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Abstract

In addition to the well established finite element method in recent years several optimization
approaches have been developed concerning the yield-line theory. This paper presents a
new systematical algorithm to predict initial yield-line configurations of arbitrary polygonal
plates. It contributes a solution to the task of detecting yield-line patterns in advance of an
optimization process. For this reason a ciphering of yield-line patterns is proposed and a new
application of Catalan numbers and binary trees is demonstrated. After a subsequent refining
a triangular element is used in combination to a simplex optimization procedure in order to
determine the ultimate load of the considered yield-line configuration. Moreover, further
optimization strategies like the direct search method and the conjugate gradient method lead
to the final solution of the problem. The use and the efficiency of the new approach are
demonstrated with three examples.

1 Introduction

The yield-line theory is employed to achieve a fast calculation of the ultimate load of plates.
Laminar zones of plasticity are concentrated in yield lines which border rigid parts of the
plate. Thus a kinematical admissible failure mechanism is provided and the ultimate load
can be determined based on the energy theorem.

In the historical retrospect, the yield-line theory is mainly based on the work of [9] who
shaped the method decisively in the middle of the 20th century. But the increasing spread of
computers advantaged more and more the development of other or refined methods. However,
some important impulses have been presented by [1] and especially by [15]. They proposed
a triangular element mapping all possible interactions between edge rotations and nodal
displacements, see Section 4. With its aid, the kinematic parameters are represented and
based on the simplex optimization method. The ultimate load of a correctly triangulated
plate is found whereas the nodal coordinates are considered to be immovable.

In recent years, research focused on the improvement of the predetermined yield-line pat-
tern. For this reason an extended application of optimization strategies is obvious. [17]
presented an approach starting with a regularly triangulated plate structure out of which the
active yield-lines are discovered. The final yield-line pattern is detected by a direct search
procedure. In contrast to that, [13] and [19] used a specially adapted gradient method to opti-
mize a comparatively coarse triangular mesh. Both optimization procedures will be analyzed
in context to the presented approach of an automatically detected yield-line pattern.

2 Basic considerations

2.1 Concept of the yield-line theory

First of all the general properties of the yield-line theory are introduced. The concept is
based on the upper bound of the ultimate load. This load is calculated using the virtual
displacements of a kinematical system formed by yield-lines. The procedure corresponds to
the method of plastic hinges for rods and beams. Amongst other aspects there are some
general assumptions concerning the material behaviour. Plastic zones of the deformed slab
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are transformed to yield-lines enclosing rigid planes. The yield condition is considered to be
elastic ideally-plastic. Once reached the ultimate bending moment remains constant without
any hardening. This leads to the assumption that both the plastic bending moment and the
ability to rotate are constant along a yield-line as well. There are no changes concerning the
thickness of the slab and the distribution of stresses in the cross section is also idealized. In
this way the material properties are entirely expressed within a positive and a negative plastic
moment acting on the lower and upper side of the plate respectively.

2.2 Principle of virtual displacements
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Figure 1: a) Plate domain Ω with boundaries Γ and b) Rigid plane surrounded by yield-lines
Γ

Using Galerkin’s method, equilibrium has to be fulfilled with δΠ = 0. Assuming that the
interior work is concentrated at yield-lines a partial integration over the integration area Ω
and along the boundaries Γ formed by yield-lines leads to

−
∫

Γσpl

δθ mpl ds +

∫
Ω

δw p dA +

∫
Γσ

δuT t̄ ds = 0 , (1)

with the angle δθ = δβ2 − δβ1, see Fig. 1a. Since yield-lines are considered to be straight and
external work performed by constant area loads act upon several rigid planes, see Fig. 1b,
the fundamental equation is given for nk yield-lines and ni rigid plates by

nk∑
k=1

(mpl,k �k δθk) =

ni∑
i=1

∫
Ai

p δw dAi , (2)

where mpl,k signifies the plastic moment of the yield-line and δw is the displacement perpen-
dicular to the plate caused by the area load p while external loads at the boundaries Γσ are
neglected for simplicity.
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2.3 Geometrical considerations

As a result of the claim for kinematical admissibility yield-lines have to be linear without
any break. Each supported edge of the slab forms the rotating axis of a rigid plane which
is bordered by yield-lines. So the number of rigid planes corresponds to the number of
supported edges. The yield-line between two rigid planes arises from the point of intersection
of the associated rotating axes. This rule applies to not adjoining edges accordingly whereas
parallel axes produce parallel yield-lines. Within the slab three or more yield-lines come across
each other in so-called branching points. Together they generate a yield-line pattern which
leads to a kinematical admissible collapse mechanism. In view of these geometric facts an
obvious way to generate yield-line patterns is to rotate rigid planes around their rotation axes
as it is proposed by [12]. The intersection of three planes yield the corresponding branching
point. This comprehensible approach permits also the consideration of free edges by rotating
the according plane perpendicular to its initial position, see Fig. 2. In this way a possibility
to detect the coordinates of branching points is given. But since there are several possibilities
of intersection modes it is important to introduce a system to describe branching points and
yield-lines. This demand is underlined by the experience that even if the angles of the rotation
axes are defined the resulting yield-line pattern will not be necessarily unique; in this context
see also [7].

2.4 Description of yield-line patterns

Due to the fact that supported edges are in general related directly to the adjacent rigid plane,
the number of both is equal. The yield-line bordering two adjoining rigid planes is defined
by their two numbers. Thus all yield-lines which enclose a rigid plane get its number as Fig.
3 illustrates. Points of intersection of yield-lines are at the same time a connection between
three or more rigid planes. In the special case of an intersection of more than three yield-lines
which means a conjunction of at least four rigid planes, this point of intersection will be
divided into several branching points with the same coordinates. Thus one branching point
always marks the connection between three yield-lines. Since two adjoining yield-lines bear
one common number, the branching point is exactly defined by three different numbers. Two
branching points connected by a yield-line possess the two ciphers of which. Furthermore,
the existence of branching points owning the same two ciphers more than twice is impossible
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Figure 2: Intersection of rotated planes
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as well as the multiple appearance of one and the same cipher within the three-digit code. In
the case of an intersection of four yield-lines and more there exists more than one possibility
to encode as it is shown in Fig. 4.
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Figure 3: Ciphering of branching point
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Figure 4: Ciphering of multiple intersection of yield-lines

3 Algorithm for yield-line prediction

3.1 Theoretical aspects

The preceding pictures of yield-line patterns illustrate that the number of branching points
depends on the number of rigid planes. Three fractions of the plate have one common branch-
ing point and every further fraction part causes one more point. Thus, e.g. a pentagonal plate
possesses three branching points. For an arbitrary polygonal plate the number of branching
points can be calculated with the relation

p = n − 2 (3)

where p is the number of branching points and n the number of edges.
For the prediction of yield-line patterns it is necessary to know the amount of combi-

national possibilities. Their quantity k is linked with the number of supported edges. The
number of a rigid plane cannot be used twice in the triple-digit ciphering of a branching point.
Thus we get the condition

k =

(
n

3

)
=

n!

3! (n − 3)!
(4)

which describes all possible combinations of numbers whereas permutations of the three digits
are not permitted.

However, the number of real admissible yield-line configurations is considerably less. A
yield-line always connects two branching points. Therefore the sequence of two numbers
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may only appear twice in the digit combinations. This leads to a further reduction of the
admissible combinations. The final amount of combinations Cn(p) related to the number of
edges n and branching points p is given in Table 1.

Table 1: The number of admissible branching point combinations

n 3 4 5 6 7 8 9 10
p 1 2 3 4 5 6 7 8
Cn(p) 1 2 5 14 42 132 429 1430
N 1 1 1 3 4 12 27 82

The calculation rule of the sequence can be defined as

Cn (p) =
1

p + 1

(
2p

p

)
=

(2p)!

p ! (p + 1)!
(5)

and the obtained sequence is known as the Catalan numbers, see [3].
Amongst others, Fig. 5 demonstrates the combinations of yield-line patterns of a hexag-

onal plate. Some patterns simply are a permutation of the same configuration whereas the
hexagon is the first polygon to find several different configurations. The fourteen combinations
can be divided into three different groups of yield-line configurations.

The number of different configurations can be computed depending on the according
Catalan number, see [18],

N =
1

2 (p + 2)
Cn (p) +

1

3
Cn

(
p − 1

3

)
+

3

4
Cn

(p

2

)
+

1

2
Cn

(
p − 1

2

)
. (6)

3.2 Computational code of the configurations

Fig. 6 illustrates that the run of a yield-line pattern can be considered as a binary tree. As
mentioned in the preceding section, the yield-line combinations of a pentagonal plate are the
permutation of one single configuration. If we choose each angle of the pentagon as the root
of a binary tree, we get five different runs.
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Figure 6: Binary code and binary tree of yield-lines
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Table 2: Assembly instructions

Sequence 00 01 10 11
a ai → ai+1 ai → ai+1 ∗ ∗
b bi → ci+1; S1 bi → ci+1 bi → ai+1 S1 → ai+1

c ci → S2 ∗ ci → ci+1 S2 → ci+1

∗ = backward calculation at a break or end of a branch

[2] present a system to describe problems related to Catalan numbers. They introduce a
method to compile binary code sequences and to decode into binary trees. In the following
this procedure is adapted to the requirements of the encoding of yield-line patterns, see [20].
Based on the code sequences the developed computer program composes a yield-line pattern
according to the assembly instructions in Table 2. The sequence will be divided into blocks
of two digits which describe the behaviour of yield-line branches in the branching points.
According to the code instructions the digits of the triple-digit ciphering abc will be kept or
changed. At the beginning we set a0 = 1 and c0 = n; b0 is unknown. The stack (S1; S2)
management is ”last in – first out”.

The missing digits being marked with an asterisk are determined by a backward calculation
which will be done at a break or at the end of a branch. The latter is specified by the fact
that the three digits identifying a branching point have to be consecutive. A break signifies
that two of them have to be consecutive, since two of the rigid planes forming the branching
point are adjacent.

3.3 Binary Encoding

Another kind of application of Catalan numbers is the task to run through a quadratic grid
from left top to right down without passing the diagonal. The path may only point to the
right and downward direction as it can be seen in Fig. 7 with a 3 × 3 grid.

The numerical description is performed by a binary code noting the horizontal and vertical
steps with 0 and 1, respectively. In this way all admissible binary codes are reproduced
depending on the extension of the considered problem. Sequences have to include the same
number of both ciphers. Since the first and the last step are fix, the first and the last cipher
must also be unchangeable.

000111 001011 001101 010011 010101

Figure 7: Binary encoding grid
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3.4 Example for the yield-line decoding

In the next step all admissible yield-line configurations are reproduced. With the binary code
of 0010011110 the approach is illustrated. According to the length of ten ciphers it is clear
that there are six branching points describing one of 132 yield-line patterns of an octagonal
plate. So the initial situation is given by

a0 = 1; b0 = x1; c0 = 8 .

The first two digits provide that the ciphering of the first branching point conserves the
number of the first plate – see Table 2. However, the second one is put on the future third
Figure and is stacked together with the contemporary one. Since a branch to the right is
added corresponding to the next pair of ciphers which means the existence of two adjacent
planes, the ciphering of the second branching point has to map this fact by using two adjacent
numbers. According to the third block another branch to the left has to be adjoined. But in
contrast to the first sequence the numbers will not be stacked. As the next pair of ciphers
calls the stacked numbers and adds a right branch to the root, the present string ends. In
consequence the fourth branching point possesses three consecutive numbers and the variable
x2 = 4 is detected. The new branch rising from the root to the right must contain the number
of plane 8 as its third cipher. Afterwards it will be extended again to the right side. With
the end of the binary code the remaining variables are detected as x4 = 7 and x3 = 6. Finally
the last unknown is recovered with x1 = 5.

In the following the steps are shown in detail:

Start: a0 = 1; b0 = x1; c0 = 8

00: a1 = 1; b1 = 2; c1 = x1; x1 → S1; 8 → S2

10: a2 = 2; b2 = x2; c2 = x1

01: a3 = 2; b3 = 3; c3 = x2; x2 = 4

11: a4 = x1; b4 = x3; c4 = 8; x1 ← S1; 8 ← S2

10: a5 = x3; b5 = x4; c5 = 8; x4 = 7; x3 = 6; x1 = 5

1

2

3

4

5

6

7

8

3.5 Consideration of the individual geometry

The individual geometry of the considered plate has not been discussed yet. The preceding
step yields the theoretical admitted branching point combinations and their triple-digit ci-
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phering. With this knowledge at hand the according coordinates are obtained by intersecting
the corresponding three rigid planes. The latter will be rotated equally in their rotation
axes. Thus we get a yield-line pattern based on the bisecting lines of the plate angles. In
the next step the kinematical contradictions of the results are analyzed. Yield-lines may
not cross each other and the coordinates of branching points have to be located within the
plate. Furthermore the sum of the rigid plane areas has to be equal to the area of the entire
plate. Finally the admissible yield-line patterns remain as a first prediction for the following
yield-line calculation.

3.6 Triangulation

Up to now the structure only provides that the required yield-lines are represented within the
plate topology. For the continuative calculation performed by the use of standardized plane
elements it is necessary to create triangular segments being the simplest type of a plane. The
triangles are produced by connecting the nodes of the plane polygons correspondingly to Fig.
8. In this way no additional nodes are created and the calculating effort is not increased.
The course of the accessory yield-line is not significant because though it is decisive for the
calculation matrix it does not affect the result of the ultimate load. In consequence the
calculation reveals that the inserted yield-lines have no rotation angles and the adjacent
planes act as one.

Figure 8: Triangulation of a pentagonal plate

4 Triangular element

After the determination of a yield-line pattern and its subsequent triangulation a plate element
is employed, see [1] and [15]. Fig. 9 illustrates the relations between nodal displacements and
edge rotations along yield-lines given by

⎡
⎣ δθe

1

δθe
2

δθe
3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1

h1

b1

�1h1

a1

�1h1

a2

�2h2

− 1

h2

b2

�2h2

b3

�3h3

a3

�3h3

− 1

h3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣ δw1

δw2

δw3

⎤
⎦ (7)

or
δθe = Eeδwe . (8)
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Figure 9: Triangular area element

Furthermore the element load vector for the distributed constant load p is defined with

f e =

⎡
⎢⎢⎢⎢⎢⎢⎣

p h1 �1

6
p h2 �2

6
p h3 �3

6

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

which corresponds in a similar way to the vector me containing the plastic moments of the
yield-lines with

f e = EeT me , (10)

see [14] and [16].
Using the identity matrix I the plastic moment vector m is divided into its positive and

negative components, [
I

−I

]
m ≤

[
m+

pl

m−
pl

]
(11)

and the same principle applies to the rotation vector δθ with

δθ =
[
I −I

] [
δθ+

δθ−

]
. (12)

Since positive yield-lines cause an extension of the lower side of the plate, m+
pl is replaced by

mT
pl,l. Similarly mT

pl,u represents m−
pl and finally the objective function reads

[
mT

pl,l mT
pl,u

] [
δθ+

δθ−

]
→ min . (13)

The kinematic relations are composed over the whole plate, following

E =
numel⋃
e=1

Ee . (14)
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In the same manner the virtual displacements δwe and the load vector f e are summarized
over the number of triangular elements. Together they define the scaled external work

fT δw = 1 . (15)

Equation (8) yields the constraints

δθ+ − Eδw+= 0 (16)

− δθ− + Eδw−= 0 (17)

of the optimization.
By computing the optimization tableau

A =

[
0 0 fT −fT

I −I −E E

]
, (18)

the right hand side

b =

[
1
0

]
(19)

and the plastic moment vector

cT =
[
mT

pl,l mT
pl,u 0 0

]
(20)

the objective function and the constraints of an optimization approach are given,

cT x → min (21)

Ax = b (22)

x ≥ 0 . (23)

Finally the vector x containing the virtual displacements and rotations δw, δθ is deter-
mined by performing a simplex optimization process.

5 Optimization strategies

After the calculation of the present yield-line pattern the result of the obtained ultimate load
may be reduced by improving the position of the branching points. For this task there are
in general two optimization procedures available. Both depend on the choice of an adequate
yield-line pattern which was up to now left to the user.

5.1 Direct search method

A first possibility is to apply an approach proposed in [17] and is based on the direct search
method by [6]. On the assembly of the optimization tableau A geometric constraints had
to be set for the vertical displacements of the plate. The degrees of freedom χ of the direct
search method will be set in the same manner. Corner nodes as well as branching points
being set upon a vertical point support will not move during the optimization process. Thus
there remain only the branching points being able to improve the yield-line pattern structure
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by moving, which may lead to a further reduction of the ultimate load towards a minimum.
If it is necessary the coordinates are transformed into the considered direction, e.g. in the
case when branching points have to move along free edges, see Fig. 10.

During the search trial steps are made into forward and backward search directions whereas
the change of the calculation solutions is checked. In this way a successively improved yield-
line pattern is achieved reducing the ultimate load result step by step. The procedure ends
when no further reduction is found.

Figure 10: Search directions in a triangulated plate with a free edge

5.2 Conjugate gradient method

Another alternative is the application of the gradient search method by [5] which was employed
in conjunction with the yield-line theory by e.g. [8], [13] and [19]. In order to determine the
gradient vector g of the search direction the geometrical parameters �, a, b and h shown in
Fig. 9 have to be differentiated. The same holds for the components of the load vector f e.
The number of the searching degrees of freedom χ rules the dimension of the gradient vector,

g (χ) ≡ ∂Z (χ)

∂χ
. (24)

With the split of the optimization tableau A into AB and AN depending on the basic
variables xB and the non-basic variables xN and a corresponding arrangement of the vector
c follows

Z (χ) = cBxB + cNxN (25)

[
AB AN

] [
xB

xN

]
= b (26)

where xB ≥ 0 and xN = 0 . (27)

Finally the gradient is calculated with

g (χ) =

(
∂cB

∂χ
− cBA−1

B

∂AB

∂χ

)
xB . (28)
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Depending on the shape of the optimization function a step length α has to be given in
order to scale the gradient steps. Moreover a sensitivity analysis is performed in the case of a
break within the shape of the optimization function. Compared to the direct search method
the gradient method yields the optimal solution very fast and in a straight manner though
the robustness of the algorithm depends on the choice of an adequate step length. On the
other hand the calculation effort of the direct search algorithm increases considerably with
the number of branching points.

5.3 Yield-line prediction in context to the optimization strategies

x1

f( )x

x2

Figure 11: Shape of an optimization function

With regard to a typical topology of an optimization function as depicted in Fig. 11 it
is important to choose an appropriate starting point in order to localize all possible minima.
Depending on the condition of the problem there exist several local minima which sometimes
admit to lead the search to another one. However, there is also the risk to get stuck in a wrong
minimum without reaching the global one. In spite of that certain optimization procedures
are able to find the right solution but in general the choice of the initial configuration decides
about the course of the process.

Since the yield-line prediction algorithm gives a systematic estimate it can be assumed
that all starting points are determined and in consequence all minima within the shape of the
optimization function are detected.

6 Examples

The following examples illustrate the coaction between the algorithm for a yield-line prediction
and the subsequent optimization procedure. In advance it can be noted that the calculation
process as well as the localization of the global minimum of the ultimate load is improved
decisively.
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6.1 Example 1: Simply supported quadratic plate with a free edge

1m

1m

mpl,y

mpl,x

x

y

YLT mpl,x = mpl,y = 1.00 kNm
m

m′
pl,x = m′

pl,y = 1.00 kNm
m

FEM h = 4.082 mm
fy,k = 2.4 · 105 kN

m2

J2-plasticity, 20×20 mesh

Figure 12: Simply supported quadratic plate with a free edge

Firstly a simply supported quadratic plate with a free edge is considered with view on
the yield-line prediction algorithm. The geometry and the plastic moments mpl being the
only necessary parameters for the yield-line theory (YLT) are shown in Fig. 12. There are
mpl,x and mpl,y for the coordinate directions at the bottom of the plate and m′

pl,x and m′
pl,y

at the top, respectively. The parameters of a finite element calculation (FEM) namely the
plate thickness h and yield stress fyk, using a nonlinear shell element based on J2-plasticity,
see [21], are given as well.

As three boundaries are simply supported and one is free the generation algorithm rotates
three planes with an angle of 45o and the fourth one with 90o perpendicular to the reference
plane of the considered plate like it is shown in Fig. 2. Thus the branching points are found,
see Fig. 13a, while the degenerated fourth plane belonging to the free edge is to be eliminated.

1

23

4

5
6

1

2

3

4

1
2

3

4

5

1

23

4

5
6

a) b)

Figure 13: a) Yield-line prediction and b) Triangulation

The automatical triangulation yields a mesh which is depicted in Fig. 13b. The associated
ultimate load is p = 14.14kN

m2 . This corresponds very well to results of a geometrical non-linear
finite element calculation, where an ultimate loading state could be defined at p = 14.1kN

m2 .
In this way the yield-line prediction algorithm delivers an adequate mesh being optimized by
the presented optimization methods. Fig. 14 illustrates the yield zones determined by a finite
element calculation together with the final yield-line pattern.
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Figure 14: Yield zones and yield-line pattern after optimization process (p = 14.14kN
m2 )
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Figure 15: a) Degrees of freedom and optimization topology and b) convergence of optimiza-
tion algorithms
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Because of the realistic prediction symmetry conditions are mapped initially by active
yield-lines. The connection between the nodes 3 and 6 exists only for triangulation and the
calculation procedure proves that it will be inactive, as well as the line between the nodes 1 and
5. Furthermore the example shows that the use of a systematical yield-line prediction supports
the optimization strategies in adjusting the coordinates of yield-line branching points.

In the present case the topology of the optimization function, depending on the searching
degrees of freedom χ2 and χ3 (see Fig. 15a), is convex and very simple. In order to point
out this property the triangulated mesh is now arbitrarily modified as it is shown in Fig.
15a. The direct search method and the conjugated gradient method lead both very fast to
the minimum, see also [8]. However, Fig. 15b illustrates that the latter converges here much
faster to the optimal solution, which could be observed often.

6.2 Example 2: Hexagonal plate with two different shapes
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m2

J2-plasticity, 20×20 mesh

Figure 16: Variation of the plate geometry

In order to study the influence of the shape of a structure, a variable hexagonal plate is
considered, see Fig. 16. The parameter a will be varied. All edges are simply supported,
determined by the quotient λi consisting of the belonging clamping moment m′

pl,i referred
to the plastic moment mpl,x of the plate’s bottom. Moreover, the upper plastic moments
m′

pl,x and m′
pl,y are zero, i.e. no negative moments can appear. The other variables are used

accordingly to Example 1.
Before starting the optimization process the versions of a = −1

4
�x and a = +1

4
�x are

distinguished with regard to the problem of a yield-line prediction. While the first version
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leads to a unique yield-line pattern, see Fig. 17a, the presented algorithm yields the two yield-
line patterns shown in Fig. 17b and c for the second version even though all directions of the
rotation axes and the belonging rotation angles are exactly predetermined. In consequence it
is proved evidently that the establishing of section 2.3 holds.
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Figure 17: a) Yield-line pattern for Variation a, b) and c) Two admissible yield-line predictions
for Variation b

The first version yields a load factor of p = 17.43kN
m2 which is reduced to p = 17.22kN

m2 .
As Fig. 18 shows, the yield zones of the finite element calculation encounter a similar result.
However, the detected ultimate load is p = 17.75kN

m2 , being above the yield-line solution.
Because the plate forms nearly an ellipsoidal boundary, the yield-line flexion is moderate
in spite of the increasing area load. Thus the yield-lines develop relatively late and the
comparison of the solutions of yield-line theory and finite element method has to be done
in an earlier stage. In spite of that the two initial yield-line pattern predictions related to
parameter a = +1

4
�x lead to p = 56.49kN

m2 and p = 58.46kN
m2 . With view to the intuitively

simpler mode of Fig. 17b it is comprehensible that the first one yields the lower value.
Whereas in the first version the development of yield zones was in the beginning, the finite
element solution of the plate shows nearly entirely plastified regions in the second version.
Thus the FEM–result p = 54.40kN

m2 is lower than the value of p = 56.06kN
m2 reached by an

optimization process starting from the simpler configuration of the first version.
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Figure 18: Yield lines and zones for versions a): p = 17.75kN
m2 and b): p = 54.40kN

m2

Fig. 18 shows the yield-lines and the associated yield zones of the polygonal variations.
Like other concavely shaped polygons the example shows considerably rotating yield-lines
corresponding to sharply bordered yield zones. In this way the influence of a variation of
the branching point coordinates react more sensitive than in the first case of a convex plate
structure.

6.3 Example 3: Polygonal slab structure
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Figure 19: Polygonal slab structure

In the papers [4], [11] and [10] a polygonal slab was presented which shall be considered
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now with the proposed algorithm. Due to the lack of description in literature the geometric
parameters are assumed as shown in Fig. 6.3. The parameters of the yield-line theory (YLT)
are given as usual. Since the plate is modelled as a isotropic concrete structure the internal
lever arm z is defined as two third of the thickness h whereas the upper reinforcement asu is
chosen equal to the lower reinforcement asl. In the finite element calculation (FEM) the yield
stress parameter fy,k of steel is assumed.

Using the presented yield-line prediction algorithm, two admissible yield-line configura-
tions are found by rotating the several planes, see Fig. 20. The subsequent triangulation
procedure yields the results shown in Fig. 21. However, it can be stated that differences are
only found on the left hand side of the plate.

a)

b)

Figure 20: Two admissible yield-line predictions for a polygonal slab structure

In view of the considerable number of branching points and in consequence also of the
degrees of freedom being subject to the optimization algorithm it is more advisable to perform
the conjugate gradient method.

Thus the first mechanism leads to an initial load level of p = 19.48kN
m2 , the second one

to p = 19.24kN
m2 . This gap can be explained with the two nearly identical configurations.

Furthermore the obviously simpler mechanism is the lower one.
At the end of the optimization procedure which causes another reduction to p = 17.39kN

m2
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and p = 17.15kN
m2 respectively, the triangulation patterns of Fig. 22 are reached. The shaded

areas mark the yield zones detected by the nonlinear finite element calculation.

a)

b)

Figure 21: Triangulation of the yield-line predictions

It can also be seen that the deformation behaviour of the constantly loaded plate is given
correctly. The comparison to the finite element solution confirms a good accordance between
the mechanisms whereas a certain difference within the lower left half of the plate results
by the flat deflection in the corresponding area. Thus the deviation is compensated by little
yield-line angles. Finally, the determined ultimate load is p = 16.2kN

m2 , which is about 5% to
7% lower than the detected limit load. This is a considerably good result compared to the
complexity of the plate.

In this example the two different yield-line predictions lead to a nearly identical result
due to their close relationship. However, it must be stated that multiple independent so-
lutions may exist, especially with regard to an increasing complexity. Even if specialized
optimization approaches help to overcome discontinuities between the belonging optimiza-
tion topologies this example emphasizes the necessity of a systematical and objective initial
yield-line prediction.
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Figure 22: Yield zones and final yield-line patterns of both predictions (p = 17.39kN
m2 and

p = 17.15kN
m2 )
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7 Conclusions

The presented yield-line prediction algorithm is the completion to the triangular yield-line
element approaches introduced by [1] and [15]. Using a new application of the Catalan
numbers it determines all admissible yield-line patterns and thus it gives the possibility to
check all the related kinematical mechanisms systematically. As it has been shown in the
examples, the simple definition of the direction and also the angles of rotation axes are not
sufficient to determine yield-line patterns unequivocal. Furthermore, all conceivable yield-lines
and in consequence the belonging yield-line configurations are detected and represented into
a subsequent optimization procedure. In this way all areas within the optimization function
are detected in order to be performed by a searching process.

Several examples illustrate the possibility of multiple solutions of initial yield-line patterns.
It can be shown that the application of optimization procedures lead to satisfying results of
the ultimate load of plate structures using the yield-line theory. Thus the yield-line theory
provides a considerable tool to predict limit loads beside nonlinear finite element calculations.
The concentration of the plastic regions in yield lines leads to a clear understanding of the
load bearing behavior in a design process.
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