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Abstract. The first profile retrieval results of the Terahertz
and submillimeter Limb Sounder (TELIS) balloon instru-
ment are presented. The spectra are recorded during a 13-h
balloon flight on 24 January 2010 from Kiruna, Sweden. The
TELIS instrument was mounted on the MIPAS-B2 gondola
and shared this platform with the Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS) and the mini-
Differential Optical Absorption Spectroscopy (mini-DOAS)
instruments. The flight took place within the Arctic vor-
tex at an altitude of≈34 km in chlorine activated air, and
both active (ClO) and inactive chlorine (HCl) were measured
over an altitude range of respectively≈16–32 km and≈10–
32 km. In this altitude range, the increase of ClO concentra-
tion levels during sunrise has been recorded with a temporal
resolution of one minute. During the daytime equilibrium, a
maximum ClO level of 2.1± 0.3 ppbv has been observed at
an altitude of 23.5 km. This equilibrium profile is validated
against the ClO profile by the satellite instrument Microwave
Limb Sounder (MLS) aboard EOS Aura. HCl profiles have
been determined from two different isotopes – H35Cl and
H37Cl – and are also validated against MLS. The precision of
all profiles is well below 0.01 ppbv and the overall accuracy
is therefore governed by systematic effects. The total uncer-
tainty of these effects is estimated to be maximal 0.3 ppbv
for ClO around its peak value at 23.5 km during the daytime
equilibrium, and for HCl it ranges from 0.05 to 0.4 ppbv, de-
pending on altitude. In both cases the main uncertainty stems
from a largely unknown non-linear response in the detector.

1 Introduction

After the “Montreal Protocol on Substances that Deplete the
Ozone Layer” went into effect, anthropogenic chlorofluo-
rocarbons (CFCs) emissions started being phased out. Al-
though the stratospheric HCl content has been declining
since 1997 (Jones et al., 2011), the rate of the decline of the
total atmospheric chlorine content and subsequently the rate
of the expected recovery of ozone abundances varies among
different simulations of atmospheric chemistry models (see
e.g.Austin et al., 2010and references therein). Therefore,
monitoring stratospheric chlorine species is still important
for our understanding of their impact on stratospheric ozone.

The partitioning between active and inactive chlorine dic-
tates the relative strength of the chlorine ozone-loss cycle
(see e.g.Solomon, 1999). During the polar winter, inactive
or reservoir chlorine is converted into active chlorine in the
polar vortex, increasing the strength of this loss cycle. To es-
timate the total stratospheric chlorine content, both reservoir
and active chlorine species need to be known. The main chlo-
rine reservoir species is hydrogen chloride (HCl), whereas
the foremost active molecular chlorine compound at daytime
is chlorine monoxide (ClO).

At nighttime, ClO is converted into ClONO2 and the ClO-
dimer, depending on the relative abundances of NO2 and
ClO. In the activated polar vortex, not only ClO abundances
are high but NO2 concentration levels are low as well be-
cause of a steady conversion into N2O5 and subsequently
into HNO3, favouring the formation of the ClO-dimer dur-
ing sunset. During sunrise these species are back-converted
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into ClO by photo-dissociation processes, leading to a diur-
nal cycle of ClO concentrations.

In 2007, new laboratory photo-dissociation rates of the
ClO-dimer were presented byPope et al.(2007). These rates
led to an underestimation of modeled ClO levels with respect
to observations when implemented in chemical models (von
Hobe et al., 2007). Several studies have since then indicated
that the measurements byPope et al.(2007) may be faulty
(von Hobe et al., 2009; Lien et al., 2009; Papanastasiou et al.,
2009; Jin et al., 2010; Wetzel et al., 2010). The formation
rate of ClO during sunrise is, especially in the polar vor-
tex, strongly linked with the photo-dissociation rates of the
ClO-dimer.

Global coverage of stratospheric profiles for both HCl and
ClO have been available since 1991 by satellite instruments.
In that year the UARS satellite was launched with the Halo-
gen Occultation Experiment (HALOE) (Russell et al., 1993)
aboard, probing HCl, and the Microwave Limb Sounder
(MLS) (Barath et al., 1993) that observed ClO. This satellite
was operational until 2005 and had therefore overlap with
the next generation of satellite instruments: Sub-Millimeter
Receiver (SMR) (Frisk et al., 2003) aboard Odin, Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS)
(Glatthor et al., 2004) on Envisat, Atmospheric Chemistry
Experiment (ACE) (Bernath et al., 2005) aboard SCISAT-1
and a new and updated MLS (Waters et al., 2006) on EOS-
Aura. The SMR started its measurements in 2001, MIPAS in
2002, and both ACE and MLS in 2004. All four instruments
are still operational. MIPAS and SMR record ClO whereas
ACE measures HCl. The updated MLS observes both HCl
and ClO. In 2009, the Superconducting Submillimeter-Wave
Limb-Emission Sounder (SMILES) (Kikuchi et al., 2010)
was installed on the International Space Station and has been
recording HCl and ClO spectra until 2010.

In addition to satellite measurements, several balloon in-
struments that record HCl and ClO were also operational in
the past two decades, partly as satellite validation platforms,
but also to conduct science. HCl profiles have, for instance,
been measured in the early 90s by the ALIAS aircraft instru-
ment and the balloon instruments BLISS and MkIV (Webster
et al., 1994) and later by the balloon instruments SPIRALE
(Moreau et al., 2005) and B-SMILES (Irimajiri et al., 2006).
The latter was a pre-cursor of the SMILES space instrument
and has observed ClO as well. The MIPAS balloon instru-
ment (Friedl-Vallon et al., 2004) has observed ClO during all
flights in the Arctic over the last 20 years (e.g.Wetzel et al.,
2010).

On 24 January 2010, the Terahertz and submillimeter
Limb Sounder (TELIS) (Birk et al., 2010) was launched
around midnight from Kiruna, North Sweden. The instru-
ment was mounted on the MIPAS-B2 gondola together with
MIPAS (Friedl-Vallon et al., 2004) and the mini-Differential
Optical Absorption Spectroscopy (mini-DOAS) (Weidner
et al., 2005) instruments. The flight duration was 13 h and
occurred in the Arctic polar vortex at an altitude of≈34 km.

At that time the vortex was fully chlorine activated, leading
to the complete absence of HCl around 23 km and a peak in
the ClO concentration of≈2 ppbv at this altitude.

TELIS is a cryogenic instrument and the noise levels are
therefore very low, allowing for precise measurements of
many species. The instrument is capable of detecting the
chlorine species HCl, ClO, and HOCl. In combination with
MIPAS (ClO, ClONO2, and the ClO-dimer) and mini-DOAS
(OClO), both probing the same air masses as TELIS, an ex-
tensive set of chlorine species is available, which is very suit-
able for constraining the total stratospheric chlorine content.

Unique about TELIS is that it monitors the ClO diurnal
variation with a temporal resolution of≈1 min. This, to-
gether with the MIPAS observations of the nighttime reser-
voir species ClONO2 and the ClO-dimer, allows for testing
ClO formation rates as function of altitude, and thus as func-
tion of temperature and pressure, in atmospheric chemistry
models. As this formation rate is directly linked to the ClO-
dimer photo-dissociation rate in the chlorine activated polar
vortex, the joint MIPAS-TELIS balloon flight of 2010 makes
it very suitable to evaluate the dissociation rates found in lab-
oratory experiments.

In this paper we present ClO and HCl profile retrievals
from the 24 January 2010 TELIS flight, including a compar-
ison with co-located MLS measurements and an extensive
error analysis. The outline of the present study is as follows:
in Sect.2 the TELIS instrument and measurements are de-
scribed. Background information on the inversion method
used in this study, is given in Sect.3. Subsequently, the first
profile retrieval results for both HCl and ClO are presented
and discussed in Sect.4. In this section, the error budget
for the profiles is discussed as well as the validation of the
retrieval results. Finally, Sect.5 concludes the study.

2 TELIS

2.1 Instrument

TELIS is a cryogenic heterodyne balloon sounder devel-
oped in a collaboration of three institutes: the leading insti-
tute German Aerospace Center (DLR), Germany, Rutherford
Appleton Laboratory (RAL), United Kingdom, and Nether-
lands Institute for Space Research (SRON), the Netherlands.
Each institute is responsible for one channel: a miniaturised
500 GHz channel (RAL), a tunable 1.8 THz channel (DLR),
and a tunable 480–650 GHz channel (SRON). The results
presented here pertain to the 480–650 GHz channel devel-
oped by SRON in collaboration with the Institute of Radio-
Engineering and Electronics (IREE), Moscow. The key-
technology of this channel is the development of a tunable
superconducting integrated receiver (SIR). This 4× 4 mm2

receiver combines a tremendous miniaturisation over tradi-
tional electronic circuits, with almost no loss in noise proper-
ties. The double sideband system noise temperature is 250 K,
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which is indeed very comparable to the cryogenic space-
borne ISS/SMILES instrument that has a single sideband
noise temperature of 330 K (Ochiai et al., 2010), being equiv-
alent to a double sideband noise temperature of 230 K. A de-
tailed description of the SIR channel is given byde Lange
et al.(2010). The most important instrument characteristics,
including an uncertainty estimate, are described below. The
uncertainties are also summarised in Table1.

The TELIS back-end consists of a digital autocorrelator
spectrometer (DACS) and yields the digitised autocorrelation
of the measured signal as raw data, or level-0 data product.
This data is post-processed on ground to a level-1 data prod-
uct, which is used as input for the retrievals. The level-1 data
product consists of radiometric calibrated limb spectra and
their geo-location and pointing angles as well as the side-
band ratio information and the antenna beam profile of the
instrument.

The following post-processing steps are taken to obtain the
level-1-product: A 3-level digital autocorrelator is used as a
spectrometer. To cover the instrument bandwidth of 2 GHz,
the IF-signal is split into four 500 MHz segments which are
complex sampled. For each frequency segment the true au-
tocorrelation is estimated from the measured, digitised auto-
correlation using a quantisation correction approach (Kulka-
rni and Heiles, 1980). The true autocorrelation function is
Fourier transformed to obtain the power spectra. An apodis-
ation function is applied and is taken into account in the in-
strumental line shape of the instrument. The spectral resolu-
tion is 2.2 MHz and, as the narrowest atmospheric lines in the
SIR recordings have a full width half-maximum (FWHM) of
≈10 MHz, all lines are well sampled with at least 4 points.

During flight a short term, linear calibration approach is
employed. An on-board black body unit is used as a hot sig-
nal reference and the signal from pointing into deep space is
used as a cold signal reference. The uncertainty in the tem-
perature of the black body is estimated to be 1 K.

From these hot and cold calibration measurements, the un-
knowns of the instrument’s response function, the radiomet-
ric gain and the offset, can be determined and thus allow for
a linear radiometric calibration of the processed limb spectra.

With the heterodyne measurement technique, a reference
signal with fixed frequency is generated on-board in the so-
called local oscillator (LO). This signal is mixed with the
atmospheric signal in a non-linear mixer, resulting in sig-
nals with sum and difference frequencies of the LO and at-
mospheric signal. Only the signal with the difference fre-
quency is processed; all other signals are filtered out. The
atmospheric signal can be reconstructed from this signal if
the characteristics of the LO are known. For the SIR chan-
nel, the LO frequencyνLO ranges from 480 GHz to 650 GHz
and is known within 1 MHz. In Table1, the instrumental
line shape (ILS) spectral ratio refers to the fraction of LO
power stored in a central delta-function-like peak (much nar-
rower than 1 spectral bin of the detector), as opposed to the
power stored in sidelobes≈10 MHz away from the central

Table 1. Uncertainties in instrumental parameters used to determine
the error budget for the HCl and ClO profile retrievals from the SIR
channel of the TELIS instrument. ILS stands for instrumental line
shape and LO for local oscillator.

Error source Uncertainty

Field of view width 1 %
ILS spectral ratio 10 %
LO frequency 1 MHz
Sideband ratio 5 %
Calibration black body 1 K
Pointing 1 arcmin
Non-linearity 10–25 % (see text)

frequency. This number determines the overall ILS spectrum
for the SIR channel. The accuracy of this ratio is better than
10 % and determines mostly the ILS error spectrum.

In case of the SIR channel, the signal is recorded as func-
tion of the absolute difference frequency, or intermediate fre-
quency (IF). This means that the recorded spectrum is the su-
perposition of two spectral bands:νLO +νIF andνLO − νIF,
with νLO the LO frequency andνIF = 5–7 GHz the IF fre-
quency band. In the ideal case, the recorded signal has the
same sensitivity to both spectral bands. The relative sensi-
tivity to these two bands, the so-called sideband ratio, is thus
preferably around one. For the SIR channel this ratio is be-
tween 0.6 and 1.4 and is known within 5 % for every local
oscillator frequency relevant during flight.

A limb sequence consists of sequential observations with
different viewing geometries such that the instrument line of
sights observe the atmosphere within a given altitude range,
which is indicated by their tangent heights. For HCl, the limb
sequence covered tangent heights from 10–32.5 km in steps
of 1.5 km, complemented with two up-looking observations
at respectively 6◦ and 12◦ to assess the atmosphere above the
balloon. For ClO, the limb sequence started at 16 km, but
besides this its assessment process identical to that of HCl.
Both limb sequences covered the altitude range of chlorine
activated air (17–26 km).

The tangent heights in this study refer to the commanded
tangent heights, but the actual heights probed by the SIR
channel are slightly lower due to an off-centre optical align-
ment, and are accounted for in the retrievals. The systematic
offset is−6 arcmin for HCl and−4.5 arcmin for ClO. These
angles correspond to a maximal altitude offset of≈970 m for
HCl at its lowest tangent height (10 km) and≈630 m for ClO
(16 km). The uncertainty in the absolute pointing offset is
estimated to be 1 arcmin, corresponding to≈150 m for the
lowest tangent heights. It is noted that atmospheric refrac-
tion lowers the tangent heights further, and this is also taken
into account in the retrievals.
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Fig. 1. SIR TELIS measurements of atmospheric HCl and ClO. In the left panel the average of 10 limb sequences, covering HCl lines of both
isotopes, is depicted as function of the intermediate frequencyνIF. The local oscillator frequency isνLO = 619.1 GHz. In the right panel a
single limb scan is given for the dedicated ClO micro-window at daytime equilibrium, withνLO = 507.52 GHz. The corresponding tangent
heights for each limb sequence are given in km to the right of the particular panel.

The pointing uncertainty is derived as follows: The MI-
PAS instrument on the balloon gondola is equipped with a
dedicated attitude and heading reference system with a sta-
bility much better than 1 arcmin (Friedl-Vallon et al., 2004).
Although TELIS receives the information from this system
as well, MIPAS and TELIS are both connected to the gon-
dola frame by several springs that may not only introduce
an additional pointing offset, but also deteriorate the point-
ing stability. From the reproducibility of subsequent spec-
tra, however, it can be determined that the pointing stability
for the TELIS instrument is much better than 1 arcmin. On
ground, with the gondola suspended in air and with all in-
struments in place, the pointing offset of the SIR channel has
been determined with an absolute accuracy of≈1 arcmin. It
is this accuracy that is taken as the uncertainty of the pointing
error. During flight, O2 and O3 measurements are performed
to provide additional information on the exact pointing. In
the future, these measurements will be incorporated in the
data analysis.

The geo-location information is also taken from the MI-
PAS attitude and heading reference system.

The antenna beam profile, or field of view, of the SIR
channel is almost Gaussian shaped with a full width half-
maximum (FWHM) in the vertical direction of≈12 arcmin
at 495 GHz (Birk and Wagner, 2009) and is known within
1 %. This translates to≈1.5 km at a tangent point of 26 km.
The steps in the limb sequence are set to this vertical resolu-
tion of 1.5 km to resolve the vertical distribution of ClO and
HCl. The field of view in the horizontal direction is twice
as large, but horizontal gradients in the atmosphere are much
smaller than vertical gradients and may be neglected on this
scale.

In a previous study for the SIR channel on rare water iso-
topes, it has been shown that especially the sideband ratio
and the pointing error are critical instrument parameters for
profile retrieval and should be known accurately (de Lange

et al., 2009). With the actual instrument becoming ready,
another critical instrument parameter became apparent, be-
ing the non-linearity in the detector’s response function.
These parameters have been determined during dedicated on-
ground calibration campaigns (Birk et al., 2010), albeit that
the non-linearity still shows a large uncertainty.

The effect of non-linearity is a signal compression with re-
spect to a linear response, as function of total input power. In
case of the TELIS SIR channel, this is mainly caused by the
saturation of two different amplifiers of which one is deeply
embedded in the spectrometer. Compression levels of 10–
25 % are found for the measurements with the highest total
powers.

2.2 Measurements

Only two HCl lines occur within the 480–650 GHz frequency
range of the TELIS SIR channel1, one for each Cl isotope:
H37Cl has a transition at 625.0 GHz and H35Cl at 625.9 GHz.
With the local oscillator frequencyνLO = 619.1 GHz, both
lines fall within theνIF = 5–7 GHz frequency range of the
SIR channel. TELIS measurements in this spectral range
are depicted in the left panel of Fig.1. The two HCl lines
are clearly visible aroundνIF = 5.9 GHz andνIF = 6.8 GHz,
respectively. In the wing of the latter line, a ClO feature is
discernible. However, this feature is relatively weak and for
lower tangent heights the HCl line dwarfs the ClO line due
to pressure broadening. Therefore, for the retrieval of ClO,
a dedicated measurement window has been defined with a
local oscillator frequency ofνLO = 507.52 GHz, probing the
isolated ClO line at 501.27 GHz. The signals from this line
are so strong, especially in chlorine activated air, that a single
limb sequence is sufficient for profile retrieval, allowing for

1Because of hyperfine splitting, each line is in fact a triplet of
overlapping lines.
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monitoring changes in ClO levels over time with a temporal
resolution of 1 min, being the duration of one limb sequence
including calibration measurements. The increase of ClO
concentrations from nighttime to daytime levels have been
monitored for 1.5 h during sunrise. The right panel of Fig.1
shows a single limb sequence when the ClO concentrations
have reached their daytime equilibrium.

3 Inversion

For the interpretation of the TELIS measurements, a forward
modelF is needed that simulates the radiance measurement
r as function of the atmospheric state vectorx and the for-
ward model parameter vectorb,

r = F (x, b) + ey, (1)

whereey comprises forward model error and instrument er-
ror including the measurement noise. The state vectorx con-
tains all parameters to be retrieved from the measurement.
Depending on the particular retrieval, it contains the HCl or
the ClO profile and atmospheric abundance profiles of inter-
fering species. The forward model parameterb summarises
all model parameters that have to be known a priori, like in-
strument parameters or atmospheric pressure and tempera-
ture profiles.

The forward model comprises the solution of the radiative
transfer equation in a non-scatering atmosphere for thermal
equilibrium in spherical geometry, resulting in the intensity
as function of frequency, at the gondola altitude in the view-
ing direction of the instrument. It is a line by line model
and only lines from the HITRAN 2008 database (Rothman
et al., 2009) are included that have a contribution of more
than 0.001 K to the limb spectrum with a tangent height
of 25 km in standard atmosphere. To account for broad-
band continuum emissions, the Liebe 1993 continuum model
(Liebe et al., 1993) has been adopted. Refraction of the limb
path is accounted for by implementing a non-dispersive re-
fractive index, as is described byBuehler et al.(2005). The
forward model also includes an instrument model to account
for the specifics of the TELIS instrument. For more details
on the forward model we refer tode Lange et al.(2009).

To determine the atmospheric state vectorx from Eq. (1)
the forward modelF has to be inverted. In general forward
modelF is not linear in the state vectorx, and so Eq. (1)
is inverted with a Gauss-Newton iteration scheme. For this
purposeF is linearised in iteration stepi by a Taylor expan-
sion around the solution of the previous iteration step,xi−1,
starting with a first guess state vectorx0. Thus, Eq. (1) can
be rewritten as

y = K x + ey, (2)

where y = r − F (xi−1) + Kxi−1 is the so-called measure-
ment vector andK is the Jacobian matrix.

For limb measurements each recorded spectrum probes
predominately the atmospheric state at its tangent height, and
therefore all spectra of a limb scan contain different informa-
tion about the probed vertical range of the atmosphere. At
first glance, one may think that the atmospheric trace gas
profiles can be retrieved uniquely within this altitude range
at vertically homogeneous layers defined by the vertical scan
of the atmosphere. However, the atmosphere above the in-
strument, which is not properly observed by TELIS, may
not be neglected in the forward model and thus in the re-
trieval. Also, below the lowest tangent point the atmosphere
is probed because of the extended field of view of the instru-
ment. Thus, the inversion of vertical HCl and ClO profiles
represents an ill-posed problem which means that the stan-
dard least squares solution is overwhelmed by noise. Several
techniques have been developed to tackle this problem and
in this study we employ Tikhonov regularisation (Tikhonov,
1963; Phillips, 1962; Twomey, 1963). This inversion tech-
nique is used frequently for the interpretation of atmospheric
limb measurements (e.g.Schimpf and Schreier, 1997; Steck,
2002; Wetzel et al., 2010). The corresponding minimisation
function becomes

xγ = minx

(
‖S

−
1
2

y (K x − y)‖2
+ γ 2

‖L x‖
2
)

, (3)

wherexγ is the solution vector of the minimisation prob-

lem, ‖S
−

1
2

y (Kx − y)‖2 is the least squares norm withSy the
measurement noise covariance matrix, and‖Lx‖

2 is the side
constraint in whichL is a suitably chosen matrix. In this
study the first derivative of the state vectorx is used as a
side constraint andL is the matrix representation of this first
derivative. γ is the regularisation parameter, balancing the
contributions of the least square term and the side constraint.
The corresponding cost function in Eq. (3) is transformed to
the standard form withL = I , the unity matrix, as described
by Eldén(1977).

The value ofγ is of crucial importance for the retrieval. If
γ is chosen too large, the noise contribution to the solution of
the measurement is low, but the least squares residual norm
deviates significantly from its minimum, indicating that the
calculated spectrum corresponding to this solution deviates
from the actual measurement. On the other hand, ifγ is cho-
sen too small, the measurement is fitted well but the solution
norm is high, and so, the solution is overwhelmed by noise.
The part of the profile that is dominated by noise defines the
effective null-space of the problem. Thus,γ should be cho-
sen such that the two minimizations are well balanced.

To find the appropriate value for the regularisation param-
eter, the L-curve is used (Hansen, 1992). This curve is a para-
metric plot of the logarithm of the solution norm‖xγ ‖

2 and

the logarithm of the least squares norm‖S
−

1
2

y (Kxγ − y)‖2

as function of regularisation parameterγ . The curve is gen-
erally L-shaped and the regularisation parameter that cor-
responds to the corner balances the two terms in the cost
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curve pertains to the last ClO measurement after the transformation
of the cost function into standard form. In this figureη refers to
the norm of the transformed state vector andρ to the norm of the
transformed least squares term. The regularisation parameter corre-
sponding to the lower left corner is used to determine the retrieved
state vector.

function as described in Eq. (3). An example of such a curve
is given in Fig.2. This results in a stable state vectorxγ

that represents the measurement and, at the same time, is as
much as possible determined by the atmospheric condition
as opposed to measurement noise. The solution is then

xγ = D y, (4)

where

D =

(
KT S−1

y K + γ 2 LT L
)−1

KT S−1
y , (5)

is the pseudo-inverse ofK or the contribution matrix.
The measurement noise is propagated into the retrieved

state vector as

Sx = D Sy DT , (6)

whereSx is the retrieval noise covariance matrix.
The retrieved vectorxγ is a weighted average of the true

atmospheric state vectorxtrue

xγ = A xtrue + ex, (7)

whereA = DK is the averaging kernel andex = Dey the error
in the state vector caused by measurement errors. Effectively,
the averaging kernel filters out the null-space contribution of
the true state vectorxtrue. When the kernel is peaked at the
tangent height of the limb observation, it can be interpreted
as a smoothing function and its width can viewed upon as the
vertical resolution of the retrieved profile.

To estimate the effect of measurement errors dy due to
uncertainties of both the instrument calibration and a priori
knowledge on the atmospheric state in the linear approxima-
tion, we apply

dx = D dy, (8)

Table 2. Overview of the retrieved parameters for each retrieval.

Retrieval HCl ClO offset O3

H35Cl X X X X
H37Cl X – X X
ClO – X X –

where dx is the contribution to the error budget of the re-
trieved state vector. In the presented study the contributions
to the error budget have been determined using Eq. (8), ex-
cept for the non-linear detector response function for which a
full retrieval was performed. The non-linearity is the largest
error source and in this case the linear approximation is not
valid.

4 Retrievals

In this section we analyse the retrieval of HCl and ClO pro-
files from TELIS SIR measurements. For each retrieval a
spectral window of 500 MHz, corresponding to a single spec-
trometer segment, is considered. The HCl retrievals are per-
formed separately for both chlorine isotopes. The state vector
x contains the HCl and ClO profiles, respectively, discretised
vertically in 1.5 km thick homogeneous layers, over an alti-
tude range of 8.5–64 km for HCl and 14.5–64 km for ClO.

In addition, the state vector includes a radiometric offset
for each spectrum in the limb sequence. The offsets are of
most importance for the lower tangent heights where broad
continuum contributions to the spectra are not accurately rep-
resented by the atmospheric forward model. Furthermore, in
case of HCl the state vector includes atmospheric abundance
profiles of species that interfere with the HCl emission lines
in both spectral bands. The state vector set up for the differ-
ent retrievals is summarised in Table2.

Between the two HCl lines a strong ozone line occurs, as
can be seen in the panel on the left in Fig.1. This line broad-
ens towards lower tangent heights and induces a sloped back-
ground for both HCl lines. To account for this background,
an ozone profile was retrieved simultaneously with the HCl
profiles. In case of H35Cl, also a weak ClO feature occurs in
the wing of the line. To account for this, a ClO profile was re-
trieved in addition. The ozone and ClO profiles are not meant
to be data products, but are merely included to improve the
fit and the HCl data product.

The TELIS retrieval requires a priori knowledge on sev-
eral parameters, which are summarized by the forward model
parameter vectorb. It contains the instrument characteris-
tics of Table1, which have been determined in separate on-
ground measurement campaigns. As mentioned in Sect.2.1,
the non-linearity in the detector causes a compression of 10–
25 % in the hot calibration measurements. This range can
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Table 3. Uncertainties in spectroscopic and atmospheric parame-
ters used to determine the error budget for the HCl and ClO profile
retrievals from the SIR channel of the TELIS instrument.

Error source Uncertainty

Line strength 2 % (HCl)
5 % (ClO)

Air broadening 5 %
Temperature profile 1 K
Pressure profile 1 %

be rewritten as 17.5 %± 7.5 %. In the retrievals, the cen-
tral value of 17.5 % compression is used. To assess the error
propagation on the retrieval products, the retrievals are re-
peated with the compression set to 10 % and 25 % respec-
tively, and the error is taken as the difference profile of
17.5 % and 10 %, which is almost equal to the difference be-
tween the profiles of 17.5 % and 25 %.

Furthermore, the forward model parameter vectorb con-
tains vertical profiles of water vapour, N2O, and, in case of
ClO retrieval, ozone that have been taken from the MLS data
centre (http://mirador.gsfc.nasa.gov/). The temperature and
pressure profiles are taken from the retrievals of the MIPAS
instrument, with whom TELIS shares the gondola (G. Wet-
zel, personal communication, 2011). Both instruments have
almost identical viewing geometries, and the same air masses
are probed. The error on the temperature profile is 0.5–1 K
(Wetzel et al., 2002) and in this study the upper limit of 1 K
is taken. This error captures all temperature dependencies,
including atmospheric black-body radiation, partition func-
tion of quantum level population, and the temperature depen-
dence of the spectroscopic broadening coefficient. The error
on the pressure profile is estimated to be 1 %. The profiles of
remaining trace gases are only of minor importance and are
fixed to the standard AFGL US winter atmosphere (Ander-
son et al., 1986). The spectroscopic parameters, needed in
the forward model, are taken from the HITRAN 2008 spec-
troscopic database (Rothman et al., 2009). The uncertainties
in the spectroscopic widths (5 %) and line strengths (5 % for
ClO and 2 % for HCl) are also taken from this database. For
completeness, the spectroscopic and atmospheric uncertain-
ties used in this study to estimate their effect on the retrieved
profiles are listed in Table3.

For validation, MLS HCl and ClO profiles are taken.
These profiles were recorded at≈200 km distance of the bal-
loon and care is taken that each pertained to chlorine acti-
vated stratospheric air. The time difference of the MLS and
TELIS measurements was≈1.5 h for HCl and≈2.5 h for
the ClO measurement during daytime equilibrium. Also the
MLS ClO recording was taken under daytime equilibrium
conditions.
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Fig. 3. The retrieved HCl vertical profiles in ppbv from the TELIS
balloon flight on 24 January 2010 in chlorine activated Arctic air.
The minimum in the profiles around 23 km is due to the conversion
of inactive reservoir chlorine into active chlorine. The left panels
pertain to H37Cl and the right to H35Cl. The profiles are shown in
black for TELIS and in blue for the MLS instrument. The dashed
lines indicate the overall accuracy in the TELIS profiles.

4.1 HCl retrieval

In this section the HCl retrieval results, including the error
budget, are discussed, where the following definitions are
used: with precision, the error propagation of measurement
noise onto the retrieved profile is meant. The term systematic
error refers to systematic effects in the retrieved profiles due
to uncertainties in instrument and atmospheric parameters.

HCl profiles have been retrieved from TELIS spectra. The
spectra are an average of 10 subsequent limb sequences. This
is valid as HCl concentrations do not vary during the mea-
surements. Although the measurement error is not domi-
nated by the random noise on the measurement, systematic
errors with pseudo-noise characteristics average out in the
mean. The retrieved HCl profiles are depicted in Fig.3 for
both chlorine isotopes (solid black lines). It is noted that the
natural abundances for the isotopes have been accounted for
and that the concentrations refer to total HCl amounts. The
profile determined from H37Cl is plotted in the left panel and
from H35Cl in the right panel. The balloon flight took place
in activated air, which can clearly be seen in Fig.3 by the
absence of HCl around 23 km – all of the HCl has been con-
verted into active chlorine species, such as ClO. Because of
the very low noise on the spectra the precision of the profiles
are below 0.01 ppbv and are not discernible on this scale. The
overall accuracy in the profiles is not determined by measure-
ment noise, but by systematic effects induced by uncertain-
ties in the knowledge of instrument and atmospheric param-
eters. This total accuracy is indicated with dashed lines. The
MLS HCl profile is depicted in blue for reference.

The averaging kernels are shown in Fig.4 for H37Cl (left
panel) and H35Cl (centre panel). The corresponding FWHM
of the kernels are plotted in the panel on the right-hand
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Fig. 3. The retrievedHCl vertical profiles inppbv from the TELIS balloon flight on 24 January 2010 in
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in the TELIS profiles.

0 0.5 1
Aavg

10

15

20

25

30

35

A
lti

tu
de

 [k
m

]

0 0.5 1
Aavg

0 1 2 3 4 5 6
FWHM [km]

10

15

20

25

30

35

H
37

Cl

H
35

Cl

H
37

Cl H
35

Cl

Fig. 4. Averaging kernels forH37Cl (left) andH35Cl (centre) with the FWHM of the kernels in respectively

blue and red (right).

22

Fig. 4. Averaging kernels for H37Cl (left panel) and H35Cl (centre) with the FWHM of the kernels in respectively blue and red (right panel).
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Fig. 6. The individual estimates of systematic effects in theHCl profiles based on theH37Cl line (left panel)
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Fig. 5. The differences between the two TELIS HCl profiles, the TELIS H37Cl and MLS profiles, and the TELIS H35Cl and MLS profiles
are plotted in respectively the left, central, and right panel. The dashed lines indicate the RSS of the precision and all systematic errors of
both particular profiles.

side. For both isotopes the kernels are peaked in the alti-
tude range 15–32.5 km and the widths may be interpreted as
a measure of the vertical spatial resolution. Above 25 km the
FWHM = 2 km (H37Cl) and 1.8 km (H35Cl) which is close to
the values of the instrumental field of view (1.5 km) and the
steps between two consecutive tangent heights (also 1.5 km).
Below 15 km, the kernels continuously broaden to widths of
3.7 km (H37Cl) and 2.9 km (H35Cl) due to the fact that the
spectra become saturated at low altitudes and no HCl features
are any longer discernible (see also Fig.1). Below 15 km, the
peak of the averaging kernel does not correspond to the tan-
gent height, which indicates only very little height sensitivity
of the retrieval in this altitude range.

In Fig. 5 the difference between the two TELIS pro-
files is depicted in the left panel. The differences be-
tween the TELIS and MLS profiles are shown in the cen-
tral panel (H37Cl) and right panel (H35Cl). The overall ac-
curacies in these plots are the root sum squares (RSS) of
the precision and the estimated systematic error due to sys-
tematic effects of the two particular profiles. The preci-
sion for TELIS is≈0.01 ppbv, the TELIS systematic error

estimate is 0.05–0.4 ppbv, the MLS precision 0.15–0.4 ppbv,
and the systematic error in MLS is taken constant as 0.1 ppbv
(Froidevaux et al., 2008). Within these margins, the HCl pro-
files by TELIS and MLS agree over almost the entire altitude
range of 10–35 km. The two TELIS profiles are consistent
above 20 km. Only at 24 km the difference exceeds the er-
ror margin with≈0.1 ppbv. Also between 15 and 20 km the
difference falls outside the error margin. The differences be-
tween TELIS and MLS are only around 22 km (H37Cl) and
25 km (H35Cl), a few times 0.01 ppbv beyond the uncertainty
boundaries. One reason why all profiles fall so well within
the uncertainty boundaries could be that the depicted uncer-
tainty is the root sum square of all systematic effects. In
the differences, however, it might be that certain errors can-
cel; for instance spectroscopic errors. On the other hand,
it may also suggest that some systematic errors are being
overestimated.

In Fig.6 the decomposition of the TELIS systematic errors
for the HCl retrievals are shown. Several error sources have
been grouped together. The spectroscopy error is due to un-
certainties in the spectroscopic widths and line strengths of
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Fig. 6. The individual estimates of systematic effects in the HCl profiles based on the H37Cl line (left panel) and the H35Cl line (right
panel). Several systematic error sources have been grouped together. In black the spectroscopic error is given for uncertainties in the spectral
widths and line strengths of the HCl lines. In red the errors of various instrumental uncertainties are shown; the solid red line combines the
errors due to uncertainties in field of view, local oscillator frequency, instrumental line shape, and sideband ratio, the dotted red line refers to
the absolute pointing, and the dashed red line to the non-linearity of the detector response function. In blue the systematic error due to the
radiometric calibration is given and in turquoise the systematic error by uncertainties in the atmospheric condition (temperature and pressure
profiles). The thick black line is the RSS of these errors.

the HCl lines. The instrumental error combines the error due
to uncertainties in the field of view, the local oscillator fre-
quency, the instrumental line shape, and the sideband ratio.
The pointing error is due to the uncertainty in the absolute
viewing geometry. In many limb studies this error is of de-
ciding importance and is therefore mentioned separately and
is not included in the instrumental error. Also, the systematic
error by the non-linearity is not included in the instrumental
error. The calibration error is due to the uncertainty in the
temperature of the on-board reference black body. Finally,
the atmospheric error is a composite of uncertainties in the
temperature and pressure profiles.

As explained in Sect.2.1, the uncertainty in the non-
linearity of the detector’s response function is large. This
is also reflected in its contribution to the total error budget.
Above 25 km, it is clearly the dominant error source (0.05–
0.4 ppbv) for both isotopes. In the case of H35Cl this error is
dominant below 25 km as well, but in this range the contri-
bution is on the order of 0.05 ppbv. For H37Cl, various error
sources, including the error by the non-linearity, are compa-
rable between 17 and 25 km (each 0.01–0.02 ppbv). From
the left panel of Fig.1, it can be seen that the H35Cl line is
stronger than the H37Cl line. As the non-linearity has the
heighest impact on retrievals with strong lines, this explains
why this error source is larger for H35Cl than for H37Cl in
this altitude range. Below 17 km, however, all errors steeply
increase for H37Cl, surpassing those of H35Cl.

In Fig. 5 the difference profiles for H37Cl (left and centre)
panel, show a similar shape. From these plots it may be con-
cluded that the HCl abundance is underestimated in case of
H37Cl retrieval. One reason could be that the compression of
17.5 %, due to the non-linearity, is overestimated for this par-
ticular retrieval. The higher the non-linearity parameter, the

more signal compression will occur. The highest compres-
sion will occur for the measurement with the highest total
power, i.e. the hot calibration measurement. Bearing lower
total power, the compression for the atmospheric signal will
be lower than for this calibration measurement. In the cali-
brated spectra this will result in stronger spectral lines, which
in turn leads to an overestimation in the retrieved profiles
when the non-linearity is not accounted for. When the non-
linearity is taken into account in the retrievals, the retrieved
profiles will show lower concentration levels with an increas-
ing non-linearity parameter. Therefore, an overestimation of
the non-linearity parameter will result in an underestimation
of the retrieved profile.

The next largest systematic error is due to instrumental un-
certainties. Of the four combined error sources, the sideband
ratio is the main uncertainty. Also, this error is significantly
higher in the altitude range of 25–35 km than between 17 and
25 km, indicating that this systematic error increases with
HCl concentrations. This can be understood as the sidebands
scale with the sideband ratio and an error in this ratio results
in a scaling error of the spectral features and thus in retrieved
concentrations. In case of H37Cl the error is<0.1 ppbv down
to 15 km. In the case of H35Cl, however, this error exceeds
the 0.1 ppbv level above 28 km.

For both isotopes the spectroscopic error is the third largest
contribution to the error budget at altitudes above 25 km,
which corresponds to the altitude range with nominal HCl
abundances. As this error increases with the line strength
and thus with the HCl concentration, the contribution of this
error is negligible below 25 km where the chlorine reser-
voir species have been converted into active chlorine. Be-
low 17 km, the abundances are nominal as well, but are low
(<1 ppbv) and here this error is not prevalent either.
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Fig. 7. The retrieved ClO vertical profile in ppbv from the TELIS
balloon flight on 24 January 2010 in chlorine activated Arctic air.
ClO is a member of the active chlorine chemical family and the
peak in the profile around 23 km is because of the conversion of
inactive reservoir chlorine into active chlorine. The retrieved pro-
file by TELIS is given in black and the dashed lines refer to the
estimated overall accuracy of this profile. The profile by the MLS
satellite instrument is given in blue.

The remaining systematic errors, due to uncertainties in
calibration, pointing and atmospheric parameters, are rela-
tively small. Although in many studies the uncertainty in
the pointing appears as a major contributor to the total er-
ror budget for limb retrievals, this is not so much the case
here, thanks to the high-performance MIPAS attitude and
reference system (Friedl-Vallon et al., 2004). For both HCl
isotopes the uncertainty is well below 0.05 ppbv over almost
the whole altitude range. For H37Cl, the systematic error
by atmospheric uncertainties is below 0.05 ppbv for altitudes
above 17 km. In case of H35Cl, the contribution is below
0.05 ppbv over the whole altitude range, except at 32.5 km
(0.07 ppbv), being the highest tangent height in the limb
recordings. Finally, the calibration error is so small that it
is only discernible in Fig.6 for the lowest altitudes and is
thus of no concern.

The overall accuracy is taken as the root sum square of
all contributions mentioned above, rather than a direct sum,
treating the systematic errors as quasi-statistical. In Fig.6 the
total accuracy is indicated by the thick black line. For H37Cl
this total increases from 20 km to 35 km from 0.02 ppbv to
0.3 ppbv. The main contribution is due to the uncertainty in
the non-linearity of the detector. Below 20 km the total accu-
racy increases, first slowly, but then beyond 17 km steeply to
more than 1 ppbv at 10 km and reflects the saturation of the
HCl line at these altitudes. For H35Cl the increase is slowly
from 0.05 ppbv at 10 km to 0.09 ppbv at 25 km. Above 25 km
the air becomes non-activated, leading to a steep HCl gradi-
ent as function of altitude. The corresponding total error in-
creases rapidly in this altitude range as well to≈0.45 ppbv at
28 km.
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Fig. 8. On the left the averaging kernel for ClO is depicted with the
corresponding FWHM on the right.

4.2 ClO retrieval

During the investigated balloon flight, ClO has been mea-
sured for 1.5 h to monitor its increase during sunrise with
a 1 min temporal resolution corresponding to the recording
time of a single limb scan.

ClO profile retrievals have been performed for every single
limb sequence and a profile during daytime equilibrium is
depicted in Fig.7 by the solid black line. The two dashed
lines indicate the uncertainty in the ClO profile. The ClO
concentration peaks around 23 km to 2.1 ppbv, indicating that
the air was highly chlorine activated. The ClO profile by the
MLS satellite instrument is plotted in blue.

The averaging kernel is shown in the left panel of Fig.8.
In the right panel the FWHM of the averaging kernel is
shown. Up to the highest tangent height (32.5 km), the ker-
nel is nicely peaked with a FWHM of 2–2.5 km in the altitude
range with activated air (17–26 km), which is very compara-
ble to the widths in case of the HCl retrievals.

As with the HCl retrievals, the retrieval noise is only
0.01 ppbv because of the very low measurement noise. The
overall accuracy in the TELIS ClO profile is thus almost en-
tirely determined by systematic effects due to limited knowl-
edge of atmospheric and instrumental parameters. The con-
tributions to the total systematic error by various sources are
plotted in Fig.9. Here, several errors have been grouped to-
gether in the same way as in Fig.6. Analogous to HCl, the
largest uncertainty stems from the non-linear behaviour of
the detector (0.24 ppbv). Of the remaining uncertainties, the
limited accuracies in the spectroscopic database (0.14 ppbv),
the uncertainty in the absolute pointing (0.06 ppbv) and in the
sideband ratio (included in the instrument error; 0.05 ppbv)
are the largest contributors to the total error budget. This
is significantly more than the total systematic error in the
MLS ClO profiles, which has been estimated to be better
than 0.04 ppbv (Santee et al., 2008). Even without taking
the large uncertainty in the non-linearity into account, the
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Fig. 9. The individual estimates of systematic effects in the ClO
profile. Several systematic error sources have been grouped to-
gether. In black the spectroscopic error is given for uncertainties
in the spectral widths and line strengths of the HCl lines. In red
the systematic errors due to various instrumental uncertainties are
shown; the solid red line combines the systematic errors due to un-
certainties in field of view, local oscillator frequency, instrumental
line shape, and sideband ratio, the dotted red line refers to the ab-
solute pointing, and the dashed red line to the non-linearity of the
detector response function. In blue the systematic error due to the
radiometric calibration is given and in turquoise the systematic er-
ror by uncertainties in the atmospheric condition (temperature and
pressure profiles). The thick black line is the RSS of these errors.

total accuracy for the TELIS ClO profiles is still 0.15 ppbv
at the ClO peak. A striking difference in the error budgets
of the TELIS and MLS instruments is the contribution of the
spectroscopy uncertainties. This error source is the second
largest for TELIS but is minor in the MLS ClO error bud-
get (<0.01 ppbv) (Santee et al., 2008). One explanation may
be that this error scales with ClO abundances and in case
of TELIS this error refers to measurements in activated air
with a ten-fold higher than nominal ClO concentration lev-
els. This is not only true for the spectroscopic error, but also
other systematic errors, e.g. the sideband ratio error, may de-
pend on spectral line strengths and thus ClO concentrations.
Another explanation may be that the cited uncertainties in
the HITRAN 2008 database are overestimated. This is sup-
ported by the fact that the permanent electric dipole moment
for ClO is known within 0.2 % (Yaron et al., 1988), which is
much better than the cited line strength uncertainty of 5 % in
the HITRAN database. It is noted, however, that apart from
the error in the electric dipole moment, the temperature error
propagates into the line strength error as well due to tem-
perature dependancy of the Boltzmann distribution in level
population. Nevertheless, the 5 % error estimate seems to be
on the conservative side.

In Fig.10the difference between the TELIS and MLS ClO
profiles is plotted for daytime equilibrium conditions. The
dashed lines correspond to the root sum square of the TELIS
retrieval error (less than 0.01 ppbv), estimated systematic
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Fig. 10. The difference between the TELIS and MLS ClO profiles
is plotted (solid line). The dashed lines indicate the RSS of the
retrieval errors and the estimated systematic effects of both TELIS
and MLS.

errors due to limited knowledge of instrumental and atmo-
spheric parameters for TELIS (0.05–0.3 ppbv), the MLS re-
trieval error (≈0.15 ppbv), and the MLS systematic errors
(0.01–0.04 ppbv) (Santee et al., 2008). Within these uncer-
tainties the two profiles correspond to each other over almost
the entire altitude range. Only at 26.5 km does the difference
exceed the uncertainty boundaries. As with HCl, the overall
agreement might indicate that errors cancel when differences
are determined, or that the error margin is overestimated.

For the altitude range 17.5–23.5 km, the temporal varia-
tion of ClO is depicted in Fig.11. The temporal resolution is
1 min, corresponding to the recording time of a single limb
sequence. The data gaps are due to additional calibration
measurements. During the measurements the azimuth of the
limb path was taken perpendicular to the rising sun to en-
sure uniform illumination of the line of sight. The ClO con-
centration clearly increases for all altitudes after 07:40 UTC.
It is noted that the onset of this increase is slightly earlier
for higher altitudes which is a geometric effect as the sun
appears first over the horizon at these altitudes. The sun-
rise at these altitudes is between 06:58 UTC (23.5 km) and
07:05 UTC (17.5 km) for the geo-locations during this partic-
ular flight. The increase of daytime ClO concentration levels
starts thus≈40 min after the local sunrise. This lag may be
caused by clouds blocking the solar radiation when the sun
is still very low over the horizon.

5 Conclusions

For the first time, profile retrievals have been demonstrated
for the balloon instrument TELIS. The balloon flight took
place in chlorine activated Arctic air conditions in 2010 and
both active chlorine (ClO) and inactive chlorine (HCl) have
been recorded.

Two HCl profiles, derived from two different isotopes, are
presented and are internally consistent. Both are successfully
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Fig. 11. The ClO concentration as function of time for five differ-
ent altitudes in the range 17.5–23.5 km. The temporal resolution
is 1 min. The data gaps are due to additional calibration measure-
ments. The onset of the increase in ClO starts first for higher alti-
tudes because the sunrise occurs earlier at these altitudes.

validated against the HCl profile by the MLS satellite instru-
ment. The differences fall well within the uncertainties. Be-
cause of the low measurement noise, the precision in the HCl
retrievals is better than 0.01 ppbv and the overall accuracy is
almost fully determined by systematic effects. This overall
accuracy is 0.05–0.4 ppbv and stems mostly from the largely
unknown non-linear response function of the detector. Over
the altitude range 15–35 km, the FWHM of the averaging
kernel is for TELIS 1.8–2.9 km (H35Cl). This is close to the
field of view (1.5 km) and the vertical sampling between two
consecutive tangent heights (also 1.5 km). ClO shows a daily
cycle in concentration and its increase from nighttime to day-
time levels has been monitored with a 1 min temporal reso-
lution. A profile, determined from a limb sequence recorded
under daytime equilibrium conditions, is successfully vali-
dated against the MLS daytime ClO profile. The TELIS pre-
cision is less than 0.01 ppbv because of the low measurement
noise and the overall accuracy in the ClO profile is, analo-
gous to the HCl retrievals, fully determined by systematic
effects. The accuracy is maximal 0.3 ppbv for the peak in the
profile during daytime equilibrium and the main contributor
is the uncertainty in the non-linear response function of the
detector. The FWHM of the averaging kernel is 2.0–2.5 km
in the altitude range with chlorine activated air (17–26 km).
Because the HCl and ClO retrieval accuracy is dominated by
systematic errors, the retrieval performance can be improved
by a better characterisation of the instrument. In this context,
the reduction of the non-linearity uncertainty of the TELIS
instrument is a topic of on-going research. However, this
is non-trivial, as relevant electronic components are deeply
embedded within the spectrometer. Furthermore, a consoli-
dation and improvement of the sideband ratios are planned.

In addition, cross-validations will be performed with the
ISS/SMILES, Odin/SMR, and ACE/FTS instruments. In
particular, the SMILES and SMR instruments are interest-
ing since they observe exactly the same transitions of HCl
(SMILES) and ClO (SMR).

In the future, TELIS profiles of HCl and ClO will be com-
plemented by HOCl, and together with the MIPAS profiles
of chlorine species (ClONO2 and the ClO-dimer), these form
an extended set of active and inactive chlorine species. This
set will be used to test and constrain atmospheric chemistry
models. The retrieved ClO profiles from TELIS and MIPAS
data, thus pertaining to different sensors in different spec-
tral ranges, will also be used for cross-comparison purposes.
As the flight took place in chlorine activated air, the increase
of ClO levels during sunrise originates mostly from photo-
dissociation of the ClO-dimer. The presented time series
of the ClO profiles will be used to investigate the rates of
this dissociation under atmospheric pressure and temperature
conditions.
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