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Abstract
A new quadrilateral shell element with 5/6 nodal degrees of freedom is presented. Assum-

ing linear isotropic elasticity a Hellinger–Reissner functional with independent displacements,
rotations and stress resultants is used. Within the mixed formulation the stress resultants
are interpolated using five parameters for the membrane forces as well as for the bending
moments and four parameters for the shear forces. The hybrid element stiffness matrix re-
sulting from the stationary condition is integrated analytically. This leads to a part obtained
by one point integration and a stabilization matrix. The element possesses the correct rank,
is free of locking and is applicable within the whole range of thin and thick shells. The
in–plane and bending patch tests are fulfilled and the computed numerical examples show
that the convergence behaviour of the stress resultants is very good in comparison to com-
parable existing elements. The essential advantage is the fast stiffness computation due to
the analytically integrated matrices.

Keywords Reissner–Mindlin shell theory, Hellinger–Reissner variational principle, quadri-
lateral shell element, effective analytical stiffness evaluation, one point integration and sta-
bilization matrix, in–plane and bending patch test

1 Introduction

Computational shell analysis is based on stress resultant theories e.g. [1, 2] or on the so–
called degenerated approach [3]. New developments in this field are discussed in e.g. [4,
5]. In the following only the main computational aspects are considered. Although the
hypothesis underlying the degenerated approach and classical shell theory are essentially the
same, the reduction to resultant form is typically carried out numerically in the former, and
analytically in the latter, [6]. Many of the computational shell models consider transverse
shear deformations within a Reissner–Mindlin theory [7], [8] to by–pass the difficulties caused
by C1–requirements of the Kirchhoff–Love theory, see e.g. [9, 10, 11].

Generally, shell behaviour is extremely sensitive to initial geometry and imperfections,
thus a successful correlation between theory and analysis is achieved only after including
specific details of these quantities. Low order elements like quadrilaterals based on standard
displacement interpolation are usually characterized by locking phenomena. In shells two
types of locking occur: transverse shear locking in which bending modes are excluded and
nearly all energy is stored in transverse shear terms, and; membrane locking in which all
bending energy is restrained and energy is stored in membrane terms. Elements which
exhibit a locking tendency lead to unacceptable stiff results when reasonable finite element
meshes are employed.

In attempting to avoid locking, reduced integration methods have often been advocated,
see e.g. [12]. Use of reduced (or selective reduced) integration is often accompanied by
spurious zero energy modes. Hence, authors have developed stabilization techniques to
regain the correct rank of the element stiffness matrix, e.g. [13, 14, 9]. In some cases,
however, results computed using these formulations turned out to be sensitive to the ad hoc
hourglass control parameters. Furthermore these elements do not fulfill the bending patch
test.

An effective method to avoid transverse shear locking is based on assumed shear strain
fields first proposed in [15], and subsequently extended and reformulated in [16, 17, 18, 19].
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Mixed variational principles provide the basis for the discussed finite element techniques.
Assuming linear elasticity a Hellinger–Reissner functional has been used in e.g. [20, 21].
Ref. [20] describe a quadrilateral element with assumed stresses for membrane, bending and
shear parts whereas in Ref [21] explicit stabilization matrices for a nine node element have
been derived. For general nonlinear material behaviour a three field variational functional
with independent displacements, stresses and strains is more appropriate. Within the so–
called enhanced strain formulations the independent stresses are eliminated from the set of
equations using orthogonality conditions and a two field formulation remains, [22]. For shells
this method has been applied enhancing the Green–Lagrangean membrane strains e.g. in
[23].

The drawbacks in [13, 14, 9] have been overcome in [24]. The theory is based on a
Hu–Washizu three–field variational principle with independent displacements, stresses and
strains. The stabilization matrix is derived from the orthogonality between the constant part
of the strain field and the non-constant part using 5 degrees of freedom at each node. In this
context we also refer to [25] where an updated Lagrangian approach is used. Further de-
velopments for different boundary value problems are considered in [26], where stabilization
matrices on basis of the enhanced strain method have been derived.

An important issue within the context of developing a finite shell model is the number and
type of rotational parameters on the element. Mostly general shell theories exclude explicit
dependence of a rotational field about the normal to the shell surface which leads to a five
parameter model (three displacements and two local rotations). Use of 5 degree–of–freedom
frame requires construction of special coordinate systems for the rotational parameters.
Considering the so–called drilling degree-of–freedom leads to a finite element discretization
with six nodal parameters. This has some advantages since both displacement and rotation
parameters are associated with a global coordinate frame. On the other hand a larger set of
algebraic equations has to be solved. In this context we mention the four–node shell element
according to [27] with three global displacements and three global rotations at each node.
The element employs a membrane interpolation field with drilling degrees–of–freedom. The
bending stiffness is based on the discrete Kirchhoff theory. For arbitrary shaped elements
a transformation of the stiffness matrix, which considers the warping effects, leads to good
results also for a non–flat geometry. The element [27] has been widely used in the literature
for comparisons, e.g. in [10] and in the present paper.

The essential features and new contributions of the present formulation are summarized
as follows:

(i) Assuming linear elasticity the variational formulation of the shear–elastic shell is based
on the Hellinger–Reissner principle. We specify the shape functions for the independent
stress resultants, where the interpolation of the membrane forces and of the bending
moments corresponds to the approach in [10]. Here, the new contribution is the an-
alytical integration of the matrices, which leads to a one–point integrated part and
an explicit stabilization matrix. This requires the replacement of the variable base
vectors and director vectors by those of the element center, which corresponds to a
projection on a flat surface, see also [27]. For warped elements the above mentioned
transformation according to [27] is implemented.

(ii) The interpolation of the shear forces along with assumed shear strains and the explicit
matrix representation of the stabilization matrix is a further new contribution.
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(iii) The element possesses with six zero eigenvalues the correct rank. No control parameters
have to be chosen to prevent locking or to avoid hour–glassing. The in–plane and
bending patch tests are fulfilled. Especially the convergence behaviour of the stress
resultants is superior to comparable four–node shell elements. The main advantage is
the fast stiffness computation. In our implementation the present formulation requires
only about 60% of the computing time to setup the global stiffness matrix compared
with the element [27].

(iv) The element formulation allows the analysis of shells with intersections. At all nodes
which are not positioned on intersections the drilling degree of freedom is fixed. Thus,
the nodal degrees of freedom are: three global displacements components, three global
rotations at nodes on intersections and two local rotations at other nodes.

2 Kinematics and Variational Formulation

Let B0 be the three–dimensional Euclidean space occupied by the shell in the un–deformed
configuration with boundary ∂B0. The position vector Φ of any point P ∈ B0 is associated
with the global coordinate frame ei

Φ(ξ1, ξ2, ξ3) = Φi ei = X + ξ3 D(ξ1, ξ2)

with |D(ξ1, ξ2)| = 1 and − h

2
≤ ξ3 ≤ h

2

(1)

with the position vector X(ξ1, ξ2) of the shell mid–surface Ω, the shell thickness h, and ξi

the convected coordinate system of the body. A director D(ξ1, ξ2) is defined as a vector
perpendicular to the shell mid–surface. The usual summation convention is used, where
Latin indices range from 1 to 3 and Greek indices range from 1 to 2. Commas denote partial
differentiation with respect to the coordinates ξi.

Hence, the geometry of the deformed shell space B is described by

φ(ξ1, ξ2, ξ3) = φi ei = x(ξ1, ξ2) + ξ3 d(ξ1, ξ2) with d = D + ∆d . (2)

With the kinematic assumption (2) shear deformations are accounted for and thus d is not
normal to the deformed shell mid–surface.

Inserting the position vectors (1) and (2) in the linear strain tensor ε̄ one obtains

ε̄ = ε̄ij Gi ⊗ Gj ε̄αβ = εαβ + ξ3 καβ 2 ε̄α3 = γα ε̄33 = 0 , (3)

where Gi denote the contravariant base vectors. The membrane strains εαβ, curvatures καβ

and shear strains γα read

εαβ =
1

2
(u,α ·X,β +u,β ·X,α )

καβ =
1

2
(u,α ·D,β +u,β ·D,α +X,α ·∆d,β +X,β ·∆d,α )

γα = u,α ·D + X,α ·∆d .

(4)
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and are organized in a vector ε = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]
T .

The variational formulation is based on a Hellinger–Reissner functional, where the dis-
placement field and the stress resultants are independent. The shell is loaded by loads p̄
in Ω and by boundary loads t̄ on a part of the boundary Γσ. The potential is a func-
tion of the displacement field v = [u, ∆d]T with u = x − X and the stress resultants
σ = [n11, n22, n12,m11,m22,m12, q1, q2]

T with membrane forces nαβ, bending moments mαβ

and shear forces qα

ΠHR(v,σ) =
∫

(Ω)

(εT σ − 1

2
σTC−1σ) dA −

∫
(Ω)

uT p̄ dA −
∫

(Γσ)

uT t̄ ds → stat. (5)

Assuming linear isotropic elasticity the constitutive matrix reads

C =




Cm 0 0
0 Cb 0
0 0 Cs


 with Cm =

Eh

1 − ν2




1 ν 0
ν 1 0

0 0
1 − ν

2


 ,

Cb =
h2

12
Cm

Cs = κGh12

, (6)

with the second order unit matrix 12, Young´s modulus E, shear modulus G, Poisson´s ratio
ν and shear correction factor κ = 5

6
.

The stationary condition yields

δΠHR(v,σ, δv, δσ) =
∫

(Ω)

[δεT σ + δσT (ε − C−1σ) − δuT p̄] dA −
∫

(Γσ)

δuT t̄ ds = 0 (7)

with virtual displacements δv = [δu, δd]T and virtual stress resultants
δσ = [δn11, δn22, δn12, δm11, δm22, δm12, δq1, δq2]

T . The virtual shell strains read

δεαβ =
1

2
(δu,α ·X,β +δu,β ·X,α )

δκαβ =
1

2
(δu,α ·D,β +δu,β ·D,α +X,α ·δd,β +X,β ·δd,α )

δγα = δu,α ·D + X,α ·δd
(8)

and are summarized in vector notation δε = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2]
T .

3 Finite Element Equations

3.1 Mid–Surface and Displacement Interpolation

For a quadrilateral element we exploit the isoparametric concept with coordinates ξ and η
defined in the unit square {ξ, η} ∈ [−1, 1]. Hence the position vector and the director vector
of the shell mid–surface are interpolated using the bi–linear functions

NI = 1
4
(1 + ξIξ)(1 + ηIη) = a0I + a1I ξ + a2I η + hI ξη

ξI ∈ {−1, 1, 1,−1} ηI ∈ {−1,−1, 1, 1}
a0I = 1

4
a1I = 1

4
ξI a2I = 1

4
ηI hI = 1

4
ξI ηI

(9)
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as follows

Xh =
4∑

I=1

NIXI Dh =
4∑

I=1

NIDI , (10)

where the index h denotes the finite element approximation. The position vectors XI and
the local cartesian basis systems akI , k = 1, 2, 3 are generated within the mesh input. Here,
DI = a3I is perpendicular to Ω and a1I , a2I are constructed in such a way that the boundary
conditions can be accommodated. With (10)2 the orthogonality is only given at the nodes.

Furthermore, a local cartesian basis ti is introduced at the element center

d̄1 = X3 − X1 d1 = d̄1/|d̄1|
d̄2 = X2 − X4 d2 = d̄2/|d̄2|

t1 = (d1 + d2)/|d1 + d2|
t2 = (d1 − d2)/|d1 − d2|
t3 = t1 × t2

(11)

The shell mid–surface described by (10)1 is in general a non–planar surface Ωh, whereas the
flat projection introduced by t1 and t2 is denoted by Ωh

0 , see Fig. 1 and Ref. [27].
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Figure 1: Quadrilateral shell element

The displacements and rotations are interpolated using also the bi–linear functions

uh =
4∑

I=1

NIuI ∆dh =
4∑

I=1

NI∆dI . (12)

Here, uI = uIk ek describes the nodal displacement vector and ∆dI = ϕI ×DI is given with
the nodal rotation vector ϕI = ϕIk ek where ϕIk are rotations about global cartesian axes.
The virtual displacements δu and rotations δd are approximated in the same way.

3.2 Transverse Shear Strains

The fulfillment of the bending patch test is discussed in [28], where for a plate it is shown,
that with the transverse shear strains (4)3 the patch test can not be fulfilled within the
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present mixed formulation. The non constant part of the shear strains according to (4)3

leads for a constant stress state to a contribution of the shear energy on the element level.
For this reason we approximate the shear strains with independent interpolation functions

proposed in [18, 19] as follows

[
γ1

γ2

]
= J−1

[
γξ

γη

]
where

γξ =
1

2
[(1 − η)γB

ξ + (1 + η)γD
ξ ]

γη =
1

2
[(1 − ξ)γA

η + (1 + ξ)γC
η ]

(13)

The strains at the midside nodes A,B,C,D according to Fig. 1 are specified as follows

γM
ξ = [u,ξ ·D + X,ξ ·∆d]M M = B,D

γL
η = [u,η ·D + X,η ·∆d]L L = A,C

(14)

where the following quantities are given with the bilinear interpolation (10)

DA = 1
2
(D4 + D1) ∆dA = 1

2
(∆d4 + ∆d1)

DB = 1
2
(D1 + D2) ∆dB = 1

2
(∆d1 + ∆d2)

DC = 1
2
(D2 + D3) ∆dC = 1

2
(∆d2 + ∆d3)

DD = 1
2
(D3 + D4) ∆dD = 1

2
(∆d3 + ∆d4)

XA,η = 1
2
(X4 − X1) uA,η = 1

2
(u4 − u1)

XB,ξ = 1
2
(X2 − X1) uB,ξ = 1

2
(u2 − u1)

XC,η = 1
2
(X3 − X2) uC,η = 1

2
(u3 − u2)

XD,ξ = 1
2
(X3 − X4) uD,ξ = 1

2
(u3 − u4)

(15)

Remark:
An alternative three field variational formulation based on a Hu–Washizu principle for the
shear part, which would be the appropriate variational formulation for an independent shear
interpolation, leads to identical finite element matrices due to the fact that the shear stiffness
matrix is diagonal.

3.3 Discrete Strain Displacement Matrix

Considering (4) and the finite element equations (10) - (15) the approximation of the strains
is now obtained by

εh =
4∑

I=1

BI vI , vI = [uI ,ϕI ]
T , (16)
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with

BI =




NI ,1 XT,1 0

NI ,2 XT,2 0

NI ,1 XT,2 +NI ,2 XT,1 0

NI ,1 DT,1 NI ,1 bT
1I

NI ,2 DT,2 NI ,2 bT
2I

NI ,1 DT,2 +NI ,2 DT,1 NI ,1 bT
2I + NI ,2 bT

1I

J−1




NI ,ξ DT
M

NI ,η DT
L


 J−1




NI ,ξ ξI bT
M

NI ,η ηI bT
L







(17)

and bαI = DI ×X,α = WI X,α, bM = WI XM,ξ , bL = WI XL,η. The allocation of the mid–
side nodes to the corner nodes is given by (I,M,L) ∈ {(1, B,A); (2, B, C); (3, D,C); (4, D,A)} .
The skew–symmetric matrix WI is associated to DI = DIk ek as follows

WI = skewDI =




0 −DI3 DI2

DI3 0 −DI1

−DI2 DI1 0




.

(18)

Furthermore, the derivatives of the position vectors X,α and director vectors D,α are
obtained from (10) in a standard way using

[
NI ,1
NI ,1

]
= J−1

[
NI ,ξ
NI ,η

]
J =


 xL,ξ yL,ξ

xL,η yL,η


 =


 Gξ · t1 Gξ · t2

Gη · t1 Gη · t2




.

(19)

Here, J denotes the Jacobian matrix where the local coordinates xL = (X − X0) · t1 and
yL = (X − X0) · t2 are computed with the position vector of the element center X0. The
base vectors are obtained from

Gξ = G0
ξ + η G1 G0

ξ =
4∑

I=1

a1I XI

Gη = G0
η + ξ G1 G0

η =
4∑

I=1

a2I XI

G1 =
4∑

I=1

hI XI .

(20)

The determinant of J yields

detJ = j0 + ξ j1 + η j2

j0 = (G0
ξ · t1)(G

0
η · t2) − (G0

η · t1)(G
0
ξ · t2)

j1 = (G0
ξ · t1)(G

1 · t2) − (G1 · t1)(G
0
ξ · t2)

j2 = (G1 · t1)(G
0
η · t2) − (G0

η · t1)(G
1 · t2) .

(21)

Note, that zL = (X − X0) · t3 does not enter in (19), which makes clear that the below
computed matrices are defined in Ωh

0 .
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3.4 Interpolation of the Stress Resultants

The independent field of stress resultants σ is interpolated as follows

σh = Sβ

S =




13 0 0 Sm 0 0
0 13 0 0 Sb 0
0 0 12 0 0 Ss




Sm = Sb =




J0
11J

0
11(η − η̄) J0

21J
0
21(ξ − ξ̄)

J0
12J

0
12(η − η̄) J0

22J
0
22(ξ − ξ̄)

J0
11J

0
12(η − η̄) J0

21J
0
22(ξ − ξ̄)




Ss =

[
J0

11(η − η̄) J0
21(ξ − ξ̄)

J0
12(η − η̄) J0

22(ξ − ξ̄)

]
.

(22)

Here, we denote by 12,13 second and third order unit matrices, respectively. The vector
β contains 8 parameters for the constant part and 6 parameters for the varying part of
the stress field, respectively. The interpolation of the membrane forces and the bending
moments in (22) corresponds to the procedure in Ref. [10]. In this context see also the
original approach for plane stress of Pian and Sumihara [29] with ξ̄ = η̄ = 0 and the text
book Zienkiewicz and Taylor, part 1, [30]. Finally we mention Ref. [20], where the shear
approximation is performed in a more complicated way.

The constants ξ̄ and η̄ are introduced to obtain decoupled matrices in the below defined
matrix H and denote the coordinates of the center of gravity of the element.

ξ̄ =
1

Ae

∫
(Ωe)

ξ dA =
1

3

j1

j0

η̄ =
1

Ae

∫
(Ωe)

η dA =
1

3

j2

j0

(23)

The element area is given by Ae = 4j0. The transformation coefficients in (22) are the
components of the Jacobian matrix J according to (19), evaluated at the element center
J0

αβ = Jαβ(ξ = 0, η = 0) . The coefficients have to be constant in order to fulfill the patch
test, see e.g. [30].

3.5 Analytical Integration of the Element Matrices

Inserting the finite element equations (9)- (23) and the corresponding equations for the
virtual stresses and virtual strains into the stationary condition (7) yields

δΠh
HR =

numel∑
e=1

[
δβ
δv

]T

e

{[ −H G
GT 0

] [
β
v

]
−

[
0
p

]}
e

= 0 , (24)

where numel denotes the total number of shell elements to discretize the problem. Here,
v = [v1,v2,v3,v4]

T is the element displacement vector and and δv , δβ the corresponding
virtual element vectors, respectively. The element load vector p = [p1,p2,p3,p4]

T which
follows from the external virtual work is identical with a pure displacement formulation.
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Furthermore the matrices H and G are introduced with B = [B1,B2,B3,B4] ,

H =
∫

(Ωe)

STC−1S dA , G =
∫

(Ωe)

STB dA . (25)

Since the integrand in (25)1 involves only polynomials of the coordinates ξ and η the inte-
gration can be carried out analytically. In this context we also refer to the expressions for
a plate in [28]. Due to the introduced constants ξ̄ and η̄ one obtains a matrix H only with
diagonal entries

H =


 Ae C−1 0

0 h


 with h =




hm 0 0

0 hb 0

0 0 hs




(6×6)

. (26)

The components of the symmetric sub-matrices hm, hb = 12hm/h2 and hs are given with

hm
11 =

Aef11

3Eh
(J02

11 + J02
12 )2

hm
22 =

Aef22

3Eh
(J02

21 + J02
22 )2

hm
12 = hm

21 =
Aef12

3Eh

[
(J0

11 J0
21 + J0

22J
0
12)

2 − ν (J0
11 J0

22 − J0
12J

0
21)

2
]

hs
11 =

Aef11

3κGh
(J02

11 + J02
12 )

hs
22 =

Aef22

3κGh
(J02

21 + J02
22 )

hs
12 = hs

21 =
Aef12

3κGh
(J0

11 J0
21 + J0

22J
0
12) .

f11 = 1 − 1

3

(
j2

j0

)2

f22 = 1 − 1

3

(
j1

j0

)2

f12 = −1

3

j1

j0

j2

j0

(27)

The matrix G according to (25)2 can only be integrated analytically in Ωh
0 . For this

reason we replace in (17) the base vectors X,α by tα, introduce b0
αI = WI tα and replace

D,α by D0,α evaluated at the element center


 D0T,1

D0T,2


 =

1

4
J0−1


 −DT

1 + DT
2 + DT

3 − DT
4

−DT
1 − DT

2 + DT
3 + DT

4


 , J0 = J(ξ = η = 0) . (28)

These assumptions have consequences on the element behaviour, which are discussed in the
next section. With the simplifications G0 is obtained by analytical integration, where the
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subscript 0 refers to the flat projection Ωh
0

G0 = [G01,G02,G03,G04] G0I =


 Ae B0

0I

g0I


 (29)

where

B0
0I =




N0
I ,1 tT

1 0

N0
I ,2 tT

2 0

N0
I ,1 tT

2 + N0
I ,2 tT

1 0

N0
I ,1 D0T,1 N0

I ,1 b0T
1I

N0
I ,2 D0T,2 N0

I ,2 b0T
2I

N0
I ,1 D0T,2 +N0

I ,2 D0T,1 N0
I ,1 b0T

2I + N0
I ,2 b0T

1I

J0−1




a1I DT
M

a2I DT
L


 1

4
J0−1




bT
M

bT
L







[
N0

I ,1
N0

I ,2

]
= J0−1

[
a1I

a2I

]

(30)

and

g0I =
Ae

3
γI




J0
11 tT

1 + J0
12 tT

2 0

J0
21 tT

1 + J0
22 tT

2 0

J0
11 D0T,1 +J0

12 D0T,2 J0
11 b0T

1I + J0
12 b0T

2I

J0
21 D0T,1 +J0

22 D0T,2 J0
21 b0T

1I + J0
22 b0T

2I

γ11
I DT

M + γ12
I DT

L γ11
I ξI bT

M + γ12
I ηI bT

L

γ21
I DT

M + γ22
I DT

L γ21
I ξI bT

M + γ22
I ηI bT

L




γI = hI − j2

j0

a1I − j1

j0

a2I

γ11
I = (hI − j2

j0

a1I)/γI γ12
I = −j1

j0

a2I/γI

γ21
I = −j2

j0

a1I/γI γ22
I = (hI − j1

j0

a2I)/γI .

(31)

3.6 Transformation of the Element Matrices

Since the interpolation of the stress resultants are discontinuous at the element boundaries
and with δv �= 0, δβ �= 0, the parameters β can be eliminated on the element level consid-
ering (24)

β = H−1Gv . (32)
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Hence the stationary condition (24) reads

δΠh
HR =

numel∑
e=1

δvTS =
numel∑
e=1

δvT
0 S0 = 0 , S = GT H−1 Gv − p

S0 = GT
0 H−1 G0 v0 − p0 .

(33)

The assembly can be performed as within a pure displacement formulation. However, at
first the nodal force vector S0 = [S01,S02,S03,S04]

T has to be transformed considering the
distance vector rI between Ωh

0 and Ωh at the nodes, see Fig. 1 and Ref. [27]

rI = zI t3 , zI = (XI − X0) · t3 = ±h̄ , X0 =
1

4

4∑
I=1

XI . (34)

The equilibrium equations read with W̄I = skew rI defined by rI × fI = W̄I fI
 f0I

m0I


 =


 13 0

W̄I 13





 fI

mI




S0I = TSI SI .

(35)

The corresponding transformations for the displacements and virtual displacements can be
derived from the virtual work (33)


 u0I

ϕ0I


 =


 13 W̄I

0 13





 uG

I

ϕG
I




v0I = T1I vG
I .

(36)

It should be noted that without transformation (36) the element is unacceptable stiff for
warped configurations, see also [27].

At the nodes which are not positioned on intersections no drilling stiffness is available
and a second transformation of the stiffness and the load vector is necessary:


 uG

I

ϕG
I


 =


 13 0

0 T3I





 uG

I

ϕL
I




vG
I = T2I vI

T3I =

{
13 for nodes on shell intersections

[a1I , a2I ](3×2) for all other nodes

(37)

At all nodes which are not positioned on intersections the drilling degree of freedom is fixed.
Thus the element possesses six degrees of freedom at all nodes on intersections and five at
all other nodes. In this context we also refer to [31, 32].
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Combining (36) and (37) with (33) yields the total transformation TI = T1I T2I and

GI = G0I TI =

[
AeB

0
I

gI

]

B0
I =




N0
I ,1 tT

1 N0
I ,1 b̄T

1I

N0
I ,2 tT

2 N0
I ,2 b̄T

2I

N0
I ,1 tT

2 + N0
I ,2 tT

1 N0
I ,1 b̄T

2I + N0
I ,2 b̄T

1I

N0
I ,1 D0T,1 N0

I ,1 b̃T
1I

N0
I ,2 D0T,2 N0

I ,2 b̃T
2I

N0
I ,1 D0T,2 +N0

I ,2 D0T,1 N0
I ,1 b̃T

2I + N0
I ,2 b̃T

1I

J0−1




a1I DT
M

a2I DT
L


 J0−1




b̃T
M

b̃T
L







gI =
Ae

3
γI




J0
11 tT

1 + J0
12 tT

2 J0
11 b̄T

1I + J0
12 b̄T

2I

J0
21 tT

1 + J0
22 tT

2 J0
21 b̄T

1I + J0
22 b̄T

2I

J0
11 D0T,1 +J0

12 D0T,2 J0
11 b̃T

1I + J0
12 b̃T

2I

J0
21 D0T,1 +J0

22 D0T,2 J0
21 b̃T

1I + J0
22 b̃T

2I

γ11
I DT

M + γ12
I DT

L γ11
I b̂T

M + γ12
I b̂T

L

γ21
I D̃T

M + γ22
I D̃T

L γ21
I b̂T

M + γ22
I b̂T

L




b̄αI = TT
4I tα

b̃αI = TT
4I D0,α +TT

3I b0
αI

b̃M = 1
4
(ξI TT

4I DM + TT
3I bM)

b̃L = 1
4
(ηI TT

4I DL + TT
3I bL)

b̂M = TT
4I DM + ξI TT

3I bM

b̂L = TT
4I DL + ηI TT

3I bL .

(38)

with T4I = W̄I T3I . For a constant load p̄ = p̄iei in Ω we obtain

pI = TT
I p0I = Ae (a0I +

1

3

j1

j0

a1I +
1

3

j2

j0

a2I)


 p̄

TT
4I p̄


 . (39)

Thus considering (26), (33) and (38) the element stiffness matrix reads

ke = GTH−1G = k0 + kstab

kIK = GT
I H−1 GK = AeB

0T
I CB0

K + gT
I h−1gK .

(40)
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Here, k0 denotes the stiffness of a one–point integrated Reissner–Mindlin shell element with
assumed shear strains and kstab the stabilization matrix. The matrix h according to (26)
consists of three submatrices of order two and thus can easily be inverted. The element
stiffness matrix possesses with six zero eigenvalues the correct rank.

4 Examples

The derived element formulation has been implemented in an extended version of the general
purpose finite element program FEAP, see Zienkiewicz and Taylor [30].

4.1 Membrane and bending patch test

Here we investigate a rectangular plate under membrane forces and bending moments ac-
cording to [33]. Both, membrane and bending patch test are fulfilled by the present element.

4.2 Corner supported square plate

A corner supported plate with edge length 2a subjected to uniform load is discussed. Con-
sidering symmetry the mesh consists of 8× 8 elements for a quarter of the plate, see Fig. 2.
The geometrical and material data are also given. An approximate ansatz according to [34]
reads

w(x, y) = c1 + c2x
2 + c3y

2 + c4x
4 + c5x

2y2 + c6y
4 , (41)

where the origin of the co-ordinate system lies in the center of the plate. The boundary
condition of vanishing bending moments at the edges can only be fulfilled in an integral
sense. The other boundary conditions and the partial differential equation can be fulfilled
exactly. The constants are determined and thus for y = 0 the approximate Kirchhoff solution
reads

w(x, y = 0) =
qa4

2Eh3
[11 − 6ν − ν2 + (−5 + 4ν + ν2)(

x

a
)2 + (1 +

ν

2
− ν2

2
)(

x

a
)4] . (42)

a = 12
h = 0.375
q = 0.03125
E = 430000
ν = 0.38

a a

y x

Figure 2: Corner supported plate

The deflections w(x, y = 0) obtained with different elements are plotted in Fig. 3. The
Belytschko/Tsay element [13] leads to hourglass modes for parameters rw < 0.02, optimal
results for 0.02 ≤ rw ≤ 0.05 and locking for rw > 0.05, see also [13] and Fig. 3. The
parameter rβ = 0.02 has been chosen constant in all cases.
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Figure 3: Deflection w(x, y = 0) for the corner supported plate, comparison of different
elements
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4.3 Hemispherical shell with a 18◦ hole

The hemispherical shell with a 18◦ hole under opposite loads is a standard example in linear
and nonlinear shell analysis. The material properties are E = 6.825 · 107 and ν = 0.3,
the radius is R = 10 and the thickness is h = 0.04. Considering symmetry conditions a
quarter of the shell is modelled with a regular mesh, see Fig. 4. Table 1 presents results
for the displacement of the loaded node for different elements. The values are normalized
with respect to our converged solution w = 0.0935 for F = 1. Analytical solutions based on
asymptotic expansions are reported in [10] with w = 0.093. In Ref. [33] a value of w = 0.094
has been used for normalization. It can be seen that the results obtained with the present
element as well as the results using the elements [27], [23] converge against the same solution.
For this example the convergence behaviour of the investigated elements is practically the
same.

z

2F yx
2F

Figure 4: Hemispherical shell: Un-deformed and deformed mesh (amplified by a factor 50)

Table 1: Normalized displacements for different elements

Nodes Simo[10] Taylor [27] Sauer [23] Present
per side

3 91.4 ∗66.1 106.7 106.2
5 99.9 92.5 103.8 103.8
9 99.3 100.7 100.3 100.4
17 99.4 100.0 99.8 99.8
33 - ∗100.0 100.0 100.0

∗ Own results using the element of Taylor [27].

4.4 Full hemispherical shell

The convergence behaviour using distorted and warped elements is investigated with the
hemispherical shell of the last section without the hole. The results for the deflections in
load direction are normalized with respect to our converged numerical solution w = 0.09227,
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see Table 2. In Ref. [10] a reference value of 0.0924 is given. The elements [23], [27] and
the present element converge against the same solution. The deformed mesh along with the
radial displacements is plotted in Fig. 5.

Table 2: Normalized displacements for different elements

Nodes Simo[10] Simo[10] Taylor[27]∗ Sauer[23] Present
per side mixed disp

5 65.2 46.9 77.0 50.5 57.4
9 96.9 93.4 100.8 95.5 97.2

17 99.4 98.9 100.8 100.0 100.3
33 - - 100.2 100.0 100.1
65 - - 100.0 100.0 100.0

∗ Own results using the element of Taylor [27].

-9.252E-02 min

-7.930E-02

-6.609E-02

-5.287E-02

-3.965E-02

-2.643E-02

-1.322E-02

-8.173E-09

1.322E-02

2.643E-02

3.965E-02

5.287E-02

6.609E-02

7.930E-02

9.252E-02 max

Figure 5: Radial displacements and deformed mesh (amplified by a factor 50)

4.5 Twisted beam

This problem, a clamped beam twisted 90◦ subjected to two different concentrated loads
at the tip, was originally introduced by MacNeal and Harder [33]. A more demanding thin
shell version was proposed by Jetteur [35] and is investigated in this paper. The example is
chosen to test the assess of warping on the performance of shell elements. Two load cases
are discussed. Load case 1 is a unit shear load in width direction whereas load case 2 is a
unit shear load in thickness direction, see Fig. 6. The computed tip displacements in load
direction are normalized with respect to our converged solutions 1.387 (load case 1) and
0.343 (load case 2) and are presented in Tab. 3. The displacements uz and uy are plotted
for the respective load case on the deformed configurations in Fig. 7.
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F=1.0

h

x

z

y

w

�

l = 12
w = 1.1
h = 0.05
E = 29 · 106

ν = 0.22
F = 1.0

Figure 6: Twisted beam: geometrical and material data

Table 3: Load case 1 normalized displacement uz for different elements

Mesh El. Simo[10] Taylor[27] Sauer[23] Present

1*6 6 99.4 100.1 99.5 102.0
2*12 24 100.0 100.2 99.7 100.6
4*24 96 100.1 100.1 99.9 99.3
8*48 384 100.2 100.0 100.0 100.0

Table 4: Load case 2 normalized displacement uy for different elements

Mesh El. Simo[10] Taylor[27] Sauer[23] Present

1*6 6 95.1 102.1 94.0 104.3
2*12 24 98.6 101.0 98.4 100.5
4*24 96 99.7 100.2 99.6 99.3
8*48 384 100.0 100.0 99.9 100.0
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-1.388E+00 min

-1.289E+00

-1.190E+00

-1.090E+00

-9.913E-01

-8.922E-01

-7.931E-01

-6.939E-01

-5.948E-01

-4.957E-01

-3.965E-01

-2.974E-01

-1.983E-01

-9.913E-02

0.000E+00 max

0.000E+00 min

2.450E-02

4.900E-02

7.351E-02

9.801E-02

1.225E-01

1.470E-01

1.715E-01

1.960E-01

2.205E-01

2.450E-01

2.695E-01

2.940E-01

3.185E-01

3.430E-01 max

Figure 7: Deformed configurations for load case 1 and 2 and respective displacements uz and
uy

19



4.6 Hypar shell

f

f

h

� �

z

xy

l = 20 m
f = l/32 m
h = 0.2 m
E = 108 kN/m2

ν = 0
p̄z = −5 kN/m2

Figure 8: Hypar shell: geometrical and material data

The geometry of the considered hyperbolic paraboloid shell is described by the function
z = 1/8 xy. The shell is loaded by a constant load p̄z per shell middle surface in vertical
direction. Along the boundary the deflections are restrained in global z–direction. Further-
more the boundary conditions ux(−l/2, 0) = ux(l/2, 0) = 0 and uy(0,−l/2) = uy(0, l/2) = 0
are considered. An analytical Kirchhoff solution with slightly different boundary condi-
tions using Fourier series has been derived by Duddeck [36]. The shell with coordinates
z(l/2, l/2) = ±f = l/32 is rather flat. Therefore the support perpendicular to the shell
which has been considered in [36] does not lead to significant different results. The geo-
metrical and material data as well as a typical finite element mesh are depicted in Fig. 8.
The distribution of the global displacement w = uz is symmetric with respect to x = 0 and
y = 0. In Fig. 9 the deflection w (0 < x < l/2, y = 0) is depicted. The calculated results
are in good agreement with the solution of Duddeck. Furthermore the distribution of the
bending moment mxy (0 < x < l/2, y = l/2) is presented in this Figure. Differences occur
along the edges due to the fact that the analytical solution is based on a Kirchhoff theory
whereas the numerical solution is calculated using the Reissner–Mindlin theory. In Fig. 10
the distribution of the bending moment mx (0 < x < l/2, y = 0) and mx (x = 0, 0 < y < l/2)
are shown. The good agreement with the analytical solution is noted.

Table 5: Center displacement w(0, 0) in cm for different elements

Nodes w(0, 0)
per Side Taylor [27]∗ Sauer [23] Present Duddeck [36]

2 4.05 2.84 4.03
4 4.42 4.39 4.41
8 4.51 4.51 4.52

17 4.55 4.56 4.56
33 4.56 4.58 4.58
65 4.57 4.60 4.60 4.6

∗ Own results with the element of Taylor [27].
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Finally a convergence study is presented in Tables 5 and 6 for the center deflection w(0, 0)
and the bending moment mx(0, 0), respectively. It shows that the present element exhibits
a superior convergence behaviour for the bending moment.

Table 6: Center moment mx(0, 0) in kNm/m for different elements

Nodes mx(0, 0)
per Side Taylor [27]∗ Sauer [23] Present Duddeck [36]

2 36.0 25.2 53.6
4 57.7 60.2 64.0
8 62.6 63.3 64.3

17 64.3 64.6 64.9
33 64.8 65.0 65.1
65 64.9 65.3 65.3 63

∗ Own results with the element of Taylor [27].
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Figure 9: Displacement w(x, y | 0 < x < l/2, y = 0) and bending moment mxy(x, y | 0 <
x < l/2, y = l/2)
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Figure 10: Bending moment mx(x, y | 0 < x < l/2, y = 0) and mx(x, y | x = 0, 0 < y < l/2)
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4.7 Steel frame structure

In the last example we discuss a symmetrical frame structure with welded cross–sections,
see Figs. 11, 12. Thus, different intersections of plates occur, which can be treated with
the present model. The frame is loaded by a constant vertical load p̄ = 16 kN/m. The
problem with all geometrical data as well as the load distribution is presented in Fig. 11,
the underlying data for the cross–sections of a beam model are depicted in Fig. 12. Elastic
material behaviour is assumed using the parameters E = 21000 kN/cm2 and ν = 0.3.

p

z

xy

24 24

20
20

474 102

600

340

400

40

[cm]

1
.2

1.2

1.2

1.6

Figure 11: Frame structure: system and loading
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0.8
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40

20

48

1.6

1.0

[cm]

frame column

A = 112.0 cm2

Iy = 46094 cm4

Iz = 2137 cm4

IT = 70.6 cm4

horizontal member

A = 80.0 cm2

Iy = 23472 cm4

Iz = 1602 cm4

IT = 29.9 cm4

Figure 12: Definition of cross sections

The finite element calculations are performed with the developed shell element using
a mesh with 530 nodes and 368 elements, see Fig. 13, and for comparison with 15 two–
dimensional beam elements, see Fig. 17. It can be seen from Tables 7 and 8 that the results
of all used three shell elements are very similar for the vertical displacement uz(0, 0, 400)
in the symmetry plane as well as for the stresses σ11 in axial direction at the coordinates
(0, 0, 420) and (0, 0, 380). This could also be verified using the beam model with only little
deviations. In detail Fig. 13 show the un–deformed and deformed mesh, whereas the axial
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stresses σ11 at the plate mid–surfaces are depicted in Figs. 15 and 16. Finally Fig. 17
presents the associated results for the beam model. Here, normal forces of N = −72.6 kN
and N = −96.0 kN occur in the horizontal member and the column of the frame. It should
be noted that only the shell model is able to analyze the stress state in the corner of the
frame (see Fig. 16).

Table 7: Vertical displacement uz(0, 0, 400) in cm

Displacement uz Taylor[27] Sauer[23] Present
Shell model -1.818 -1.817 -1.817

Beam model -1.761

Table 8: Axial stresses σ11 in symmetry plane in kN/cm2

Axial Stress Taylor[27] Sauer[23] Present Beam
σ11(0, 0, 420) -8.78 -8.77 -8.78 -8.83
σ11(0, 0, 380) 7.06 7.05 7.06 7.02

Figure 13: Undeformed and deformed mesh (amplified by a factor 20)
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Figure 14: Vertical deflection uz in cm
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Figure 15: Axial stresses σ11 at mid–surfaces in kN/cm2
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Figure 16: Axial stresses σ11 at mid–surfaces in kN/cm2 in the frame corner

MOMENT  M_y

-1.801E+04 min

0.000E+00

9.502E+03 max

Figure 17: Beam model: undeformed mesh, deformed mesh (amplified by a factor 20) and
bending moment
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5 Conclusions

The main aspect of the present work is to derive a four–node shell element with explicit
representation of the stiffness matrix. The formulation with 5 or 6 nodal degrees of freedom
is applicable for shell problems with intersections. The element possesses a correct rank,
is free of locking, and can be used for the structural analysis of thin and thick shells. The
computed results obtained for various shell problems with positive and negative Gaussian
curvature are very satisfactory. Especially the convergence behaviour of the stress resultants
is superior to comparable elements. The essential advantage is the fast stiffness computation
due to the analytically derived stiffness matrix.
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