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We investigate the 2D behavior of one-fold self-intersecting, topologically stabilized center-vortex
loops in the confining phase of an SU(2) Yang-Mills theory. This coarse-graining is described
by curve-shrinking evolution of center-vortex loops immersed in a flat 2D plane driving the
renormalization-group flow of an effective “action.” We observe that the system evolves into a
highly ordered state at finite noise level, and we speculate that this feature is connected with 2D
planar high Tc superconductivity in FeAs systems.

1. Introduction

The idea of a nontrivial ground state being responsible for the emergence of “elementary”
particles is a rather old one: already Lord Kelvin proposed that atoms and molecules should
be considered knotted lines of vortices representing distortions in a universal medium (or
ground state)—the ether [1]. As we know now, the physics of atoms andmolecules described
in terms of a much more efficient and elegant framework quantum mechanics. The agent
responsible for the chemical bond—Lord Kelvin’s electron—is considered a spinning point
particle in quantum mechanics, and this yields an excellent description of atomic physics,
collider physics, and in the bulk of condensed matter physics.

There are, however, theoretical discrepancies with the concept of the electron being a
point particle, and there are exceptional experimental situations pointing to the limitations of
this concept to describe reality. As for the former, we have the old problem of a diverging
classical self-energy not resolved in quantum electrodynamics where the electron mass
is introduced as a free parameter whose running with resolution needs an experimental
boundary condition. On the other hand, the two-dimensional dynamics of strongly correlated
electrons in condensed matter physics signals the relevance of nonlocal effects possibly
related to the nontrivial anatomy of the electron becoming relevant in collective phenomena
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[2–4]. Also, recent high-temperature plasma experiments indicate unexpected explosive
behavior not unlikely related to the mechanism for lepton emergence, see [5] and references
therein.

Early papers, mostly investigating on a 4D Euclidean lattice the role of center vortices
in forming a confining ground state at low temperatures/resolution [6–11], are based on the
definition of a dual order parameter for quark confinement by [12]. Recent developments in
understanding the confining phase of an SU(2) Yang-Mills theory suggest that Lord Kelvin’s
ideas may actually be realized in Nature, see also [13–16]. The authors of [13–16] construct
a plausible effective low-energy action for the 4D SU(2) Yang-Mills theory with solutions
to the associated field equations representing closed confining strings knotted into stable
solitons. In the thermodynamic approach of [17] the emergence of magnetic center-vortex
loops (CVLs) is related to discontinuous phase changes of a complex order parameter for
confinement across the (downward) Hagedorn transition and the fact that no magnetic
charges exist where these flux lines could end. Also, it was discussed in [17] how the locations
of topologically stabilized self-intersection represent isolated, spinning magnetic charges.
(Notice that with respect to the electromagnetic U(1) of the Standard Model there is a dual
interpretation of magnetic charges emerging in an SU(2) Yang-Mills theory).

In our previous article [18] we have investigated the sector with N = 0 self-
intersections by considering a resolution-dependent ensemble average. The corresponding
weight-functional is defined purely in terms of the planar curves’s geometry. The resolution
dependence of this geometry, in turn, is determined by a curve-shrinking equation (heat-
equation) [19, 20]. The validity of this description of spatial coarse-graining is motivated
by considerations relating local curvature with the direction and speed of “motion” of the
associated line-segment. The requirement that the partition function over a given ensemble
of planar curves is invariant under a change of the resolution then yields the renormalization-
group evolution of the weight-functional which is written as the exponential of an “action.”
Here the term “action” is slightly misleading since we do not aim at describing the time-
evolution of the system by demanding stationarity of the “action” under curve variation.
To do the latter, a model, which relates resolution and time (being a macroscopic concept
associated with the measuring apparatus), needs to be introduced. We thus regard resolution
over time as the more fundamental quantity to describe certain subatomic systems. Our
observation is that the effective “action” exhibits a transition towards dilational invariance
after a finite, critical decrease of resolution. On average, CVLs with N = 0 are shrunk to
circular points for a resolution less than the critical value which de facto removes them from
the spectrum and thus generates an asymptotic mass gap. (CVLs with N > 0 are massive
[17, 21]). Knowing the evolution of the weight-functional, one is in a position to compute
the resolution dependence of “observables” as ensemble averages of the associated (nonlocal
or local) “operators.” As for the evolution of the initially sharp center-of-mass position, we
observe a spread of the variance with decreasing resolution saturating at a finite value. This is
similar to the unitary free-particle evolution of a position eigenstate in quantum mechanics.

The purpose of the present paper is to extend the procedure of [18] to the case of
N = 1. We now have a singled-out point on the curve: the location of the self-intersection
where practically the entire mass of the soliton resides [17]. Setting the Yang-Mills scale Λ
of the SU(2) theory equal to the electron mass me = 511 keV, which in turn determines the
mass of the intersection point, we interpret this soliton as an electron or a positron [5, 21]. In
the presence of a static electric or magnetic background field it is physically possible to lift
the two-fold degeneracy w.r.t. the two possible directions of center-flux: the soliton exhibits
a two-fold spin degeneracy. Notice that as long as both wings of center flux are of finite size
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Figure 1: Points on the center flux lines moving oppositely on a line perpendicular to the bisecting line of
the angle α with velocity modulus v1. For sufficiently small α the velocity modulus v2 of the intersection
point is superluminal: v2 = v1cot(α/2).

the position of the intersection point can be shifted at almost no cost of energy. In particular,
if the inner angle α between in- and outgoing center-flux at the intersection is sufficiently
small, then a motion of points on the vortex line directed perpendicular to the bisecting line
of the angle α easily generates a velocity of the intersection point which exceeds the speed
of light, see Figure 1. Recall that the path-integral formulation of quantum mechanics admits
such superluminal motion in the sense that the according trajectories sizably contribute to
transition amplitudes.

The paper is organized as follows. In Section 2 we discuss the physics associated with
the emergence of topologically stabilized CVLs with intersection number N = 1, and how
their spatial 2D coarse-graining is captured by a curve-shrinking flow. Some mathematical
results on the properties of this flow for immersed curves, which are relevant for our
subsequent numerical analysis, are briefly discussed. Also, we repeat our discussion in
[18] of how the renormalization-group flow of an effective “action” is driven by the curve-
shrinking evolution of themembers of a given ensemble of curves. In Section 3we explain our
numerical analysis concerning the computation of the effective “action,” the variance of the
location of the self-intersection, and the entropy associated with a given ensemble. Finally,
in Section 4 we summarize our results and interpret them in view of certain 2D layered,
quasimetallic systems exhibiting high-Tc superconductivity.

2. Conceptual Framework

2.1. Self-Intersecting Center-Vortex Loops

The transition from the non-self-intersecting to the self-intersecting CVL sector is by twisting
of non-self-interesecting curves. The emergence of a localized (anti)monopole in the process
is due to its capture by oppositely directed center fluxes in the intersection core (eye of the
storm). By a rotation of the left half-plane in Figure 2(a) by an angle of π , see Figure 2(b),
each wing of the CVLs forms a closed flux loop by itself thereby introducing equally directed
center fluxes at the intersection point. This does not allow for an isolation of a single,
spinning (anti)monopole in the core of the intersection and thus is topologically equivalent
to the untwisted case Figure 2(a). However, another rotation of the left-most half-plane in
Figure 2(c) introduces an intermediate loop which by shrinking is capable of isolating a
spinning (anti)monopole due to oppositely directed center fluxes. Notice that in the last stage
of such a shrinking process (short distances between the cores of the flux lines), propagating
dual gaugemodes are available. (On large distances these modes are infinitely massive which
is characteristic of the confining phase): There is repulsion due to Biot-Savart which needs to
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Figure 2: (Topological) transition from theN = 0 sector (a), (b), (c) to theN = 1 sector (d) by twisting and
subsequent capture of a magnetic (anti)monopole in the core of the final intersection. Arrows indicate the
direction of center flux.

be overcome. This necessitates an investment of energymanifesting itself in terms of the mass
of the isolated (anti)monopole (eye of the storm). Alternatively, the emergence of an isolated
(anti)monopole is possible by a simple pinching of the untwisted curve, again having to
overcome local repulsion in the final stage of this process.

For the analysis performed in the present work we solely regard the situation depicted
in Figure 2(d) and thus no longer need to discuss the direction of center flux within a given
curve segment. This is not relevant for the process of a spatial coarse-grainingmicroscopically
described by the same curve-shrinking flow as applied to sector withN = 0 [18].

2.2. Euclidean Curve Shrinking Flow

The restriction of evolution of a CVL with self-intersection number N = 1 to the plane is an
essential constraint on generality if we aim at a fundamental description of the effectively
quantum mechanical behavior of a charged lepton (electron, muon, tau-lepton). An electron
bound inside a hydrogen atom certainly “moves” in 3D and quantum mechanics describing
it as a spinning, relativistic point particle is in accurate agreement with experiment.
The quantum mechanically incompletely understood condensed-matter physics of strongly
correlated 2D electrons, however, is a possibly fertile application field of our restriction of
curve evolution to the plane, see Section 4.

Notice that by immersing an SU(2) CVL with finite core size d and mass mD of the
dual gauge field into a flat 2D surface at mD < ∞, d > 0, a hypothetic observer measuring a
positive (negative) curvature of a segment of the vortex line experiences more (less) negative
pressure in the intermediate vicinity of this curve segment leading to its motion towards
(away from) the observer, see Figure 3.
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Figure 3: Highly space-resolved snapshot of a CVL segment. The pressure Pi in the region pointed to by
the normal vector n is more negative than the pressure Pe thus leading to a motion of the segment along n.

The (inward directed) speed of a point in the core of the vortex will be a monotonic
function of the curvature at this point. On average, this shrinks the CVL. Alternatively, one
may globally consider the limit mD → ∞, d → 0, that is, the confining phase of an SU(2)
Yang-Mills theory, but now take into account the effects of an environment which locally
relaxes this limit (by collisions) and thus also induces curve shrinking. This situation is
described by the following equation for a flow in the (dimensionless) parameter τ :

∂τx =
1
σ
∂2sx, (2.1)

where s is arc length, x is a point on the CVL in the plane, and σ is a string tension effectively
expressing the distortions induced by the environment. After a rescaling, x̂ ≡ √

σx, ξ =
√
σs,

(2.1) assumes the following form

∂τ x̂(u, τ) = ∂2ξ x̂ = k(u, τ)n(u, τ), (2.2)

where u is a (dimensionless) curve parameter, n the (inward-pointing) Euclidean unit
normal, k the scalar curvature, defined as

k ≡
∣

∣

∣∂2ξ x̂
∣

∣

∣ =
∣

∣

∣

∣

1
|∂ux̂|∂u

(

1
|∂ux̂|∂ux̂

)∣

∣

∣

∣

, (2.3)

|v| ≡ √
v · v, and v · w denotes the Euclidean scalar product of the vectors v and w. In the

followingwe resort to a slight abuse of notation by using the same symbol x̂ for the functional
dependence on u or ξ.

We now consider curves with one self-intersection, that is, N = 1, in the sense of the
stable situation of Figure 2(d). This situation was mathematically analysed in [22]. Since the
direction of center flux is inessential for the shrinking process we may actually treat this
situation in a way as depicted in Figure 2(b), where the curve is defined to be a smooth
immersion into the plane with exactly one double point and a total rotation number zero,
∫L

0 k dξ = 0. Here the (dimensionless) curve length L is given by the smooth integration L(τ) =
∫L(τ)
0 dξ =

∫2π
0 du|∂ux̂(u, τ)|. Notice that this is topologically distinct from the case Figure 2(d)

where one encounters a nonvanishing rotation number which is not smoothly deformable to
zero.
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In theN = 0 case a smooth, embedded curve shrinks to a circular point under the flow
for τ ↗ T < ∞ [19, 20]. That is, the isoperimetric ratio approaches 4π from above. The curve
in situation Figure 2(b) separates the plane into three disjoint areas two of which are finite
and denoted by A1 and A2. We understand by T the finite, critical value of τ where either A1

or A2 or both vanish. This corresponds to a singularity encountered and thus terminates the
flow.

Recall that in the N = 0 case the rate of area change is a constant, dA/dτ = −2π . This
is no longer true for N = 1. However, we have that

A1(τ) −A2(τ) = const. (2.4)

Also, for N = 1 we have in comparison to the N = 0 case the more relaxed constraint that
−4π ≤ d(A1 +A2)/dτ ≤ −2π .

In contrast to the N = 0 case the isoperimetric ratio for the N = 1 case is bounded for
τ ↗ T if and only if A1 /=A2. Notice that the case A1 = A2 physically is extremely fine-tuned.

2.3. Effective “Action”

We now wish to interpret curve-shrinking as a Wilsonian renormalization-group flow taking
place in theN = 1CVL sector in the sense defined in Section 2.2. A partition function, defined
as a statistical average (according to a suitably defined weight) overN = 1CVLs, is to be left
invariant under a decrease of the resolution determined by the flow parameter τ . Notice that,
physically, τ is interpreted as a strictly monotonic decreasing (dimensionless) function of a
ratioQ/Q0 whereQ (Q0) are mass scales associated with an actual (initial) resolution applied
to the system. The role ofQ can also be played by the finite temperature of a reservoir coupled
to the system.

To devise a geometric ansatz for the effective “action” S = S[x̂(τ)], which is a
functional of the curve x̂ representable in terms of integrals over local densities in ξ
(reparametrization invariance), the following reflection on symmetries is in order. (i) Scaling
symmetry x̂ → λx̂, λ ∈ R+: for λ → ∞, implying λL → ∞ at fixed L, the “action” S
should be invariant under further finite rescalings (decoupling of the fixed length scales σ−1/2

and Λ−1), (ii) Euclidean point symmetry of the plane (rotations, translations, and reflections
about a given axis): Sufficient but not necessary for this is a representation of S in terms of
integrals over scalar densities w.r.t. these symmetries. That is, the “action” density should be
expressible as a series involving products of Euclidean scalar products of (∂n/∂ξn)x̂, n ∈ N+,
or constancy. However, an exceptional scalar integral over a nonscalar density can be devised.
Consider the area A, calculated as

A =

∣

∣

∣

∣

∣

1
2

∫2π

0
dξ x̂ · n

∣

∣

∣

∣

∣

. (2.5)

The density x̂ · n in (2.5) is not a scalar under translations.
We now resort to a factorization ansatz as

S = Fc × Fnc, (2.6)

where in addition to Euclidean point symmetry Fc (Fnc) is (is not) invariant under x̂ →
λx̂. In principle, infinitely many operators can be defined to contribute to Fc. Since the
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evolution homogenizes the curvature except for a small vicinity of the intersection point
higher derivatives of k w.r.t. ξ should not be of importance. We expect this to be true also
for Euclidean scalar products involving higher derivatives (∂n/∂ξn)x̂. To yield conformally
invariant expressions such integrals need to be multiplied by powers of

√
A and/or L or

the inverse of integrals involving lower derivatives. At this stage, we are not capable of
constraining the expansion in derivatives by additional physical or mathematical arguments.
To be pragmatic, we simply set Fc equal to the isoperimetric ratio:

Fc(τ) ≡ L(τ)2

A(τ)
. (2.7)

We conceive the nonconformal factor Fnc in S as a formal Taylor expansion in inverse powers
of L or A ≡ A1 +A2 due to the property of conformal invariance for L,A → ∞.

Since we regard the renormalization-group evolution of the effective “action” as
induced by the flow of an ensemble of curves, where the evolution of eachmember is dictated
by (2.2), we allow for an explicit τ dependence of the coefficient c of the lowest nontrivial
power 1/L or 1/A. In principle, this sums up the contribution to Fnc of certain higher-power
operators which do not exhibit an explicit τ dependence. Hence we make the following
ansatz:

Fnc(τ) = 1 +
c(τ)
L(τ)

. (2.8)

The initial value c(τ = 0) is determined from a physical boundary condition such as the mean
length L at τ = 0.

2.4. Geometric Partition Function

Let us now numerically investigate the effective “action” S[x̂(τ)] resulting from a partition
function Z w.r.t. a nontrivial ensemble E. The latter is defined as the average

Z =
∑

i

exp(−S[x̂i(τ)]) (2.9)

over the ensemble E = {x̂1, . . .}. Let us denote by EM an ensemble consisting of M curves
where EM is obtained from EM−1 by adding a new curve x̂M(u, τ). The effective “action”
S in (2.6) (when associated with the ensemble EM we will denote it by SM) is determined
by the function cM(τ), compare with (2.8), whose flow follows from the requirement of τ-
independence of ZM:

d

dτ
ZM = 0. (2.10)
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This is an implicit, first-order ordinary differential equation for c(τ) which needs to be
supplemented with an initial condition c0,M = cM(τ = 0). A natural initial condition is to
demand that the quantity

LM(τ = 0) ≡ 1
ZM(τ = 0)

M
∑

i=1

L[x̂i(τ = 0)] exp(−SM[x̂i(τ = 0)]) (2.11)

coincides with the algebraic mean ˜LM(τ = 0) defined as

˜LM(τ = 0) ≡ 1
M

M
∑

i=1

L[x̂i(τ = 0)]. (2.12)

From LM(τ = 0) = ˜LM(τ = 0) a value for c0,M follows. We also have considered a modified
factor

Fnc(τ) = 1 +
c(τ)
A(τ)

. (2.13)

While, due to (2.13), the ansatz for the geometric effective ”action” in (2.6) thus is profoundly
different for such a modification of Fnc(τ) physical results such as the evolution of the
variance of the intersection agree remarkably well, see Section 3.

3. Results of Simulation

3.1. Preparation of Ensembles

Similar as in [18] we normalize all curves to have the same initial area A0 = A0,1 +A0,2, and,
since we are now interested in the position of the intersection where the (anti)monopole, is
localized, we have applied a translation to each curves in the ensembles EM such that the
location of the intersections initially coincides with the origin.

Since the critical value T of the flow parameter τ varies from curve to curve, we order
the members of the maximal-size ensemble EM=16 into subensembles EM<16 such that Ti=1 ≥
Ti=2 ≥ · · · ≥ TM. The types of ensembles EM obtained in this way are referred to as T -ordered.
We also have performed all simulations with ensembles E′

M<16 whose members are picked
randomly from EM=16 and have obtained strikingly similar results for ensemble averages of
“observables” using EM<16 and E′

M<16 for the τ evolution to the left of τ = min{Ti | x̂i ∈
E′
M<16}.

The maximal-size ensemble EM=16 at τ = 0 is depicted in Figure 4 with the universal
choice A0 = 200π . The curves in Figure 4 are arranged in a T -ordered way. We have Ti=1 =
65 ≥ Ti=2 ≥ · · · ≥ TM = 43. In Figure 5 the evolution of an initial curve under curve shrinking
is shown from two viewpoints. The flow is started at τ = 0 and stopped at a value of τ shortly
below T . In Figure 6 the flow of the intersection points, corresponding to the initial curves
depicted in Figure 4, is shown. The search for solutions to the second-order partial differential
equation (PDE) (2.2) subject to periodic boundary conditions in the curve parameter, x̂(u =
0, τ = 0) = x̂(u = 2π, τ = 0), and for the initial conditions x̂(u, τ = 0) depicted in Figure 4
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Figure 4: Initial curves x̂i(u, τ = 0) contributing to the ensemble EM=16. The intersection points coincide
with the origin, and all curves have the same area 200π . By definition EM=16 is T -ordered.

was performed numerically using the method of lines. That is, the PDE was discretized on
a uniform grid in the parameter u yielding a semidiscrete problem in terms of a system of
ordinary differential equations (ODEs) in τ which was solved using Mathematica. Figure 5
indicates why this technique is called the numerical method of lines. As one can also see
from Figure 5, a set of discrete points on the curve, although remaining equidistant in u, may
evolve under the flow such that the spatial distances between next-neighbours-points fall
below the numerical precision. Numerically, the flow then encounters a singularity (not to
confused with the earlier mentioned nonfictitious singularities). To recognize such a situation
automatically, (2.4) was exploited: the evolution was stopped as soon as a sizable deviation
occured from what (2.4) predicts. The configuration obtained at this point in τ was fitted in
such a way that a new discretization in u yielded well-separated points to restart the methods
of lines. (2.4) was also used as an indicator for the final singularity at T where A1 or A2 or
both vanish.

3.2. Renormalization-Group Invariance of Partition Function

For all ensembles EM, the τ dependence of the coefficient cM in (2.8) roughly behaves like
a square root ∝

√

TM − τ , where TM is the weakly ensemble-dependent minimal resolution.
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Figure 5: Plot of the evolution of an N = 1 CVL (curve 12 of Figure 4) under (2.2). The thick central line
indicates the trajectory of the intersection point which coincides with the origin at τ = 0.
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Figure 6: Flow of the intersection points for the initial curves depicted in Figure 4.

For the modified “action” SM = (L(t)2/A(t))(1 + (cM(t)/A(t))) the coefficient cM is well
approximated by a linear function ∝ TM−τ . Again, TM denotes a weakly ensemble-dependent
minimal resolution. For T -ordered ensembles, the results for cM for the “actions” (2.8) and
(2.13) are shown in Figures 7 and 8, respectively. The results for ensembles E′

M do not differ
sizably from those presented in Figures 7 and 8.

3.3. Variance of Location of Self-Intersection

The mean intersection x̂int over the ensemble EM is defined as

x̂int(τ) ≡ 1
ZM

M
∑

i=1

x̂int,i(τ) exp(−SM[x̂i(τ)]), (3.1)
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Figure 7: The squares of the coefficients cM(τ) entering the ansatz for effective “action” of (2.6) specializing
to (2.8) for T -ordered ensembles up toM = 16.

where x̂int,i(τ) is the location of self-intersection (intersection point) of curve x̂i at τ . The
scalar statistical deviation ΔM,int of x̂int over the ensemble EM is defined as

ΔM,int(τ) ≡
√

varM,int;x(τ) + varM,int;y(τ), (3.2)

where

varM,int;x ≡ 1
ZM

M
∑

i=1

(xint,i(τ) − xint(τ))
2 exp(−SM[x̂i(τ)])

= −x2
int(τ) +

1
ZM

M
∑

i=1

x2
int,i(τ) exp(−SM[x̂i(τ)])

(3.3)

and similarly for the coordinate y. In Figure 9 plots of ΔM,int(τ) are shown when evaluated
over the ensembles E1, . . . , E16 subject to the “action”

SM =
L(τ)2

A(τ)

(

1 +
cM(τ)
L(τ)

)

(3.4)
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Figure 8: The coefficient cM(τ) entering the ansatz for the effective “action” of (2.6) specializing to (2.13)
for T -ordered ensembles up to M = 16.

and the initial condition LM(τ = 0) = ˜LM(τ = 0). In Figure 10 the according plots of ΔM,int(τ)
are depicted as obtained with the “action”

SM =
L(τ)2

A(τ)

(

1 +
cM(τ)
A(τ)

)

(3.5)

and subject to the initial condition LM(τ = 0) = ˜LM(τ = 0). Relaxing the constraint of T -
ordering (EM → E′

M) does not entail a qualitative change of the results.
The results presented in Figures 9 and 10 are unexpected since in the N = 0 sector

the variance of the “center-of-mass” saturates rapidly to finite values. In contrast, for the
N = 1 sector the variance of the location of the self-intersection initially increases, reaches
a maximum, and decreases to zero at a finite value of τ . This is readily confirmed by the
evaluation of the entropy, see Section 3.4.

3.4. Evolution of Entropy

Let us now evaluate the flow of entropy ΣM defined as

ΣM(τ) ≡ logZM +
1

ZM

M
∑

i=1

exp(−SM[x̂i(τ)])SM[x̂i(τ)], (3.6)
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Figure 9: Plots of ΔM,int(τ) for the T -ordered ensembles EM with M = 1, . . . , 16. We have employed the
ansatz for the “action” SM = (L(τ)2/A(τ))(1 + (cM(τ)/L(τ))).

where SM[x̂i(τ)] is given by (2.6). In Figure 11 plots are shown for ΣM(τ). when evaluated
with the “action” SM = (L(τ)2/A(τ))(1 + (cM(τ)/L(τ))) for T -ordered ensembles of size
M = 1, . . . , 16. These graphs look very much alike to the ones generated using the “action”
SM = (L(τ)2/A(τ))(1 + (cM(τ)/A(τ))). Notice the continuous approach to zero at finite
values of τ . This implies that order emerges spontaneously in the system with decreasing
resolution: starting at a finite value of τ , a particular member of EM is singled out by its
weight approaching unity. Judging from our results for theN = 0 sector [18], this behavior is
highly unexpected. Therefore the nontrivial topology ofN = 1 induces qualitative differences
to the coarse-graining process.

4. Summary, Interpretation of Results, and Conclusion

In this paper we have investigated the spatial coarse-graining of CVLs, immersed in a flat
2D plane, of an SU(2) Yang-Mills theory being in its confining phase. The focus was on the
sector with one topologically stabilized self-intersection (existence of an isolated magnetic
charge at its location, N = 1). We have analysed this coarse-graining process in terms
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Figure 10: Plots of ΔM,int(τ) for the T -ordered ensembles EM with M = 1, . . . , 16. We have employed the
ansatz for the “action” SM = (L(τ)2/A(τ))(1 + (cM(τ)/A(τ))).

of curve ensembles generated by evolving an initial situation under the curve-shrinking
flow [19, 20, 22]. The idea here is to suppose that curve shrinking in the parameter τ
represents an exact coarse-graining of a given initial state and to reconstruct the associated
ensemble-weight of the statistical approach (exponential of effective “action”) by demanding
invariance of the corresponding partition function under the flow in τ (renormalization-
group evolution). Notice that τ is related to a physical resolution, applied to probing the
system, in a strictly monotonic decreasing manner. This resolution may be associated with
a local momentum transfer exerted by an observer or a globally defined temperature of
an environment. The functional dependence of τ on these physical parameters depends on
the given experimental situation. It is, however, reasonable to assume that finite values of τ
universally correspond to finite values of these physical parameters.

In Sections 3.3 and 3.4 we have obtained the unexpected result that a statistical
ensemble of renormalization-group evolved curves spontaneously orders itself in the sense
that, starting from finite values of τ , only a particular member of the ensemble survives
the process of 2D spatial coarse-graining. That is, the entropy attributed to the ensemble is
practically zero for sufficiently large values of τ . For the location of self-intersection (charge
of an electron) this means that no dissipation of energy, provided by the environment, can be
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Figure 11: Flow of the entropies ΣM for T -ordered ensembles of sizeM = 1, . . . , 16 when evaluated with the
“action” SM = (L(τ)2/A(τ))(1+ (cM(τ)/L(τ))). The situation does not change qualitatively if the “action”
SM = (L(τ)2/A(τ))(1 + (cM(τ)/A(τ))) is used.

mediated by the monopole situated within the core of the intersection if the resolution falls
below a critical, finite value. This result must drastically depend on the two-dimensionality
of space and the fact that we consider the sector withN = 1, compare with [18].

The recently discovered, unconventional FeAs systems do not appear to exhibit an
explicit, strong correlation between the electrons contained in their theoretically suggested,
2D-superconducting layers, see [23] and references therein. If the two-dimensional behavior
of noninteracting electrons, subject to an environment represented by the parameter τ , indeed
is described by the coarse-graining process investigated in the present work, then the sudden
decrease of entropy that we observe at a finite value of τ should ultimately be connected to this
particular kind of high-Tc superconductivity. Here τ is a monotonically decreasing function
of temperature.
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