
Towards a Manageability Infrastructure for a
Management of Process-Based Service Compositions

Christof Momm, Christoph Rathfelder, Sebastian Abeck
Cooperation & Management, Institute of Telematics

Universität Karlsruhe (TH)
76128 Karlsruhe, Germany

{momm | crathfel | abeck}@cm-tm.uka.de

Abstract— The management of process-oriented service
composition within a dynamic environment, where the employed
core services are offered on service marketplaces and
dynamically included into the composition on basis of Service
Level Agreements (SLA), demands for a service management
application that takes into account the specifics of process-
oriented compositions and supports their automated
provisioning. As a first step towards such an application, in this
paper we introduce the conceptual design for an architecture and
implementation of an interoperable and flexible manageability
infrastructure offering comprehensive monitoring and control
functionality for the management of service compositions. To
achieve this, our approach is based on well-understood
methodologies and standards from the area of application and
web service management.

Keywords-SOA; Serivce Management; Serivce Compositions;
Manageabilty; Instrumentation;WBEM; CIM

I. INTRODUCTION
Today, companies demand for an IT support that is tightly

aligned with their business processes and highly adaptive in
case of changes. These requirements can be met by employing
a service-oriented architecture (SOA) [1, 23]. Thereby, the
basic functionality required for accomplishing the business
processes is offered in terms of core (web) services. These web
services are operated by a service provider (SP) and the terms
of use are contractually fixed by means of a Service Level
Agreements (SLAs). The core services are dynamically
assembled to service compositions implementing fully
automated and reusable parts of business processes [32].

The service compositions are operated by a separate
provider (composition service provider, CSP) and the
customer in turn negotiates the quality level implied by the
corresponding business process on basis of SLAs. As proposed
by [5] in future the core services along with the ressources
required for their execution as well as the service compositions
are offered on service marketplaces on basis of service offers.
Thereby, most approaches assume that services will be
contracted and bound on short notice, down to single service
invocations that are traded [22, 24]. Within this scenario the
composition service provider will face numerous challenges
while pursuing his primary service management activities.

Business-Process

Composite Service

CompositionComposition

Customer

Composition
Service
Provider

Core Service
Provider

Service Marketplace

Instrum
entation

M
anageability
Interface

Manageability
Infrastructure

(Composite)
Service Management

Application

Integration

Service MarketplaceService Marketplace

SLASLA

SLASLA

Service OfferService Offer

Core Service
(Core) Service
Management
Application

Figure 1. Initial Scenario

A. Service Composition Description & Offering:
The service description comprises a description of a

service’s functional and non-functional capabilities. The
specified service quality may be either expressed as negotiable
parameters [25] or fixed service levels [32]. The quality of
service compositions generally relies on the usage profile, the
quality levels offered by the employed core services and the
performance of the execution environment. Hence, feasible
service offers, which have to be continuously generated,
depend on these influencing factors. A major challenge for the
CSP will be the determination of service offers based on these
variables [9, 31].

B. Core Service Selection:
Within the service selection the core services best suitable

for providing the service composition request with respect to
the offered quality are chosen. In this context, the CSP faces
the challenge of continuously optimizing this selection, for
instance concerning the costs, while meeting the constraints
implied by the conducted SLA [15][38]. The assumption that
for each service request a new selection is performed causes
further difficulties.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197544456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

C. Core Service Negotiation:
Within the sketched scenario the process of negotiating the

qualitative service levels is performed by employing an
adequate market mechanism as for instance presented in [22].
The challenge for the CSP will be the integration of these
mechanisms into the IT supporting his service management
processes. In alternative approach would be to enable a
bilateral or multilteral negotiation of the service levels [8, 24].

D. Service Level Monitoring and Control for Service
Compositions:
This service management activity on the one hand is

concerned with the monitoring of the quality effectively
achieved while performing the offered service compositions,
the generation of SLA reports for the customer on basis of this
monitoring information and the detailed analysis of detected
SLA violations [28]. On the other hand, control mechanisms
for a timely intervention in case of (predicted) SLA violations
are incorporated. In the first case, one general challenge will be
to extend the monitoring to the level of single service instances
to enable an SLA reporting for the single service invocations
sold on the service marketplace. Secondly, if an SLA violation
has been detected, the CSP has to include SLA reports of the
involved SPs in his analysis to determine, whether he or
another SP has to take the responsibility. Thereby, single core
service requests have to be correlated with single service
composition requests. This requires for a cross-organizational
information exchange [30]. Concerning the control
mechanisms, the fact that single, stateless service requests are
traded leads to the situation that it is not possible for the CSP to
intervene during the execution. Hence, adequate mechanisms
are required for predicting SLA violations [9]. In this way, an
accurately timed reconfiguration is rendered possible.

To tackle these numerous challenges the CSP strongly
relies on a on a management application for composite services
which is tailored to meet the new requirements implied by this
specific scenario [30]. According to the presented challenges
we identified the following management functions such a
management application should support:

(1) Service composition design (Specification of
functional and non-functional capabilities along with
internal process flow)

(2) Offer generation for service composition

(3) Determination of requirements concerning the core
services and optimized selection at runtime

(4) Runtime generation and submission of quotes for
required core services as well as conclusion of
contracts

(5) (Runtime) reconfiguration of the service composition

(6) Continuous SLA compliance monitoring and
generation of SLA reports for provided service
requests

(7) SLA violation analysis

(8) SLA violation forecast

To facilitate these management functions an adequate
manageability interface (MI) for the service compositions
offering monitoring information and control functions is
required in the first place.

In this paper we focus on the platform-independent
conceptual design of a manageability infrastructure (MIS)
required for providing this interface. As pointed, the design of
the MIS architecture has to take into account that management
information of the included core services has to be in integrated
on instance level and an adquate instrumentation of the
service compositions is avaliable.

In the following section the requirements for an MI that
supports the specified management functions are pointed out.
On basis of these requirements in chapter III we present a
platform-independent management information model, which
allows for expanding the management to the internal, process-
based composition logic down to the level of single instances.
In chapter IV we introduce a platform-independent
architectural design of the MIS. In the follwoing chapters V
and VI its main components are described in detail. In
particular, we present a technical concept for integrating the
core service management and an interoperal approach for
instrumenting the service compositions. Having specified the
platform-independent design of the MIS, in chapter VII we
show how this design can be mapped to existing management
platforms and standards in order to ease the integration with the
core services management and to reduce the implementation
effort. For this purpose, we propose to employ the Web-Based
Enterprise Management (WBEM) standards [34]. Finally, the
major related work in the context of a SLA-based web serivce
managent is discussed. Thereby, the focus is set on the MIS
design within these approaches.

For our approach the following limitations and assumptions
exist. We assume that the service composition implement fully
automatable parts of business processes without human
interactions. The negotiation support (3) and the service
composition design (1) are excluded as we do not consider
these aspects a part of the MIS. Concerning the offered quality
or SLA parameters we focus on the response time in the first
instance. Or to put it in a more general way, we focus on a
SLA-aware performance management.

II. REQUIREMENTS FOR THE MANAGEABILITY INTERFACE
AND THE MANAGEABILITY INFRASTRUCTURE

To allow for a continuous SLA compliance monitoring and
the generation of SLA Reports (6) the MI has to provide the
CSP with information about all available service compositions
and for each executed instance the actual response time has to
be made available.

As already pointed up, for the analysis of detected SLA
violations (7) management information of the employed core
services has to be integrated. In particular, the MIS has to
gather information about the response time of each core service
instance executed within the corresponding service
composition instance. As the SP by default does not know in
which particular service composition his core service was used
and least of all which particular instance of the service
composition called his service, these kind of meta information
have to be provided within scope of each of the CSP’s requests.

This calls for an extension of the functional composition
model. Concretely, each activity which handles the service
invocation (i.e. service task) has to be extended in a way, that
this additional meta information can be processed. The SP uses
this information to refer to the requesting service composition
the SLA reports he delivers to the CSP. In doing so, the
response time of each executed service instance can also be
provided by MI. In general, the CSP and the involved SPs have
to agree on a common protocol exactly specifying the required
message exchange.

As SLA violations on instance level may only be monitored
ex post, quality forecast mechanisms (8) are highly desirable.
On basis of these forecasts the CSP can timely initiate
appropriate counter measures, for instance reconfiguring the
employed core services (5). To enable a forecast, historical and
instantaneous information about the service composition’s
usage profile is required in the first place. On basis of
information the expected future response time can be
calculated by employing an adequate forecast model (e.g.
regression), for instance as introduced by [7, 29]. If an SLA
violation becomes probable, the CSP should be able to
determine, whether it is more efficient to scale his execution
environment, especially the employed BPEL engine, or to
include more efficient core services. Thereto detailed
monitoring information about the service compositions’
internal process logic is needed. At minimum, the response
time of all service activity instances should be captured. In this
way, the CSP can determine the time needed for messaging and
for the processing. If he factors the response time of the
involved core services provided by the SP into his management
information base he is enabled to decide on the adequate
measures in case of a predicted SLA violation. To sharpen up
the forecast, one may further include information about the
internal process flow, like for instance which path has been
taken in case of conditional branches in order to determine how
this decision influences the performance. The previously
sketched forecast mechanism can also be used by the CSD for
the generation of offers (2) as well as the determination of the
requirements for the core services (3), as in these cases the
decision is also based on an estimation of the future quality
subject to the influencing factors. Hence, no additional
information is required from the MI.

Once a reconfiguration of the service composition becomes
necessary, either to prepare a service instance in order to fulfill
a conducted agreement or to prevent a predicted SLA violation,
the MI has to provide the appropriate control functionality.
Hence, the MI has to allow for setting the included core
services, especially their endpoint reference.

In the following chapter we present a management
information model which meets these requirements.

III. INFORMATION MODEL
The information model forms the ultimately heart of each

management architecture and specifies a description
framework for the managed resources. It represents a
management view of the system, therefore only the parameters
relevant to management have to be modeled [16]. Due to the
fact that SLAs are concluded for each service call, the
information model has to differ between global information

about a composition and information that is specific to each
invocation of the composition. Thus, our information model
distinguishes between two different types of managed objects
(MO): MOs holding general data like configuration settings
and the MOs representing instances. As pointed out in previous
chapter it is not adequate to treat the composition as a whole.
So it is necessary to consider that a composition consists of
different elements, e.g. service tasks or gateways. Additionally
a service task uses a service which is provided by the SP.
Therefore the information model includes elements which
describe the composition as a whole, the different composition
elements and the used services. And as mentioned above for
each MO a corresponding instance MO has to be provided.

Figure 2. Information Model

According to Figure 2 all elements within the information
model are derived from ManagedObject, so every element
includes an identifier. A Composition comprises the inherited
identifier, a name and a description. Additionally it contains a
list holding the elements (CompositionElements) it consists of
and a list referring to the currently active and completed
instances (CompositionInstances). Thereby, a
CompositionElement is an abstract class which comprises the
data applying to all different elements of a composition. In
addition to the attributes identifier, name and description it has
a reference to the according composition and corresponding
instances. ServiceTask and Gateway are examples of
specialized CompositionElements with additional attributes
relevant for management of these special types of composition
elements. The Decision Rule is an additional part of a Gateway
and the ServiceTask is extended by a reference to the service it
uses (UsedService) whereas a Service can be referred by one or
more ServiceTasks. Hence, to change the service employed
within a ServiceTask only the reference has to be changed. Like
all previous elements the service includes an identifier, a name

and a description. Additionally it holds information about the
provider (in this scenario a SP), a reference to the endpoint,
where the service can be found, and a list off all existing
instances of this service.

For each call of the composition a new
CompositionInstance is generated. It has a unique identifier and
a reference to the composition it relates to
(AccordingComposition). Furthermore, a CompositionInstance
can take different states: active, stopped, failed, and completed.
Thus it is possible to query all instances of a composition
which are completed or lead to a failure. To ascertain the actual
values for the SLA parameter response time within scope of the
SLA compliance monitoring it is necessary to measure the
execution time of a composition. But instead of saving the
execution time within the information model, the start time and
end time are made available for each instance. Hence, it is
possible to query all instances which have been started in a
specified timeslot. In this way, the usage profile of a service
composition, which is for instance required by the forecast
mechanisms, can be determined as well. Analogue to the
CompositionInstance the CompositionElementInstance holds
an identifier, a status, a start time and end time. Like the
CompositionElement it is an abstract class with all the
attributes needed by different elements of a composition.
Whereas also a reference to the according composition instance
and a reference to the CompositionElement belong to these
attributes. The GatewayInstance represents an example for a
specific CompositionElementInstance which is extended by the
result of the decision. Accordingly, for the
CompositionElement of type ServiceTask a respective
ServiceTaskInstance is introduced. In addition to the inherited
attributes, this concept includes a reference to the
ServiceInstance employed within its execution. Like all other
instance elements the ServiceInstance has the attributes
Identifier, Status, StartTime and EndTime. But except the
identifier these attributes can not be measured within the
composition itself. These values have to be provided by the
according SP. Hence, an integration of the service management
is needed. Due to the references between all the classes within
the information model it is then possible to request each service
instance belonging to a service composition or each
CompositionInstance that is associated with a service call.

IV. ARCHITECTURE OF THE MANAGEABILITY
INFRASTRUCTURE

The information needed for an effective composition
management is defined within the information model. But as
only the data and their semantics and not the accessibility are
specified within the information model, furthermore a
manageability interface is needed which can be used by the
manager and its management application to interact with the
managed objects of manageable IT system [14, 18]. The MI is
then realized by the MIS, which is responsible for extracting as
well as processing the management relevant data according to
the information model and making them accessible through the
MI.

Thereby, the reading access to the data defined in the
information model by management applications are handled
through getter-Operation. These operations use the
functionality made available by the MIS to acquire the data and

return it to the management application. Due to the fact that
only the services used by service tasks can be changed without
creating and deploying a new composition, the reference to the
used service of a service task is the sole parameter which is
also writeable. A writing access to this parameter is forwarded
to the responsible setter-operation which uses the procedure
described in chapter VI.B for changing the service called by the
service task.

BPEL-Engine

Composition

Composition
Instance
Identifier

(Core) Service
Management
Application

Manageability Infrastructure

Prozess-
instruierungComposition

Instrumentation

composition
providerComposition

Agent

Service
Integration

Agent

M
anagability
Interface

MIB

MIB

(Composite)
Service Management

Application

Figure 3. MIS-Architecture Overview

The MIS architecture comprises two different types of
management agents, the Composition Agents and the Service
Integration Agent. Every agent has his own management
information base (MIB) reflecting the part of the information
model the agent is responsible for. Each service composition is
associated with one dedicated Composition Agent that accounts
for the composition and all its instances. To provide the
management information defined by the previously introduced
information model each composition has to be extended by an
adequate composition instrumentation [20]. This
instrumentation offers the required management information to
the agent and hence must be able to measure the duration of the
whole composition and the single composition elements, for
example service tasks and gateways. The information about
service calls can not be provided by the composition
instrumentation, this information has to be provided by the SP
itself. To ascertain the response time of a service instance he
employs a core service management application, which is not
being further regarded within this paper. To associate the
duration of service instance with the service task instances,
each service call has to be extended by an identifier of the
composition instance. The SP includes this identifier into is
reports. In this way, the Service Integration Agent can integrate
the measurement data into the information model and provide
them to the manageability interface.

In the following chapters the introduced components are
explained in detail, beginning with the integration of the core
service management.

V. INTEGRATION OF THE CORE SERVICE MANAGEMENT
As pointed up before, a tight integration of the core service

and the composite service management is required to enable a
comprehensive SLA management for the service compositions.
Hence, in this chapter we’ll propose a communication model
for the interaction between the SP and the CSP.

Basically, the SP has to provide the CSP with detailed SLA
reports comprising information about the sold services (or
instances) with respect to the quality (in our case the response
time) he agreed on. As the CSP wants to correlate this
information with management information about the service
composition instances he offered, the SLA reports for the core
services have to contain a reference to the corresponding
service composition instances. However, the SP will allocate
the service instance not until the service is actually requested
[9]. Hence, the instance identifier has to be communicated with
the service call. It may not be included in the corresponding
SLA as it is not available at that time. For the desired solution
to this problem we identified the following requirements:

• The existing core service descriptions (i.e. WSDL [37])
and the internal implementation of the core services
should be retained unchanged.

• The solution should be platform-independent and
interoperable, meaning that it abstracts from specifics
engine used for executing the compositions.

Hence, we arrived at the conclusion, that the necessary
meta information (in our case the identifier) have to be
included into the SOAP header [35] of each core service
request performed by the service composition. By attaching an
appropriate message interceptor into the execution environment
for the core services, the SP can process this information
without changing the existing core service. Unfortunately, the
integration of information into the SOAP header might cause
extravagant expenses for the CSP depending on which engine
he employs. BPEL for instance does currently not support the
assignment of internal variable values into the header of a
message. So in case a pure BPEL engine like for instance the
Oracle BPEL Process Manager is used a workaround would
become necessary. In case of other composition engines (e.g.
Microsoft BizTalk 2006 this can be handled by simply
customizing the outgoing message pipe. But as we strive for an
interoperable solution and BPEL is widely accepted as a
standard for composing web services, we decided on an
approach that works with every engine supporting BPEL.

BPEL-Engine

Composition

Service Request (R’)

<senv:Envelope […]>
<senv:Body>

<m:someOperation […]>
<mi:compositionInstanceIdentifier […]>

2321
</mi:compositionInstanceIdentifier>
<payloadPart […]>2147483</payloadPart>

</m:someOperation>
</senv:Body>

</senv:Envelope>

Core Service (CS)

Core Service Proxy (CS’) Service Request (R)

<senv:Envelope […]>
<senv:Header>

<mi:ManagementMetaInfo>
<mi:compositionInstanceIdentifier […]>

2321
</mi:compositionInstanceIdentifier>

</mi:ManagementMetaInfo>
</senv:Header>
<senv:Body>

[…]
</senv:Body>

</senv:Envelope>

Figure 4. Integration of the Composition Instance Identifier

Thus, for each core service CS employed in the service
composition we propose to generate a proxy service CS’ that is
deployed within the CSP’s execution environment and invoked
instead of CS. Thereby, each request message R is transformed

to R’ by adding an additional part holding the composition
instance identifier. In doing so, the identifier can be set within
the BPEL process definition by using standard BPEL activity
“assign”. Within the proxy CS’ the identifier is extracted from
R’ and placed in the SOAP header of the actual request
message R. The required transformation of both the core
service’s WSDL and the SOAP messages can be done by
employing XSLT [37].

As already mentioned, the SP can extract the identifier by
employing a message interceptor. The interceptor then has to
transfer the meta information to the local management agent
responsible for providing the core service response times. The
management agent includes the information into his local MIB.
Thereto an extension of the used information model is
necessary. This aspect is not being further regarded within this
paper.

Furthermore, the SLA reports provided to the CSP have to
be extended by the composition instance identifier. These SLA
reports are communicated to the Service Integration Agent,
who transforms this management information to the presented
information model and afterwards integrates them in its MIB.
For the communication model between the SP’s management
application and the integration agent we decided on a trap
directed polling mechanism. In this way, the communication
overhead is minimized and timely processing of the data can be
ensured. In particular, if an SLA violation is detected or
anticipated on level of the core services the CSP should to be
informed immediately, whereas the regular reports can
periodically be delivered according to a predefined time
interval. To implement this mechanism the SP’s management
application has to be enabled for sending notification events to
the integration agent. For this purpose, the SP requires the
specification of the agent’s service endpoint along with the
callback operation used for the notification. The agent on the
other hand has to be provided with a specification of the
service endpoint and the operation providing the full reports.
The exchange of these parameters and the management
information requires a mutual agreement between the SP and
the CSP. Therefore it should be included in the SLA
negotiation process and the parameters as well as the
specification of the information revealed by the SP should be
documented in the contracted SLAs.

VI. INSTRUMENTATION OF THE SERVICE COMPOSITIONS
As mentioned before, for the compositions an adequate

instrumentation has to be set up. This instrumentation on the
one hand provides the responsible Composition Agent with the
management information needed to update the information
model used for the monitoring. On the other hand, it has to
facilitate a controlling intervention of the composition
management, in particular a reconfiguration of the employed
core services.

A. Monitoring Instrumentation
In chapter 2 we argued, that the monitoring of the service

composition has to be extended to the internal process-oriented
composition logic. The presented information model already
takes this requirement into account. Now, a suitable approach
for gathering the necessary runtime information (i.e.

instrumentation) needed. Thereby, we also strive for a solution
that is applicable with all conceivable composition engines
supporting BPEL. To realize the instrumentation, a very
common approach in literature and practice is to query the
compositions engines’ audit trail for the required information
[27, 19]. The audit trail usually holds the complete execution
data of a composition instance. This logging mechanism along
with an API required for accessing the information is provided
by all composition engines. However, until now neither a
standardized audit data specification nor a standardized
interface is supported by the vendors. One has to mention, that
such a standard has been proposed by the Workflow
Management Coalition (WfMC) in the form of the Interface 5
as part of the Workflow Reference Model [17]. But this
standard could not be established.

So we principally argue against using the engines audit trail
interface and propose to rather extend the composition models
by adequate sensors, as also promoted by [3, 4, 26]. We
thereby assume that for the sake of flexibility the compositions
are defined through composition models which are then being
mapped to accordant BPEL process definitions. As the BPMN
has been designed to be the upcoming standard for this
purpose, and its application has been proved in various
publications, for instance [13], we decided on building our
solution on this specification. Figure 5 illustrates the approach.

Po
ol

 X et1
<<Service Task>>

et1
<<Service Task>>

et2
<<ST>>

et2
<<ST>>

<CompositionProbe
ID=“MyComposition”
MO=“CompositionInstance” >

<CompositionAgent […]/>
</ CompositionProbe >

<CompositionProbe
ID=“MyComposition”
MO=“CompositionInstance” >

<CompositionAgent […]/>
</ CompositionProbe >

<CompositionProbe ID=“et1”
MO=“ServiceTaskInstance”>

<CompositionAgent […]/>
</ CompositionProbe >

<CompositionProbe ID=“et1”
MO=“ServiceTaskInstance”>

<CompositionAgent […]/>
</ CompositionProbe >

Po
ol

 X Et2
<<ST>>

Et2
<<ST>>

CompStart
<<MT>>

CompStart
<<MT>>

CompEnd
<<MT>>

CompEnd
<<MT>>

et1
<<ST>>

et1
<<ST>>

STStart
<<MT>>
STStart
<<MT>>

STEnd
<<MT>>
STEnd

<<MT>>

ServiceTaskInstanceCompositionInstance CompositionInstance

Composition
Agent MIB

Prozess-
instruierungComposition
Probe

Figure 5. Generation of an Instrumented Composition Model based on
BPMN

In order to obtain the required monitoring information from
the service composition we propose a transformation of the
BPMN-based composition model. The upper pool depicts a
standard BPMN composition model containing two service
tasks that are executed in sequence. As we are only interested
in monitoring composition and service task instances, in case
of more complex models all other activities would just be
ignored. To enable the monitoring the Composition Agent
employs suitable Composition Probes that provide the
monitoring information for a dedicated ManagedObject (MO),
in our case CompositionInstance and ServiceTaskInstance.
Thereby, the probe basically accounts for a life-cycle
monitoring of its associated MO and the propagation of state
changes to the Composition Agent. A Composition Probe
gathers the required monitoring information about the MO on
basis of monitoring messages delivered by Management Tasks
which are placed in the composition model. A monitoring
message thereby contains a monitoring data object, which only
represents the BPMN version of the MO. A Management Task
on the other hand is a special kind of Service Task. But in

contrast to those it only provides a one-way communication to
the associated Composition Agent. The Management Tasks
required for a Composition Probe have to be placed at
appropriate positions in the existing composition model. These
positions depend on the concrete type of the MO. The process
of inserting the Management Tasks works as follows: In case of
the Composition Probe responsible for the whole composition
instance two Management Tasks are added to the composition
model, namely one right after the StartEvent and one just
before the EndEvent. The first Management Task provides
information about the determined process instance identifier
and the starting time whereas the second one only adds the end
time. The instrumentation of a service task instance works
similar.

It becomes clear, that for each MO a fixed procedure for
adding the necessary instrumentation can be identified. Hence,
the automation of these procedures can be realized by means of
adequate model transformations, for instance defined through
the QVT (i.e. queries, views and transformations) language. In
this way, the instrumentation can be performed by simply
annotating the existing BPMN model. Thereby, the
Composition Probe along with the associated MO and the
responsible Composition Agent have to be specified. However,
since an Management Task requires as much processing time
as any other Service Task and the calls are blocking the
execution of the essential tasks, the presented solution might
cause problems regarding the overall performance [27]. To
overcome this problem we propose to place the Composition
Agent on the same server and reconfigure its binding from
SOAP to a faster binding (e.g. Java binding).

B. Control Instrumentation
Concerning the control functionality we pointed up that a

mechanism for reconfiguring the employed core services at
runtime is required. Thereby, it should be possible to change
the core service assignment for active as well as inactive
compositions or composition instances. To be consistent with
the previously sketched approaches this mechanism should also
rely on an interoperable solution. One way for achieving this
would be the employment of dynamic endpoint references as
proposed by BPEL standard [2]. In this case a distinction
between active and inactive compositions has to be made.

Po
ol

 X

st2
<<ST>>

st2
<<ST>>

getServiceAssignment
<<Service Task>>

getServiceAssignment
<<Service Task>>

st1
<<ST>>

st1
<<ST>>

setServiceAssignment
<<Receive Task>>

setServiceAssignment
<<Receive Task>>

Figure 6. Dynamic Service Assignment by Extending BPEL

The service assignment (i.e. the service endpoint
references) for a composition can be stored locally (for instance
in a flat file) and loaded into BPEL variables at the beginning
of each composition. As BPEL only supports the invocation of
web services, an adequate Wrapper-Service would have to be
designed. To change the assignment for composition instances
that are still active, an additional operation that allows for
setting the endpoints is required. This additional operation
could be implemented by inserting an additional looped
Receive activity located in a branch of a newly created parallel

flow into the composition model. The original composition
logic is moved to the second branch of this flow. Both the
additional Receive activity along with the “management flow”
as well as the extra service task at the beginning used for
loading the configuration could be generated automatically.
However, we figured out that this BPEL-based approach leads
to several drawbacks:

• The performance further suffers from the additional
management-related tasks.

• Further synchronization and compensation logic is
required in order to prevent synchronization problems
of the two parallel branches.

• A further wrapper service has to be generated.

An alternative solution to this problem is to extend the
already presented core service proxy by the functionality for
changing the service assignment. Thereby, the service
assignment is stored locally and the core service proxy
provides an addition operation to the composition agent for
reconfiguring the assignment. Then for each call the core
service proxy receives from the service composition the
specified endpoint is set dynamically.

BPEL-Engine

Composition

Core Service (CS)

Core Service Proxy (CS’) Composition
Agent MIB

Service
Assignment

Service
Assignment

Figure 7. Generation of an Instrumented Composition Model based on
BPMN

As this extension of the core service proxy could also be
generated automatically and a modification of the assignment
directly affects all active composition instances as well as the
inactive compositions we prefer this approach.

VII. IMPLEMENTATION OF THE MANAGEABILITY
INFRASTRUCTURE

In this chapter we outline an implementation of the
introduced manageability architecture on basis of widely
accepted management standards and technologies. To ensure a
seamless integration of our solution into existing management
environments, we decided to employ the set of management
and internet technologies proposed by the Web-Based
Enterprise Management (WBEM) standard for enterprise
computing environments provided the Distributed Management
Task Force (DMTF). Thereby, the objective is to enable the
management of systems and applications regardless of their
instrumentation type through employing a common standard
[34]. This common standard is already widely used for the
management of distributed applications and has recently been
extended by the WS-Management [11] standard, which enables
the management of and through web services. Thus, an MI
based on these standards can be seamlessly integrated into
SOAs. Furthermore, an implementation of these standards is
included in Microsoft Windows since version 2000 in the form

of the Microsoft Windows Management Instrumentation
(WMI). But any other product supporting the WBEM standards
could also be employed. Therefore, we consider it as the most
appropriate foundation for a service composition management.

The core element of WBEM is the Common Information
Model (CIM) [6, 10] which is used for modeling the
management perspective on a system or application. CIM
thereby represents an object oriented meta model based on
UML and distinguishes between a core and a common model
for describing the managed objects. By means of inheritance
the standard set of elements can also be extended by
specialized concepts. To yield the various benefits from this
existing management solution based on WBEM, the
information model has to be available in terms of the CIM. So
the information model for service composition introduced in
chapter III has to be transformed into the CIM. One could ask
now why we didn’t use CIM in the first place. The problem
thereby is that CIM very accurately specifies the semantics of
the modeling elements, and until now it is particularly designed
for the management of (distributed) applications and systems.
The specifics of service compositions have not been explicitly
considered yet. Nevertheless, we figured out that the CIM
metrics model [12] as part of the common model offers suitable
concepts for modeling the management information required
for service compositions. At least, all time- or transaction-
based measurements are very well supported. In other cases it
might not be applicable without custom extensions. In the
following we will show, how our information model can be
mapped to the CIM metrics model.

The CIM metrics model introduces the concept of a
UnitofWork which pretty much corresponds to an activity or
task within the composition model. From a management
perspective, the processing time for a unit of work is of interest
(StartTime, ElapsedTime, Status). Hence, the CIM metrics
model already provides concepts for measuring these indicators
within running instances of the unit on basis of predefined
metrics. Therefore, to specify a unit of work a distinction is
made between its definition and the running instances. In
addition, it is possible to divide a UnitofWork into further
subunits. Note that the concepts for the measurement of the
duration have to be already seen as part of the functional
management model [16]. We will use these concepts for
instance to provide the overall composition duration along with
the durations of each service task to the manager. These
measurements may then be included in the SLA reports or
employed for an SLA violation analysis/forecast.

Figure 8. CIM-Model for the Management of Service Compositions

Fig. 8 shows the information model for service
compositions adapted to CIM. All classes corresponding to
instances of composition elements inherit from
CIM_UnitOfWork, whereas the definitional classes referring to
the whole composition inherit from
CIM_UnitOfWorkDefinition. To model the references between
the definitional classes and their running instances, e.g.
composition and composition instance, the relation
CIM_StartUnitOfWork is used. Due to the fact that associations
are also classes within CIM it is possible to define new
associations by using inheritance. The hierarchical references
between a composition and its sub elements, like service tasks
and the employed services, are modelled through specialized
associations derived from CIM_SubUoWDef and
CIM_SubUoW. The attributes defined for the concepts in
chapter III already match the attributes specified within the
CIM metrics model and therefore do not have to be changed.

Since WBEM also proposes a management architecture, the
architecture described in chapter IV has also be adapted in
order to be compliant with WBEM standards. The core
component of the WBEM architecture represents the CIM
Object Manager (CIMOM) along with the corresponding CIM
repository. The CIMOM component is responsible for the
implementation of the protocol-independent semantics of CIM
operations. The data of the managed objects are thereby
delivered and manipulated through a dedicated provider
component. If an out-of-the-box implementation of the WBEM
Architecture is employed, one only has to take care of the
design and implementation of the provider components along
with the required instrumentation for retrieving management
information from the managed objects or manipulating them.

BPEL-Engine

Composition

Composition
Instance
Identifier

(Core) Service
Management
Application

Manageability Infrastructure

Prozess-
instruierungComposition

Instrumentation

composition
providerComposition

Provider

Service
Integration
Provider

(Composite)
Service Management

Application

CIMOM

M
anagability
Interface

Repository

CIM over
WS-Management

Figure 9. WBEM-conforming Management Architecture

Fig. 9 shows the adapted architecture. It consists of a
central CIMOM and a repository containing the CIM
definitions and objects for the management of service
compositions. Furthermore, two types of provider components
are needed, one for the compositions and another one for the
service integration. Every composition has its own provider
which is created during development of the composition by
means of an integrated development process. If a new instance
is started it creates a new instance of the CompositionInstance
class and the corresponding sub classes. With the help of the
instrumentation it can react on queries for this composition and
answer them. The service integration provider may use CIM-
XML over WS-Management, which is still under development
at the DMTF. Thereby, the Service Integration Provider uses a
WS-Management compliant interface provided by the service
management application that is operated by the SP. If the SP’s
management is also built on a WBEM infrastructure the
integration of the data relevant for composition management is
easy. Otherwise a transformation is required. The CIMOM
realizes a standardized interface which can be used by many
different management applications, so the MIS is independent
from the employed application.

VIII. RELATED WORK

In literature, three major frameworks for an (automated)
SLA-based management of web services and web service
compositions have been presented. All of these frameworks
rely on an instrumentation of the managed resources or objects
and a manageability infrastructure, which is more or less
pronounced. In the following, we’ll discuss these approaches in
comparison to our solution. Note that these frameworks already
offer comprehensive management functionality and the
manageability infrastructure only represents a small part of it.
Nevertheless, our approach has some advantages to the
currently employed solutions and could be integrated into these
frameworks.

In [9, 21] and [24] an extensive framework for the
specification, negotiation, (dynamic) provisioning and
(compliance) monitoring of services on basis of SLAs, which
are defined through Web Service Level Agreements (WSLA)
[25] is presented. Thereby, the solution mainly focuses on the
management of core web services, in particular the web service
contracting, the (optimized) execution along with a runtime

monitoring and (dynamic) provisioning of underlying
resources. The manageability interface is provided by a
Metering Service, which gathers runtime information about the
usage profile and the relevant SLA parameters by utilizing an
instrumentation based on message interceptors (or handlers)
placed within the SOAP engine. The Metering Service thereby
transforms the information into Meter Events, which form the
information model. There structure is not further described.
Although in [9] it is mentioned that also composite web
services are supported through adding parent session identifiers
to the Meter Events, we argue that the specifics of service
compositions are not fully taken into account. In particular, a
monitoring of internal the composition logic may not be
accomplished by tracking the in- and outgoing message flow.
Furthermore, the optimized service selection for compositions
and the dynamic assignment of the employed core services,
which corresponds to the resource provisioning on the level of
core services, are not regarded yet.

[28] present a competing framework that pretty much
covers the same functionality. In contrast to the previously
introduced approach it is less elaborate concerning the support
for service negotiation but on the other hand explicitly supports
the SLA-based monitoring of composite services. The required
manageability infrastructure is founded on an object-oriented
information model based on the ITU-T model, which covers
both the management information concerning the core services
as well as a process-oriented service composition. Hence, a
monitoring of the internal composition logic is rendered
possible. However, especially the presented composition
instrumentation within the sketched manageability
infrastructure represents a very proprietary approach as it
builds on execution logs generated by the Hewlett-Packard
(HP) Process Manager. Thus, in case another engine should be
employed the instrumentation adapted as well. Furthermore,
although the manageability interface is already exposed as a
web service it does yet not rely on a standard like WS-
Management in conjunction with CIM in XML. This
complicates the integration with other management
applications, for instance of the core services. Finally, the MIS
does not cover any control functionality for intervening in case
of a foreseen SLA violation.

The third notable approach for a SLA-oriented web service
management is presented in [30, 31]. Thereby, in [32] at first
specification of a language for defining web service offerings –
the Web Service Offerings Language (WSOL) – is introduced.
This language complements the WSDL that is used for
describing the functional aspects of services and additionally
allows for the formal specification of important management-
information classes, functional and QoS-related constraints and
management statements (e.g. price, responsibility). In contrast
to WSLAs [25] service offerings are not negotiable but rather
refer to fixed variations of one service from which the
consumer can choose the one that is most appropriate for him.
Hence, this approach perfectly supports a service allocation
based market mechanisms in service marketplaces. To proof
the applicability of the WSOL a corresponding management
infrastructure is presented in [31]. This infrastructure enables
amongst others the measurement and calculation of employed
QoS metrics, the evaluation of WSOL constraints and service
accounting as well as billing operations. Like in [9, 21] the

scope of this framework is limited to core web services. The
instrumentation and manageability infrastructure also relies on
an extension of the employed SOAP engine by WSOI-specific
message interceptors or handlers. In summary, the approach to
a management infrastructure lacks a clear definition of a
manageability interface along with a management information
model and monitoring or control functionality that takes into
account the specifics of service compositions is missing. These
issues are addressed in [30], where the authors point up the
general requirements for a service composition management in
a very elaborate way. Tangible solutions to the raised research
questions are not available yet.

IX. CONCLUSION AND OUTLOOK
In this paper, the conceptual design of a manageability

infrastructure tailored to the needs of an SLA-aware
management of service compositions has been proposed. The
platform-independence and interoperability thereby represent
the core contribution of our approach. Furthermore, we showed
that the architecture can be mapped to existing, standardized
management platforms without further complications. Such an
implementation could also be employed within the discussed
existing solutions for a SLA-based service management.

The next step for us will be the full implementation of the
MIS based on WBEM and WMI and its integration into an
existing SOA developed within scope of the project
“Karlsruher Integriertes InformationsManagement” (KIM).
Hence, we have to provide some initial management functions
as well, like performance reports and availability checks. For
the future we plan to include more complex functions, like for
instance the SLA violation forecast with autonomous
adaptation strategies. All of these solutions will be evaluated
within the operated University-SOA. Concerning our current
research, we are focusing on a methodology for an automated
generation of the MIS, in particular the instrumentation.
Thereby, we decided to build our approach on the principles of
the Model-driven Architecture (MDA) as proposed by the
OMG. Therefore, we are working on the design of adequate
meta- models that allow for a seamless integration of non-
functional aspects into the development process of service
compositions. In this context, the realization of automated
transformations operating on suitable UML profiles for
describing the functional and non-functional behavior are of
special concern. In addition, our management architecture is
enhanced in order to support the monitoring of business
process related key performance indicators (KPIs). Thus, not
only service compositions that implement fully automated parts
of business processes but also compositions fully implementing
business processes (or workflows) including human
interactions are considered. To put it in a more general way, the
requirements for an integrated business process management
are incorporated into the presented approach.

REFERENCES
[1] van der Aalst, Wim M. P.; ter Hofstede, A. H. M.; Weske, M.: Business

Process Management: A Survey. In: Lecture Notes in Computer Science
Band 2678. Springer-Verlag, S. 1-12, 2003.

[2] Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein, J.; Leymann,
F.; Liu, K.; Roller, D.; Smith, D.; Thatte, S.; Trickovic, I.; Weerawarana,
S.: Business Process Execution Language for Web Services 1.1.
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf,
2003.

[3] L. Baresi, C. Ghezzi and S. Guinea. SmartMonitors for Composed
Services: In Proceedings of the 2nd International Conference on Service
Oriented Computing, 2004.

[4] L. Baresi, and S. Guinea. Towards Dynamic Monitoring of WS-BPEL
Processes: In Proceedings of the 3rd International Conference on Service
Oriented Computing, 2005.

[5] Michael Brodie, Christoph Bussler, Jos de Brujin, Thomas Fahringer,
Dieter Fensel, Martin Hepp, Holger Lausen, Dumitru Roman, Thomas
Strang, Hannes Werthner, Michal Zaremba: Semantically Enabled
Service-Oriented Architectures - A Manifesto and a Paradigm Shift in
Computer Science, Technical Report TR-2005-12-26,
http://www.deri.at/fileadmin/documents/DERI-TR-2005-12-26.pdf,
2005.

[6] Bumpus, W.; Schweitzer, J. W.; Thompson, P.: Common Information
Model John Wiley & Sons Ltd, New York, 2000.

[7] C. Crawford and A. Dan, “eModel: Addressing the Need for a Flexible
Modeling Framework in Autonomic Computing, Proceedings of the
IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems (MASCOTS
2002), IEEE, New York, 2002.

[8] Karl Czajkowski, Asit Dan, John Rofrano, Steven Tuecke, Ming Xu:
Agreement-based Service Management (WS-Agreement), 2005.

[9] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kübler, H.
Ludwig, M. Polan, M. Spreitzer, A. Youssef: Web services on demand:
WSLA-driven automated management. IBM Systems Journal, Vol. 43
(1), 2004.

[10] Distributed Management Task Force (DMTF): Common Information
Model (CIM) Specification – Version 2.2, DMTF,
http://www.dmtf.org/standards/cim/cim_spec_v22, 1999.

[11] Distributed Management Task Force (DMTF): WS-Management CIM
Binding Specification, DMTF,
http://www.dmtf.org/standards/published_documents/DSP0227.pdf,
2006.

[12] Distributed Management Task Force (DMTF): Metrics Model, DMTF,
http://www.dmtf.org/standards/documents/CIM/DSP0141.pdf, 2003.

[13] Emig, Christian; Weisser, Jochen; Abeck, Sebastian: Development of
SOA-Based Software Systems – an Evolutionary Programming
Approach. In: International Conference on Internet and Web
Applications and Services ICIW'06, Guadeloupe, 2006.

[14] Global Grid Forum: Open Grid Services Architecture - Glossary of
Terms, http://www.ggf.org/documents/GFD.44.pdf, 2005.

[15] Roy Grønmo, Michael C. Jaeger: Model-Driven Methodology for
Building QoS-Optimised Web Service Compositions, The 5th IFIP Intl.
Conf. on Distributed Applications and Interoperable Systems (DAIS
2005), Athens, Greece, LNCS 3543, pp. 68-82, DOI:10.1007/b137217,
June 2005.

[16] Hegering, Abeck, Neumaier: Integrated Management of Networked
Systems, Morgan Kaufmann Publishers, 1999

[17] Hollingsworth, D. The Workflow Reference Model. Workflow
Management Coalition, TC00-1003,
http://www.wfmc.org/standards/docs/tc003v11.pdf, 1995

[18] International Business Machines Corporation (IBM): An architectural
blueprint for autonomic computing, IBM, http://www-
03.ibm.com/autonomic/pdfs/ ACBP2_2004-10-04.pdf, 2004.

[19] Jeng, J.-J.; Schiefer, J.; Chang, H.: An Agent-based Architecture for
Analyzing Business Processes of Real-Time Enterprises. In: Proceedings
Seventh IEEE International Enterprise Distributed Object Computing
Conference (EDOC’03). 2003.

[20] Katchabaw, M. J.; Howard, S. L.; Lutfiyya, H. L.; Marshall, A. D.;
Bauer, M. A.: Making Distributed Applications Manageable Through
Instrumentation, Journal of Systems and Software, Elsevier Science Inc.,
New York, 1999.

[21] Alexander Keller, Heiko Ludwig: The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services, Journal of
Network and Systems Management, Seite 57 - 81, Springer, 2003.

[22] Steffen Lamparter, Björn Schnizler: Trading Services in Ontology-
driven Market, In Proceedings of the 2006 ACM symposium on Applied
computing, Dijon, France, 2006.

[23] Frank Leymann: Web Services - Distributed Applications without
Limits, Business, Technology and Web, Leipzig, 2003.

[24] Heiko Ludwig, Asit Dan, Robert Kearney: Cremona: An Architecture
and Library for Creation and Monitoring of WS-Agreements,
ICSOC’04, New York, 2004.

[25] Heiko Ludwig, Alexander Keller, Asit Dan, Richard P. King, Richard
Franck: Web Service Level Agreement (WSLA) Language
Specification, IBM Corporation, 2003.

[26] McGregor, Carolyn: A Method to Extend BPEL4WS to Enable Business
Performance Measurement.,
http://www.cit.uws.edu.au/research/reports/paper/paper03/TR-CIT-15-
2003.pdf, 2003.

[27] McGregor, Carolyn; Schiefer, Josef: A Web-Service based framework
for analyzing and measuring business performance. In: Information
Systems and e-Business Management. Springer-Verlag,, P. 89-110,
2004.

[28] Sahai, A., Machiraju, V., Sayal, M., van Moorsel, A., Casati, F.:
Automated SLA Monitoring for Web Services. In Proc. of´the 13th
IFIP/IEEE International Workshop on Distributed Systems: Operations
and Management (DSOM 2002), Montreal, Canada, Lecture Notes in
Computer Science (LNCS), No. 2506. Springer-Verlag (2002) 28-41,
2002.

[29] Sheth, A.; J. Cardoso, J. Miller, J. Arnold, Modelling Quality of Service
for Workflows and Web Service Processes; VLDB Journal, 2002.

[30] Tosic,V., Esfandiari, B.: Towards a System for Web Service
Composition Management, In Proc. of the 2005 IEEE International
Conference on Web Services (ICWS 2005), Orlando, USA, 2005.

[31] Tosic, V., Ma, W., Pagurek, B., Esfandiari, B.: Web Services Offerings
Infrastructure (WSOI) - A Management Infrastructure for XML Web
Services, In Proc. of NOMS (IEEE/IFIP Network Operations and
Management Symposium) 2004, Seoul, South Korea, 2004.

[32] Tosic, V., Pagurek, B., Patel, K: WSOL – A Language for the Formal
Specification of Classes of Service for Web Services. In Proc. of the
2003 International Conference on Web Services (ICWS'03), Las Vegas,
2003.

[33] White, S. A.: Business Process Modeling Notation. BPMN 1.0,
http://www.bpmn.org/Documents/BPMN%20V1-
0%20May%203%202004.pdf, 2004.

[34] Andrea Westerinen, Jim Davis: WBEM Standards, DMTF 2002
Developers' Conference,
http://www.dmtf.org/data/presentations/devcon02/AndreaWesterinen-
WBEMStandardsTutorial.pdf, 2002.

[35] World Wide Web Consortium (W3C): Simple Object Access Protocol
(SOAP) 1.1, http://www.w3.org/TR/soap/, May 2000.

[36] World Wide Web Consortium (W3C): Web Services Description
Language (WSDL), Version 1.1, http://www.w3.org/TR/wsdl, Mai
2005.

[37] World Wide Web Consortium (W3C): XSL Transformations (XSLT)
Version 1.0, W3C Recommendation, http://www.w3.org/TR/xslt, 16
November 1999

[38] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant
Kalagnanam, Quan Z. Sheng: Quality Driven Web Services
Composition, WWW2003, May 20–24, 2003, Budapest, Hungary, 2005.

