4)−4.809822∗max(0,ROWS−13)

∗max(0,4−QUANT ITY )

εTabStrip = 171

φTabStrip = 10.55∗QUANT ITY

εToolbar = 3

φToolbar = 3.912121∗QUANT ITY

φHeader = 185

φShell = 261

φOData = 258.621+1.300211∗DATA

φJSON = 194.306+5.295485∗CALLS

(C.2)

C.3. Prediction Function for Internet Explorer

εS = 280

εSimple = 6.95

φSimple = 1.55∗QUANT ITY

εImage = 29.2
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φImage = 0.00036∗WIDT H ∗HEIGHT +0.0062∗WIDT H ∗QUANT ITY

+0.006727862∗HEIGHT ∗QUANT ITY

−0.000011∗WIDT H ∗HEIGHT ∗QUANT ITY −0.02∗WIDT H

−0.01517278∗HEIGHT −3.404207∗QUANT ITY

εTable = 118.7

φTable = 11.46970∗ROWS+13.54278∗SIMPLECOLS

−28.058∗RAT INGCOLS+8.214∗QUANT ITY

−5.851∗ROWS∗SIMPLECOLS−7.10∗ROWS∗RAT INGCOLS

+11.96∗SIMPLECOLS∗RAT INGCOLS−13.57∗ROWS∗QUANT ITY

−3.55∗SIMPLECOLS∗QUANT ITY −11.14∗RAT INGCOLS∗QUANT ITY

−2.072536∗ROWS∗SIMPLECOLS∗RAT INGCOLS

+6.35768∗ROWS∗SIMPLECOLS∗QUANT ITY

+12.73665∗ROWS∗RAT INGCOLS ∗QUANT ITY

−6.951127∗SIMPLECOLS∗RAT INGCOLS ∗QUANT ITY

+1.773920∗ROWS∗SIMPLECOLS∗RAT INGCOLS ∗QUANT ITY

εRowRepeater = 132.1

φRowRepeater = 214.93+27.61191∗max(0,ROWS−11)

−38.39952∗max(0,11−ROWS)+47.56512∗max(0,QUANT ITY −4)

−48.72615∗max(0,4−QUANT ITY )+4.391978∗max(0,ROWS−11)

∗max(0,QUANT ITY −7)−3.974507∗max(0,ROWS−11)

∗max(0,7−QUANT ITY )−2.163148∗max(0,11−ROWS)

∗max(0,QUANT ITY −9)+3.861891∗max(0,11−ROWS)

∗max(0,9−QUANT ITY )

εTabStrip = 75.75

φTabStrip = 3.05∗QUANT ITY

εToolbar = 8.5
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C.3. Prediction Function for Internet Explorer

φToolbar = 4.8∗QUANT ITY

φHeader = 64

φShell = 111

φOData = 8.1403+2.559657∗DATA

φJSON = 96.13+3.278756∗CALLS

(C.3)
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