
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 832531, 17 pages
doi:10.1155/2012/832531

Research Article

HoneyComb: An Application-Driven Online Adaptive
Reconfigurable Hardware Architecture

Alexander Thomas, Michael Rückauer, and Jürgen Becker

Institut für Technik der Informationsverarbeitung, Karlsruher Institut für Technologie (KIT),
Engesserstraße 5, 76131 Karlsruhe, Germany

Correspondence should be addressed to Michael Rückauer, michael.rueckauer@kit.edu

Received 21 February 2012; Accepted 24 May 2012

Academic Editor: Elmar Melcher

Copyright © 2012 Alexander Thomas et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Since the introduction of the first reconfigurable devices in 1985 the field of reconfigurable computing developed a broad variety
of architectures from fine-grained to coarse-grained types. However, the main disadvantages of the reconfigurable approaches, the
costs in area, and power consumption, are still present. This contribution presents a solution for application-driven adaptation of
our reconfigurable architecture at register transfer level (RTL) to reduce the resource requirements and power consumption while
keeping the flexibility and performance for a predefined set of applications. Furthermore, implemented runtime adaptive features
like online routing and configuration sequencing will be presented and discussed. A presentation of the prototype chip of this
architecture designed in 90 nm standard cell technology manufactured by TSMC will conclude this contribution.

1. Introduction

Reconfigurable architectures aim to reach the performance
and energy-efficiency of application-specific integrated cir-
cuits while the flexibility is increased, therefore closing the
gap between ASICs and general-purpose processors.

For data-oriented applications an increase in perfor-
mance compared to general-purpose processors can be
reached by mapping operations to a possibly large set of
functional units, which are working in parallel. In contrast
to ASICs, their actual function and the interconnection
between the units are not determined during design and
manufacturing but may be changed at runtime to support
a wider range of applications.

For example, in a mesh-based architecture, a flexible
communication network connects the functional units (FUs)
on demand. Since the FUs are communicating directly by
exchanging the intermediate results through the communi-
cation network, memory accesses for temporary data storage
are avoided and memory bandwidth usage is reduced to a
minimum. The overall data throughput is at maximum and

very close to the ideal performance that can be reached by
ASIC implementations.

However, this approach is not without limitations. The
increased flexibility comes at the cost of additional hardware.
The flexible communication network for FUs requires a
lot of multiplexers, communication lines, configuration
registers, and additional logic to control the configuration
mechanisms. Depending on the type of the reconfigurable
approach (coarse-grained or fine-grained) the overhead
of the configuration registers and control logic can be
considerable. An example for this fact is given by field-
programmable gate arrays (FPGAs) [1, 2], which require a
lot of configuration data (in the area of several MBs) for
specifying the device function. However, FPGAs with their
fine-grained approach mark the worst case for this problem.
Coarse-grained architectures [3–5] reduce the amount of
configuration data to a fraction of the FPGA requirements.
This is achieved by vector-based routing and simplified FUs
that support arithmetic operations instead of LUT-based
Boolean logic. However, the programming models of such
architectures are still limited either to native languages or

2 International Journal of Reconfigurable Computing

subsets of known paradigms like C/C++, which prevents the
commercial success additionally.

When different application domains, which may have
different computational and communication requirements,
should be supported, it is not reasonable to integrate FUs
with an arbitrary set of operations into a configurable
architecture. Therefore, an architecture template, which
allows to adapt the set of operations supported by each FU
as well as the communication network connecting the FUs
at design time, aids in implementing hardware that is even
more energy efficient while maintaining flexibility were it is
beneficial.

This contribution presents the HoneyComb architec-
ture, a coarse-grained reconfigurable hardware architecture
(CGRA) template. It is designed to compute stream-based as
well as control-based applications. Therefore, in addition to
coarse-grained components, the architecture includes fine-
grained components, which are used to compute Boolean
operations and control program execution.

To support design-time adaption of the architecture to
application requirements in addition to the dynamic recon-
figuration, compiler-supported application-tailored hard-
ware reduction/RTL adaption techniques have been devel-
oped and implemented.

The following section describes related work. Section
three describes the HoneyComb (HC) architecture, its struc-
tural characteristics and functions shortly. Section four
is devoted to the parameterizable RTL-model and the
application-tailored reduction methodology. In section five
the RTL-dependent programming model is described. The
details of the final prototype and Printed Circuit Board
(PCB) design are presented in section six. In section seven
we show how the application kernels are mapped onto
the architecture. Results and conclusion sections close this
contribution.

2. Related Work

In the past decades a number of architectures were proposed
in the field of reconfigurable systems that aim to efficiently
solve computationally intensive problems while being flexi-
ble enough to support a wide range of applications. All these
architectures have their advantages and disadvantages. In the
following we give an overview of existing architectures.

The Pleiades project [6] proposes an architecture tem-
plate for ultralow-power high-performance reconfigurable
computing. It includes a general purpose processor coupled
with a heterogeneous array of autonomous application-
specific satellite processors. The resulting assembly is
strongly catered to the target application, resulting in limited
support for other applications. A well-known example for
the use of the Pleiades template is the Maia Chip, which is
catered to the requirements of speech coding.

The ACM architecture [7] from QuickSilver Technology
is a low-power architecture designed for use in mobile
devices. The architecture is derived from an analysis of
target applications, resulting in a “fractal” architecture.
Heterogeneous nodes are hierarchically connected in a tree

fashion with each nonleaf node laid out like the previous
layer. Nodes consist of either fine-grained or coarse-grained
functional units. The hierarchical assembly facilitates fast
reconfiguration of functional units. However, the scalability
of the tree-like communication network seems to be a
limiting feature in bigger configurations.

The concept of PACT XPP-technologies [8] assumes
that applications consist of both regular and irregular
parts. Therefore it features a regular array of processing
units for dataflow-oriented applications as well as a set
of supplementary processors (function folding units, FNC)
for control-flow-intensive algorithms. Both components are
optimized for 16-bit applications and tightly coupled to sup-
port high-speed data transfers. Nevertheless, two completely
different components in one architecture require a manual
partitioning step. Despite the fact that partial reconfiguration
is supported, applications used at the same time on this
architecture have to be planned in advance.

Another interesting approach is the DRP architecture
[9] from Renesas Electronics (formerly NEC). It consists of
a homogeneous multicontext array of processing elements
(PE), with each PE having an 8-bit ALU and a register file.
In addition there is a context memory, which can choose
a new configuration in each cycle. The selection of context
is done centrally by a sequencer. The sequencer is a finite
state machine that changes states depending on the inner
state of the array or depending on external control signals.
Memory modules located at the array boundaries provide
high-bandwidth data storage. Here, partial reconfiguration
seems to be very difficult to realize. Furthermore, data
transport to and from the array seems to need additional
logic.

The Montium architecture [10] implements a processor
that works similar to a VLIW processor, but differs consid-
erably in programming. Instead of instructions, Montium
processes sequences of preloaded configurations. This is
done by five integrated 16-bit ALUs that are able to execute
multiple instructions in a single cycle. Ten local memories
with 512 entries each ensure that the ALUs are used to
capacity. Multiple Montium processors can be integrated in a
System-on-Chip as needed. The maximum parallelism given
by the five ALUs seems to be also the limiting factor of this
architecture.

The PipeRench Architecture [11] is based on a several
times implemented pipeline structure. The individual stages
are separated by registers and an interconnect network, in a
way that data can be interchanged between pipelines. In addi-
tion there is a global network that facilitates data transport
contrary to the pipeline flow. The actual configuration of the
architecture is determined by parameters and can be adapted
to specific applications. The number of concurrent pipeline
implementations seems to have a huge effect on the resulting
complexity of the interconnect networks and the resulting
timing.

PADDI [12] is a multiple-instruction multiple-data
(MIMD) architecture. Here, several simple processors that
process VLIW-like instructions are connected through a
switch structure, which allows conflict-free communication
between processors. PADDI is a quite simple architecture.

International Journal of Reconfigurable Computing 3

However the partitioning on the available processors to reach
full utilization seems to be a not neglectable task and reminds
one of current problems with programming of multicore
processors.

The RaPiD architecture [13] is a linear array of functional
units, which is configured like a linear pipeline. It is well
suited for irregular applications. However, it has weaknesses
when processing block-oriented algorithms.

MorphoSys [14] combines all components needed for
execution control and data processing in a single design. Exe-
cution control is done by a TinyRISC processor, while data
processing is performed by an array of processing elements.
Array nodes are connected through a multilevel interconnect
network. Local memories that hold configuration and data
deliver all information needed for program execution and at
the same time decouple the array from the host interface.

MATRIX [15] is an architecture similar to MorphoSys,
but does not feature an integrated processor for array
control. Therefore array control is not as comfortable as
with MorphoSys. Data processing is performed with 8-bit
precision. MorphoSys and MATRIX both are not able to
support concurrent application executions if not planned in
advance. This shortcoming is common to the most of the
presented architectures, except the ACM.

REMARC [16] is an array based on simple 16-bit
nanoprocessors that communicate through local connec-
tions. The array is controlled by a global control unit.
It carries out transport of data and configurations, but
does only provide low bandwidth to the host system.
The architecture is designed for multimedia applications.
However, it does not have an integrated multiplier, which is
a considerable weakness.

Besides the ACM and Montium architectures, most
architectures are not designed to run in a multitasking
environment. If more than one application is supposed to be
running on the same hardware, it is required to plan such
a scenario in advance or it is simply not possible to share
the resources. For this functionality the target architecture
requires additional logic to manage the resource sharing.
In case of the HoneyComb architecture, this problem is
solved with the adaptive online routing. There, resources for
a communication stream are reserved at runtime.

3. HoneyComb Architecture

The HC architecture is an adaptable dynamically reconfig-
urable cell array with a hexagonal cell layout. The underlying
RTL-model is highly parameterizable. Except for the basic
structure of the architecture the specification of every
component within the array can be enabled, disabled, or
modified. A detailed description of the architecture is given
in [17, 18]. This section gives only a short overview required
for understanding the presented concepts.

The HC array is based on structurally similar cells, which
consist of a routing unit and a functional module (see
Figure 1). The routing units of all cells are connected to their
neighbors and compose the communication network, which
is meant to establish point-to-point connections (streams)

between functional modules. Supported data types are 32-
bit coarse-grained words and multigrained vectors of 1 to N
bits.

The routing of streams is performed during runtime and
is fully realized in hardware. Therefore routing instructions
have to be defined and implanted into the source routing
unit. Once a routing instruction is received, the routing
unit starts the routing process by propagating the routing
instruction to the next cell along the path to the destination
cell. The implemented routing algorithm is depth-first search
in combination with a backtracking algorithm. Each routing
unit requires 3 cycles for the routing process and can process
one routing request at a time. Once the destination is reached
and the stream is established, data can be sent through
this point-to-point channel. Each data word is buffered at
the input of each cell, which defines the communication
latency by the cycle count equivalent to the count of passed
cell edges. The adaptable routing techniques are applied
to coarse-grained as well as multigrained data-connections.
Each transfer is fully synchronized by a handshake protocol
that assures data consistency. Application and configura-
tion data share the same communication network, which
increases the reconfiguration performance by using multiple
reconfiguration streams at once. It is only limited by the
number of cells and the external interface bandwidth.

The functional module specifies the type of the Hon-
eyComb (HC) cells and can be defined as I/O module
(IOHC), memory module (MEMHC) or datapath module
(DPHC). Cells carrying an I/O module include a specialized
microcontroller for data transfers in or out of the array.
Therefore the IOHC contains an interface to the system
bus (AMBA, WISHBONE, or a proprietary interface).
IOHCs initiate all processes within the array by transferring
routing instructions into associated RUs, establishing data
and configuration streams to destination cells, configuring
these cells and controlling data transfers to and from these
cells. Streams between cells can be routed by tunneling the
necessary routing instructions to the source and starting the
desired routing process. All transfers can be done through
DMA without the interference of a system controller. There-
fore an optimized μ Controller has been integrated into the
IOHC, which includes parallel working address generators
for fast data transfers.

The MEMHCs provide storage space for the applications
within the array. Therefore multiple memory modules can
be included in each MEMHC and store coarse-grained
and multigrained data simultaneously. Logical merging of
memory modules can be done to offer bigger storage space
for applications. Each memory configuration can be used as
RAM as wells as a FIFO or a LIFO.

DPHCs realize the main arithmetic or logical data
manipulation units within the array. Therefore their func-
tional modules include ALUs, LUTs, coarse-grained and fine-
grained registers, data type converters, and data branchers,
which are required to split synchronized data streams. The
combination of ALUs and LUTs in one module allows the
evaluation of ALU operation flags (carry, sign, overflow,
etc.) at once and influence the next operations. There-
fore each ALU includes a context memory, which selects

4 International Journal of Reconfigurable Computing

· · ·· · ·· · ·· · ·

...

...

...

...

DPHC

DPHC

DPHC

MEMHC

DPHC

DPHC

DPHC

MEMHC

DPHC

DPHC

DPHC
DPHC DPHC

DPHC

MEMHC

DPHC

DPHC

DPHC

DPHC

DPHC

IOHC

DPHC

DPHC

DPHC

DPHC

IOHC

DPHC

Routing unit

HoneyComb cell structure

HoneyComb architecture

Functional
module

Figure 1: Hexagonal HoneyComb (HC) array with unified cell structure and three cell types—DPHC, MEMHC, and IOHC.

the opcodes, operands, output registers and generated flags.
It can be addressed by LUTs or directly by output flags and
change the output on every cycle. LUTs and fine-grained
registers can implement finite state machines (FSMs) for
even more complex functions. By sending fine-grained or
coarse-grained output data to IOHCs, the removal of the
current configuration can be triggered and a new one started.
To increase the bandwidth of the I/O operations IOHCs are
provided with a separate clock. Usually this clock is higher
compared to the array clock. Array configurations consume
the incoming data much faster than a system bus can deliver
especially if multiple data streams are required. In this case
the ratio of both clocks can be adjusted by the system.

Since every cell is capable to be configured independently
partial reconfiguration is possible. Runtime routing even
allows overlapping of configurations without being consid-
ered at compile time if enough resources are available. Clock
gating of idle parts of the architecture is implemented and
performed in two levels. The first level controls the routing
units of each cell independently. Thereby, a routing unit is
activated if the neighbor cell is establishing a path to this
cell. Functional modules of MEMHCs and DPHCs are clock-
gated if no configurations are programmed. Incoming con-
figurations activate the cells and keep them active until the
configurations are deleted. If the user detects a nonfunctional
routing unit the affected cell can be deactivated. In this case
the HC array routes the routing requests without using the
deactivated cell.

The idle HC architecture is started by providing one of
the available IOHCs with a memory address where program
execution should start. This program includes steps to
initiate the configurations, transfer the data to and from the
array, and clean up the array by deleting the configurations.
Several IOHCs can be used at the same time if the addressed
cells within the array are disjunctive. The scheduling and
checking of configurations is supposed to be performed by a
runtime system, which is not finished yet. Control operations
of the array are done by the HC Controller, which offers a
separate interface for the system’s hosts and a set of registers
for checking cell states and writing control values.

The architecture can be programmed using the HC
assembly language or the HC language, which are both
introduced in the latter sections. The HoneyComb assembly
language is a low level language for structural programming
while HoneyComb language is a higher level approach.

4. Parameterizable RTL-Model

This section describes the methodology we have used to
design the HC architecture and additional tools we have
developed to support the configuration and verification
process.

4.1. Design Methodology

The HC architecture is a highly parametrizable architecture.
The complete model has been developed based on VHDL
and its generic capabilities. Almost every possible way
of specifying generic structures in VHDL has been used,
including:

(i) generics definitions;

(ii) constant definitions;

(iii) conditional and looping generate structures;

(iv) function library for parameter evaluation;

(v) package definitions for configuration management.

The combination of these techniques is a very powerful way
to describe parametrizable designs. We have defined two
main sets of configuration parameters. The first set is defined
within the global constant packages and includes constant
definitions considering global parameters like

(i) array size;

(ii) CG/MG data width;

(iii) routing instructions formats;

(iv) IOHCs instruction formats;

(v) clock gating enable/disable.

International Journal of Reconfigurable Computing 5

The second part describes local definitions regarding

(i) cell port count;

(ii) DPHC configurations;

(iii) MEMHC configurations;

(iv) IOHC configurations.

Depending on the given parameter sets, specific features can
be activated or module instances removed.

To ease the debugging process careful signal definitions
have been implemented. With a few exceptions there are no
unused signals available. This way every structural problem
causes undefined signal states and can be identified very fast.
Additionally, all modules have been designed with intention
of exhaustive reuse ability. So, if fixed in a specific module
this change is automatically applied to all instances of this
module in the hierarchy. The more modules of the same type
are instantiated the bigger is the impact.

Following these simple rules we designed the whole
architecture in VHDL in about two years. The structural
correctness and the functional verification took additional
two weeks. After this time the architecture was able to
perform first tests and simple applications for verification
purposes. It took additional 4 years for the development of
the programming languages, debugging tools, and demon-
stration application (see later sections). The final step was
the IC layout in 90 nm for the prototype.

4.2. Configuration Manager. The amount of RTL configu-
ration parameters is enormous. The biggest part has been
spent for specifying the functional modules within the
DPHCs, which includes over 60.000 parameters. Parameters
can specify the operation sets, the count or available
modes (single context/multicontext) of each single ALU,
LUT configurations, the number and type of registers,
the interconnection between these modules, and so on.
Manual control of this amount of parameters is simply not
possible and requires additional tool support. Therefore, the
configuration manager has been developed.

The main purpose of this tool is the management
of configurations. However, the functionality is going a
step further and includes the generation and merging of
configurations as well. The generation of configurations
can be done manually or by analyzing previously compiled
applications (see Figure 2).

Based on predefined templates or ideal array represen-
tations the analysis of applications is performed by the
HCL compiler (see Section 4). The result is a functional
description of the application in assembly language. One
or several of those descriptions can be used to extract the
necessary specifications for the target RTL description of the
array, so-called super RTL configuration. Since configuration
code for DPHCs and MEMHCs is structural, it is quite
simple to extract the necessary information. Figure 3 shows
how several applications impact the functional units. This
kind of merging is performed on all levels of functional units
and results in a hardware structure that is able to support
every considered application.

The configuration manager has been developed in VBA
for Microsoft Excel. The table management of this applica-
tion is very well suited for configuration management and
allows manual configuration creation. With additional VBA
code necessary consistency checks have been implemented to
support manual work. The super configuration Generator is
part of this application as well as the Assembler application,
which is described in Section 4.

5. Programming Model and Tools

The structural composition of the HC architecture prede-
fines the programming model. This model is composed
of three layers according to Figure 4 and is executed by
specific architecture parts. Transport layer is performed by
IOHC and is meant for conditional or unconditional data
transfers. The communication layer controls the routing
network and influences the placement of configurations.
The configuration layer describes the functional modules of
MEMHCs and DPHCs.

The programming model impacts the definitions of the
HC Language as well as the definition of the HC assembly
language; both are described in the following subsections.

5.1. HoneyComb Assembler (HCA). The HoneyComb
Assembler application is integrated into the configuration
manager. Thus, all configuration parameters of the array
are available to the assembler and are considered during
assembly. The HCA language definition consists of three
parts, one for each layer of the programming model. By
specifying the target cell coordinates and the layer type the
user tells the assembler which kind of code to generate. The
code specification for the transport and communication
layers is globally the same for the given array. In case of the
configuration layer the resulting binary code characteristics
can differ from cell to cell if the RTL configurations vary, that
is, if the HC array is heterogeneous. Code adapting to RTL
configuration helps to reduce the resulting binary code size
and required hardware structures but makes it incompatible
to other cells.

Since the multicontext capability of HCA can be disabled
at RTL it is required to perform code transformations during
the assembly process. The following example demonstrates
the necessity for transformations:

ALUOP 0, ADD

This instruction programs the given ALU to perform the
ADD operation. In case of the ALU with multicontext capa-
bility this instruction has to be translated to the following
piece of code:

ALULCFG 0, C0=[ADD] #context 0

ALULCFG 0, C1=[ADD] #context 1

. . .

Here, every active context will perform the ADD operation
what in fact results in the same behavior as the ALU without
multicontext capabilities. The assembly application trans-
forms this kind of transformations automatically. Therefore,

6 International Journal of Reconfigurable Computing

Binary

machine code

Stimulation

activity data

Assembly
(HCA)

Applications (HCL)

Compiler

Assembler

Stimulator

Viewer

0100
0111

Architecture

Architecture

definition files

VHDL RTL

configuration

Super Cfg
generator

RTL configuration
template library

definition files

Figure 2: HoneyComb application-tailored design flow for generation of RTL configurations, development, and debugging of applications.

Reg1 Reg1 Reg1
Reg2 Reg2

Reg2
Reg2

Reg3
Reg3

Reg4 Reg4

Reg5Reg5

in0
in0

Cfg: application1 Super-Cfg

+ =

Cfg: application2

+, &, | +, −, •, &, |−, •

Figure 3: Example for ALU configuration generation derived from
two applications and merged to the final operation and register sets.

the programmer does not have to consider every detail of the
architecture and would still be able to compile applications.
This kind of transformations performs the assembly tool in
the extended mode which has to be separately activated. If
incompatibilities are detected, the user will be notified and
can adapt his code manually.

5.2. HoneyComb Language (HCL). The HoneyComb assem-
bly language describes the configuration of a HoneyComb
array in both a low level and structural fashion, making
it hard to describe the desired behavior. Therefore we
introduced the HoneyComb language (HCL), a high-level
language that makes it much simpler to describe the behavior

of the three cell types. In addition it is possible to specify
sub-configurations consisting of several cells that together
perform a more complex function than is possible with a
single cell.

A structural programming language is used to describe
the behavior of an IO cell. It features instructions for
configuration management, off-chip communication, and
streaming data transfers between the IO cell and the array
cells. Using subconfiguration descriptions, configurations
consisting of several cells can be established and removed
with a single statement.

The behavior of a data path cell is described as a
sequential process executed once per clock cycle. It supports
control flow statements and assignment statements that
assign the result of a complex expression to a register or
output port.

5.3. HCL Compiler. A program written in the HoneyComb
language is transformed into HoneyComb assembly lan-
guage with the HCL Compiler software.

In the first step of compilation the HCL description is
read in and transformed into an abstract syntax tree (AST)
representation. The further proceeding depends on the type
of cell description.

The AST of an IO cell description is transformed into
an intermediate representation where all source language
statements are replaced by sequences of one or more assem-
bly instructions. Control flow statements are transformed
into equivalent structures utilizing only conditional jumps.

International Journal of Reconfigurable Computing 7

- Configuration sequencing control by IOHC

- Conditional application execution

- Transport of application/configuration data

- Autonomous operation of the honeycomb

- Adaptive online routing (hardware part)

- Cell placement

- Adaptation through coordinates changes

- Application of the fault tolerance

- Configuration code for all functional

modules (hardware part)

- Determination of the cell placement

through communication layer

- Generation of the control signals for

the transport layer

Tr
an

sp
or

t
la

ye
r

C
om

m
u

n
ic

at
io

n
 la

ye
r

C
on

fi
gu

ra
ti

on
 la

ye
r

Figure 4: Programming model for the HoneyComb architecture
based on the structural hierarchy.

This yields a control flow graph consisting of instruction
base blocks that are connected by edges where a control
flow transfer from one block to another may occur. There is
no dedicated instruction selection and scheduling except for
complex expressions, for which instructions are ordered to
minimize the number of registers needed to hold intermedi-
ate values. Register allocation is done with the graph coloring
approach described in [19]. In assembly code, basic blocks
connected by unconditional control flow edges are emitted
consecutively if possible to reduce the number of control flow
transfers.

When the compiler processes a sequential description
of a data path cell’s behavior it first puts all noncontrol
flow statements into a list. For each statement in the list,
its actual execution condition is calculated by looking at
the conditional statements surrounding it and the execution
conditions of statements writing to the same variables.
Consider the following example:

IF a THEN IF b THEN x ≤ y + z; END IF; END IF;
(1)

IF c THEN x ≤ z − y; END IF; (2)

The execution condition of the first statement is (a and b
and not c) as it is only executed when the conditions of
the both surrounding if statements are true (a and b) and
the execution condition of the second statement (c) is false
(equivalent to not c = true). Because of the synchronous
nature of the HoneyComb architecture we also need to
record the condition under which the value of a variable
is consumed. Again consider the above example: the values

Figure 5: Execution of the AES256 algorithm executing on the
HoneyComb architecture visualized by the HCViewer.

of a and c are always consumed, while the value of b is
only consumed if a is true. The values of y and z are only
consumed if either statement one or two is executed. This
information is collected for each statement in the list. With
this information the statements in the list can be executed in
any order assuming that any writes will be visible in the next
cycle.

The statements in the list are now mapped to the ALUs
and LUTs of the cell. Variables used in the statements are
mapped to registers and IO ports of the cell depending on
their type. In order to minimize resource usage, operations
with mutual exclusive execution conditions and matching
evaluation conditions for common variables are mapped to
the same function unit.

This is done using a clique-partitioning algorithm [20]
that is employed twice, once for the mapping to the ALUs
and once for the mapping to the LUTs. A graph is created
whose vertices represent the statements to be mapped to
the functional units. Two vertices are connected by an edge
if they can be mapped to the same functional unit. The
edges are weighted by the cost reduction that is achieved
by merging the two adjacent vertices. In each iteration the
edge with the highest weight is selected and its adjacent
nodes are merged into one. Nodes that were adjacent to
both merged nodes are connected to the resulting node.
This merge process is repeated until no edges are left or
all remaining edges have a cost increase associated with
them. Each resulting node is mapped to one ALU or LUT
respectively.

5.4. HoneyComb Viewer (HCViewer). The last step in the
software development for the HC architecture is the debug-
ging using the HCViewer tool (see Figure 5). This tool
requires a current HC configuration generated by the Super
Configuration Manager and the simulation activity data,
which can be generated by the HC VHDL model during
execution of an application. Once loaded, the HCViewer
visualizes the processes within the array and reports all user
relevant data and values.

8 International Journal of Reconfigurable Computing

Power planning

Floorplanning Clock tree synthesis

Standard cell placement

Synthesis

Hold time fixing

Routing

Formal
verification

Timing
simulation

SI
analysis

StaticGeometry
checks

(DRC, LVS)
timing and
SI analysis

Figure 6: Implementation and Sign-Off Flow.

6. Prototype IC

6.1. Initial Technology Decisions. We had to make the choice
between different IC manufacturers providing a 90 nm pro-
cess. As area was our main concern, we chose TSMC, which
had the process with the best area efficiency. We selected a
low-power library, which trades performance for a higher
transistor density. Therefore the test chip was expected to
achieve a lower clock frequency than a production chip
would.

Initial synthesis of the array’s RTL model was done with
the design compiler software from Synopsys. The resulting
netlist was imported into the SoC Encounter software from
Cadence, where the entire layout work took place. Figure 6
gives an overview over the implementation and verification
flow, which is described in detail in the next two sections.

6.2. Layout. From the total die area of 16 mm2, a border of
183 μm had to be reserved around the standard cell area for
the seal ring, the IO and bond pad area and the core power
ring. This left an area of 13.2 mm2 for the actual design. We
chose a flat design methodology with a single consecutive
workflow. This saved the overhead of having to implement
and characterize the submodules separately.

Figure 7(a) shows the layout of the cells and the
placement of the SRAM modules on the actual chip. Unlike
the hexagonal cells in the logical layout, the physical cells
have a rectangular shape. To connect each cell to its six
neighbors despite the rectangular shape, the arrangement of
the cells is staggered, so that an inner cell still adjoins its six
neighbors.

Figure 8 shows the chip’s power network. It consists
of a power ring around the chip’s core area and a regular
power grid that spans the entire core area. With the chosen
technology, nine layers of metal are available for routing.
The two topmost layers are approximately three times thicker
than the others, giving them a lower resistance and a higher
current tolerance compared to the others. Therefore, they
were chosen for carrying the power grid. The geometry of
the power grid was chosen based on a suggestion found

SRAM

SRAM SRAM

IOHC IOHC

DPHC

DPHC

DPHC
DPHC

DPHC

DPHC

DPHC

DPHC

DPHC

DPHC

DPHC

MEMHC MEMHC

(a) (b)

Figure 7: Cell layout as defined by floorplanning (a) and after
standard cell placement, respectively (b).

Core power ring

power
pads

Standard cell
power lines

Power
vias

Figure 8: Power network.

in the application note for the employed standard cell
library. An estimation of the chip’s power consumption was
made with the VoltageStorm power analyzer. That value was
doubled to obtain a comfortable safety margin and the grid
was planned to meet these requirements.

We added as many power pads as allowed by the spacing
rules of the IO pads: 32 pads carrying power and ground
for the IO domain and 58 pads carrying power and ground
for the internal power supply, which is well above the
requirements.

Afterwards the standard cells were placed. Initially the
placer tended to create crowded areas with local placement
densities of nearly 100%, which made it impossible to add
buffers during hold time fixing or to obtain a valid routing

International Journal of Reconfigurable Computing 9

Figure 9: 3D rendering of final HoneyComb board layout.

of signal nets later on. Therefore the placement flow
was altered. After an initial placement multiple iterations
of timing optimization and incremental placement were
performed. Thereby the allowable local placement density
was raised from an initial 70% up to 80%. This approach
created a more uniform standard cell distribution and leads
to better timing results. Figure 7(b) shows the final cell
shapes after placement. They are irregular and blend into
each other, which is beneficial for timing.

Clock tree synthesis was done with the automatic
synthesis mode, where the software created the clock tree
geometry automatically from few parameters, which are the
maximum insertion delay and the maximum skew between
two flip flops’ clock signals. With the default wire geometry
the current through the clock tree exceeded the current
limit. Therefore a custom rule was used that tripled the
wire width between the inner clock tree buffers. After
clock tree synthesis, another timing optimization step was
performed that analyzed and repaired any remaining hold
time violations by inserting buffers into affected signal paths.

Up until this point all work was done on a partially
routed design likely to contain unrouted nets and shorts
between different nets. A timing-driven routing algorithm
legalized this routing, while trying to minimize the timing
impact caused by the wiring.

Finally a signal integrity analysis was performed on the
fully routed and timing-clean design. Hereby, pairs of nets
that could influence each other through capacitive coupling
were identified. If this effect could have caused a net to carry
an invalid value, it was rerouted to reduce the coupling. This
analysis-and-repair step was repeated until the design was
free of signal integrity errors.

6.3. Chip Sign Off. Timing and signal integrity were checked
with PrimeTime SI, using a 10% derating of clock and
signal path runtimes to account for timing uncertain-
ties introduced by manufacturing tolerances and different
voltage levels across the chip. First, the software detected

a few hundred transition time and signal integrity violations.
A script extracted the violations from the timing reports
and created another script that repaired the errors within
encounter. The transition time violations were fixed by
upsizing drivers; the signal-integrity violations were fixed by
rerouting the affected nets. It actually took a lot of iterations
and more than a week to fix all of these violations.

In addition, design rule checks (DRCs) and layout versus
schematic (LVS) checks were performed with the Calibre
software. As we did not have access to the actual layout data
of the memories and standard cells, they had to be treated as
black boxes during LVS. Therefore only the connectivity of
the cells could be checked.

To verify the functional equality of the synthesis netlist
and the netlist representing the final layout, the netlists were
compared with the formality software. The software found
three discrepancies between the synthesis netlist and the
netlist representing the final layout. Despite this, we verified
that the postlayout circuit performs the same function as the
original one.

Before the layout was sent to manufacturing we per-
formed a successful simulation run with timing data from
Primetime SI.

6.4. Printed Circuit Board Design. The HoneyComb proto-
type IC has a proprietary parallel interface that is optimized
to maximize throughput of streaming data transfers. It has
two 32-bit data interfaces, of which one is dedicated to data
input while the other is dedicated to data output. At 125 MHz
this results in a combined bandwidth of 1000 MB/s, 500 MB/s
in each direction.

The prototype IC is supposed to be connected to an
FPGA, which serves as an interface between the HoneyComb
IC and the controlling host system as well as an external
memory controller that connects the IC to external DRAM
memory. This allows for easy evaluation of different inter-
facing options as well as slave (accelerator) and standalone
mode.

10 International Journal of Reconfigurable Computing

Host PCHoneyComb IC

on expansion board

FPGA board

Local memory
interface

FPGA

DRAM

500 MB/s

500 MB/s

PCI express
host interface

Figure 10: HoneyComb IC in coprocessor configuration with PCI-express host interface.

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Stage 1 Stage 2 Stage 3
F(0)

F(1)

F(2)

F(3)

F(4)

F(5)

F(6)

F(7)

−1

−1

−1

−1 −1

−1

−1

−1

−1

−1

−1

−1
w1

4

w1
4

w0
4

w0
4

w0
2

w0
2

w0
2

w0
2

w0
8

w1
8

w2
8

w3
8

Figure 11: Radix-2 butterfly structure for 8-point FFT implementation.

Input
 data

Output
 data Start

Control 0

Control signals

Control 1Radix-2 butterfly

Deinterleaver/interleaver

Deinterleaved
data

In1 In2Out1 Out2

W

W

Re
Re Re Re

Im

Im Im Im

Re Re Re ReIm Im Im Im

Re ReIm Im

StartRW

wAddr(D)
rAddr(W)
wAddr(W)

wData rData

rAddr(D)

Working
memory

Interleaved
data

Figure 12: HoneyComb implementation of the FFT algorithm based on radix-2 butterfly approach.

International Journal of Reconfigurable Computing 11

The test board for the HoneyComb prototype is designed
as an FPGA Mezzanine Card (FMC) as defined by the
VITA 57 standard [21], which is an expansion card standard
supported by recent Xilinx FPGA evaluation boards. The
HoneyComb IC has 134 signal connections to the FPGA,
therefore the board features a 400 pin high pin count (HPC)
connectors, which supports up to 160 single-ended I/Os. It
can be used with board featuring an FMC HPC connector
like the Virtex-6 ML605, Kintex-7 KC705, or Virtex-7 VC707
evaluation kits. A 3D render image of the final layout of
the HoneyComb board, which is currently in production, is
shown in Figure 9.

In any of these configurations, the HoneyComb IC can
be used as an application accelerator within a Standard-
PC, to which it is connected via the PCI-Express slot of
the base board. In this configuration, which is shown in
Figure 10, the HoneyComb IC has access to the memory
located on the FPGA board as well as to the PC’s main
memory. Configuration and computation are initiated by the
host-PC.

7. Mapping Applications onto
the HoneyComb Architecture

For demonstration purposes we developed a set of appli-
cations, which includes a 1024-point FFT [22], Wavelet
algorithm according to JPEG2000 specification [23], iMDCT
[24], and Advanced Encryption Standard (AES256) [25]
implementation. These applications have been mapped on
the HC array and the calculated data sets have been
compared with reference implementations in C/C++ with a
perfect match. Since both implementations are working with
32 bit precision these results were possible and expected. As
described in the layout section, we applied the application-
tailored reduction technique using these applications to
reduce the resource requirements of the prototype in order
to fit the design into an area of 16 mm2.

The following procedure was used to generate the
executable program code and to adapt the HoneyComb
model to application requirements. We implement the initial
high level program in HCL based on the C/C++ reference
implementation. After compiling the HCL description we
received the HCA description, which is a low level assembly
program for the HoneyComb array. After additional opti-
mizations we used the assembly code to determine the target
HoneyComb model by adding additional resources to the
architecture according to FFT requirements. Finally, the HC-
assembler has been used to generate the final binary program
code which can be executed by the modified HoneyComb
model.

The following subsections will give an overview how the
target applications have been mapped onto our architecture.

7.1. 1024-Point FFT Algorithm. The fast Fourier transform
[22] is an efficient algorithm (Cooley-Tukey [26]) for
discrete Fourier transform (DFT). It computes frequency
components for a given sequence of values which can be a
number of consecutive samples for a given signal. Besides

Control 0

Control 1

Radix-2
butterfly

Working
memory

Deinterleaver/
interleaver

Figure 13: Mapping of the radix-2 FFT algorithm on the Honey-
Comb architecture.

the digital signal processing this algorithm is important for
a wide variety of applications.

While direct DFT calculation results in complexity of
O(N2) the FFT reduces it to O(NlogN) and allows calculation
of datasets with thousands of point in a relative short time.
The usual hardware implementation is based on butterfly
structures. Each butterfly has a specified number of inputs
and outputs which is specified as radix-parameter. In case
of two inputs we are talking about radix-2 implementation.
Figure 11 shows the basic structure for a radix-2 butter fly
structure with eight points.

For the mapping of this algorithm we chose the radix-2
implementation. Since the resulting array composition has
not enough resources to implement the complete radix-2
FFT directly we decided to map this algorithm partly in
the area and partly into the time domain. This approach is
supported by the HoneyComb array by using the multicon-
text capability. Therefore the working data has to be stored
in memory modules (MEMHCs) and retrieved according
to the butterfly structure. To generate the required address
sequences two separate HoneyComb cells are dedicated to
this task and are marked as control cells (see Figure 12).
One separate MEMHC has been assigned for holding the
coefficients Wi and current working data. Depending on
incoming addresses the memory cell retrieves addressed data
and coefficients. Since current MEMHCs only include single
port memories retrieved data is read one by one on each
cycle. An additional deinterleaver cell is used to parallelize
sequential data values and forward each pair of values (In1,
In2) to the butterfly cell. Thus, the butterfly cell is able to
calculate one output pair (Out1, Out2) every two cycles and
forward the results through the interleaver to the memory
cell.

Two external signals control the execution of the FFT
algorithm: StartRW and Start. StartRW controls whether
the working data and coefficients are read from or written

12 International Journal of Reconfigurable Computing

X(k) x(n)
Z−1 Z−1

Z−1

Z−1 Z−1

Z−1 Z−1− −+

cos
θn
2

2 cos θn

∗

∗ ≫

≫

R1

R2 R3

R1

R2

Figure 14: iMDCT structure fitting hardware implementation.

to the working memory. It triggers a linear address generator
which generates an address stream on predefined output port
of the control 1 cell. Whether working data or coefficients are
transfers depends on the connected memory interface. These
connections are established by dynamic reconfiguration
when memory has to be filled or calculated data is to be
retrieved. Once the memory is loaded the calculation can be
started with the Start signal.

The butterfly uses a fixed point representation for the
calculation which can be adapted to application require-
ments by resetting the fixed point position. The resulting
algorithm is not limited to 1024-point FFT. Depending on
the stored coefficients Wi it is possible to calculate data sets
of different sizes. The limiting factor is only defined by the
maximum size of the memory modules in the MEMHC. The
ASIC implementation includes eight 1024 × 32bit memory
modules. So, the maximum size is limited to 2048-point FFTs
by this version.

Figure 13 shows one possible FFT configuration on the
HoneyComb array as described in the sections above. The
whole configuration requires 4 DPHCs and 1 MEMHC.

7.2. 1024-Point iMDCT Algorithm. The inverse modified
discrete cosine transform is an algorithm quite similar to
the prior mentioned DFT. This modified version is primarily
used for audio compression standards like MP3, AAC, and
OggVorbis. The direct calculation of as iMDCT has the same
complexity as the DFT which is O(N2). Like in case of
FFT similar butterfly-based approaches exist to reduce the
complexity. There are two particularities of this algorithm
worth mentioning: for once the fact that it works with real
numbers only and for second that a given number N of
spectral values results in 2∗N samples. The first point halves
the memory requirements compared to FFTs since only real
numbers have to be stored. In case of 1024-point iMDCT
we get 2048 sample values, which is specified according to
OggVorbis Audio compression.

Since one butterfly approach has already been imple-
mented on the HoneyComb array we decided to use a more
direct approach. Therefore we used the transformations
introduced by Nokolajevic and Fettweiss [24] resulting in a
structure which can be implemented directly in hardware.

Data buffer

Control

Data spread

iMDCT

finger 1

iMDCT
finger 2

iMDCT

finger 3

iMDCT
finger 0

Figure 15: Mapping of the iMDCT algorithm onto the Honey-
Comb architecture.

Figure 14 shows a slightly modified version after adding a few
additional registers.

Even though the algorithm does not pursue the same
approach as the FFT, the implementation resulted in a similar
configuration. One MEMHC is used to store working data as
well as cosine coefficients. But instead of using the MEMHC
in RAM mode it is used in FIFO mode. Though, once a value
has been read it has to be put back if it is supposed to be
available again. This function is performed by a separate cell
(data spread), which distributes the values from memories
and forwards a copy to the iMDCT finger cells. Those
cells implement the complete iMDCT structure as shown in
Figure 15.

To compute a single output the iMDCT structure
requires to receive 1024 spectral and cosine (2 cos θn) values.
On the final iteration the multiplication with the cosine
value (cos(θ/2)) finalizes the calculation. Since the algorithm
is working with fixed point numbers shift operations are
required to correct the results. The resulting values are
forwarded through the IOHC cell directly out of the array.

International Journal of Reconfigurable Computing 13

MixColumns/bypass

Key expansion

SubBytes

SubBytes

SubBytes

ShiftRows

ShiftRows

ShiftRows

MixColumns

Start

End

Demux

AddRoundKey
AddRoundKey

AddRoundKey

AddRoundKey

Mux 0

Start
precomputed key

End

Control

Modify N
+

2
it

er
at

io
n

s

N
it

er
at

io
n

s

Figure 16: Original AES operation scheme and the modification of the implementation for the HC-Array.

Input Mux

AddRoundKey

Control

MixColumns 0

MixColumns 1 ShiftRows
RoundKey

MixColumns 2

Output
Demux

Pipeline
FIFOs

RoundKey-
Memory

AddressGenerator

MixColumns
demux

MixColumns
mux

Figure 17: Resulting mapping if the AES algorithm on the HoneyComb architecture.

This approach is quite slow compared to butterfly solu-
tion. However, it is a good example to demonstrate multi-
context capabilities of the DPHCs.

7.3. The Advanced Encryption Standard. The Advanced
Encryption Standard (AES) [25] is a symmetric-key encryp-
tion algorithm standardized by NIST [27] in 2000. The
symmetric character of the algorithm allows encryption and
decryption of electronic data with the same cypher key. The
algorithm is fast in software as well as in hardware. However,
due to its nature the latter is always more efficient.

AES is using a block code of 4 × 4 bytes blocks. A set
of transformation operations are defined which are executed
in repetitions in several rounds to perform the encryption
of the input text. Additionally, reverse rounds are defined to
reverse the encryption with the same encryption key.

Four high level steps are defined for the encryption
rounds: AddRoundKey, SubBytes, ShiftRows and Mix-
Columns. AddRoundKey combines current block elements
with the cypher key by applying the xor operation. SubBytes
substitutes the bytes within the blocks due to a given lookup
table. ShiftRows reorders the rows of the given block, while
the MixColumns function reorders the columns of the block.

14 International Journal of Reconfigurable Computing

LLLL

HHHH

HLHL

LHLH

Figure 18: 2D wavelet transformed image.

AES key sizes are specified with 128, 192, and 256
bits. Before starting the actual data encryption the plain
text key has to be expanded. Here, the key is divided
in 128-bit blocks (RoundKeys), whereas the blocks are
partly filled with the key data and partly are calculated
recursively. After the expansion the RoundKey can be applied
with the AddRoundKey operation on the data during the
encryption. Since the key expansion is not limiting the AES
performance it will be done in software and the RoundKey
will be transferred into the HoneyComb array for the actual
encryption process.

The AES algorithm specifies a very specific order for
the execution of those operations. However, to reduce the
resource requirements, the block diagram has been slightly
modified. Due to hardware restrictions, it is not possible
to call any function at will, so each path has to be defined
in advanced, what is shown with each path on the right
hand side of Figure 16. It was important to avoid multiple
implementations of the same function to save as many
resources as possible. Therefore, the whole algorithm is
working both ways: in parallel mapped in the hardware area
and sequential by iterating the data by reusing the same
resources over and over again. Depending on the key size the
number of iterations changes, so all key sizes are supported
by the HoneyComb implementation.

Figure 17 shows the results mapping of the AES algo-
rithm on the HoneyComb architecture. The darts in this
figure represent data paths between operational cells and
have always four concurrent connections to transport one
column of a block at once. Thus, every four cycle one block is
transferred from one cell to another. The MEMHC with the
pipeline functionality is used for once to increase the pipeline
depth of one round and secondly holds the lookup table data
for the SubBytes operation. The increasing of the pipeline
depth increases the efficiency of the mapping enormously.
Since this algorithm is working iteratively, it is required to
empty the pipeline completely before starting the calculation
for the new data set. This refill period leads to idle time on
the array and decreases the resulting performance. By using
deeper pipelines it is possible to reduce the idle time relatively
to calculation time.

Data buffer

High pass filter

Low pass filter

Low pass filter

green
High pass filter

green

High pass filter
blue

Low pass filter
bluered

red

Figure 19: 3-time wavelet algorithm implementation on the
HoneyComb architecture.

The result is high performance and efficiency. The maxi-
mum pipeline depth given by the FIFOs has 1024 entries, so
including the calculation cells with additional register stages
over 256 blocks can be calculated in one pass. The final
mapping of the AES algorithm requires all available cells on
our ASIC: two MEMHCs and eleven DPHCs.

7.4. Wavelet Application. The Wavelet algorithm [23] works
on whole images to filter the higher and lower frequencies
of the color dispersion. It can be applied horizontally and
vertically to achieve 2Dtransformation. The JPEG2000 stan-
dard uses this algorithm to separate frequencies for better
compression results. Quite similar to the JPEG approach loss
of high frequency shares cannot be noted by the eye, so loss
of this kind of information does not degrade the reextracted
image noticeably.

Simply spoken, the algorithm compares three neighbor-
ing pixels and calculates the high and low frequency shares.
When this is done horizontally, the results are two half-sized
images, whereas the left image contains the low pass results
and the right image contains the high pass results. When
the algorithm is applied vertically this results in an image
with the same size but consisting of four separate quarters
(see Figure 18). Each quarter is the result of horizontal and
vertical low and high pass filtering, what is marked with the
letter L/H. The first letter indicates horizontal filtering, the
second the vertical filtering.

The low and high pass filters require each one cell on
the HoneyComb architecture. So, to implement a complete
wavelet filter we need two DPHC cells to handle one data
stream, which can be a color component, like red, green or
blue. Because of tight timing constraints between these two
cells a FIFO has been used to improve the performance.

To be able to compute all three color components of
an RGB image and to improve the resulting performance
we implemented three times the complete wavelet filter,

International Journal of Reconfigurable Computing 15

8%

31%

15%

46%

3%
14%

5%

78%

22%

61%
13%

4%
11%

21%

68%

IOHCsMEMHCs DPHCs

Buffer cells
Comb. cells

Sequential cells

Memories

IC

Figure 20: Distribution of the standard cell types within the HoneyComb array prototype.

what resulted in a configuration with six DPHCs and one
MEMHC (see Figure 19).

8. Results Overview

The applications described in the last section have been taken
for performance evaluation. These applications have been
mapped on the HC array and the calculated data sets have
been compared with reference implementations in C/C++.
As described in the layout section, these applications have
been used for the reduction of the prototype to reduce the
resource requirements and to fit the design into an area of
16 mm2.

The application results, which were obtained by cycle-
accurate simulation of the architecture’s VHDL model and
normalized to 100 MHz, can be found in Tables 1 and 2.
The configuration time specifies the amount of time it takes
to configure the HC array for the application execution.
These values are quite small and allow the architecture
to switch between applications several thousand times per
second. Therefore, configuration sequencing and resources
reuse becomes practicable with this approach.

The AES implementation delivers the most impressive
results. There, the maximum performance without reconfig-
uration interruptions is in the range of up to 26 MB/s which
is very high considering the clock speed of only 100 MHz.
Figure 5 shows the running application represented by the
HCViewer debugging tool.

The maximum power consumption for the AES256
application, which is the maximum for this application
set, is about 150 mW. This value, which was obtained

with PrimeTime, includes the dynamic as well as the static
power consumptions of the core cells and is right until now
an estimated value by the synthesis and layout tools. The
exact value will be evaluated once the prototype is finished.

Figure 20 shows the breakdown of the standard cell
types for each HoneyComb cell type of the ASIC prototype.
It is noticeable that the MEMHCs and IOHCs are mostly
composed of integrated SRAM blocks. In case of the
MEMHC these memory blocks are the main part of the
configurable cell functions. In case of the IOHC the memory
blocks are part of the FIFOs for clock domain crossing. The
DPHC cells are mainly dominated by the combinational logic
required for arithmetic units, multiplexers, and decoders.
However, 8% of the design is composed of buffer cells, which
is a quite good value considering the fact that we did not
optimize design to minimize the use of buffers and did the
layout analysis quite conservative.

Figure 21 reflects the area distribution of the Honey-
Comb architecture. Since the prototype includes 11 DPHCs
57% of the area is allocated by those cells. However, the
breakdown of the functional unit (FU) and routing unit (RU)
of the DPHCs shows optimization potential for the future.
Right now, we used simple multiplex structures to design
the architecture; especially the RUs are using multiplex struc-
tures extensively. By substituting the multiplexers with more
efficient crossbar structures, according to our experiments,
we expect to save up to 50% of the area.

9. Conclusion

This contribution presented an application-tailored method-
ology for a reconfigurable architecture, the HoneyComb

16 International Journal of Reconfigurable Computing

Table 1: Performance results for selected applications at 100 Mhz.

Application DPHCs MEMHCs Config. time Performance

AES256 11 2 6,85 μs 25,6 MB/s

iMDCT 1xfinger 3 1 24,06 μs 47,6 blocks/s

iMDCT 7xfingers 11 2 25,60 μs 333,46 blocks/s

FFT1024 4 1 7,65 μs 10850 blocks/s

Wavelet 6 1 3,15 μs 0,6 cycles/pixel

Table 2: Synthesis and power evaluation results at 100 MHz.

Application DPHC area (μm2) MEMHC area (μm2) IOHC area (μm2) Leakage power (mW) Dynamic power (mW)

AES256 362636 1226638 623680 5.59 146.73

iMDCT 1xfinger 461697 1290972 812529 7.11 66.23

FFT1024 472477 948950 787658 7.26 75.02

Wavelet 250042 1246197 728551 4.2 87.84

ASIC 652285 1299802 868313 10.76

MEMHCs
IOHCs
DPHCs

FU

FU

FU

RU

RU

RU

17%

31%

15%

2%

57%

22%

4%

26%

26%

Figure 21: Area distribution across cells within the HoneyComb
array prototype.

architecture. Since a fully flexible approach is simply too
expensive and usually not desired it is possible to reduce
the architecture according to a predefined set of applications.
This approach saves silicon area and therefore money. In case
of our prototype we reduced the initially required area to less
than 50%. The prototype of the HoneyComb architecture
has been produced and is already delivered. The layout of the
PCB is complete, and the PCB is currently in production. We
are expecting to have a running system within the next few
months.

The performance results are also promising. Compared
to Intel Core 2 Quad processor with 2666 MHz, which
reaches about 200 MB/s executing the AES256 application
resulting in an overall performance per core of about
50 MB/s, our results are excellent.

Still a lot of work has to be done regarding the area
efficiency and programming interface. Currently the used
simple multiplexing structures within the array can be
replaced by more efficient cross-connect structures. Also,
support for at least C is required and would grant access to a
wide range of applications.

Acknowledgments

The authors acknowledge support by Deutsche Forschungs-
gemeinschaft and Open Access Publishing Fund of Karlsruhe
Institute of Technology.

References

[1] Xilinx Inc., http://www.xilinx.com/.
[2] Altera Corp, http://www.altera.com/.
[3] J. Becker, T. Pionteck, and M. Glesner, “DReAM: a dynamically

reconfigurable architecture for future mobile communication
applications,” in Proceedings of the 10th International Confer-
ence on Field Programmable Logic and Applications, Villach,
Austria, 2000.

[4] R. Kress, A fast reconfigurable ALU for Xputers [Ph.D. disserta-
tion], Kaiserslautern University, 1996.

[5] T. Oppold, T. Schweizer, J. F. Oliveira, S. Eisenhardt, and W.
Rosenstiel, “CRC—concepts and evaluation of processor-like
reconfigurable archtitectures,” IT-Information Technology, vol.
49, no. 3, p. 147, 2007.

[6] A. Abnous, H. Zhang, M. Wan, G. Varghese, V. Prabhu, and
J. Rabaey, “The Pleiades Architecture,” in The Application of
Programmable DSPs in Mobile Communications, John Wiley &
Sons, Chichester, UK, 2002.

[7] P. Master, “The next big leap in reconfigurable systems,” in
IEEE International Conference on Field-Programmable Technol-
ogy (FPT ’02), pp. 17–22, December 2002.

[8] E. Schüler and M. Weinhardt, “XPP-III: the XPP-III reconfig-
urable processor core,” Lecture Notes in Electrical Engineering,
vol. 40, pp. 63–76, 2009.

International Journal of Reconfigurable Computing 17

[9] N. Suzuki, S. Kurotaki, M. Suzuki et al., “Implementing and
evaluating stream applications on the dynamically reconfig-
urable processor,” in Proceedings of the 12th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines
(FCCM ’04), pp. 328–329, April 2004.

[10] P. M. Heysters, G. J. M. Smit, and E. Molenkamp, “Energy-
efficiency of the MONTIUM reconfigurable tile processor,”
in Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA ’04), pp. 38–44,
Las Vegas, Nev, USA, June 2004.

[11] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Matt,
and R. R. Taylor, “PipeRench: a reconfigurable architecture
and compiler,” Computer, vol. 33, no. 4, pp. 70–77, 2000.

[12] D. C. Chen and J. M. Rabaey, “A reconfigurable multiprocessor
IC for rapid prototyping of algorithmic-specific high-speed
DSP data paths,” IEEE Journal of Solid-State Circuits, vol. 27,
no. 12, pp. 1895–1904, 1992.

[13] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Imple-
menting an OFDM receiver on the RaPiD reconfigurable
architecture,” IEEE Transactions on Computers, vol. 53, no. 11,
pp. 1436–1448, 2004.

[14] G. Lu, H. Singh, M.-H. Lee et al., “The MorphoSys dynami-
cally reconfigurable system-on-chip,” in Proceedings of the 1st
NASA/DoD Workshop on Evolvable Hardware, pp. 152–160,
1999.

[15] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable com-
puting architecture with configurable instruction distribution
and deployable resources,” in Proceedings of the IEEE Sympo-
sium on FPGAs for Custom Computing Machines, pp. 157–166,
April 1996.

[16] T. Miyamori and U. Olukotun, “A quantitative analysis of
reconfigurable coprocessors for multimedia applications,”
in Proceedings of IEEE Symposium on FPGAs for Custom
Computing Machines, pp. 2–11, April 1998.

[17] A. Thomas and J. Becker, “New adaptive multi-grained hard-
ware architecture for processing of dynamic function patterns
(Neue adaptive multi-granulare Hardwarearchitektur),” IT-
Information Technology, vol. 49, no. 3, p. 165, 2007.

[18] A. Thomas and J. Becker, “Multi-grained reconfigurable hard-
ware architecture with online-adaptive routing techniques,”
in Proceedings of the IFIP International Conference on Very
Large Scale Integration (IFIP VLSI-SOC ’05), Perth, Western
Australia, October 2005.

[19] P. Briggs, Register Allocation via Graph Coloring, Rice Univer-
sity, Dissertation, 1992.

[20] C. J. Tseng and D. P. Siewiorek, “Automated synthesis of data
paths in digital systems,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 5, no. 3,
pp. 379–395, 1986.

[21] VMEbus International Trade Association (VITA)—FMC Mar-
keting Alliance, http://www.vita.com/fmc.html.

[22] E. O. Brigham and R. E. Morrow, “The fast Fourier transform,”
IEEE Spectrum, vol. 4, no. 12, pp. 63–70, 1967.

[23] St. Mallat, Phane: A Wavelet Tour of Signal Processing, Aca-
demic Press, 2009.

[24] V. Nikolajevic and G. Fettweis, “New recursive algorithms for
the unified forward and inverse MDCT/MDST,” Journal of
VLSI Signal Processing Systems for Signal, Image, and Video
Technology, vol. 34, no. 3, pp. 203–208, 2003.

[25] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” 1999.

[26] W. J. Cooley and W. J. Tukey, “An algorithm for the
machine calculation of complex Fourier series,” Mathematics
of Computation, vol. 19, pp. 297–301, 1965.

[27] National Institute of Standards and Technology, http://www
.nist.gov/index.html.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

