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Abstract. Pentamode materials are artificial solids with elastic properties that
approximate those of isotropic liquids. The corresponding three-dimensional
mechanical metamaterials or ‘meta-liquids’ have recently been fabricated.
In contrast to normal liquids, anisotropic meta-liquids are also possible—a
prerequisite for realizing many of the envisioned transformation-elastodynamics
architectures. Here, we study several possibilities theoretically for introducing
intentional anisotropy into three-dimensional pentamode metamaterials. In static
continuum mechanics, the transition from anti-auxetic pentamode materials to
auxetics is possible. Near this transition, in the dynamic case, approximately
uniaxial versions of pentamode metamaterials deliver anisotropic longitudinal-
wave phase velocities different by nearly a factor of 10 for realistically accessible
microstructure parameters.
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1. Introduction

Normal liquids are hard to compress but easy to deform. Thus, their elastic bulk modulus is
finite, while their shear modulus is negligible. This property makes wave propagation inside
isotropic liquids fairly simple in that there is only one mode of propagation, i.e. longitudinal
compression waves like for sound in air. The other five (‘penta’) possible shear-related
transverse modes are absent or, formally, they have zero frequency [1, 2]. In this sense, liquids in
three dimensions are pentamode materials. For an ideal isotropic pentamode material, the shear
modulus is nearly zero, hence Poisson’s ratio approaches +0.5 from below. In contrast, for an
ideal three-dimensional isotropic auxetic material [3–5], the ratio of shear to bulk modulus tends
to infinity; hence Poisson’s ratio approaches −1.0 from above. Thus, a pentamode material can
be seen as an ‘anti-auxetic’.

Following a theoretical suggestion by Milton and Cherkaev [6], pentamode materials
can also be approximated by special three-dimensional solid microstructures. This idea opens
up several new possibilities. Firstly, such microstructures do not ‘flow away’ and, thus,
intentionally spatially inhomogeneous meta-liquids become possible. This aspect of tuning the
local elastic wave parameters has recently been studied theoretically [20, 21]. Secondly, again
in sharp contrast to normal liquids, such microstructures can be made intentionally anisotropic,
i.e. the longitudinal wave velocity would depend on the propagation direction. Anisotropy is
crucial for realizing several theoretical suggestions for transformation-elastodynamics [7–12]
architectures by which, e.g., three-dimensional mechanical or acoustic free-space cloaks could
become a reality. Experiments for the simpler two-dimensional case have been presented
previously [13–19].

In their pioneering 1995 work [6], Milton and Cherkaev have also already suggested that
pentamode metamaterials could, in principle, be made anisotropic. However, we are not aware
of any study actually addressing this possibility quantitatively. The aim of the present paper is to
fill this gap, i.e. to provide a guide to experimentalists as to what range of effective anisotropies
is realistically accessible by adjusting the pentamode microstructure unit cell.

2. Anisotropy by moving P along the space diagonal

Figure 1(a) exhibits the extended face-centered-cubic (fcc) unit cell of a pentamode
metamaterial with lattice constant a for parameters corresponding to our recent
experiments [20]. The structure is composed of double cones touching each other at their
thin ends. These connection points form a diamond lattice, which is composed of two fcc
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Figure 1. (a) The extended fcc unit cell of an isotropic pentamode metamaterial
in which double cones touch at points forming a diamond lattice. The
geometrical parameters correspond to our recent experiments [20]. We indicate
the small diameter of the double cones d, their large diameter D and an fcc
lattice constant of a. In the isotropic case, this leads to a double cone length of
h =

√
3/4 a. For reference, the Cartesian xyz coordinate system used is also

indicated at the lower right-hand side corner of the cube. In panel (a), as is
usual for a diamond lattice, the connection point P corresponds to p = 25%.
Panels (b) and (c) illustrate two examples of anisotropic versions of pentamode
metamaterials in which P has been moved along the space diagonal. (b) p =

15% and (c) p = 42%. This shifting leads to a reduced crystal symmetry and to
more anisotropic wave propagation.

sub-lattices shifted with respect to each other by 25% of the cube’s space diagonal along the
space diagonal. This diamond lattice leads to isotropic wave propagation of longitudinally
polarized (i.e. compression-like) modes in three dimensions [21]. It is clear that this diamond-
like structure can be made more anisotropic in a large number of different ways. Milton and
Cherkaev suggested shifting one of the connection points, for example the point P in figure 1(a)
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located at p = 25% of the space diagonal of the fcc cube, along the space diagonal. This means
that the point P has the Cartesian coordinates (p a, p a, p a). In panel (b) p = 15% and in (c)
p = 42%. Here, we have kept the diameter of the thin ends of the cones, d , and that of the thick
parts, D, as well as the location of all other connection points within the primitive unit cell fixed.
Of course, the length of all double cones does change upon moving P .

A convenient and relevant way of obtaining an overview of the resulting elastic behavior
is to inspect the phonon band structure. All structural changes discussed in this paper leave
the shape and size of the pentamode metamaterial primitive unit cell, hence the translational
lattice, unaffected, but they do change the content of the primitive real-space unit cell and, thus,
change the crystal symmetry. It is clear from the geometry that one can expect a different wave
velocity for propagation along the fcc cube’s space diagonal than for directions perpendicular
to that axis. It is not obvious, however, how much anisotropy can be expected quantitatively.
To calculate the phonon band structure, as in our previous work [21], we numerically solve
the elastodynamic eigenvalue problem for the displacement vector Eu by imposing Bloch-
periodic boundary conditions onto Eu with respect to the primitive fcc unit cell. We use the
commercial finite-element software package Comsol Multiphysics. For a typical meshing, the
maximum element size is 0.025a and the minimum element size 0.0008a. Typically, this leads
to approximately 105 tetrahedra. All the resulting band structures depicted below have been
checked for convergence. To allow for a direct connection to our previous work [20, 21], we
use one specific set of parameters. For the constituent material, we choose Young’s modulus as
3 GPa, Poisson’s ratio as 0.4 and the mass density as 1190 kg m−3. These parameters describe
a typical polymer. For the geometrical structure parameters, we choose the small diameter
d = 0.55 µm (see figure 1(a)), the large diameter D = 3 µm and an fcc extended unit cell
lattice constant of a = 37.3 µm. In the isotropic pentamode metamaterial case, this lattice
constant corresponds to a double cone length of h =

√
3/4a = 16.15 µm. However, as argued

previously [21], the scalability of the elastodynamic equations allows us to easily translate
these results to other size regimes and/or to different elasticities. For example, multiplying
all geometrical parameters by a factor of 1000 decreases the absolute frequencies by 1000 and
increases the wavelengths by 1000. Multiplying the elasticity tensor by, e.g., 100 increases the
frequencies by a factor of 10. Poisson’s ratio of the constituent material previously had very
little if any influence and is thus kept constant in the present study.

Panels (a)–(c) of figure 2 depict calculated band structures for different positions of P on
the fcc cube’s space diagonal. The frequency is given in units of MHz on the right-hand side
vertical scale and in more universal normalized units on the left-hand side vertical scale. Here,
λ is the air wavelength for a standard air sound velocity of 343 m s−1 and a is the fcc lattice
constant (see figure 1(a)). In each of panels (a)–(c), the left-hand side half shows wave vectors
along the cube’s space diagonal (i.e. the (1, 1, 1) direction) and the right-hand side wave vectors
pointing along one particular orthogonal direction, i.e. the (−1, 1, 0) direction. For small wave
numbers, the dispersion of the lowest branches can be well approximated by straight lines. Their
slope multiplied by 2π (to obtain angular frequencies ω) is the corresponding constant phase
velocity. The corresponding fitted straight lines are also depicted in figure 2. The chosen line
color encodes the polarization of the wave. Green color of a straight line indicates a transversely
polarized mode and red color a longitudinally polarized mode. This polarization has been
determined by inspecting the character of the underlying modes (not depicted; for comparison
see figure 3 in [21]). Precisely, we calculate the dot and the cross product of the wave vector
and the displacement vector, i.e. Ek · Eu and Ek × Eu, in the long-wavelength limit. Zero dot product
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Figure 2. Left column: calculated band structures for three anisotropic
pentamode structures (compare figures 1(b) and (c)). (a) p = 15%, (b) p = 31%
and (c) p = 42%. The straight lines are fits to the lowest dispersion branches
in the long-wavelength (or small |Ek|) limit. Red (green) line color indicates
a longitudinally (transversely) polarized mode. Right column: extracted phase
velocities (in units of m s−1) in a plane normal to the fcc cube’s space diagonal,
i.e. the (1, 1, 1) direction. Red and green colors denote the polarization as
before.
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Figure 3. Phase velocities of longitudinally (red) and transversely (green)
polarized modes as extracted from calculations like the ones shown in figure 2 as
a function of the position of the point P along the fcc cube’s space diagonal
(compare figure 1). For the red-shaded region, the structure behaves like a
pentamode metamaterial with positive Poisson’s ratio, i.e. ν > 0. At around a
position of p = 33.3%, the Poisson’s ratio crosses zero, indicating a transition
from a pentamode or anti-auxetic metamaterial to an auxetic metamaterial. This
aspect is further illustrated in figure 4 for the static case and for parameters
corresponding to the three blue circles.

indicates a transversely polarized mode and zero cross product a longitudinally polarized mode.
Longitudinal polarization corresponds to a compression-like wave propagation like, e.g., for
sound in air or in a liquid, and transverse polarization to a shear-like wave, which should be
absent in an ideal liquid.

For applications in transformation elastodynamics, one might want uniaxial behavior, i.e.
one phase velocity for propagation along a Ec-axis and a different phase velocity that is the
same for all perpendicular propagation directions. To investigate this aspect, the right-hand
side column of figure 2 shows the phase velocities for propagation in a plane perpendicular
to the cube’s space diagonal in the form of a polar diagram. For an ideal uniaxial behavior, the
red longitudinally polarized waves should appear as circles in the polar diagram. Obviously,
we obtain nearly perfect circles for p = 15% in figure 2(a), but deviations for the two other
cases p = 31 and 42% in panels (b) and (c) of figure 2, respectively. Possibly, one obtains
circles in the limit of vanishing shear, i.e. in the limit of d/a → 0. However, due to numerical
constraints, we can presently not access yet smaller ratios of d/a. For an ideal meta-liquid, the
green transversely polarized (shear-like) modes should have zero phase velocity. The green data
in the right-hand side column of figure 2 indeed show that we have approached this ideal.

We have performed similar band-structure calculations for many other positions of the
point P on the cube’s space diagonal. The results are summarized in figure 3. Here, we plot the
phase velocities c of the longitudinally polarized (index ‘L’ and again red color) and transversely
polarized (index ‘T’ and again green color) modes for wave propagation along the cube’s space
diagonal (1, 1, 1) and for one selected perpendicular direction (as indicated in the legend). Note
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that the case p = 1/3 ≈ 33.3% is a special geometry. At this point, three of the four double-
cone elements within the primitive unit cell lie in one plane and the fourth double-cone axis is
perpendicular to the other three. For p = 33.3% numerical convergence of the complete band
structure is difficult; hence we have rather chosen p = 31% in figure 2. The data shown in
figure 3 are converged around 33.3% however. When moving the position of the point P from
p = 0 to 33.3% (see the red shaded region), one longitudinal velocity decreases monotonically
whereas the other one increases monotonically. The two curves obviously cross at p = 25%,
which corresponds to the diamond-type pentamode metamaterial. Above this point, the ratio of
the two velocities becomes fairly large, while both branches are still reasonably well separated
from the velocities of the green transversely polarized (shear-like) modes. Recall that these
green branches should be at zero velocity for an ideal anisotropic artificial liquid. From an
experimental viewpoint, the region between p = 25 and 33.3% appears especially attractive.
Herein, fairly small and easily realizable structure changes (also compare figure 1) induce
significantly different longitudinal phase velocities. Toward the geometrically special case,
p = 33.3%, the ratio of the longitudinal-mode velocities approaches a factor of 10. However,
at this point, the slower (red) longitudinal mode is no longer very well separated from the
yet lower-velocity (green) transverse modes. Yet larger ratios are expected to be possible, in
principle, by reducing the ratio of d/a, which, however, has already been 0.55/37.3 µm ≈ 1/68
in figure 3. Significantly smaller ratios of d/a do not appear to be in reach experimentally
and would also pose severe problems with respect to the convergence of the numerical band-
structure calculations.

At p = 33.3%, we find extrema for both red velocities versus the position of the point
P , indicating a special mechanical behavior or a transition at this geometrically special point.
To further investigate this aspect, we have performed additional static continuum-mechanics
calculations. Following our previous work [20–22], again using the software package Comsol
Multiphysics, we extract Poisson’s ratio for the three structures corresponding to the three blue
circles in figure 3 that are below, near and above the transition point, respectively. The actual
numerical calculations are based on pentamode structures composed of 3 × 3 × 3 = 27 extended
fcc unit cells, equivalent to 108 primitive unit cells. The shown Poisson’s ratio corresponds
to the average contraction (or extension) in the (1, 1, −2) direction when pushing along the
(1, 1, 1) direction [22]. Note that for an anisotropic structure Poisson’s ratio depends on the
pushing direction and turns into a tensor of rank 2 [23]. Mathematically, this corresponds to a
3 × 3 matrix with all diagonal elements being −1 by definition. Thus, the diagonal elements are
not really physically meaningful Poisson’s ratios. The meaningful off-diagonal elements of the
Poisson’s ratio tensor can lie outside the interval [−1.0, 0.5] for stable anisotropic structures
[23, 24]. The results are visualized in figure 4, where only a part of the overall pentamode
structure is shown in each case. For clarity, we have rotated the pentamode structure such that
the fcc cube’s space diagonal in figure 1 corresponds to the vertical direction in figure 4 (also
see coordinate systems in the middle). In panel (a) p = 15%. Upon exerting a force along the
vertical or (1, 1, 1) direction, the structure expands along the horizontal direction (see black
arrows), meaning a positive Poisson’s ratio. In panel (b) for p = 31%, very little horizontal
expansion is found, corresponding to near-zero Poisson’s ratio (see black arrows). In panel
(c), for p = 42%, the horizontal contraction highlighted by the black arrows corresponds to
a negative Poisson’s ratio. We conclude that the extremal phase velocities found in figure 3
around p = 33.3% originate from the transition of the structure from a pentamode or anti-
auxetic metamaterial to an auxetic metamaterial.
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Figure 4. Illustrations of static continuum-mechanics calculations corresponding
to the three configurations indicated by the three blue circles in figure 3, i.e. (a)
p = 15%, (b) p = 31% and (c) p = 42%. The left-hand side column depicts
a characteristic part of the structure and the vertical pushing direction. Note
that the coordinate system shown in the middle is rotated with respect to that
used in figure 1. The right-hand side column shows the undistorted structure
(hollow) and the structure distorted by the imposed stress on a false-color scale.
The color at each point encodes the modulus of the displacement of that point
in normalized units. Note that the displacement has intentionally been largely
exaggerated. In contrast, the calculations have all been performed in the linear
regime. Upon exerting a force EF as indicated, the structure expands along the
horizontal direction in (a), does not move horizontally in (b) and contracts along
the horizontal in (c). This indicates a Poisson’s ratio ν of (a) ν = 0.9 > 0 (anti-
auxetic), (b) ν = 0.1 ≈ 0 and (c) ν = −0.4 < 0 (auxetic).

At around p = 42%, the two red curves in figure 3 cross again. Note, however, that the
overall behavior is not really a crossing point; it is rather a crossing range, because the phase
velocity for propagation perpendicular to the space diagonal is not constant. This can be seen
from the corresponding red curves in the right-hand column of figure 2(c).
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Figure 5. (a) Extended fcc unit cell of a pentamode metamaterial with lattice
constant a like in figure 1(a) and p′

= 25%. Here, the x coordinate of the
connection point P is at x = 25% × a. In panel (b) p′

= 5% and in panel (c)
p′

= 49%.
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Figure 6. The same as figure 2, but the connection point P is shifted along the
(1, 0, 0) direction instead of the (1, 1, 1) direction. P is placed at (a) p′

= 14%,
(b) p′

= 30% and (c) p′
= 42.5%.

3. Anisotropy by moving P along the cubic axes

Shifting the connection point P along the fcc cube’s space diagonal as discussed in the
previous section is just one out of infinitely many possibilities to make the isotropic pentamode
metamaterial in figures 1(a) or 5(a) effectively anisotropic. In this section, we discuss a second
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Figure 7. The same as figure 3, but the connection point P is shifted along the
(1, 0, 0) direction instead of the (1, 1, 1) direction.

set of possibilities. We shift the connection point P in figure 1(a) along the x or (1, 0, 0)
direction. This means that the point P has the Cartesian coordinates (p′ a, 0.25 a, 0.25 a).
By symmetry, this is equivalent to shifting it along −x or along any of the other principal
directions ±y or ±z. Two possible magnitudes of the shift are illustrated in panels (b) and (c) of
figure 5. For reference, panel (a) repeats the regular pentamode metamaterial as in figure 1(a).
The results depicted in figures 6 and 7 are the counterparts of those shown in figures 2 and 3
and discussed in the previous section. Broadly speaking, the effects of shifting P along (1, 0, 0)
are less pronounced than for shifting it along the space diagonal (1, 1, 1). The realistically
accessible ratios of the (red) longitudinal phase velocities shown in figure 7 approach a factor
of 4 near a position of 45%. While the (green) transverse velocities are yet smaller, the structure
modifications are fairly drastic at this point already (compare figure 5(c)). Thus, this option
appears less attractive to us compared to the shift along the space diagonal (the previous section).

We briefly mention that we have also investigated the possibility of leaving all double-
cone connection points at their diamond positions but changing the diameter of the thin end
of selected cones. The resulting anisotropies in the phase velocities of the longitudinal modes
are yet smaller (not depicted). Furthermore, such a realization of anisotropy will likely be less
tolerant to fabrication imperfections as the metamaterial behavior would depend on the precise
shape of the tiny connection region. In contrast, the structure changes discussed in the previous
section should be more robust against experimental fabrication imperfections.

4. Conclusion

In conclusion, pentamode metamaterials can be seen as artificial fluids or meta-fluids for which
the shear-like transversely polarized propagation modes have velocities that are small compared
to those of the longitudinally polarized compression-like propagation modes. In contrast to
normal liquids, pentamode metamaterials can be made intentionally spatially inhomogeneous
and intentionally anisotropic with regard to the phase velocity of the compression-like modes.
Here, we have calculated band structures of anisotropic versions of pentamode metamaterials
for the first time. A systematic variation of parameters has been discussed. For realistically
experimentally accessible parameters, the transverse phase velocities can be made different by
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nearly an order of magnitude, while the smaller longitudinal velocity is still larger than all
transverse velocities, but just by a factor of about 2 in the worst case. Yet larger anisotropy ratios
may be desirable for implementing transformation elastodynamics architectures, e.g. three-
dimensional free-space cloaks. Such larger anisotropies are possible in principle, but would
require yet much smaller diameters of the double-cone connection regions of the pentamode
metamaterials. In the present study, the connection diameter has already been nearly two orders
of magnitude smaller than the lattice constant a of one extended fcc unit cell. The magnitude
of the accessible mechanical property changes becomes especially prominent in the static limit.
For example, upon moving just one connection point in the diamond lattice of connection points
of double-cone elements along the space diagonal, a transition from an anti-auxetic to an auxetic
metamaterial is induced.
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[3] Milton G W 1992 J. Mech. Phys. Solids 40 1105
[4] Greaves G N, Greer A L, Lakes R S and Rouxel T 2011 Nature Mater. 10 823
[5] Milton G W 2012 J. Mech. Phys. Solids at press (http://dx.doi.org/10.1016/j.jmps.2012.08.011)
[6] Milton G W and Cherkaev A V 1995 J. Eng. Mater. Technol. 117 483
[7] Milton G W, Marc B and John R W 2006 New J. Phys. 8 248
[8] Norris A N 2008 Proc. R. Soc. Am. 464 2411
[9] Norris A N 2009 J. Acoust. Soc. Am. 125 839

[10] Brun M, Guenneau S and Movchan A B 2009 Appl. Phys. Lett. 94 061903
[11] Scandrett C L, Boisvert J E and Howarth T R 2010 J. Acoust. Soc. Am. 127 2856
[12] Gokhale N H, Cipolla J L and Norris A N 2012 J. Acoust. Soc. Am. 132 2932
[13] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[14] Farhat M, Guenneau S and Enoch S 2009 Phys. Rev. Lett. 103 024301
[15] Popa B-I, Zigoneanu L and Cummer S A 2011 Phys. Rev. Lett. 106 253901
[16] Dupont G, Farhat M, Diattac A, Guenneau S and Enoch S 2011 Wave Motion 48 483
[17] Torrent D and Sánchez-Dehesa J 2011 Wave Motion 48 497
[18] Garcia-Chocano V M, Sanchis L, Diaz-Rubio A, Martinez-Pastor J, Cervera F, Llopis-Pontiveros R and

Sánchez-Dehesa J 2011 Appl. Phys. Lett. 99 074102
[19] Stenger N, Wilhelm M and Wegener M 2012 Phys. Rev. Lett. 108 014301
[20] Kadic M, Bückmann T, Stenger N, Thiel M and Wegener M 2012 Appl. Phys. Lett. 100 191901
[21] Martin A, Kadic M, Schittny R, Bückmann T and Wegener M 2012 Phys. Rev. B 86 155116
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