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ABSTRACT 

The focus of the current contribution is on the development of the unified geometrical formulation of contact algorithms 
in a covariant form for various geometrical situations of contacting bodies leading to contact pairs: surface-to-surface, 
line-to-surface, point-to-surface, line-to-line, point-to-line, point-to-point. The construction of the corresponding com-
putational contact algorithms are considered in accordance with the geometry of contact bodies in a covariant form. 
These forms can be easily discredited within finite element methods independently of order of approximation and, 
therefore, the result is straightforwardly applied within iso-geometric finite element methods. This approach is recently 
became known as geometrically exact theory of contact interaction [10]. Application for contact between bodies with 
iso- and anisotropic surface, for contact between cables and curvilinear beams as well as recent development for contact 
between cables and bodies is straightforward. Recent developments include the improvement of the curve-to-surface 
(deformable) contact algorithm. 
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1. Introduction 

Computational contact mechanics has become a sepa-
rated branch of computational mechanics during the last 
decades. A fairly large number of publications including 
several monographs on computational contact mechanics 
have been devoted to this development. Modelling of 
contact interactions became fairly standard in numerous 
finite element software packages available for engineers. 
Various aspects of the numerical solution such enforce-
ment of contact conditions, possibility to apply high or-
der and iso-geometric type of approximation has been 
considered. One of the important aspects, even though 
being obvious for everyone, – the geometrical treatment 
of the contact – is often remains hidden inside the com-
putational algorithm. Contact interaction from a geomet-
rical point of view can be seen as interaction between 
deformable surfaces possessing various geometrical fea-
tures such as surfaces, edges and vertexes, therefore, 
geometrical approaches can be exploited. During the last 
ten years these approaches has formed a basis of the 
geometrically exact theory of contact interaction, recently 
published in monograph of Konyukhov and Schweizerhof 
[10] by Springer. 

Current contribution is aimed on the overview of this 
theory with concentration on recent developments. 

2. Geometrical Approaches in Computa-
tional Contact Mechanics 

Only a very few publications are devoted to geometrical 
issues of contact interaction aiming at the final computa-
tional models. Gurtin, Wiessmueller and Larche [2] (1998) 
considered surface tractions on curvilinear interfaces 
describing them from a geometrical point of view. Jones 
and Papadopoulos [5] (2006) considered contact de-
scribing various mappings from the reference configura-
tion employing the Lie derivative. Laursen and Simo [12] 
(1993) described some contact parameters via geometri-
cal surface parameters.Heegaard and Curnier [3] (1996) 
considered geometrical properties of slip operators. 

Consistent Linearization 

The iterative solution of Newton type is a standard way 
to obtain the solution in the computational contact me-
chanics. However, one of the difficult parts is to obtain 
the full derivative of the functional which is necessary 
for the fast Newton solver – this procedure is known as 
linearization. Two approaches for linearization of the 
final functional representing the work of contact tractions 
can be distinguished in order to obtain consistent tangent 
matrices. The direct approach follows the following se-
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quence: functional – discretization – linearization and the 
covariant approach follows the rule: functional – lin-
earization – discretization.The direct approach, histori-
cally motivated by the development of the finite element 
method, assumes that the discretization is then involved 
in the process and the linearization is provided with re-
gard to the displacement vector u and, therefore, of the 
discretized system. This leads to the final results con-
taining a set of approximation matrices: for surface to 
surface contact it is described in Wriggers and Simo [16] 
(1985), Parisch and Luebbing [14](1997), Peric and Owen 
[15] (1992), Laursen and Simo[12] (1993), for anisot-
ropic friction in Alart and Heege [1] (1995), for beam-to- 
beam type contact in Zavarise and Wriggers [17](2000), 
Litewka and Wriggers [13] (2002).The complexity in the 
derivation for curved contact interfaces led to the use ofa 
code containing an automatic derivation with mathe-
matical software, see Heegeand Alart [4] (1996), Krstu-
lovic-Opara,Wriggers and Korelc [11] (2002) and other 
researchers. 

Open questions and drawbacks of the direct approach 
can be summarized as follows: 
 A closed form for tangent matrices is available only 

for linear approximations of surfaces.  
 The structure of the derived matrices is very com-

plicated and often not transparent. There is no clear in-
terpretation of each part possible.  
 A specification of complex contact interface laws 

with properties explicitly depending on the surface ge-
ometry (e.g. arbitrary anisotropy) is not possible. 
 A contact description of many geometrical features 

(curved line-to-curved line, curved line-to-surface) is 
almost not possible because of the necessity of convec-
tive surface coordinates. 

The fully covariant approach, however, assumes only 
a local coordinate system associated with the deformed 
continuum (convective coordinates) and requires exten-
sive application of covariant operations (derivatives etc.). 
This approach historically appeared with the considera-
tion of convective variables arising from the surface ap-
proximations directly for contact traction and displace-
ments: see Simoand Laursen and Simo [12] (1993). Two 
convective variables 1x , 2x  in a surface covariant basis 
are used as tangential measure. 

This approach has many advantages: 
 objectivity is straightforwardly observed because 

the surface coordinates are used; 
 geometrical interpretation of a measure – line on a 

surface; geometrical interpretation of a line arized meas-
ure – relative tangent velocity of a contact point; 
 the number of history variables is minimal (two for 

surface interaction); 
 A complex constitutive law for tangent interaction 

can be easily formulated in a robust form for computa-

tion. 
 Expressions for contact tangent matrices are by far 

less complex within the fully covariant approach than for 
direct approach. 

A fully covariant approach, though, is intended for the 
finite element method, but does not assume approxima-
tions from the beginning and it serves to describe all n-
ecessary for solution parameters based on the geometry 
of the contacting bodies in the local coordinate system. 
The method, however, requires a lot of preliminary tran-
sformations based on differential geometry of contacting 
objects (surfaces or even curves) and extensive applica-
tion of the tensor analysis especially for differential op-
eration and linearization. 

3. Development of the Geometrically Exact 
Theory 

The development of the ideas started from formulation of 
contact algorithms in covariant form for non-frictional 
contact in [6], then for frictional contact in [7]. The 
basement of the geometrically exact theory of contact 
interaction with more references is summarized in 
monograph of Konyukhov and Schweizerhof [10]. In 
order to formulate goals and describe the development of 
geometrically exact theory we consider a model contact 
problem with two bodies possessing smooth surfaces as 
well as various geometrical features such as edges and 
vertexes – an example of this is a banana and a knife 
shown in Figure 1. Considering all possible geometrical 
situations in which knife and banana can contact each 
other, the following hierarchical sequence of contact 
pairs is appearing: 

1. Point to point contact pair 
2. Point to curve contact pair 
3. Point to surface contact pair 
4. Curve to curve contact pair 
5. Curve to surface contact pair 
6. Surface to surface contact pair 

 

 

Figure 1. Contact between bodies with complex geometry. 
Various geometrical situations are possible: Surface-To- 
Surface, Curve-To-Surface, Point-To-Curve, Curve-To- 
Curve and Point-To-Point. 

Copyright © 2013 SciRes.                                                                               OJAppS 



A. KONYUKHOV, K. SCHWEIZERHOF 17

3.1. Construction of Kinematics and Numerical 
Algorithms for Various Contact Pairs 

 
geom

riant form for various geo-

) procedures. Thus, fundamental 

ection routines leads to “projection do-

conditions: 

r independent of approxima-

ariant form for arbitrary 

 set of relative motions 

h many publications, they can be sum-
m

nding to a 
ce

n “master-slave” contact al-
go

The following open problems are stated as goals for the
etrically exact theory 

 Development of the unified geometrical formulation 
of contact conditions in cova
metrical situations of contacting bodies leading to contact 
pairs: surface-to-surface, curve-to-surface, point- 
to-surface, curve-to-curve, point-to-curve, point-to-point 
(joint). The description will be fully based on the differ-
ential geometry of specific features forming a continuum, 
because it is carried out in the local coordinate systems 
attached to this feature: this is the Gaussian surface coor-
dinate system in the case of surface; the Serret-Frenet 
basis in the case of a curved line; the coordinate system 
standard for rigid body rotation problem (e.g. via the 
Euler angles) the case of a point in. This general de-
scription is forming a geometrically exact theory for 
contact interaction. 
 A full set of contact pairs requires various closest 

point projection (CPP
problems of existence and uniqueness of closest point 
projection routines corresponding to the following situa-
tions are investigated: point-to-surface, point-to-line, 
line- to-line. 
 A solution of existence and uniqueness problems of 

closest point proj
mains” as the “maximal searching domains“. 
 Derivation of a unified covariant description of 

various applicable methods to enforce contact 
Lagrange multipliers methods, penalty methods, aug-
mented Lagrange multipliers method. Consistent tangent 
matrices are given in closed covariant form possessing a 
clear geometrical structure. 
 Description of all geometrical situations in a co-

variant form which is a-prio
tions of these geometrical features leads to straightfor-
ward numerical algorithms for the implementation with 
any order of approximation for finite elements including 
iso-geometric finite elements.  
 Generalization of classical Coulomb law into a 

complex interface laws in cov
geometry of the surfaces (e.g. coupled anisotropic fric-
tion and adhesion for surfaces).  
 Development of the curve-to-curve contact model 

allowing considering the complete
between curves including a rotational interaction (this is 
a novel in the current theory and has not been possible in 
earlier theories). 

Though, the specific points of the proposed theory are 
developed throug

arized under the unified aim, see more detail in mono-
graph [10]. In order to construct a numerical algorithm 
for a certain contact pair, first of all, it is identified that 

the closest distance between contacting bodies is a natu-
ral measure of the contact interaction. The procedure is 
introduced via the closest point projection procedure 
(CPP), solution of which requires the differentiability of 
the function representing the parameterization of the sur-
face of the contacting body. Analysis of the solvability 
for the CPP procedure, see more in [8], allows then to 
classify all types of all possible contact pairs discussed 
earlier. Starting with a consideration of C2-continuous 
surfaces, the concept of the projection domain is intro-
duced as a domain from which any potential contact 
point can be uniquely projected, and therefore, the nu-
merical contact algorithm can be further constructed. 
This domain can be constructed for utmostC1-continuous 
surfaces. If the surfaces contain edges and vertex then the 
CPP procedure should be generalized in order to include 
the projection onto edges and onto vertexes.  

The main idea for application for the contact is then 
straightforward – the CPPprocedure correspo

rtain geometrical feature gives a rise to a special, in 
general, curvilinear 3D coordinate system. This coordi-
nate system is attached to a geometrical feature and its 
convective coordinates are directly used for further defi-
nition of the contact measures. Thus, all contact pairs 
listed earlier should be described in the corresponding 
local coordinate system. The requirement of the exis-
tence for the generalized CPP procedure leads to the 
transformation rule between types of contact pairs ac-
cording to which the corresponding coordinate system is 
taken. Thus, the all contact pairs can be uniquely de-
scribed in most situations. 

A surface-to-surface contact pair, see Figure 1, is de-
scribed via the well know

rithm based on the CPP procedure onto the surface. 
This projection allows defining a coordinate system as 
follows: 

     1 2 1 2 3 1 2, , ,r x x x x x n x x        (1) 

 1 2,r x xVector  is a vector for the “slave” point, 

 1 2,x x  is a parameterization of the “master” surface, 

 n x x1 2,  is a normal vector to the surface. Equation (1) 

 in fact, a coordinate transformation in which 
e coordinates 1 2 3, ,

 

describes,
convectiv x x x  are used for measure 
of contact interaction: the  first two 1 2,x x  are meas-
ures for the tangent inter nd the third coordinate 

3
action a

x  is a penetration – the measure of normal 
on-penetrability condition. This transformation is valid 

lied only if the solution of the corresponding surface 
CPP procedure exists. Initially, the computational algo-
rithm is constructed for non-frictional contact interaction 
of smooth surfaces. Here the description starts in the co-
ordinate system given in equation (1), however, due to 
the small penetration it is mostly falling into the descrip-

app
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tion in the Gaussian surface coordinate system arising 
from the surface parameterization. All contact parameters 
such as sliding distance and tangent forces are described 
then on the tangent plane. The linearization procedure is 
given in a form of covariant derivatives. This leads to a 
closed form of the tangent matrix subdivided into a main, 
a rotational and a curvature parts. The evolution equation 
for contact tangent tractions should be taken in a form of 
covariant derivatives in order to solve the problem with a 
Coulomb friction. 

3.1.1. Developments within the Theory – Possibility of 
the Iso-geometric Modeling 

therefor stem and, of course, 

ry – Possibility of 
Anisotropic Contact Interfaces 

from nisotropic region 

hm 
If the projection onto the surface does not exist the

ce of low

Since all algorithms are formulated in covariant and, 
e, independent on coordinate sy

on types of approximations, the high-order and iso-geo- 
metric formulation is just straightforwardly applicable. 
Both Mortar methods with penalty regularization and 
with Lagrange multipliers are applied. Even the anisotropic 
enrichment of the approximation keeping mixed linear 
and high order approximation in one finite element is 
possible. As a result a contact layer element allowing 
anisotropic p−refinement is created. A good correlation 
with the analytical Hertz problem is achieved even 
within a single contact layer element. 

3.1.2. Developments within the Theo

A systematic generalization of a contact interface law 
the Coulomb friction law into the a

in a covariant form including various knownvisco-elasto- 
plastic mechanical models is derived. Thus, a coupled 
model including anisotropy for tangential adhesion and 
for friction is obtained. These models formulated via the 
principle of maximum dissipation in a rate form. Finally, 
the computational model is derived via the application of 
the return-mapping scheme to the incremental form. As a 
result a frictional force is derived in a closed form in-
cluding both, the adhesion and the friction tensors. The 
structure of structural and friction tensors are derived for 
various types of anisotropy: a uniform orthotropic of a 
plane given by the spectral decomposition, a non-uni- 
form orthotropic of a plane inherited with the polar coor-
dinate system and a spiral orthotropic of a cylindrical 
surface. The update algorithm for history variables is 
developed for the arbitrary coupled anisotropy. The 
geometrical interpretation of the return-mapping and the 
update algorithm is considered via the ellipse on the tan-
gent plane onto which a contact slave point is projected 
in the case of elastic sticking behaviour. 

3.1.3. Curve-To-Curve Contact Algorit
n it is 

necessary to consider step-by-step the existen er 

in hierarchy CPP i.e. onto the curve and then onto the 
point. The solution of generalized CPP including all geo- 
metrical exists in case of regular geometry. Consideration 
of the existence of the CPP procedure for curve allows 
defining then the point-to-curve contact algorithm used 
for the curve-to-surface contact pair in the corresponding 
curve Serret-Frenet coordinate system, which is con-
structed as follows: 

   , , ( ) ,r s r s re s             (2) 

Here, the vector  , ,r s r   
sis a param

ector des

is describing 
from the surface, eterization o
cu

a “slave” point 
f the “master” 

rve edge; a unit v cribing the shortest distance 
     , ( ) cos ( )sine s s s       is written via the unit 

normal  s  and bi-normal ( )s  of the curve. The 
sures: r – for normal 

interacti – for tangential interaction; 
convective coordi s mea

on; s 
nates used a

  – for rota-
tional interaction. The Curve-To-Curve contact pair re-
quires the projection on both curves, ther ore, there is 
no classical “master” and “slave” and both curves are 
equivalent. For the description one of two coordinate 
systems is taken assigned to the I-th curve: 

 2 1 1 1 1 1 1 1( , , ) ( ) ,s r s re s

ef

           (3) 

Here, the vector  2 1 1, ,s r   
e second curve

is a vector d
contact point of th ,

escribing a 
 1s  is a pa

tio
rameteriza-

n of the first curv tor describing the short-
est distance 

e; a unit vec
 1 1 1,e s   is written agai via the unit normal 

and bi-normal vectors of the first curve as in equation (2).
Equation (3) es the motion of the second contact 
point in the coordinate system attached to the first curve. 
Description is symmetric with respect to the choice of the 
curve choice 1 to 2.  

The Point-To-Point contact pair is described then in a 
coordinate system sta

n 
 

describ

ndard for rigid body rotation prob-
le

 the Closest Point Projection 
(C

n curves can be considered con-

m (e.g. via the Euler angels), however in the contact 
situation is very seldom case, and in computations it is 
rather improbable unless specially treated, and therefore, 
because of the numerical rounding error would fall into 
other contact pair types. 

The construction of the curve-to-curve contact pair 
begins consistently with

PP) procedure providing a shortest distance between 
curves as a natural measure of normal contact interaction. 
The CPP procedure leads to a special local coordinate 
system in which convective coordinates are used directly 
as measures of contact interaction between curves: nor-
mal, tangential and rotational. Several achievements appear 
to be novel for the curve-to-curve contact description: 
 consideration of any relative motion separately for 

each curve is possible; 
 Rotational interactions including corresponding ro-

tational moments betwee
sistently. 

Copyright © 2013 SciRes.                                                                               OJAppS 



A. KONYUKHOV, K. SCHWEIZERHOF 19

The Coulomb friction law for tangential interaction and 
the Teresa friction law for rotational interaction are eas-
ily

ac
Contact Algorithm 

du ce-To-Surface contact algo-

 segment: all kinematical parameters are con-

he surface; 

ace coordinate system. 

o-Surface con-
ta

 considered as examples for constitutive relations be-
tween curves. All necessary linearizations for the itera-
tive solution scheme are provided as covariant derivation 
in the introduced coordinate system for arbitrary large 
distances between curves. This leads to a closed form of 
tangent matrices independent of the approximation used 
for the finite elements. The verification of the algorithm 
contains the comparison between beam-to-beam and edge- 
to-edge finite element models as well as verification with 
a famous “Equilibrium of Euler elastic problem” com-
puted via finite difference scheme see details in [9]. 

4. Further Development – Curve-To-Surf e 

The Curve-To-Surface contact pair is constructed in a 
al fashion via the Surfa

rithm if we consider a “slave”point on the curve and pro-
ject it onto the “master” surface, see Figure 2. This spe-
cial dual consideration of contact both in the surface co-
ordinate system in equation (1) and in the curve coordi-
nate system in equation (2) allows building the 
Curve-To-Surface contact algorithm. In this algorithm all 
contact parameters are defined, first, in the local surface 
coordinate system equation (1) attached to the surface, 
after fulfilling the surface CPP procedure, and then they 
should be projected into the curve coordinate system 
equation (2), see Figure 2. The kinematics of the 
Curve-To-Surface contact interaction is formulated as 
follows: 
 A set of contact points (integration points) is set on 

the curve
sidered then in the Serret-Frenet curve coordinate sys-
tem; 
 The contact point (integration points) is projected 

onto t
 At each point all kinematical parameters are con-

sidered in the surf
The combination of both Curve-To-Curve and Surface- 

To-Surface strategies leads to the Curve-T
ct algorithm which is constructed as follows. The short- 

est distance between integration points and the surfaces 
 

 

Figure 2. Both a surface coordinate system and a cu
coordinate system are employed to define all characte
of the Curve-To-Surface contact pair. 

n

rve 
stics ri

are considered as penetration. Now the Closest Point 
Projection (CPP) procedure as the projection onto the 
surface plays the main role. In general, Newton method is 
exploited to solve the CPP procedure defining then a 
point on the surface and the penetration between this 
surface and the selected contact (integration) point S. 
Kinematical relations during the contact can be obtained 
dually considering the relative velocity of the contact 
point during contact: 

• normal relative velocity during contact 

nv 1( _ )v s v                  (4) 

x

• pulling relative velocity 

(p iv  ) i   


               (5) 

• dragging relative velocity 

x( )d iv g i   


               (6) 

The corresponding normal, pulling and dragging forces 
are formulated in the curve Serret-
te

The overview of the geometrically exact theory of the 
and recent development can be sum- 

 laws 

Frenet coordinate sys-
m. The result of the linearization is taken as if provided 

in the surface coordinate system to carry out analysis for 
the deformed surface parameters and as if provided in the 
curve Serret-Frenet coordinate system to apply for all 
curve parameters. 

5. Conclusions 

contact interaction 
marized as follows: 
 Consideration of contact between bodies from geo- 

metrical point of view allows to study systematically all 
possible geometric contact cases: contact between sur-
faces, edges, beams; 
 The basis of the theory is the formulation of all pa- 

rameters in a local coordinate system inherited with a 
corresponding closest point projection (CPP) procedure; 
 Surface-To-Surface contact pair is considered in the 

surface coordinate system of the “master” body. 
 Curve-To-Curve contact pair is considered equiva- 

lently in both curveSerret-Frenet coordinate systems at- 
tached to both curves. There is no specific choice of the 
master and the slave in this case.   
 A novel Curve-To-Surface is constructed dually in 

both surface and curve coordinate system. Normal, pull- 
ing and dragging velocities and corresponding forces are 
specified in the curve coordinate system. Linearization 
result should be transferred to both surface and curve 
coordinate system.  
 All known constitutive relations (for elasticity and 

plasticity) can be carried into metrics giving a rise to a 
new contact interface
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