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Abstract

Posttranslational microtubule modifications (PTMs) are numerous; however, the biochemical and cell biological roles of
those modifications remain mostly an enigma. The Aspergillus nidulans kinesin-3 UncA uses preferably modified
microtubules (MTs) as tracks for vesicle transportation. Here, we show that a positively charged region in the tail of UncA
(amino acids 1316 to 1402) is necessary for the recognition of modified MTs. Chimeric proteins composed of the kinesin-1
motor domain and the UncA tail displayed the same specificity as UncA, suggesting that the UncA tail is sufficient to
establish specificity. Interaction between the UncA tail and alpha-tubulin was shown using a yeast two-hybrid assay and in
A. nidulans by bimolecular fluorescence complementation. This is the first demonstration of how a kinesin-3 motor protein
distinguishes among different MT populations in fungal cells, and how specificity determination depends on the tail rather
than the motor domain, as has been demonstrated for kinesin 1 in neuronal cells.
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Introduction

The microtubule (MT) cytoskeleton is assembled from alpha,

beta-tubulin heterodimers. In addition, multiple isoforms and

posttranslationally modified tubulins (PTMs) are known [1]. For

instance, certain neuronal cells use alpha-tubulin where the C-

terminal tyrosin is cleaved (detyrosinated alpha-tubulin) [2]. Other

modifications comprise acetylation, polyglutamylation, or phos-

phorylation [1]. How posttranslational modifications affect specific

functions is largely unknown, although there is increasing evidence

that modifications act as ‘‘traffic signs’’ for microtubule-dependent

motor proteins [3]. Recently, it was shown that differences in the

ratio between tyrosinated and detyrosinated alpha-tubulin in

axons and dendrites confer directional cues for kinesin-1-

dependent transport in axons [2,4].

In lower eukaryotes only some alpha-tubulin modifications were

identified and it appears that certain modifications arose at

different times during evolution [1]. There is evidence that

detyrosinated or otherwise modified MTs exist in the filamentous

fungus A. nidulans. In two-dimensional gels four protein spots were

identified as alpha-tubulin although only two genes are found in

the A. nidulans genome. The same situation was found for beta-

tubulin [5,6]. Further evidence came recently from a study related

to the kinesin 3 motor UncA [7]. Kinesin-3 motors contain the

conserved motor domain, a FHA domain (forkhead homology-

associated domain) involved in phosphorylation dependent

protein-protein interactions, signaling pathways and the regulation

of kinesin motors and a PH domain (Pleckstrin homology domain)

at the carboxy terminus for cargo binding [8]. In A. nidulans and

Ustilago maydis kinesin-3 is involved in vesicle trafficking, and

deletion of the gene causes a reduction of the growth rate [7,9].

Most surprisingly, UncArigor did not decorate all microtubules in a

hyphal compartment of A. nidulans but only a subpopulation

consisting of modified alpha-tubulin. An antibody against

tyrosinated alpha-tubulin did not recognize the MT decorated

by UncArigor. This suggested that the modified MT might consist

of detyrosinated alpha-tubulin [7]. However, direct biochemical

evidence is not yet available. The exact cargo of UncA also

remains to be defined. In N. crassa the motor is involved in

mitochondrial distribution and in U. maydis in endosome

trafficking [9,10]. In A. nidulans there is evidence that UncA is

involved in endosome movement and that endosomes are involved

in polarized growth [11,12]. We were meanwhile able to isolate

vesicles associated to the UncA motor and are currently analyzing

the protein content (own unpublished data).

Fascinating questions refer to the generation and maintenance

of different MT populations, their different biological functions

and the mechanism of motor-preference for one or the other MT

population. Here, we present first evidence of how a kinesin-3

motor protein distinguishes between different MT populations in

A. nidulans, and, surprisingly, how a short region in the tail of

kinesin 3 is important for ‘‘traffic sign’’ recognition.

Results

The tail of UncA is necessary for microtubule specificity
The kinesin-3 motor UncA binds preferentially to modified

microtubules (MTs) [7]. This was most obvious when a rigor

mutation was introduced into the motor protein: a GFP-UncArigor

fusion protein labeled mainly one bundle of MTs per compart-

ment, whereas other kinesins, mutated and tagged in the same

way, labeled several MTs. In order to identify the region that
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confers posttranslationally modified MT specificity, we performed

a deletion analysis, starting from a full-length GFP-UncArigor

version. Constructs shorter than 1316 amino acids bound to

several MTs, whereas proteins longer than 1402 amino acids

displayed specificity for modified MTs (Fig. 1A–C). From these

results we concluded that the region between amino acid 1316 and

1402 is involved in modified MT selection. All eight different

truncation constructs of UncArigor were tagged at the N-terminus

with GFP, and expressed under the control of the uncA promoter in

an uncA-deletion strain. The UncA tail region was compared to

several kinesin-3 proteins, from fungi to humans, and showed

several highly conserved residues (Fig. S1). In contrast, similar

work in rat hippocampal neurons with kinesin 1 revealed a short

region in the motor domain, designated the beta5-L8 Region,

required for specificity [2]. Several residues within this region were

essential for discrimination between tyrosinated and detyrosinated

MTs; however, the corresponding region in UncA resembled

regions in kinesins, which do not prefer detyrosinated MTs (data

not shown).

Deletion analysis also revealed that the neck linker (amino acids

379–386), a mechanical element that has been shown to connect the

motor domain with cargo and kinesin partner heads [13], was

necessary for MT binding of UncA (Fig. 1D). Constructs only

harboring the motor domain (379 amino acids), including the

predicted MT-binding motif, were unable to bind MTs in vivo and

localized to the cytoplasm; these results corroborate findings for

Caenorhabditis elegans kinesin 3 (Unc104). This kinesin 3 undergoes

concentration-dependent dimerization in vitro as a result of two short

helical domains that are directly C-terminal to the neck linker [14].

The neck linker of mouse KIF5C (kinesin 1) can functionally and

structurally replace the one of KIF1A [15]. Hence, the neck linker is

an element that connects the motor domain to the cargo, or to

another motor domain in the case of kinesin dimers, indicating that

this element is essential for motor function.

Recently, Huckaba et al. showed that Drosophila kinesin 3, Khc-

73, exists in vitro and in vivo in an equilibrium between monomer

and dimer, is enriched at the ends of MTs, and is recruited to

Rab5-containing vesicles [16]. In contrast, kinesin 3 from

Neurospora crassa, NcKin3, was shown to be dimeric, but inactivates

one of its motor heads to generate non-processive motility [17].

The data of Adio and Woehlke confirmed that the neck domain is

required for dimerization and is essential for NcKin3 function: the

absence of the neck altered the kinetic cycle fundamentally [18].

In order to further characterize the function of the 86 amino

acids in the A. nidulans UncA tail and concurrently preserve as

much of the UncA protein as possible, we deleted only this section

of amino acids in the full-length protein expressed under the native

promoter. This construct was transformed into an uncA-deletion

strain in order to exclude homologous integration events into the

uncA locus. We observed loss of specificity in this modified motor

protein, confirming the role in specificity determination for

modified MTs in the tail of UncA (Fig. 1E). Furthermore, we

deleted the 86 amino acids in the original strain SNZ14

(alcA(p)::GFP::uncArigor), which has been previously used in

localization studies [7]. This was achieved using a complementa-

tion strategy into the GPF-UncArigor strain, with homologous

integration in the uncA locus (SNZ14) to exclude effects due to

different protein expression levels. In full support of our

hypothesis, UncA lacking the 86 amino acids decorated all MTs

(data not shown). Similar expression levels of the GFP-UncA

proteins in the two strains (SNZ14 and SCoS124) were confirmed

by Western blot analysis (Fig. 1F). In order to test the

functionality of the UncA protein lacking the 86 aa (SCoS75),

colonies of this strain were compared to wildtype and to a DuncA-

deletion strain. The fact that the colonies of SCoS75 showed the

same compact colony phenotype, suggests that the 86 aa are

required for function of UncA (Fig. 1G). An alignment of this

stretch between different fungi and higher eukaryotes revealed

many conserved amino acids in this region (Fig. 1H). In addition,

this region is characterized by a positive charge at pH7 (Fig. 1I).

In order to exclude a potential contribution of other domains in

UncA to the determination of MT specificity, the FHA domain

and the two coiled regions between the FHA and PH domains

were deleted in the same way as the 86 amino acids: neither of

these deletions affected the specificity (Fig. 2). The FHA

(forkhead-associated) domain has been shown to be involved in

phosphorylation-dependent protein-protein interactions, signaling

pathways [19] and regulation of kinesin motors [20].

The tail of UncA is sufficient for microtubule specificity
If the specificity of UncA is determined by the tail region of the

motor, we asked ourselves whether the tail is capable of rendering

conventional kinesin (KinA) specific for this MT subpopulation. To

this end, we fused the KinA motor domain with the tail region of

UncA under the control of the uncA promoter (Fig. 3A). Kinesin-1

and Kinesin-3 show different localization patterns in hyphae.

Whereas the GFP-UncA fusion protein labels small bidirectional

moving spots, which accumulate at the tip (Fig. 3B), KinA shows

diffuse labeling of the whole cytoplasm (Fig. 3C). This has been

observed before in A. nidulans and in U. maydis. Stable association of

KinA with MTs was only observed after depletion of ATP or

introduction of a rigor mutation [7,21,22]. Apparently the

cytoplasmic concentration of KinA is quite high and association

with MTs only temporarily. Futhermore, KinA transports – in

addition to vesicles - also dynein towards the MT plus end [23].

These are likely only single molecules or dimers moving along MTs

and thus cannot be visualized with normal epifluorescence

microscopy of GFP-KinA. The generated chimeric protein KinA-

UncA was N-terminally tagged with GFP and transformed into an

uncA-deletion strain. Ectopic integration into the genome - to

exclude integration into the kinA locus - was confirmed by Southern

blot analysis (data not shown). The resultant strain showed vesicle

movement and accumulation of the GFP signal at the tip of

transformed hyphae (Fig. 3D), and the chimera was able to rescue

the uncA-deletion phenotype, suggesting that the fusion protein is

biologically active and transports probably UncA cargoes similar to

the wildtype (Fig. 3E).

Subsequently to further analyze the specificity of this chimera, we

created a strain with the rigor mutation at the ATP binding site of

this chimeric motor; interestingly, this strain also displayed

impressive specificity for the MT subpopulation (Fig. 3F), indicat-

ing that the tail of UncA is sufficient for generating MT specificity.

As a further control, another chimeric motor protein was

constructed by fusing the UncArigor motor domain to the tail of

KinA. This fusion protein was also tagged with GFP at the amino

terminus and expressed under the control of the uncA promoter to

guarantee comparable expression levels. A loss of specificity was

displayed, and several MTs were labeled (Fig. 3G). Likewise, a

chimeric protein of the UncArigor motor domain and the tail of

kinesin 7, KipA, did not show any preference for MT subpopula-

tions (data not shown). Taken together, these findings suggest that

the UncA tail is necessary for vesicle selection and MT specificity

determination. The UncA motor domain appears only required for

movement and can be replaced by the KinA motor domain.

The tail of UncA is able to bind toalpha-tubulin
Because the tail of UncA is apparently able to interact with MTs

or MT-associated proteins, we tested for interaction between alpha
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tubulin and UncA using the yeast two-hybrid assay. The bait of

uncA, which spans from the end of the motor domain to the stop

codon, was transformed into the Saccharomyces cerevisiae strain

AH109. Transformed yeast was crossed to the compatible strain

Y187 containing the corresponding full-length protein of either

alpha tubulin, TubA or TubB. A. nidulans comprises two genes,

tubA and tubB, which encode two isoforms of alpha tubulin. Both

TubA and TubB showed an interaction with the tail of UncA

(Fig. 4A). In principle, this interaction could be due to a bridging

protein of S. cerevisiae. However, we confirmed the interaction using

bimolecular fluorescence in A. nidulans (see below). In the resulting

transformants spots of different sizes were labeled and moved

anterograde and retrograde (Fig. 4B). This suggested that the

UncA tail still binds to vesicles and is able to interact with

cytoplasmic alpha-tubulin. The observed movement seems at a

first glance curious, but the UncA tail still harbors the PH domain

and is therefore probably still able to bind to its specific cargoes.

These vesicles are not only transported by UncA but also by

dynein [7]. To confirm the binding of the tail to vesicles, we

analyzed the localization pattern of the UncA tail as GFP fusion

protein (Fig. 4C). It revealed the same picture as in the

bimolecular fluorescence complementation (BiFC) experiment.

In order to map the interaction site of UncA, we designed

different truncations of UncA. Yeast two-hybrid assays between

these proteins revealed that only the full-length tail region of UncA

is able to interact with either of the two alpha tubulins. The

interaction tests between the UncA motor domain and TubA or

TubB were negative, indicating that either the motor domain is

not able to bind monomeric alpha tubulin in the yeast two-hybrid

assay, or the tail of UncA is necessary for proper motor domain

folding, which enables binding. Interaction tests between the

UncA motor domain and the tail of UncA were also negative,

suggesting that intramolecular folding between motor and tail does

not regulate activity or specificity. Such a regulatory mechanism

has been shown before for kinesin-1, where the tail regulates the

ATPase activity [24].

Taken together, the results suggest interaction between the tail

of UncA and alpha-tubulin. Given that the interaction between

the two proteins took place in the nucleus in the yeast-two hybrid

assay and in the cytoplasm in A. nidulans in the BiFC analysis,

suggests rather direct interaction than complex formation with

other proteins.

Discussion

Most eukaryotes contain several tubulin-encoding genes that

generate alpha-tubulin with slightly different properties. In A.

nidulans, for example, two genes encode for a and two for beta-

tubulin [5,6,25]. Although deletion of one of the alpha-tubulin

genes, tubB, was possible, this strain was subsequently unable to

reproduce sexually; this defect was partially overcome via

overexpression of tubA. These results demonstrate nicely overlap-

ping but also distinct functions of certain tubulin isoforms;

however, this picture becomes further complicated by the fact

that a number of different posttranslational MT modifications

exist. Already in 1975, Arce et al. reported the posttranslational

incorporation of L-tyrosine into alpha-tubulin, indicating the

presence of tyrosinated and detyrosinated MT forms [26]. alpha-

tubulin generally ends with the tripeptide EEY, and the tyrosine

residue is cyclically removed by carboxypeptidase, then re-added

to the chain by tubulin-tyrosine ligase (TTL) [1]. Other possible

modifications include acetylation, polyglutamylation, polyglycyla-

tion or phosphorylation [1]. In general, little is known about either

modifying enzymes or the biological functions of these modifica-

tions, although the suppression of tubulin tyrosine ligase and

subsequent accumulation of detyrosinated tubulin favors tumor

growth in animal models and human cancers [27].

In neurons it was demonstrated that polarized trafficking of

kinesin-1-driven vesicle movement is regulated through the

balance between tyrosinated and detyrosinated MTs [2]. Since

somatodendrites contain tyrosinated alpha-tubulin and the axon

contains detyrosinated alpha-tubulin, inhibited binding of kinesin-

1 to tyrosinated MTs restricted the transport function to the axons.

Figure 1. UncA-deletion analysis reveals that the tail of UncA is involved in specificity determination. (A) Scheme for the UncA-deletion
analysis. The number of amino acids is given in front of the truncated proteins. Motor = motor domain containing the lysine-rich loop (K) and a rigor
mutation in the P-loop (asterisk); FHA = forkhead associated domain; PH = pleckstrin homology domain. The red square indicates a 86 aa amino acid
stretch. (B–E) Localization of different UncA truncated versions (as indicated) in the DuncA strain SNZ9. UncA proteins were labeled with GFP and
expressed under the control of the uncA promoter. Scale bar, 5 mm. (F) Confirmation of expression levels by Western blot analysis of GFP-UncArigor

(206 kDa)(SNZ14) and GFP-UncArigor D1316–1402 (194 kDa)(SCoS124). Western blot detection was done with anti-GFP antibodies (1:4000) and anti-
rabbit IgG peroxidase conjugated secondary antibodies (1:4000). 285 ng crude protein extract was loaded. (G) Colonies of SNZ9, SCoS75 and
wildtype (TN02A3). (H) Alignment of the 86 aa region of UncA orthologues from different fungi and higher eukaryotes. Done with CLC Sequence
Viewer 6. See also Figure S1. (I) Calculation of isoelectric points for distinct regions of UncA.
doi:10.1371/journal.pone.0030976.g001

Figure 2. Analysis of UncA versions with deletions of the forkhead associated domain (FHA)(SCoS61), the pleckstrin homology
domain (PH)(ScoS16), and the coiled coils (CC)(SCoS81) region. Hyphae are 3 mm in diameter.
doi:10.1371/journal.pone.0030976.g002
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In this case, the b5-L8 region in the motor domain was responsible

for MT discrimination. In contrast, we show that in A. nidulans the

86 amino acid long region in the tail of kinesin-3 UncA was

involved in the recognition process of modified, possibly

detyrosinated MTs. Interestingly, UncA cargoes appear to be

un-involved in MT recognition, since deletion of the PH domain

did not alter its specificity (Fig. 1). In comparison, there is

evidence that mammalian kinesin-1 cargo proteins may be

involved in specificity determination in neuronal cells [28].

Unfortunately, no structural data are available yet for the tail of

a kinesin-3 motor protein, because only the motor domain and its

binding to MTs has been analyzed [29]. In comparison to our

data, it was shown in mice that kinesin-3 uses polyglutamylation as

a neural molecular traffic sign, although the structural mechanism

of the kinesin remained enigmatic [30]. The picture becomes

increasingly complex when considering the recent observation that

the modification type may switch from detyrosination to

acetylation upon polarization of epithelial cells [31]. It will be

the challenge for future studies to unravel the exact mechanism(s)

of motor proteins for MT discrimination between different MTs,

and determine how posttranslational modifications contribute to

navigational cues for different motor proteins.

Methods

Strains, Plasmids, and Culture Conditions
Supplemented minimal media (MM) for A. nidulans and

standard strain construction procedures are described by Hill

and Käfer (2001) [32]. A list of A. nidulans strains used in this study

is given in Table 1. Standard laboratory Escherichia coli strains

(XL1 blue, Top 10) were used. Plasmids are listed in Table 2. S.

cerevisiae strains are listed in Table 3.

Molecular Techniques
Standard DNA transformation procedures were used for A.

nidulans [33] and E. coli [34]. For polymerase chain reaction (PCR)

experiments, standard protocols were applied. DNA sequencing

was performed commercially (Eurofins MWG Operon Ebersberg,

Germany). DNA analyses (Southern hybridizations) were per-

formed as described [34].

Domain deletion of UncA was achieved using primers with

phosphorylated 59-ends to amplify the entire vector pCoS21, with

the exception of the deleted region. The primers used for the FHA

mutant were del_FHA_fwd (P-59-CCC CAG GAA GCA AGG

GCT GAA C-3) and del_FHA_rev (P-59-CTT TTT CGG TGT

Figure 3. Chimeric kinesin proteins verify that the UncA tail is sufficient for microtubule specificity. (A) Scheme for the creation of
chimera of kinesin 1 (yellow), KinA, and kinesin 3, UncA (green). (B) Localization of GFP-UncA (SNZ2) and (C) mRFP-KinA (SCS6-NZ). (D) Time lapse of
the KinA–UncA chimeric protein (SCoS23). Arrows indicate a moving vesicle. Vesicles also accumulate at the tip of hyphae, similar to the UncA
localization. (E) Growth comparison of WT, DuncA and the DuncA strain complemented with the KinA-UncA chimera (SCoS23). The fusion protein can
restore the DuncA phenotype. (F) Localization pattern of KinArigor-UncA chimera (SCoS24) labeled with GFP in the DuncA strain, under the control of
the uncA promoter. The chimera shows the same specificity as UncArigor. (G) In contrast UncArigor-KinA chimera (SCoS44) in DuncA, labeled with GFP,
under the control of the uncA promoter do not label MT subpopulations. Hyphae are 3 mm in diameter.
doi:10.1371/journal.pone.0030976.g003
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Figure 4. The tail of UncA is able to bind to alpha tubulin. (A) Yeast two-hybrid interaction tests with different truncations of UncA to map the
interaction site between these proteins. Only the full-length tail region of UncA is able to interact with either of the two alpha tubulins. Transformants
were assayed for growth on SD-LW to confirm integration of both constructs (left) and on SD-QDO for nutritional selection for positive interactions
(right). The strength of the interaction is shown in the X-a-Gal assay. The red square indicates the 86 amino acids region. (B) Bimolecular fluorescence
complementation assay with the YFP-C-terminal half fused to the UncA-tail and the YFP-N-terminal half fused to TubA in strain (SCoS126). (C)
Subcellular localization of the GFP-UncA-tail in SCoS127. The tail of UncA localizes to vesicles, which moved in antero- and retrograde direction.
Hyphae are 3 mm in diameter.
doi:10.1371/journal.pone.0030976.g004

Table 1. A. nidulans strains used in this study.

Strain Genotype Source

TN02A3 pyrG89; argB2, nkuA::argB; pyroA4 Nayak et al. (2006)

SNZ2 TN02A3 transformed with pAS3 (alcA::sGFP::uncA), pyroA4 Zekert et al. (2009)

SNZ9 TN02A3 transformed with pNZ13 (uncA deletion), pyrG89 Zekert et al. (2009)

SNZ14 TN02A3 transformed with pNZ15 (GFP-UncArigor), pyroA4 Zekert et al. (2009)

SCS6-NZ TN02A3 transformed with pCS-NZ5 (mRFP-KinArigor), pyrG89 Zekert et al. (2009)

SCoS15 SNZ9 transformed with pCoS35 (uncA(p)::sGFP::uncArigor1–1316); veA1 this study

SCoS16 SNZ9 transformed with pCoS38 (uncA(p)::sGFP::uncArigor1–1402); veA1 this study

SCoS21 SNZ9 transformed with pCoS25 (uncA(p)::sGFP::uncArigor1–445); veA1 this study

SCoS23 SNZ9 transformed with pCoS44 (uncA(p)::sGFP::kinA1–348::uncA373–1630); veA1 this study

SCoS24 SNZ9 transformed with pCoS46 (uncA(p)::sGFP::kinArigor1–348::uncA373–1630); veA1 this study

SCoS44 SNZ9 transformed with pCoS61 (uncA(p)::sGFP::uncArigor
r1–379::kinA343–927); veA1 this study

SCoS57 SNZ14 transformed with pCoS73 (Q1314stop complementation); pyrG89; veA1 this study

SCoS58 SNZ14 transformed with pCoS72 (A1402stop complementation); pyrG89; veA1 this study

SCoS61 SNZ9 transformed with pCoS80 (uncA(p)::sGFP::uncArigorwithout FHA); veA1 this study

SCoS62 SNZ9 transformed with pCoS81 (uncA(p)::sGFP::uncArigorwithout CC2+CC3); veA1 this study

SCoS75 SNZ9 transformed with pCoS75 (uncA(p)::sGFP::uncA without 86 aa)); pyrG89; veA1 this study

SCoS124 SNZ14 transformed with pCoS135 (complementation without 86 aa); pyrG89; veA1 this study

SCoS126 TN02A3 transformed with pCoS155 and pCoS151 (alcA(p)::YFPC::uncAfull length tail, alcA(p)::YFPN::TubA; veA1 this study

SCoS127 TN02A3 transformed with pCoS156 (alcA(p)::GFP::uncAfull length tail); pyroA4; veA1 this study

doi:10.1371/journal.pone.0030976.t001
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Table 2. Plasmids used in this study.

Plasmid Construction Source

pCR2.1-TOPO Cloning vector Invitrogen

pCMB17apx alcA(p)::GFP, for N-terminal fusion of GFP to proteins of interest; contains N. crassa pyr4 Efimov et al. (2006)

pGBKT7 Yeast Two-Hybrid bait vector, Gal4-BD Clontech

pGADT7 Yeast Two-Hybrid prey vector, Gal4-AD Clontech

pNZ-SI49 1.5-kb uncA(p) fragment in pAS3 with KpnI-EcoRI sites Zekert et al. (2009)

pNZ-SI71 alcA(p)::mRFP::uncAfull length with AscI-PacI sites in pCMB17apx Zekert et al. (2009)

pNZ15 pAS3 mutagenesis to introduce the G116E mutation in the p-loop of UncA, (UncArigor) Zekert et al. (2009)

pCS4-NZ pCS2-NZ mutagenesis to introduce the G97E mutation in the p-loop of KinA, (KinArigor) Zekert et al. (2009)

pCoS25 uncA(p)::sGFP::uncArigor1–445 with AscI-PacI sites in pCMB17apx this study

pCoS35 uncA(p)::sGFP::uncArigor1–1316 with AscI-PacI sites in pCMB17apx this study

pCoS38 uncA(p)::sGFP::uncArigor1–1402 with AscI-PacI sites in pCMB17apx this study

pCoS44 uncA(p)::sGFP::kinA1–348::uncA373–1630 with EcoRI-PacI sites in pCMB17apx this study

pCoS46 uncA(p)::sGFP::kinArigor1–348::uncA373–1630 with EcoRI-PacI in pCMB17apx this study

pCoS61 uncA(p)::sGFP::uncArigor1–445::kinA343–928 with EcoRI-PacI sites in pCMB17apx this study

pCoS72 SNZ14 complementation construct A1402stop mutation (AscI-uncA-tail-PacI-pyro-NotI-uncA-RB-AscI)
in Topo2.1

this study

pCoS73 SNZ14 complementation construct A1316stop mutation (AscI-uncA-tail-PacI-pyro-NotI-uncA-RB-AscI)
in Topo2.1

this study

pCoS75 uncA(p)::sGFP::uncArigor without 86 aa (1316–1402) with AscI-PacI sites in pCMB17apx this study

pCoS80 uncA(p)::sGFP::uncArigor without FHA (495–596) with AscI-PacI sites in pCMB17apx this study

pCoS81 uncA(p)::sGFP::uncArigor without CC2 (679–823) with AscI-PacI sites in pCMB17apx this study

pCoS82 tubA with XbaI-ClaI sites in pGADT7 this study

pCoS84 tubB with XbaI-ClaI sites in pGADT7 this study

pCoS85 uncA tail without PH (951–1497) with EcoRI-SmaI sites in pGBKT7 this study

pCoS86 uncA tail with PH (951–1631) with EcoRI-SmaI sites in pGBKT7 this study

pCoS87 uncA(p)::sGFP::uncArigor1–390 with EcoRI-SmaI sites in pGBKT7 this study

pCoS135 SNZ14 complementation construct without 86 aa (without 1316–1402)
(AscI-uncA-tail-PacI-pyro-NotI-uncA-RB-AscI) in Topo2.1

this study

pCoS151 alcA(p)::YFPN::tubA3,1 kb with AscI-PacI sites in pCMB17apx this study

pCoS155 alcA(p)::YFPC::uncAfull-length tail with AscI-PacI sites in pCMB17apx, pyro instead of pyr4 this study

pCoS156 alcA(p)::sGFP::uncAfull-length tail with AscI-PacI sites in pCMB17apx this study

doi:10.1371/journal.pone.0030976.t002

Table 3. S. cerevisiae strains used in this study.

Strain Genotype Source

AH109 MATá, trp1901,leu2–3,112, ura3–52,his3–200,gal4Ä, gal80Ä, LYS2:: GAL1UAS-GAL1TATA-His3, GAL2UAS-GAL2TATA-Ade2,
URA3::MEL1UAS-MEL1TATA-lacZ, MEL1

Clontech

Y187 MATá, ura3–52, his3–200, ade2–101, trp1–901, leu2–3, 112, gal4Ä, met–, gal80Ä, MEL1, URA3::GAL1UAS -GAL1TATA-lacZ Clontech

yCoS1 Y187 transformed with pCoS82 (tubA in pGADT7) this study

yCoS3 Y187 transformed with pCoS84 (tubB in pGADT7) this study

yCoS4 AH109 transformed with pCoS85 (uncA tail without PH (951–1497) in pGBKT7) this study

yCoS5 AH109 transformed with pCoS86 (uncA tail with PH (951–1631) in pGBKT7) this study

yCoS6 AH109 transformed with pCoS87 (uncArigormotor in pGBKT7) this study

yCoS8 AH109 transformed with pCoS89 (uncA without motor (352–1631) in pGBKT7) this study

doi:10.1371/journal.pone.0030976.t003
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ACT CAA ACC GAT AAA TCC-3); deletion of 80 aa stretch

were done using del80_mut_fwd (P-59-GTG CAG GGG CGG

CGT ATT GCA GAG CTT AAC G-3) and (P-59-CGT TAA

GCT CTG CAA TAC GCC GCC CCT GCA C-3); the coiled

coil deletion used del_CC2+3_fwd (P-59-CAC CCA GTG CCA

AGA ATC TAC GAG AAT G-3) and del_CC2+3_rev (P-G AGC

AAG CCT ATC CGG ATC CAT C -3). All plasmids were

transformed into the DuncA strain SNZ9.

Tagging Proteins with Green Fluorescent Protein (GFP)
In order to create N-terminal GFP fusion constructs of UncA

truncations, 1.2 to 4.4-kb long N-terminal fragments of uncA

(starting from ATG) were amplified from pNZ-SI71 with the

primers uncA_Asc_fwd1 (5-GGGCGCGCCCGGCATGGCGC-

CAGGAGGTGGTG-3) and several PacI reverse primers. The

AscI-PacI-digested PCR fragment was cloned into the correspond-

ing sites of pCMB17apx, yielding truncated versions of UncA. To

produce UncA N-terminal tagged with GFP under the native

promoter, a 1.5-kb fragment of the putative uncA promoter was

amplified from genomic DNA with the primers UncA nat(P)_E-

coRI_fwd (5-GGA ATT CTC ATC ACC TAC TGG AGG CGC

GC-3) and UncA_nat(p)_KpnI rev (5-CGG TAC CTT TGG CCT

ATA GCC CAT ACA CC-3), digested with EcoRI and KpnI, and

the two fragments were ligated with EcoRI-KpnI–digested pAS3,

yielding pNZ- SI49 (alcA promoter replaced with the uncA

promoter in pAS3). All plasmids were transformed into DuncA

strain SNZ9. Integration events were confirmed by PCR and

Southern blot (results not shown).

Creation of uncArigor and kinArigor Mutant Alleles
We changed the UncA glycine residue 116 to glutamate by site-

directed mutagenesis using the oligonucleotides UncA_P-Loop_

Gly_fwd (5-GGT CAG ACC GGT TCG GAG AAG TCT TAC

TCG-3) and UncA_P-Loop_Gly_rev (5-CGAGTAA- GACTTC-

TCCGAACCGGTCTGACC-3), with plasmid pNZ-SI71 as a

template, and the QuickChange XL site-directed mutagenesis kit

(Stratagene, Heidelberg, Germany); this yielded plasmids for the

truncation series. These primers were also used to generate the rigor

mutations in chimeric motor proteins. The plasmids were

sequenced to confirm the mutagenesis event and then transformed

into the uncA deletion strain SNZ9. PCR and Southern blot analysis

confirmed that the constructs were integrated ectopically. The same

procedure was applied for KinA, using the primers KinA_Rigor_P-

Loop_for (5-C GGT CAA ACC GGT GCA GAG AAG TCG

TAT AC-3) and KinA_Rigor_P-Loop_rev (5-GT ATA CGA CTT

CTC TGC ACC GGT TTG ACC G-3) to change glycine residue

97 to glutamate using pCS4-NZ as template.

Protein extracts and Western blotting
For preparing protein extracts, A. nidulans strains were incubated

in liquid MM for 24 h at 37uC. To induce the alcA promoter this

medium was supplemented with 0.2% glucose and 2% threonine.

The mycelium was harvested by Filtration through Miracloth

(Calbiochem, Heidelberg, Germany), dried between some paper

towels and immediately ground in liquid nitrogen. Afterwards the

mycelial powder was resuspended in protein extraction buffer

(20 mM Tris– HCl, pH 8, 0.05% Triton-X-100, 150 mM NaCl)

containing protease inhibitors (1 mM PMSF). Cell debris was

pelleted by centrifugation. After denaturation of samples protein

extracts were loaded on a 7.5% sodium dodecyl sulfate polyacryl-

amide gel. For western blotting anti-GFP antibodies (anti-GFP N

terminus, derived from a rabbit, product G1544; Sigma-Aldrich,

Munich, Germany) were used and detected with anti-rabbit IgG

peroxidase conjugate secondary antibody (product A0545; dilution,

1:4,000; Sigma- Aldrich, Munich, Germany). 285 ng of protein

extract was loaded. For blotting nitrocellulose membranes from

Schleicher and Schuell (Dassel, Germany) were used.

Light and Fluorescence Microscopy
For live-cell imaging of germlings and young hyphae, cells were

grown on coverslips in 0.5 ml of MM 2% glycerol (de-repression of

the alcA promoter, moderate induction). Cells were incubated at

room temperature for 1 d. Images were captured at room

temperature (200-ms exposure time) using an Axio Imager Z1

microscope (Carl Zeiss, Jena, Germany). Images were collected

and analyzed with the AxioVision system (Carl Zeiss).

Yeast Two-Hybrid Analysis
The yeast two-hybrid analysis was performed using the

Matchmaker Library Construction & Screening system (BD

Clontech). For strain generation, an uncA cDNA fragment

corresponding to the C-terminal half of UncA (952–1630 amino

acids) with UncA3kb_fd_EcoRI (59-CGA ATTCATGAGG-

CAACTGCACCAGTAC-39) and UncAfull_SmaI_rev (59-

GTTCCCGGGTCA TCTCCCGGACCTGTTG-39) was ampli-

fied and cloned in the pGBKT7 vector, which contains the GAL4

DNA-BD and TRP1 marker (BD Clontech). cDNA of tubA and

tubB from Aspergillus strain TN02A3 were amplified and cloned in

the pGADT7-Rec vector, which contains the GAL4 DNA-AD

and the LEU2 marker (BD Clontech). pGBK7-associated plasmids

were transformed in yeast AH109 (mating type MATa), whereas

pGADT7-associated plasmids were transformed in yeast Y187

(mating type MATalpha). The system utilizes two reporter genes

(HIS3 and LacZ) under the control of the GAL4-responsive UAS.

Beta-galactosidase activity was analyzed using the colony-lift filter

assay with X-Gal (5-bromo-4-chloro-3-indolyl-b-D-galactopyrano-

side (Karl Roth)) as substrate. Interaction was quantified in a X-

Gal assay, which detects the activation of the yeast MEL1 gene, a

GAL4-regulated gene used in two-hybrid analyses. MEL1 encodes

the secreted enzyme alpha-galactosidase, which hydrolyzes

colorless X-Gal into a blue end product.

Supporting Information

Figure S1 Alignment of seven kinesin 3 proteins. The

alignment was done using CLC Sequence Viewer 6 with standard

settings.

(PDF)
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