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Abstract: A detailed analysis of the B-spline Modal Method (BMM)
for one- and two-dimensional diffraction gratings and a comparison to the
Fourier Modal Method (FMM) is presented. Owing to its intrinsic capability
to accurately resolve discontinuities, BMM avoids the notorious problems
of FMM that are associated with the Gibbs phenomenon. As a result, BMM
facilitates significantly more efficient eigenmode computations. With regard
to BMM-based transmission and reflection computations, it is demonstrated
that a novel Galerkin approach (in conjunction with a scattering-matrix
algorithm) allows for an improved field matching between different lay-
ers. This approach is superior relative to the traditional point-wise field
matching. Moreover, only this novel Galerkin approach allows for an
competitive extension of BMM to the case of two-dimensional diffraction
gratings. These improvements will be very useful for high-accuracy grating
computations in general and for the analysis of associated electromagnetic
field profiles in particular.
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1. Introduction

Transmittance and reflectance computations from periodic photonic structures such as diffrac-
tion gratings and photonic crystals are of considerable interest as appropriately designed struc-
tures facilitate a far-reaching control over light propagation and light-matter interaction [1]. The
Fourier Modal Method (FMM) represents a standard tool for such type of computations [2].

In this work, we analyze the B-spline Modal Method (BMM) which uses the general idea that
underlies FMM but instead of a Fourier basis it uses a B-spline basis. As a matter of fact, the
basic approach of modal methods such as FMM or BMM is that, in propagation direction, the
structure of interest is approximated by several layers, where each layer is homogeneous along
the stacking direction, e.g., the z-direction. This allows, in each layer, a plane wave ansatz eiλz

for the z-dependence that transforms Maxwell equations in frequency domain into an eigen-
value problem for the corresponding propagation constants λ and associated eigenmodes. This
eigenvalue problem is solved for all eigenmodes and the electromagnetic field is expanded into
these eigenmodes. Different layers are subsequently connected via a scattering-matrix algo-
rithm that utilizes the continuity conditions for the tangential E- and H-field across the interface
between adjacent layers [3]. In essence, this procedure reconstructs the electromagnetic field in
the entire structure.

The main difference between FMM and BMM is that the FMM uses a Fourier basis for
discretizing the eigenvalue problem while the BMM uses B-splines. The use of a finite Fourier
basis in FMM is problematic because a finite Fourier series will always be infinitely many times
continuously differentiable, and therefore, the FMM is unable to accurately represent cusps or
discontinuities in the fields. Away from material interfaces, this is not a problem because there
the fields themselves are infinitely many times continuously differentiable but at interfaces the
fields naturally become discontinuous or at least are no longer continuously differentiable. To
overcome this problem, we use a finite B-spline basis which is smooth away from any interface
but can represent cusps and discontinuities at interfaces as detailed below. Naturally, B-splines
have already been used successfully for modelling electromagnetic fields and their properties
at interfaces in other works, e.g., see [4–6]. In particular, Bouchon et al. [5] have recently intro-
duced B-splines for use in one-dimensional grating computations based on a point-wise field
matching within the scattering-matrix algorithm. In this work, we show that a novel Galerkin
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approach to the field matching considerably improves accuracy and efficiency of BMM com-
putations for one-dimensional gratings. We further show how this Galerkin approach facilitates
the extension of BMM to two-dimensional gratings. A detailed comparison with corresponding
FMM computations suggests that BMM with Galerkin-based field matching is a competitive
alternative to FMM.

The paper is organized as follows: In Sec. 2, we introduce the B-spline basis and develop
in Sec. 3 the theoretical framework of BMM for both one- and two-dimensional systems along
with corresponding numerical results. We close with a discussion and an outlook in Sec. 4.

2. B-splines

In a nutshell, B-splines are localized piecewise polynomial functions with conveniently ad-
justable (non)-continuous derivatives. In our implementation, we use B-splines as defined by
the recurrence relation of de Boor and Cox [7, 8]. An overview of B-spline techniques can, for
example, be found in [9].

Specifically, a one-dimensional B-spline of degree n is a function that is defined piecewise by
polynomial segments of degree n between adjacent knots ti. At single knots, the B-splines seg-
ments are connected so that the first (n−1) derivatives are continuous. The general advantage
of B-splines is that one can place m knots on top of each other, i.e., a single knot may exhibit a
multiplicity m. Then, only the first (n−m) derivatives are continuous. The idea here is to place
several knots at material interfaces and to use only single knots away from interfaces. Then,
the B-splines can model cusps or jumps at interfaces while still being many times differentiable
away from interfaces.

Fig. 1. B-splines N n
i of degree n= 2 defined over a knot sequence ti with a degenerate knot

at x = t4 = t5. The blue B-splines are continuously differentiable everywhere, whereas the
green B-splines, N 2

2 and N 2
4 , have discontinuous derivatives at the degenerate knot. The

red B-spline N 2
3 is continuous but not differentiable at the (m = n)-fold knot (left picture)

and if an additional knot t̂6 is inserted (right panel) splits into two discontinuous B-splines,
ˆN 2
3 and ˆN 2

4 , featuring a jump at the additionally inserted knot.

The left of Fig. 1 displays B-splines of degree n = 2 with a knot of multiplicity m = n,
i.e., already the first derivative has a discontinuity at x = t4 = t5—and this is the position at
which we assume a material interface to be located. As mentioned above, these discontinu-
ities are the major difference to a Fourier basis which is infinitely many times differentiable.
Together, the set of all B-splines of degree n forms a basis for all piecewise polynomial func-
tions of degree less or equal n which exhibit the same smoothness properties at the knots,
i.e., they are at least (n−m) times continuously differentiable. Such a function f (x) is given by
the expansion f (x) = ∑N

i=1 ciN n
i (x) where ci are the expansion coefficients and N denotes the

number of B-splines.
Since the B-splines form a basis for all piecewise polynomial functions that comply with

#187591 - $15.00 USD Received 25 Mar 2013; accepted 15 May 2013; published 13 Jun 2013
(C) 2013 OSA 17 June 2013 | Vol. 21,  No. 12 | DOI:10.1364/OE.21.014683 | OPTICS EXPRESS  14685



the smoothness properties at the knots, adding an additional knot extends the function space so
that the original function space is fully contained in the extended space. Hence, adding a knot
to an already existing knot sequence generates new B-splines ˆN n

i which (i) can still exactly
represent all the original B-splines and (ii) acquire the extra freedom that one further derivative
may be discontinuous at the newly inserted knot. Therefore, it is possible to add knots into an
already existing knot sequence and calculate new coefficients ĉi in terms of the original ones by
using a knot insertion algorithm [9, Chap. XI]. Then, the new and the old coefficients represent
exactly the same function, e.g.,

f (x) =
N

∑
i=1

ciN
n

i (x) =
N+1

∑
i=1

ĉi ˆN n
i (x) . (1)

In this work, we only need to add one additional knot to an already n-fold knot, creating an
(n+1)-fold knot as depicted in Fig. 1. This is a simplified case where the knot insertion simply
splits a B-spline Nk into two new B-splines ˆNk and ˆNk+1 (k = 3 in the example depicted in
Fig. 1). All the other B-splines remain unchanged—with the exception of a shift of index by
one. The new coefficients are then given by

ĉi =

{
ci for i ≤ k ,

ci−1 for i ≥ k+1 .
(2)

In other words: The old coefficient ck is used twice since its corresponding B-spline Nk is split
into ˆNk and ˆNk+1. In the general case, adding a knot would alter all (n+ 1) B-splines which
reach over the new knot and recalculating the coefficients would be more complicated.

In our case, we use the knot insertion algorithm because we have to deal with fields that
exhibit different smoothness properties. For instance, the Hy-field in Sec. 3.1 exhibits a cusp at
material interfaces for constant values of x but the Ex-field which is computed from the Hy-field
in Sec. 3.2 features a discontinuity. Therefore, an additional knot has to be inserted into the
B-spline basis.

3. B-spline modal method for one-dimensional gratings

Within BMM, we use B-splines as basis functions with multiple knots placed at every inter-
face. This ensures that the smoothness conditions of the fields can be modeled. In Sec. 3.1, we
first analyze a single one-dimensional layer and show how to discretize the eigenvalue problem
using a Galerkin choice. We compare the convergence of our calculated guided eigenmodes
with the convergence of the FMM eigenmodes. Next, in Sec. 3.2, a scattering-matrix algorithm
is used to match the fields across adjacent layers. Following our Galerkin approach, this leads
to non-square matrices which are inverted using special techniques. Again, a numerical com-
parison to the FMM is given. Finally, in Sec. 3.3, we present the eigenvalue problem for a
two-dimensional layer which differs qualitatively from the FMM since in the BMM a product
of operators cannot be discretized by discretizing both operators separately.

3.1. One-dimensional layers

For a one-dimensional problem neither the material distribution nor the resulting fields depend
on the y-coordinate. Further, the system is homogeneous in z-direction. As a result, all deriva-
tives with respect to y disappear from the Maxwell equations. For linear constitutive relations,
D = εE and B = μH, the Maxwell curl equations in dimensionless units are

∇×E = iωμH , ∇×H =−iωεE . (3)
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Here, and throughout the entire manuscript, we use a harmonic time-dependence of e−iωt . For
diagonal permittivity tensor ε and diagonal permeability tensor μ , Eqs. (3) decouple into the so-

called TE and TM polarization problems. Using a plane wave ansatz eiλz for the z-dependence,
we obtain a generalized eigenvalue problem with eigenvalue λ2. Historically, the TM case has
been considerably more challenging because it involves discontinuities in the fields [10, 11].
Therefore, we only focus on this case but would like to note that the TE case follows from the
TM case by interchanging E ↔−H and ε ↔ μ . Explicitly, the generalized eigenvalue problem
for the TM case reads[

μy(x)+
∂x

ω
1

εz(x)
∂x

ω

]
︸ ︷︷ ︸

=:A

Hy(x) =
λ2

ω2

[
1

εx(x)

]
︸ ︷︷ ︸

=:B

Hy(x) . (4)

In the above equation, we have introduced the operators A and B which have to be discretized
by a B-spline expansion. The remaining non-vanishing fields Ex and Ez can be determined from
knowledge of the Hy-field via

Ex =
λ

ωεx
Hy , and Ez =

i
ωεz

∂xHy . (5)

For the TM-polarized case, the fields Ey, Hx, Hz are zero. We expand the Hy-field into B-splines,
Hy(x) = ∑N

i=1 ci N n
i (x). So far, we have followed Bouchon et al. [5]. However, instead of pro-

ceeding with their point collocation method, we employ below a Galerkin method to discretize
the operators A and B, i.e., Aji =

∫
N n

j
∗A N n

i dx and Bji =
∫

N n
j
∗BN n

i dx, where the as-
terisk ∗ stands for complex conjugation. Formally, we multiply Eq. (4) by N n

j
∗(x), insert the

expansion for Hy, and integrate over the computational domain, i.e., the unit cell of the one-
dimensional grating. Thus, the B-splines are used as basis as well as test functions, i.e., a
Galerkin approach. The resulting discretized generalized eigenvalue problem may be cast in
matrix-vector form and reads

Ac =
λ2

ω2 Bc , (6)

with discretized forms of the operators A and B given by

Aji =
∫

N n
j
∗μyN

n
i dx−

∫ [∂x

ω
N n

j
∗
]

1
εz

[
∂x

ω
N n

i

]
dx , and Bji =

∫
N n

j
∗ 1

εx
N n

i dx .

(7)
At this point, we would like to note that we have used integration by parts to avoid having
to compute ∂xε−1

z in the operator A which—for the very important case of piece-wise con-
stant material parameters—is a sum of delta peaks located at the material interfaces. Relative
to a collocation method, this represents a significant advantage as this complete treatment of
∂xε−1

z naturally leads to the continuity of Ez ∝ ε−1
z ∂xHy. In the collocation method, this conti-

nuity has instead to be enforced ”by hand” because it is rather difficult to completely include
the term ∂xε−1

z at material interfaces (see the discussion in [5]). Further, completely includ-
ing ∂xε−1

z allows us also to treat spatially nonconstant permittivities, arising either naturally or
artificially. For instance, the latter includes employing perfectly matched layers (PMLs) such
as uniaxial PMLs as first discussed by Sacks et al. [12] or the entire framework of coordinate
transformations developed within FMM [13–15]. We return to the use of coordinate transfor-
mation techniques when extending BMM to two-dimensional systems in Sec. 3.3. Finally, we
want to note that due to the finite support of the B-splines, no boundary terms arise when using
integration by parts. We compute the required overlap integrals numerically using appropriate
Gaussian quadrature schemes.
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The resulting eigenvalue problems can be solved by standard linear algebra tools, i.e., LA-
PACK [16] or—since the matrices are sparse due to the finite support of the B-splines—by
ARPACK [17]. As mentioned above, we have to solve the eigenvalue problem in all layers.
For each layer (p), this gives a set of N eigenvalues (λ(p)

m )2 and associated eigenvectors c(p)
m ,

m = 1, . . . ,N. We arrange the eigenvectors c(p)
m as the columns of the eigenmode matrix H̆(p)

im .

Then, the mth eigenmode H(p)
y,m(x) in layer (p) can be written as

H(p)
y,m(x) =

N

∑
i=1

H̆(p)
im N n

i (x) . (8)

Here, we use of a sans-serif typeface for the numerically computed eigenmode. We will use
the entire eigenmode matrix H̆ in Sec. 3.2 when matching the fields by means of the scattering-
matrix algorithm. Before we do so, an accuracy analysis of the eigenmode computations is in
order.

3.1.1. Accuracy analysis of eigenmode computations

As a test system, we investigate a one-dimensional grating layer with a periodically repeated
unit cell of a = 10µm as depicted in layer (2) in Fig. 2(a). The unit cell is divided into two
regions, an air part with isotropic permittivity ε1 = 1 of 9µm width and a material part with
isotropic permittivity ε2 = 5 of 1µm width. The permeability is assumed to be unity, μ = 1.

Fig. 2. (a) A periodic three-layer system invariant in y-direction with a unit cell size in x-
direction of a = 10µm. The unit cell of the second layer is divided into two regions, an air
part with ε = 1 of 9µm width and a waveguide part with ε = 5 of 1µm width. Layers (1)
and (3) denote homogeneous half spaces filled with air (ε = 1). (b) A knot sequence as used
in the calculation. In general, we place n-fold knots at every material interface and distribute
the remaining knots so that each region contains the same number of knots. For δ = 1 the
knots are spaced equidistantly in each region. The equidistant spacing is called Δxi. For
δ �= 1, the distance of the first knot next to the interface is divided by δ as compared to
an equidistant spacing. The remaining knots are again spaced equidistantly but, of course,
with a slightly larger spacing (slightly larger than Δxi).

We compute the eigenmodes (propagation constants and field distributions) for a value of the
vacuum wavelength of 550nm. For B-splines of degree n= 4,7,10, we employ a knot sequence
with multiple knots, m = n, at each air-dielectric interface (cf. Fig. 2(b) with δ = 1). First, the
knots are equidistantly spaced in each region and this is indicated with δ = 1 in Fig. 2(b). Be-
low, we will also discuss the more general case of non-equidistant knots within a given material
region (δ �= 1) which exhibits certain advantages near interfaces. In both cases, we extend the
B-splines periodically so that our computation corresponds to the case of normal incidence.
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More general Bloch conditions for oblique incidence can be included in a straightforward man-
ner. The main point at this stage of the presentation is that we ensure the correct smoothness
conditions for the B-splines at the material interfaces, i.e., by placing m = n knots at every
interface the B-splines are still continuous but their derivatives have a finite discontinuity as
depicted in Fig. 1 at x = t4 = t5. Consequently, the continuity of the tangential Hy-field at the
interface is enforced by design while its derivative ∂xHy ∝ εzEz may acquire a finite discontinu-
ity which is required by the fact that since Ez is continuous across the interface but the material
distribution εz is not.

Fig. 3. Convergence plot of the errors of the propagation constant λ and the mode pro-
files. The convergence behaviour is fitted as N−r which is shown as a straight line in the
double logarithmic plot. The filled markers refer to a B-spline knot sequence with δ = 1
whereas the open markers refer to δ = 10; see the text and Fig. 2(b). (a) Convergence
rates: rBMM4 = 7.1, rBMM7 = 9.7, rBMM10 = 11.9, rFMM = 3.2. (b) Convergence rates:
rBMM4 = 8.7, rBMM7 = 10.9, rBMM10 = 12.9, rFMM = 3.2.

In Fig. 3, we compare the numerical results to an analytic solution, e.g., along the lines
of [18, Sec. 12-15]. Specifically, we analyze the errors of both the propagation constants λm

and the corresponding field distributions Hy,m(x). We first consider equally spaced knots (filled
markers in Fig. 3, δ = 1). In Fig. 3(a), we present the dependence on the number of basis
functions of the maximal relative error of the propagation constant for all guided modes. In
this context, we define a mode being a guided mode if its propagation constant λ exceeds
the vacuum wave vector (which, in dimensionless units equals the angular frequency ω). The
error of the corresponding eigenmode field distributions is displayed in Fig. 3(b). Here, we
measure the error of the eigenmode field distribution Hy(x), via the deviation from the analytic
solution Hy(x). With both modes normalized, i.e.

∫
dx|Hy(x)|2 = 1, the mode error thus reads

error =
1
2

∫
dx |Hy(x)−Hy(x)|2 = 1−Re

∫
dxH∗

y(x)Hy(x) . (9)

The convergence rates of the BMM are far superior relative to the rates for FMM and they
can be adjusted by the choice of the B-spline degree n. With increasing number N of basis
functions, the relative error can easily be reduced to machine precision. Beyond this number,
the error exhibits numerical artifacts due to the inaccuracies of the diagonalization routines.
Further, for small N, we observe a plateau in the mode error which, however, is much more
pronounced in the FMM than in the BMM. In this region, the FMM is unable to resolve the last
mode (λ ≈ 1.013ω) above the guiding cut-off at λ = ω .

We now consider an unequally spaced knot sequence (cf. Fig. 2(b) with δ �= 1; open markers
in Fig. 3). As before, we use multiple knots at the material interfaces but the distance of the
first knots on either side of the interfaces is divided by δ relative to an equidistant spacing.
For the computations, we choose δ = 10 as an illustrative example. With regard to the error
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of the eigenvalues and field distributions of the eigenmodes, the impact of the modified knot
sequence is moderately disappointing. Basically, an additional numerical error is introduced
since the support of the B-splines exactly at the material interfaces is much smaller than without
the modification. Since the matrix of the eigenproblem essentially consists of overlap integrals,
this worsens the condition number of the eigenvalue problem. This is the reason for the increase
of the numerical error for large N-values when using the modified knot sequence. However,
in Sec. 3.2, we will demonstrate that the modified knot sequence features a less-obvious but
rather important advantage with regards to the field matching within the S-matrix algorithm.
For computing the eigenmode structure alone, the modified knot sequence, as described through
a knot modification factor δ �= 1, is not helpful (but also not harmful).

3.2. Scattering-matrix algorithm

In this section, we demonstrate that our above-introduced Galerkin approach leads to rectan-
gular, i.e., non-square matrices in the scattering-matrix algorithm. This represents non-trivial
complications notably with regard to the interface matrices that are used to match the tangential
fields between adjacent layers. Clearly, we cannot provide all the intricacies of the scattering-
matrix algorithm and refer instead to the lucid exposition of Li [3]. More precisely, we will
present our development up to the point where we reestablish Eqs. (2a) and (7) of [3], which
represent the starting point for the scattering-matrix algorithm, i.e., from this point on the re-
sults of Li can be utilized without any change. In addition, our notation will closely follow his
notation with the only exception that we have interchanged the meaning of the coordinates z
and y.

In the case of one-dimensional layers in TM-polarization, the tangential fields consist only
of Hy and Ex. Thus, our first task is to derive a representation for the electric field distributions

of the eigenmodes E(p)
x,m(x) in terms of B-splines similar to Eq. (8), e.g.,

E(p)
x,m(x) =

N̂

∑
i=1

Ĕ(p)
im

ˆN n
i (x) . (10)

Owing to the different continuity conditions for the electric field relative to the magnetic field
(discontinuities vs. cusps) at the in-layer material interfaces (the interfaces at constant x), the
B-splines for the electric fields cannot be the same as those for the magnetic fields H(p)

y,m(x).
In order to distinguish the quantities, we use ˆNi to denote the B-splines used as an expansion
basis for the electric eigenmode and N̂ to denote their number. With the help of Eq. (5), we
calculate the fields Ex from the fields Hy

E(p)
x,m(x)

(5)∝
λ(p)

m

ε (p)
x (x)

H(p)
y,m(x)

(8)
=

N

∑
i=1

λ(p)
m

ε (p)
x (x)

H̆(p)
im Ni (x) . (11)

This is not yet of the form of Eq. (10). We could easily define λ(p)
m H̆(p)

im as Ĕ(p)
im but the per-

mittivity ε (p)
x (x) cannot be included because it is still x-dependent and, therefore, it has to be

incorporated into the basis. However, this is a bit tricky since the permittivity features jumps at
every interface while the B-splines Ni have been chosen such that they are still continuous at
the material interface (so that they can represent the magnetic field). Hence, we add an addi-
tional knot at every in-layer material interface so that the new B-splines ˆNi can also represent
jumps at the material interfaces. Then, each B-spline only contributes in a region with smooth
permittivity. In our simple example, the permittivity is even piecewise constant and, therefore,
strictly constant over the support of each new B-spline ˆNi . Consequently, the permittivity can
simply be multiplied to the coefficients. By doing so, in analogy Eq. (2), we obtain the coeffi-
cients Ĕ(p)

im for the electric field distributions. For a spatially continuously varying permittivity,
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an interpolation scheme has to be applied. This is possible since the B-splines form a basis for
all piecewise polynomial functions that exhibit the correct smoothness properties at the knots.
Further, we want to note that there is no need to include the angular frequency ω in Eq. (11) be-
cause it is constant over all modes and all layers. This may be regarded as matching Exω across
the layers instead of Ex. At this point, we would like to emphasize that the above construction
is facilitated by the special properties of the B-splines as described in Sec. 2.

Using the expansion matrices H̆(p) and Ĕ(p), we can combine the tangential fields Hy and Ex

into a two-component tangential field vector F. Its expansion into the eigenmodes can then be
written in matrix notation as

F(p)(x,z) :=

(
H(p)

y (x,z)
E(p)

x (x,z)

)
=

(
N1(x)· · ·NN(x) 0

0 ˆN1(x)· · · ˆN
N̂
(x)

)
︸ ︷︷ ︸

=:N(x)

(
H̆(p) H̆(p)

Ĕ(p) −Ĕ(p)

)
︸ ︷︷ ︸

=:W(p)

(
u(p)(z)
d(p)(z)

)

= N(x)W(p)
(

u(p)(z)
d(p)(z)

)
. (12)

Here, we have introduced a shorthand notation for the B-spline basis, N(x), which is a
2× (N + N̂)-matrix that depends on the coordinate x. The B-splines are assumed to be the
same in every layer to allow the subsequent matching procedure. Hence, N(x) does not carry
a layer index. This is similar to the case of FMM computations where the same plane wave
basis is used in every layer. Note, however, that for BMM this also means that the knot se-
quence is the same in every layer and must be adjusted to all interfaces in all layers. The new
coefficients u(p)

m (z+Δz) = u(p)
m (z)e+iλ(p)

m Δz and d(p)
m (z+Δz) = d(p)

m (z)e−iλ(p)
m Δz denote upward and

downward propagating or evanescently decaying eigenmodes, respectively, and are written as
column vectors in Eq. (12). The matrix W(p) consists of the eigenmode expansion coefficients.
The minus sign stems from a phase difference between the downward travelling electric and
magnetic modes. Its position inside the matrix W(p) is arbitrary.

Finally, we are in a position to match the tangential fields F at the layer interface at z = zp

across layers (p) and (p+1). Since the B-splines N(x) are linearly independent (and the same
in every layer), their coefficients must be the same:

F(p+1)(x,zp +0)
!
= F(p)(x,zp −0) ⇒ W(p+1)

(
u(p+1)(zp +0)
d(p+1)(zp +0)

)
!
= W(p)

(
u(p)(zp −0)
d(p)(zp −0)

)
(13) (2a in [3])

In the next step, we now have to calculate an interface matrix t(p) by inverting the ma-
trix W(p+1),

t(p) =
[
W(p+1)]−1

W(p) . (14) (7 in [3])

As indicated next to the equation numbering, Eqs. (13) and (14) are taken from [3]. However,
in contrast to [3], our matrix W(p+1) is not a square matrix but of dimensions (2N +nint)×2N,
where nint denotes the number of in-layer material interfaces. We have used N basis functions
for the magnetic field expansion but have used N̂ = N + nint basis functions for representing
Ex accurately, i.e., we have added nint knots, one for each in-layer interface. Hence, we have to
elaborate on the notion of ”matrix inversion”—clearly a rectangular matrix can only be inverted
in an approximate sense. As a matter of fact, we have tried a number of different approaches
in terms of accuracy and efficiency and have found that for our situation, this rectangular (non-
square) matrix is best to be approximately inverted by means of a least-squares inverse. More
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precisely, we call the matrix [A]−1
ls a least-squares inverse of the matrix A if x̂ = [A]−1

ls b ap-
proximately solves the linear equation Ax = b by minimizing the weighted squared deviation

S = (Ax−b)†w(Ax−b) , (15)

where w denotes a Hermitian positive-definite weight matrix and the dagger symbol † refers to
Hermitian conjugation. Such a least-squares inverse is given by

[A]−1
ls := (A†wA)−1A†w . (16)

This matrix only approximately inverts A because the matrix A has more rows than columns.
However, we want to note that the least-squares inverse does not depend on b. This is re-
quired for our computations (and excludes a number of other approaches for defining approxi-
mate inverse matrices for rectangular matrices) because an explicit left-hand-side vector for the
scattering-matrix algorithm is not available. Rather, the scattering-matrix algorithm multiplies
an entire matrix with the above inverse.

We utilize the above least-squares inverse to calculate the interface matrix t(p) according to
Eq. (14) by least-squares inverting the matrix W(p+1),

t(p) =
[
W(p+1)]−1

ls W(p) . (17)

Here, we employ the basis function matrix N (introduced in Eq. (12)) as the weight matrix

w =

∫
N†(x)N(x)dx . (18)

This particular weight matrix has the distinct advantage of a clear physical interpretation. As
a matter of fact, the squared deviation S, that is minimized by the least-squares inverse, equals
the squared deviation S′ of the tangential fields integrated over the computational domain. This
is seen as follows

S′ =
∫ ∣∣∣F(p+1)(x)−F(p)(x)

∣∣∣2 dx =
∫ ∣∣∣∣N(x)

[
W(p+1)

(
u(p+1)

d(p+1)

)
−W(p)

(
u(p)

d(p)

)]∣∣∣∣
2

dx

=

(
W(p+1)︸ ︷︷ ︸

A

(
u(p+1)

d(p+1)

)
︸ ︷︷ ︸

x

−W(p)
(

u(p)

d(p)

)
︸ ︷︷ ︸

b

)† ∫
N†(x)N(x)dx︸ ︷︷ ︸

w

(
W(p+1)︸ ︷︷ ︸

A

(
u(p+1)

d(p+1)

)
︸ ︷︷ ︸

x

−W(p)
(

u(p)

d(p)

)
︸ ︷︷ ︸

b

)

= (Ax−b)†w(Ax−b) = S .
(19)

Instead of a least-squares inverse, we have also employed a Moore-Penrose pseudoinverse [19,
20] which can be regarded as a least-squares inverse with a unit weight matrix, w=1. This does
not minimize the tangential field deviations but minimizes the deviation of the field expansion
coefficients which themselves do not have a clear physical meaning. In our computations, the
use of a Moore-Penrose pseudoinverse always led to inferior results.

3.2.1. Validation of the Galerkin approach

In order to validate our Galerkin approach, we utilize the same system as depicted in Fig. 2(a)
with a single layer thickness of d = 70nm that is sandwiched between two half-spaces of air.
The transmittance and reflectance can then be computed using our matching technique for rect-
angular matrices described above in combination with the scattering-matrix algorithm [3].
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Fig. 4. Convergence plot of the reflectance calculation for the FMM and the BMM using
B-splines of degree n = 10 with different knot sequences identified by the values of δ .
(a) The black horizontal line at R = 0.04228344 is the fitted limiting value of the FMM
calculation which we assume to converge to the correct value. (b) The relative error is
calculated against the limit value of the FMM. Convergence rates: rBMM1 = 0.9, rBMM10 =
0.9, rFMM = 2.5.

In Fig. 4, we depict the convergence characteristics of reflectance computations with regard
to the number of basis functions. In the left panel, Fig. 4(a), we observe that the FMM and
the different BMM computations converge to the same reflectance value R = 0.04228344 for
N → ∞ (which is at the left of the plot due to the use of N−1 for the abscissa). This allows
us to take this limiting value and to determine the relative errors which we show in Fig. 4(b).
For increasing values of the knot modification parameter δ the error for intermediate numbers
of basis functions (N ≈ 100 − 500) decreases. In other words, while the knot modification
parameter does not increase the accuracy of the eigenmode computations it does decrease the
errors resulting from the use of the least-square inverse for rectangular matrices. For larger
values of N, the numerical error in the eigenvalue problem grows (cf. Fig. 3) and this leads to
errors in the scattering-matrix algorithm. Asymptotically, the FMM shows a better convergence
behavior but in the intermediate regime (relative accuracies down to 10−3), the BMM features
smaller errors. This is an important result since the amount of basis functions is severely limited
when moving from one-dimensional to two-dimensional layers later on. For instance, taking
500 basis functions per direction, i.e., 25000 basis function for a two-dimensional computation,
is currently impractical within FMM. Here, the BMM provides a possibility of using less basis
functions while still computing highly accurate results.

3.3. B-spline modal method for two-dimensional gratings

For two-dimensional diffraction gratings the computation of eigenmodes for two-dimensional
layers is required. This is tantamount to solving the full three-dimensional Maxwell equations,
Eq. (3), with a plane-wave ansatz (propagation constant λ ) in propagation direction (the z-
direction in which the system is homogeneous) and a two-dimensional lateral unit cell with
periodic (or Bloch-type) boundary conditions. In view of the recent progress in FMM compu-
tations using in-layer coordinate transformations [13–15], it is of special interest to consider
materials with in-layer anisotropy even if one would ”only” be interested in isotropic materials.
For such in-layer anisotropic systems, the permittivity and permeability are of the form

ε =

⎛
⎝εxx εxy 0

εyx εyy 0
0 0 εzz

⎞
⎠ and μ =

⎛
⎝μxx μxy 0

μyx μyy 0
0 0 μzz

⎞
⎠ . (20)
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The basic calculation is the same as that for the FMM (cf. Appx. A in [21]) but there is one
crucial difference. For the BMM, we cannot separately discretize two operators F and G and
subsequently multiply them. Rather, we have to discretize the entire operator product F ·G ,
i.e., within BMM we require an analytical expression for F ·G .

To obtain the corresponding eigenvalue problem, we start by eliminating the z-components Ez

and Hz from the Maxwell equations, Eq. (3). Using Eq. (20) we arrive at an eigenvalue equation
for the remaining four field components Ex, Ey, Hx and Hy that exhibits block anti-diagonal
form⎛
⎜⎜⎜⎜⎝

0 0 − ∂x
ω

1
εzz

∂y
ω +μyx + ∂x

ω
1

εzz

∂x
ω +μyy

0 0 − ∂y
ω

1
εzz

∂y
ω −μxx +

∂y
ω

1
εzz

∂x
ω −μxy

+ ∂x
ω

1
μzz

∂y
ω − εyx − ∂x

ω
1

μzz

∂x
ω − εyy 0 0

+
∂y
ω

1
μzz

∂y
ω + εxx − ∂y

ω
1

μzz

∂x
ω + εxy 0 0

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=:

(
0 F
G 0

)

⎛
⎜⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎟⎠=

λ
ω

⎛
⎜⎜⎝

Ex

Ey

Hx

Hy

⎞
⎟⎟⎠ .

(21)
Here, we have already replaced the z-derivative by iλ due to the plane wave ansatz eiλz for the
z-dependence. In addition, we have introduced the 2×2-matrix differential operators F and G .
Upon rewriting Eq. (21) as

F ·G
(

Ex

Ey

)
=

λ2

ω2

(
Ex

Ey

)
, (22)

we obtain the two-dimensional extension of the one-dimensional eigenvalue problem, Eq. (4).
We discretize Eq. (22) via our Galerkin approach in complete analogy to the one-dimensional
case as described in Sec. 3.1. A straightforward but laborious calculation yields

(F ·G )11 =
∂x

ω
1

εzz

[∂x

ω
εxx +

∂y

ω
εyx

]
+μyx

[∂x

ω
1

μzz

∂y

ω
− εyx

]
+μyy

[∂y

ω
1

μzz

∂y

ω
+ εxx

]
, (23a)

(F ·G )12 =
∂x

ω
1

εzz

[∂x

ω
εxy +

∂y

ω
εyy

]
−μyx

[∂x

ω
1

μzz

∂x

ω
+ εyy

]
+μyy

[
− ∂y

ω
1

μzz

∂x

ω
+ εxy

]
, (23b)

(F ·G )21 =
∂y

ω
1

εzz

[∂x

ω
εxx +

∂y

ω
εyx

]
+μxx

[
− ∂x

ω
1

μzz

∂y

ω
+ εyx

]
−μxy

[∂y

ω
1

μzz

∂y

ω
+ εxx

]
, (23c)

(F ·G )22 =
∂y

ω
1

εzz

[∂x

ω
εxy +

∂y

ω
εyy

]
+μxx

[∂x

ω
1

μzz

∂x

ω
+ εyy

]
+μxy

[∂y

ω
1

μzz

∂x

ω
− εxy

]
. (23d)

Here, we want to note that although F and G are both second-order differential operators,
their product is not of fourth but only of second order. This is the result of certain non-trivial
cancellations.

Eq. (22) represents an eigenvalue problem for the electric fields. The corresponding magnetic
fields can then be obtained via the relation

(
Hx Hy

)T
= ω

λ G
(
Ex Ey

)T
, (cf. Eq. (21)). Of course,

it is also possible to formulate an eigenvalue problem for the magnetic fields. In this case,
the relevant operator for the eigenvalue problem is G ·F which—due to the symmetry of the
Maxwell equations—can be easily obtained by interchanging ε and μ in the above expressions,
Eqs. (23), for the product F ·G .
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3.3.1. Validation and Accuracy Analysis

As a test system for two-dimensional layers, we investigate a circular dielectric waveguide
with radius r = 800nm and isotropic permittivity ε = 2 placed in free space using a vacuum
operation wavelength of 800nm corresponding to an operation frequency of f = ω

2π = 375THz.
The permeability is assumed to be unity everywhere, μ = 1. We choose a square unit cell with
a lattice constant a = 4µm that is periodically extended in x- and y-direction. Therefore, we
are actually investigating a periodic array of circular waveguides. However, we have chosen
the unit cell size sufficiently large (in our case r = 0.2a) so that the field distributions of the
waveguide’s lower guided modes are essentially zero at the cell boundaries so that the actual
boundary conditions do not matter. In other words, we perform a supercell computation that
allows us to compare with the analytical reference solution for a single waveguide as described
by Snyder and Love [18, Sec. 12-8ff.].

As basis functions, we use two-dimensional B-splines N n
i, j(x,y) formed by a tensor-product

of one-dimensional B-splines,

N n
i, j(x,y) := N n

i (x) ·N n
j (y) . (24)

As before, we extend the B-splines periodically to implement periodic boundary conditions.
Owing to the choice of a tensor-product basis of B-splines, we are restricted to a tensor-

product like knot sequence. Specifically, we employ an equidistant Cartesian mesh without any
multiple knot lines so that we expect roughly the same characteristics as the standard FMM
without adaptive coordinates or adaptive spatial resolution. Having N B-splines,

√
N per direc-

tion, the distance between two knots in x- or y-direction is given by a√
N

.
Since we utilize in our test system only lossless and isotropic materials and do not employ

in-layer coordinate transformations in the computations (which would be required when us-
ing adaptive coordinates and adaptive resolution) certain additional simplifications arise. For
instance, upon using

1
ε

∂iε = ∂i ln(|ε|)+
(
1− ln(|ε|))∂i , (25)

the (11)-component of the operator product F ·G in Eq. (23a) can be rewritten as

(F ·G )11 = με +
∂ 2

x

ω2 ln(|ε|)+ ∂x

ω
(
1− ln(|ε|))∂x

ω
+ ln(|μ |) ∂ 2

y

ω2 +
∂y

ω
(
1− ln(|μ |))∂y

ω
. (26)

The remaining components of F ·G in Eqs. (23) can be processed in an analogous manner.
Transformed expressions of the type displayed in Eq. (26) are more convenient for discretiza-

tion via a Galerkin choice. In particular, the derivative operators only appear on the right hand
side or the left hand side of the operator F ·G . Therefore, after an integration by parts they
only act on the B-splines similar to the one-dimensional case.

However, we would like to emphasize that for the general in-layer anisotropic case the formu-
las given in Eqs. (23) need to be applied. This would require to deal with derivatives of ε and μ
directly. Because of discontinuities in the material parameters, additional care is indispensable.
One approach is to dismantle the discontinuous part as a sum of Heaviside step functions which
are centered at the in-layer interfaces,

εab(x,y) = ∑
i j

Θ(x− xi)Θ(y− y j)ε̃ i j
ab(x,y) , μab analoguous. (27)

The derivatives of the Heaviside step functions are Dirac delta functions which can be han-
dled analytically when performing the integration in the Galerkin discretization scheme. The
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remaining parts ε̃ i j
ab and μ̃ i j

ab are continuously differentiable and can therefore be treated numer-
ically. Clearly, a decomposition as in Eq. (27) requires that all in-layer interfaces are aligned
to the coordinate lines and would thus require implementing a coordinate transformation as it
is routinely employed in the FMM. We further discuss this issue in the outlook, Sec. 4, and
display a possible coordinate transformation in Fig. 5(b).

Fig. 5. (a) Comparison of the error of the propagation constants using an FMM and a
BMM calculation using B-splines of degree n = 7. (b) An illustration of a non-Cartesian
knot mesh with multiple knot lines (bold lines) directly at the material interfaces.

In Fig. 5(a), we compare the error of the propagation constants λm for BMM computations
outlined above (square symbols) with the corresponding standard FMM computations (circu-
lar symbols). Specifically, we depict the relative error of the mode with the largest and sec-
ond largest propagation constants λm, i.e., of the HE11 (small filled symbols) and TE01 mode
(open symbols), respectively. In addition, we also depict the maximal error of all guided modes
with λm > 1.1ω (large filled symbols). Here, we refrain from using all available guided modes
up to the guiding cut-off, i.e., all modes with λ = ω . The reason is that for our particular choice
of geometrical parameters, the analytically available reference modes for a single waveguide
near cut-off exhibit spatial profiles that are too extended for the numerical supercell computa-
tions to deliver accurate results.

From Fig. 5(a) we infer similar convergence characteristics for BMM and standard FMM
upon increasing the number of basis functions. As described above, we have anticipated this
behavior because in the absence of multiple knot lines in the BMM computations, the source
of error is essentially the same for BMM and standard FMM: Neither the BMM nor the stan-
dard FMM is capable of accurately resolving cusps or discontinuities of the fields at material
interfaces. However, the TE01-mode does neither exhibit a discontinuity or cusp in the rele-
vant field components—and for this mode the BMM computations provide results that, for the
same number of basis functions, are about a factor of 10 more accurate than those of standard
FMM computations. The main advantage that BMM offers is that, for the same computational
effort, we can employ more basis functions N than standard FMM. Solving only the dense
eigenvalue problem for FMM took 19 min 07 sec at N = 1997 on a quad core computer with
2.66GHz and 8GByte RAM (Intel® Core™ 2 Quad CPU Q9400@2.66GHz). The entire BMM
eigenmode computation N = 10000 (which includes computing the B-splines, the integrals for
discretizing F ·G , and solving the sparse eigenvalue problem for all guided eigenmodes) re-
quired only 12 min 51 sec on the same computer. Similarly, the memory requirements are such
that at N = 10000, already the storage of the discretized operator F ·G in a dense matrix—as
used by the FMM—would require 3.0GByte whereas 137MByte suffice for the BMM exploit-
ing its sparse matrix structure since only 2.3% of the entries are nonzero (for n = 7 as used in
Fig. 5(a)). The sparseness obviously depends on the B-spline degree since the latter influences
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the number of overlapping B-splines.

4. Conclusions and outlook

In summary, we have shown that BMM computations offer significant advantages over FMM
computations. Specifically, we have shown that in one-dimensional gratings the placement of
multiple knots at material interfaces allows to accurately treat all discontinuities and cusps of
the corresponding electric and magnetic fields. Together with our novel Galerkin approach, this
allows for very efficient eigenmode computations. As a result, this Galerkin approach leads to
rectangular, i.e., non-square matrices when matching the fields between different layers within
the scattering-matrix algorithm. We have further shown how to deal with these rectangular ma-
trices by way of a least-square inverse and that this facilitates highly accurate and efficient
transmittance and reflectance computations. In addition, we have demonstrated how to extend
our Galerkin approach to the case of two-dimensional gratings. Even when using simple tensor-
product B-splines without multiple knots as basis sets, the resulting BMM computations are
considerably more efficient than standard FMM computations, while showing the same accu-
racy.

Clearly, realizing the full power of BMM computations for general two-dimensional gratings
requires the use of adaptive coordinates that allow for placing multiple know lines at curved
material interfaces. In complete analogy to FMM, these coordinate transformations may be
constructed as shown in [13,15] and we depict an example of such curvilinear coordinates with
multiple knot lines in Fig. 5(b). Implementing such coordinate transformations is equivalent to
treating in-plane anisotropic materials and we have derived the corresponding eigenvalue prob-
lem in Eqs. (23). As noted above, solving the general eigenvalue problem, Eqs. (23), requires
the consistent handling of the derivatives of the material parameters. This, together with a full
convergence analysis of BMM using adaptive coordinates and multiple knot lines is outside the
scope of the present manuscript and we leave it for future work.
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