
MODEL-DRIVEN DEVELOPMENT OF
MONITORED WEB SERVICE COMPOSITIONS

Christof Momm, Thomas Detsch, Michael Gebhart, Sebastian Abeck

Universität Karlsruhe (TH), Institute of Telematics, C&M IT Research,
Zirkel 2, 76128 Karlsruhe, Germany

{momm | detsch | gebhart | abeck}@cm-tm.uka.de

Abstract. Supporting business services through Web service compositions
(WSC) as part of service-oriented architectures (SOA) involves various runtime
monitoring requirements. The implementation of these requirements results in
additional development activities. In this paper we propose a systematic
approach to the development of monitored WSC based on the principles of
model-driven software development. The approach helps to reduce the general
complexity as well as to maintain coherency of the resulting solution in case of
changing requirements.

1 Problem Statement

To offer innovative and profitable business services, companies require IT support
that is tightly aligned with the corresponding business processes and highly adaptive
in case of changes. These requirements can be met by employing service-oriented
architectures (SOA). Here, business processes are automated - in whole or in part –
through Web service compositions (WSC) [1, 2]. These WSC rely on internally or
externally provided Web services (WS). Both the WSC and the WS are offered as IT
services by dedicated service providers. The functional and quality-related properties
are contractually fixed by means of service level agreements (SLA).

In this scenario, the quality of business services depends on the “quality” of the
business processes - the business process performance - and the quality of the
implementing WSC along with the included WS. Thus, to determine the quality of
business services it has to be possible to monitor business process performance on
basis of WSC measurements and to monitor the IT-related WSC properties [3]. The
establishment of an effective monitoring requires additional development activities:
(i) the specification of meaningful (process or service management) indicators; (ii) the
identification of WSC runtime measurements required for calculating the indicators;
(iii) the configuration or implementation of a corresponding WSC instrumentation;
(iv) the configuration of the employed management tool.

The particular monitoring requirements are highly specific to the regarded business
services. Also, there are intrinsic interdependencies between the functional and the
monitoring implementation. Coherency between them has to be always maintained.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197544549?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Hence, a systematic development approach is necessary that takes into account the
monitoring requirements from the very first [4-6].

In current practice, management issues are rather considered subsequent to the
functional development in terms of configuring specific management tools or
frameworks (like [7, 8]). The employment of specific tools leads to solutions that are
not portable, whereas the subsequent treatment of management issues increases the
risk of inconsistencies. The latter problem is intensified due to the generic nature of
existing management solutions. They usually support the management of arbitrary
resources and therefore necessarily abstract from concrete instrumentation code. This
code however forms the bridge between the functional and the management
implementation. Without regarding the instrumentation, it is hard to trace the impact
of changes in the functional or the management implementation. Furthermore, the
developer has to deal with generic configuration models. This results in redundant
activities and an unnecessary high complexity.

To overcome these drawbacks, we contribute an integrated approach to the
development of monitored WSC, which leverages the principles of model-driven
software development [9]. This helps to reduce complexity and allows flexible
adaptations in case of changing functional or management requirements while
maintaining an overall consistency of the solution.

1.1 Motivating Example

In this section, we introduce a simplified real-life scenario motivating the generation
of monitored WSC. The scenario is situated in the field of higher education. In the
following, we focus on a service-oriented IT support for the process of managing
examinations. From a business perspective, the university departments and affiliated
research groups are responsible for this process. As to the existing IT support, an
examination management system (EMS) is already offered by the central
administration. The functionality of the EMS is now exposed through atomic WS,
which are also provided by the central examination. These WS basically wrap
functionality already offered by the EMS, such as registering for exams or capturing
exam results. The business process on the other hand is supported by process-
oriented, long-running WSC. To a certain degree, the exam management process is
specific to the study courses offered by the departments. Thus, the departments
account for developing, adapting and operating their specific WSC. In the following,
we focus on the sub process “Process Registrations” as shown in Fig. 1. This simple
scenario starts with the receiving of an exam registration. Afterwards it is validated by
an external WS. Depending on the validation result either a confirmation or reject
message is replied.

Concering the process performance, we identified two relevant indicators for this
sub process. The first one indicates the duration of the activity Validate Registration.
The second indicator reflects the duration of the whole sub process. These two
indicators represent the very basic monitoring requirements for our WSC. So at
design time, a monitoring model that complements the functional WSC model and
formalizes these requirements in a platform-independent but still executable way has
to be created.

Fig. 1. Sub process “Process Registrations“

Within the specific management infrastructure, the calculation and evaluation of
the indicators is handled by an external management application. So on the one hand,
an adequate monitoring configuration for the specific management application has to
be created on basis of the platform-independent monitoring model. On the other hand,
the WSC has to be enhanced by a management interface providing the management
information required for calculating the indicators and enabling their integration into
the management application. In case of our sample indicators this would simply be
the start and end times of the monitored activities. To retrieve this information, our
WSC has to be instrumented in an adequate way.

2 Solution

2.1 Overview to the Approach

Functional Concerns Monitoring Concerns

Business
Process

(High Level)

Web Service
Composition (WSC)

Model

Textual Monitoring
Requirements

Instrumented
BPEL Process

Definition

C
IM

P
IM

P
SM

WSC Monitoring Model

WSC Management Agent
Tool-specific
Monitoring

Model

Monitored WSC

Events

Business
Modeling /

Requirements
Specification

WSC &
Monitoring

Design

WSC &
Monitoring

Implementation

Fig. 2. Approach to Model-driven to WSC Manageability Design

According to Fig. 2, our solution extends a model-driven development process for
WSC like [10, 11] by monitoring concerns. Thus, we distinguish between existing
functional and additional monitoring models on three different layers of abstraction,
namely the Computation-Independent Models (CIM), Platform-Independent Models

(PIM) and Platform-Specific Models (PSM). The platform in this case comprises the
employed specific composition engine along with the specific management tools that
are supported.

The CIM level includes models for specifying the business processes along with
the monitoring requirements, which are expressed in terms of indicators and
objectives for process or IT service management. The specification of the indicators is
of informal and declarative nature. Meaningful indicators for business processes may
for instance be derived from high-level business goals [12]. The resulting models are
still independent from an IT support.

The PIM level is now concerned with the design of the IT support. In our case, the
business process models are first refined to executable WSC models. Additionally, we
offer a WSC monitoring metamodel allowing for a formal specification of the
indicators including the operational semantics for calculating them. As the calculation
eventually refers to runtime management information about the execution of WSC, all
available WSC runtime measurements are provided by the monitoring metamodel.
This part of the metamodel basically follows the structure of the Common
Information Model (CIM). But unlike this, the provided managed elements are
tailored to the specifics of WSC.

To put this specification into operation, we first propose an automated generation
of an additional manageability infrastructure as shown in our preliminary work [13].
This basically follows the WS management pattern “Operational” presented in [14].
Accordingly, platform-specific models of a “monitored” WSC component comprising
the instrumented WSC component along with a WSC management agent have to be
generated. At this, the WSC instrumentation is generated automatically by
configuring appropriate sensors, which we assume the employed composition engine
supports. Through an additional WSC manageability interface the runtime
information represented in terms of managed WSC elements is offered to other
management tools. These account for calculating the specified indicators. So a
specific monitoring model has to be created from the platform-independent indicator
specification. This however is part of our future work.

Using this approach, a WSC (monitoring) developer can focus on the definition of
the required indicators. Unnecessary technological details as well as the complex
generic structures of existing monitoring models are hidden to her. This information is
added automatically by applying an appropriate transformation to a specific platform.
Portability of the solution is increased through the platform-independent nature of the
WSC monitoring metamodel as well as a modular internal structure of the generated
management agent, which as far as possible is independent from particular
composition engines or management standards.

2.2 WSC Monitoring Metamodel

Since the metamodel design is based on CIM concepts, the monitoring view on a
WSC is modeled through corresponding managed elements, as also proposed by [14,
15]. To support arbitrary WSC models (e.g. based on the Business Process Modeling
Notation (BPMN) or UML activity diagrams), we decided on creating an independent

metamodel rather than extending an existing metamodel for the functional WSC
design.

Fig. 3. Extract of WSC Monitoring Metamodel

Within our metamodel, for each functional element of the WSC model, e.g. a
single activity or a decision node, a complementary pair of managed elements is
available for modeling the management view. More precisely, the metamodel always
offers a managed element reflecting information about each executed WSC instance
(WSC_ME_Instance) and one that holds information related to the general definition of
the WSC, like configuration settings (WSC_ME_Definition). To minimize the number of
references to the functional model, the WSC_ME_Definition class holds a pointer to the
corresponding functional element. The WSC_ME Instance classes on the other hand
comprise properties reflecting the available runtime monitoring information. A
common property for example is the InstanceId that provides a unique identifier for
each executed instance of the monitored WSC.

The metamodel extract provided in Fig. 3 shows the three pairs of managed
elements required for modeling the management view on the different types of
activities in WSCs, namely Receive, Invoke and Reply. All are based on the Activity or
ActvityInstance class respectively. Besides the InstanceId four additional properties can
be monitored at runtime. StartTime, EndTime and ElapsedTime are used for time based
monitoring, while the property LoopCount is used to monitor the control flow – in this
case loops. Note that in Fig. 3 we omitted the meta-classes required for specifying
indicators, as they are not part of the transformation focused in this paper.

Fig. 4 shows a sample instance of the WSC monitoring metamodel for the
previously introduced monitoring requirements. Accordingly, for the activity Validate
Registration a corresponding InvokeInstance object including the property ElapsedTime
is created. This property already represents the desired duration of the activity. The
second indicator requires two managed elements as the time span from the Receive
Registration activity to the Send Confirm Message activity has to be monitored to get the
duration of the regarded sub process. Value changes of the properties are indicated

through an Update indication. This can be used to trigger the (re-)calculation of an
indicator.

Fig. 4. Sample WSC Monitoring Metamodel

Note that basic managed elements could be generated automatically from the
corresponding WSC model. Elements that are not required all for calculating the
indicators could later on simply be discarded. This transformation from the WSC
model to the WSC monitoring model however is part of our future work.

2.3 Generation of Monitored WSC

The model-driven generation of monitored WSC is accomplished by a transformation
based on our WSC monitoring metamodel. This results in a monitored WSC, which is
comprised of a WSC manageability infrastructure along with an adequate
instrumentation of the WSC. Fig. 5 provides an overview to the general architecture
of a monitored WSC in a platform-independent way. Here we use a UML 2
component diagram extended by stereotypes for modeling WSC. These extensions are
based on [16].

Accordingly, on the one hand a WSCComponent is created from the functional WSC
model. On the other hand, a ManagementAgent component is generated from the WSC
monitoring model. Both components are composed to the composite component
MonitoredWSCComponent, which offers the functional Service through a ServiceInterface
as well as the custom ManageabilityInterface through an additional port. In addition, a
management application may subscribe for indications concerning the state of
particular managed elements through a RequiredInterface.

WSCModel
WSC Monitoring Model

Indicator

PIM

PSM

<<MonitoredWSCComponent>>
MyMonitoredWSC

<<Service>>
MyCompositeService

<<WSCComponent>>
MyWSCComponent

<<ManageabilityInterface>>
MyWSCManageabilityInterface

WSCEvents

<<ManagementAgent>>
MyWSCManagementAgent

ManagedElement-
Indications

Managed WSC
Elements

<<ServiceInterface>>
MyCompositeServiceInterface

Fig. 5. General Architecture of Monitored WSC

Invocations of the ServiceInterface are handled by the functional WSCComponent,
whereas requests on the management interface are delegated to the ManagementAgent.
This component basically accounts for converting the event-driven monitoring
information delivered by the WSCComponent to the static management view defined
by the WSC monitoring model. It therefore knows the information model specified in
terms of managed elements and comprises components for creating, storing and
retrieving the corresponding objects as well as for generating the respective
indications. For this purpose an interface for receiving instrumentation events from
the WSCComponent is needed. This may for instance be a callback operation that is
actively invoked by the WSCComponent or an adapter to a message queue.

As already pointed up, the required instrumentation has to be configured
individually. This procedure is highly specific to the employed composition
middleware, which in our case is the IBM Process Server. The process server delivers
the configured monitoring events through the IBM-specific Common Event
Infrastructure (CEI) [17], which in turn is based on the Java Messaging Service
(JMS). So the automated WSC instrumentation involves the generation of monitoring
configuration file enabling the monitoring functionality of the IBM Process Server
and the integration of a CEI adapter within the management agent. In the following,
we briefly explain how the model-to-model transformation from the WSC monitoring
model to the IBM’s monitoring configuration model, which is defined by an XML
schema [17], works.

Fig. 6 shows a part of the transformation on basis of a concrete example. Here, the
defined managed element Invoke with one ElapsedTime property is mapped to a
monitoring configuration. For every managed element an EventSource class is
generated, which instruments the corresponding functional element. Depending on the
annotated property, different events for the event source are defined. In this case, the
ENTRY and EXIT events are required. At runtime, the ENTRY provides the start time of
the monitored activity and the EXIT event holds the end time. So the property
ElapsedTime can be calculated on basis of this information. A transformation rule like
this is defined for each managed element and property.

Transf.

WSC Monitoring Model IBM Monitor Configuration Model

Fig. 6. Generation of the Process Server Instrumentation by Example

3 Evidence the Solution works

To yield benefits from our approach, an efficient tool support is crucial. The WSC
monitoring developer on the one hand requires a comfortable editor in terms of a user
frontend to create custom platform-independent WSC monitoring models. On the
other hand, a transformation that automatically generates the platform-specific
backend code has to be provided. Fig. 7 summarizes our current prototypic
implementation of the tool support.

WSC Management Agent (MA) (EJB + WBEM Services)

AD-to-BPEL oAW

<<UML Activity Diagram>> WSC Model <<Custom EMF Model>> WSC Monitoring Model

<<CIMOM>>

WBEMServices

WSCDefinition-
Provider

WSCExecution-
Provider

WSCMetric-
Provider

CIM-MOF

BPEL Monitoring Config (WID) General Part WBEM-specific Part

<Monitor …> …
<EventSource>

<Name>Process:/1</Name> …
<Event name="ENTRY" …/>
<Event name="EXIT" …/>

</EventSource>
<EventSource>

<Name>Flow:/7</Name> …
<Event name="CONDFALSE" …/>
<Event name="CONDTRUE" …/>

</EventSource>
<EventSource>

<Name>Invoke:/8</Name> …
<Event name="EXIT" …/>

</EventSource>
</Monitor>

<<EventAdapter>>

CEI_EventAdapter

<<EventDispatcher>>

SomeWSCEventDispatcher

<<ME_Repository>>

SomeWSCRepository

<<MA-
Facade>>

MyFacade

Instrumented WSC (Websphere Integration Developer, WID)

<bpws:process name="SomeWSC"
wpc:id="1" ...>…

<bpws:flow name="SomeDesicion"
wpc:id="7" ...>…

<bpws:receive name="Receive"
wpc:id="5"> ...

</bpws:receive>
<bpws:invoke name="Invoke"

wpc:id="8" …>…
</bpws:invoke>
<bpws:reply name="Reply"

wpc:id="6" ...>…
</bpws:reply>

</bpws:flow>
</bpws:process>

Default
ManagedWSC

Elements

User Frontend (PIM)

Backend (PSM)

Fig. 7. Overview to Prototypic Implementation of the Approach

Regarding the user frontend, we decided on the Eclipse Modeling Framework
(EMF) to provide a custom ECore model along with a simple graphical editor that
allows the developer to create the complete monitoring model. Additionally, we are
working on a transformation that automatically generates an initial monitoring model
from the existing functional WSC model based on UML activity diagrams (AD). A
feasible alternative to EMF to this would have been the creation of a UML profile.
But as we do not consider a standard UML diagram as a suitable graphical
representation and we do not want to confront the WSC monitoring developer with
the inherited complexity of UML, we decided against this option.

Having developed the functional WSC model along with the corresponding WSC
monitoring model, a transformation is executed that automatically generates the
corresponding monitored WSC component. For creating the functional WSC
component, which is comprised of the BPEL definition along with a matching
WSDL, an existing AD-to-BPEL transformation is used. Unfortunately, the generated
code is not fully executable yet and therefore has to be manually completed. In our
case, we used the WebSphere Integration Developer (WID) to create the executable
WSC. This aspect is not further regarded. In case of the monitoring, a custom
transformation based on openArchitectureWare (oAW) is used to generate all
additionally required monitoring artifacts and components. This, on the one hand, is
the WID monitoring configuration, which basically specifies all the events necessary
for providing the management information defined in the WSC monitoring model.
Thus, for each kind of managed element property a corresponding transformation that
generates the required events is available.

On the other hand, the management agent that eventually provides the specified
management information is generated. To support different management standards
like Web-based Enterprise Management (WBEM) or Java Management Extensions
(JMX), we first create generally required components on basis of Enterprise Java
Beans (EJB) using oAW xPand templates. A specific EventAdapter is used to receive
management events delivered by the Common Event Infrastructure (CEI) and
transform them into an internal representation. An EventDispatcher correlates the
received events with the associated ManagedWSCElement instance. More precisely, the
property values are updated or a new instance is created ME_Repository, which is
comprised of an Entity Bean for each ManagedWSCElement. In addition, a
corresponding indication is triggered, like “ME updated”. All information – managed
element instances along with the associated indications - is made accessible through
the MA-Façade. To support a particular management standard, an additional specific
façade component is required for translating the information into the specific data
formats or protocols. As indicated on Fig. 7, in case of the WBEM standard this
would be a CIM Object Manager (CIMOM) configured with the WSC Monitoring
Model expressed in terms of the Common Information Model (CIM). The mapping
between the objects and indication provided by the general façade and CIM would be
accomplished by appropriate CIM provider components. The generation of WBEM-
specific components is planned. Here, we will reuse the design of our WSC
manageability infrastructure [13] to a large extend. Particularly a CIM-based WSC
information model is already available, which in future will be generated
automatically from the WSC monitoring model.

For implementing the transformation that generates the instrumentation we
employed the language xTend as part of oAW. It is a functional programming
language particularly designed for creating model-to-model transformation on basis of
corresponding metamodels. To handle metamodels defined by an XSD another oAW
tool is used. The following code snippet represents the implementation of the example
shown in Fig. 4. It defines the mapping from an invoke element of the WSC
monitoring model to the IBM monitor configuration.

create MonitorType transform(MIM::WSC_ManagementModel sourceModel,
 String projectName):

eventSource.addAll(sourceModel.wsc_managedelement.
 typeSelect(MIM::Invoke).createEventSource());

create EventSourceType createEventSource(MIM::Invoke me):
 setProperty("CEI") ->

setName("Invoke:/"+me.referencedWSCElementID) ->
me.instance.instanceId == null ? "" : event.add(

 createEvent("ENTRY")) ->
 me.instance.starttime == null ? "" : event.add(
 createEvent("ENTRY")) ->

me.instance.endtime == null ? "" : event.add(
 createEvent("EXIT")) ->
 me.instance.loopcount == null ? "" : event.add(
 createEvent("ENTRY")) ->

me.instance.elapsedtime == null ? "" : event.add(
 createEvent("ENTRY")) ->
 me.instance.elapsedtime == null ? "" : event.add(
 createEvent("EXIT"));

The whole transformation process for the instrumentation starts with calling the

function transform. Here, at first a new root element of an IBM monitor configuration
is created. Afterwards, all available managed element types are traversed. If they are
defined in the WSC monitoring model, a corresponding create function is called,
which generates the corresponding snipped of the monitoring configuration. In this
example, only managed elements of type Invoke are selected and the createEventSource
function is called. This function now creates an EventSource element for the IBM
monitor configuration and sets the name that references the functional model element.
Afterwards, the different possible properties of the regarded managed element are
checked. If a property is set in the WSC monitoring model, the required event
definitions are created. The ElapsedTime property in the sample model (see Fig. 4) for
instance requires two events: ENTRY and EXIT.

The oAW transformation is nested in an oAW workflow file. Here, different
runtime parameters can be configured, like filenames and paths to metamodels. It can
be easily integrated in other software components, like for instance eclipse plug-ins,
to achieve a productive tool support.

3 Competitive Approaches

In [6] an approach is presented that promotes an integration of Quality of Service
(QoS) concerns into a model-driven development process for component-based

applications. This particularly includes an automated generation of a CIM-based QoS
monitoring infrastructure and component instrumentation. The approach is promising
but has to be adapted to the specifics of WSC, particularly regarding the monitoring
model and the instrumentation.

[18] addresses the model-driven specification of SLAs as an activity that is
independent from the functional design. This approach includes the definition of SLA
parameters along with the required management metrics/indicators and the rules for
calculating them. It is assumed that there already is a management infrastructure
delivering the required (elementary) metrics. The instrumentation issue is not further
addressed. Thus, our approach should be considered as supplementary to this.
However, business performance monitoring requirements are not regarded at all.

In a very similar way, [19] introduces an approach to the model-driven
specification of business performance management issues and the automated
transformation to executable models is presented. The approach is part of a model-
driven business transformation (MDBT) toolkit that supports the specification of
monitoring requirements and the automated generation of platform-specific monitored
solutions. An overview to this very competitive approach is given in [4], where the
MDBT is applied to service delivery management (SDM). In contrast to our solution,
the necessary WSC instrumentation including the available WSC-specific
measurements is not considered. Furthermore, the ability to integrate into arbitrary
existing development and management environments is not in focus.

4 Current Status and Next Steps

In this paper we presented an approach to the integrated design and implementation of
monitored WSC. The WSC monitoring metamodel thereby allows creating a
management view for an arbitrary functional WSC metamodel on a platform-
independent level of abstraction, while still providing explicit associations to the
respective functional elements. In this way, coherency of the overall solution may be
checked on basis of the design models. As the metamodel is domain-specific for a
WSC management, the complexity of modeling the required management information
is reduced. The same holds for the provided transformation that automatically
generates the monitored WSC. It reduces the complexity significantly and coherency
between the design models and the implementation is always ensured.

Regarding the next steps, we will address the specification of indicators, which so
far is not executable yet. We rather use the Object Constraint Language (OCL) for a
declarative definition. Thus, we are working on an extension of the metamodel that
not only allows an executable specification of indicators but also the definition of
reusable templates. Based on this extension, we will provide a corresponding
transformation to a management infrastructure. Finally, we are working on case
studies that demonstrate the application of our approach by means of concrete
scenarios – one from the field of business performance management and one
concerned with SLA-driven service management. In this context, we also target the
development of a more comfortable graphical editor based on the Graphical Modeling
Framework (GMF).

References

1. Arsanjani, A., Liang-Jie, Z., Ellis, M., Allam, A., Channabasavaiah, K.: S3: A Service-
Oriented Reference Architecture. IT Professional 9 (2007) 10-17

2. Papazoglou, M.P., van den Heuvel, W.J.: Service-Oriented Design and Development
Methodology. Int. J. of Web Engineering and Technology (IJWET) (2006)

3. Esfandiari, B., Tosic, V.: Towards a Web service composition management framework.
IEEE International Conference on Web Services (ICWS 2005) (2005) 426

4. Kumaran, S., Bishop, P., Chao, T., Dhoolia, P., Jain, P., Jaluka, R., Ludwig, H., Moyer, A.,
Nigam, A.: Using a model-driven transformational approach and service-oriented
architecture for service delivery management. IBM Systems Journal 46 (2007) 514

5. Momm, C., Malec, R., Abeck, S.: Towards a Model-driven Development of Monitored
Processes. 8. Internationale Tagung Wirtschaftsinformatik (WI2007), Karlsruhe, Germany
(2007)

6. Chan, K., Poernomo, I.: QoS-aware model driven architecture through the UML and CIM.
Information Systems Frontiers 9 (2007) 209-224

7. McGregor, C., Schiefer, J.: A Web-Service based framework for analyzing and measuring
business performance. Information Systems and E-Business Management 2 (2004) 89-110

8. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service Level
Agreements for Web Services. Journal of Network and Systems Management 11 (2003) 57-
81

9. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology,
Engineering, Management. John Wiley & Sons (2006)

10. Johnson, S.K., Brown, A.W.: A Model-Driven Development Approach to Creating Service-
Oriented Solutions. Int. Conference on Service-Oriented Computing (ICSOC 06) (2006)
624–636

11. Roser, S., Bauer, B., Muller, J.P.: Model-and Architecture-Driven Development in the
Context of Cross-Enterprise Business Process Engineering. IEEE International Conference
on Services Computing (SCC'06) (2006) 119-126

12. Melchert, F., Winter, R., Klesse, M.: Aligning Process Automation and Business
Intelligence to Support Corporate Performance Management. Tenth Americas Conference
on Information Systems, New York (2004) 4053-4063

13. Momm, C., Mayerl, C., Rathfelder, C., Abeck, S.: A Manageability Infrastructure for the
Monitoring of Web Service Compositions. 14th HP-SUA Workshop, Munich, Germany
(2007)

14. Farrell, J.A., Kreger, H.: Web services management approaches. IBM Systems Journal 41
(2002) 212-227

15. Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.: Automated SLA
Monitoring for Web Services. 13th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management (DSOM 2002), Vol. 2506. Springer-Verlag,
Montreal, Canada (2002) 28-41

16. Emig, C., Krutz, K., Link, S., Momm, C., Abeck, S.: Model-Driven Development of SOA
Services. Universität Karlsruhe (TH), Karlsruhe (2007)

17. Moore, B., Bader, M., Liu, J., Mincov, R., Patil, V.: WebSphere Business Integration
Server Foundation: Using the programming API and the Common Event Infrastructure.
IBM Redbook. IBM (2004)

18. Debusmann, M., Kroger, R., Geihs, K.: Unifying service level management using an MDA-
based approach. IEEE/IFIP Symposium on Network Operations and Management (NOMS
2004), Vol. 1 (2004) 801-814 Vol.801

19. Chowdhary, P., Bhaskaran, K., Caswell, N.S., Chang, H., Chao, T., Chen, S.K., Dikun, M.,
Lei, H., Jeng, J.J., Kapoor, S.: Model Driven Development for Business Performance
Management. IBM Systems Journal 45 (2006) 587

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

