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Abstract. The submodel PSC of the ECHAM5/MESSy At-
mospheric Chemistry model (EMAC) has been developed to
simulate the main types of polar stratospheric clouds (PSC).
The parameterisation of the supercooled ternary solutions
(STS, type 1b PSC) in the submodel is based onCarslaw
et al. (1995b), the thermodynamic approach to simulate ice
particles (type 2 PSC) onMarti and Mauersberger(1993).
For the formation of nitric acid trihydrate (NAT) particles
(type 1a PSC) two different parameterisations exist. The first
is based on an instantaneous thermodynamic approach from
Hanson and Mauersberger(1988), the second is new imple-
mented and considers the growth of the NAT particles with
the aid of a surface growth factor based onCarslaw et al.
(2002). It is possible to choose one of this NAT parameteri-
sation in the submodel. This publication explains the back-
ground of the submodel PSC and the use of the submodel
with the goal of simulating realistic PSC in EMAC.

1 Introduction

Polar stratospheric clouds are necessary for ozone depletion
in polar spring. The activation of inorganic chlorine and
bromine substances takes place on their surfaces during the
polar winter leading to ozone depletion in polar spring and
the denitrification of nitrogen substances and the dehydration
of water vapour (H2O) is caused through the sedimentation
of NAT and ice particles. The denitrification prevents the
deactivation of the active halogen substances such that the
ozone depletion lasts longer.
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PSC are classified into three subtypes. The type 1a PSC
defined as solid NAT particles, the type 1b PSC as liquid
STS droplets and solid ice particles form the type 2 PSC.

The exact microphysical and thermodynamical details of
PSC development are still a matter of discussion, but a large
body of scientific evidence exists that support a number of
theories related to their formation, which will be summarised
briefly (Lowe and MacKenzie, 2008).

1.1 The formation of STS (type 1b PSC)

The formation of STS droplets (HNO3 ·H2SO4 ·H2O) is de-
scribed inBeyer et al.(1994), Carslaw et al.(1994, 1997) and
Luo et al.(1995). STS form during cooling below a specific
temperature threshold through uptake of nitric acid (HNO3)
by sulphuric acid aerosols (H2SO4 ·H2O), existing in the so-
called “Junge Layer” (Junge et al., 1961).

The ternary droplet composition depends on the tempera-
ture. In different laboratory measurements it has been shown
that during cooling of STS the fraction of HNO3 increases
in the droplets, whereas the fraction of H2SO4 decreases
(Tabazadeh et al., 1994; Carslaw et al., 1995a; Luo et al.,
1995; Beyer et al., 1994). As shown inCarslaw et al.(1994,
1997) the STS droplets are stable until the temperature drops
to the ice frost point. Below the ice frost point freeze the
STS droplets. With the uptake of HNO3 into the droplets the
volume of the STS particles strongly increases.

Besides the solubility of HNO3, also the solubilities of
hydrochloric acid (HCl), hypochlorous acid (HOCl), hydro-
bromic acid (HBr) and hypobromous acid (HOBr) change
during cooling (Carslaw et al., 1997), which is important for
the heterogeneous chemistry reactions (see Sect.1.4).
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1.2 The formation of NAT (type 1a PSC)

It exist two formation mechanism for NAT particles
(HNO3 ·(H2O)3): (1) the heterogeneous formation of NAT
on ice particles (Biermann et al., 1998; Carslaw et al., 1998;
Middlebrook et al., 1996; Waibel et al., 1999; Wirth et al.,
1999) and (2) the homogeneous nucleation of NAT out of su-
percooled ternary solutions (Carslaw et al., 2002; Daerden et
al., 2007; Tabazadeh et al., 2002).

As found byHanson and Mauersberger(1988) NAT can
exist under stratospheric conditions below the NAT conden-
sation temperature (TNAT). TNAT depends on the pressure and
on the partial pressures of HNO3 and H2O. A typical tem-
perature forTNAT is approx. 193 K. However observations
(Schlager and Arnold, 1990; Dye et al., 1992) indicate that
NAT particles do not exist before a supercooling of 2–3 K
belowTNAT .

Earlier laboratory studies (Middlebrook et al., 1996; Bier-
mann et al., 1998) and lidar observations on aircraft (Carslaw
et al., 1998; Wirth et al., 1999) verify the first formation
mechanism for NAT, the heterogeneous formation on ice par-
ticles. In this case HNO3 is adsorbed on ice particles, for in-
stance if ice particles sediment through air with high HNO3
mixing ratios (Wofsy et al., 1990).

The second formation mechanism for NAT is the ho-
mogeneous nucleation of nitric acid dihydrate (NAD,
HNO3 ·(H2O)2) out of STS and the subsequent conversion of
the metastable NAD to NAT (Carslaw et al., 2002; Daerden
et al., 2007). The NAD condensation temperature (TNAD) is
approx. 2–3 K belowTNAT thereby explaining the observa-
tions of Schlager and Arnold(1990) andDye et al.(1992).
This formation mechanism is verified through labor studies
from Tabazadeh et al.(2002).

1.3 The formation of ice (type 2 PSC)

Ice particles are formed in the stratosphere at very low tem-
peratures, typically below the ice frost point (Tice) at ap-
prox. 188 K.

There are different processes forming ice. It has been de-
bated which of them occur in the polar stratosphere: (1) ho-
mogeneous nucleation of ice out of supercooled sulphuric
acid (SSA, H2SO4 ·H2O, Bertram et al., 1996) or out of su-
percooled ternary solutions (STS,Carslaw et al., 1998; Koop
et al., 2000; Tabazadeh et al., 1997); (2) heterogeneous nu-
cleation of ice out of liquid aerosol (SSA, STS) contain-
ing insoluble nuclei such as mineral oxides or soot (De-
Mott et al., 1997; Jensen and Toon, 1997); and (3) heteroge-
neous nucleation of ice on sulphuric acid tetrahydrate (SAT,
H2SO4 ·(H2O)4, Fortin et al., 2003).

The first formation mechanism, the homogeneous nucle-
ation of ice out of SSA or SST, is confirmed by different
laboratory studies. This formation, however, requires super-
cooling. Tabazadeh et al.(1997) measured a supercooling
of 2 to 3 K, Carslaw et al.(1998) of approx. 4 K andDaer-

den et al.(2007, deduced from Koop et al., 2000) of 3 to 4 K
compared to the ice frost point.

In contrast, theoretical work suggests that the second for-
mation mechanism, the heterogeneous nucleation of ice out
of SSA or STS with mineral oxide or soot as nuclei, may
occur at temperatures warmer than those required for homo-
geneous nucleation (DeMott et al., 1997; Jensen and Toon,
1997). This mechanism is perhaps possible for the upper tro-
posphere, where these nuclei exist, but improbable for the
stratosphere (Fortin et al., 2003).

The third formation mechanism of ice particles, the depo-
sition from water vapour on firm SAT particles introduced in
Fortin et al.(2003) is most likely very relevant in the polar
polar stratosphere. It takes place at temperatures close to the
ice frost point. In the laboratory studies ofFortin et al.(2003)
only a supercooling of 0.1 K to 1.3 K was necessary for the
formation.

1.4 Polar ozone depletion

PSCs are fundamental for the understanding of ozone deple-
tion in polar spring. On the surfaces of the liquid and solid
PSC particles the following heterogeneous reactions occur
(Abbatt and Molina, 1992; Crutzen et al., 1992; Hanson and
Ravishankara, 1991, 1993; Solomon et al., 1986; Tolbert et
al., 1987):

N2O5(g)+H2O(l,s)
het

−→ 2 HNO3(l,s) (R1)

N2O5(g)+HCl(l,s)
het

−→ ClNO2(g)+HNO3(l,s) (R2)

ClONO2(g)+H2O(l,s)
het

−→ HOCl(g)+HNO3(l,s) (R3)

ClONO2(g)+HCl(l,s)
het

−→ Cl2(g)+HNO3(l,s) (R4)

ClONO2(g)+HBr(l,s)
het

−→ BrCl(g)+HNO3(l,s) (R5)

BrONO2(g)+H2O(l,s)
het

−→ HOBr(g)+HNO3(l,s) (R6)

BrONO2(g)+HCl(l,s)
het

−→ BrCl(g)+HNO3(l,s) (R7)

HOCl(g)+HCl(l,s)
het

−→ Cl2(g)+H2O(l,s) (R8)

HOCl(g)+HBr(l,s)
het

−→ BrCl(g)+H2O(l,s) (R9)

HOBr(g)+HCl(l,s)
het

−→ BrCl(g)+H2O(l,s) (R10)

HOBr(g)+HBr(l,s)
het

−→ Br2(g)+H2O(l,s) (R11)

The products of these reactions: molecular chlorine (Cl2),
molecular bromine (Br2), HOCl, HOBr, nitryl chloride
(ClNO2) and bromine chloride (BrCl) are in gas phase (g);
HNO3 and H2O are in liquid (l) or solid phase (s).

During polar spring the gas phase products photolyse and
ozone depleting radicals are formed (ReactionsR12–R17):

Cl2+hν → 2 Cl (R12)

Br2+hν → 2 Br (R13)
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HOCl+hν → OH+Cl (R14)

HOBr+hν → OH+Br (R15)

ClNO2+hν → Cl+NO2 (R16)

BrCl+hν → Br+Cl (R17)

The radicals deplete ozone in catalytic cycles. One example
of such a catalytic cycle is the ozone depletion with Cl after
Molina and Molina (1987):

2 [Cl+O3 → ClO+O2] (R18)

ClO+ClO+M → Cl2O2+M (R19)

Cl2O2+hν → 2 Cl+O2 (R20)

Net: 2 O3+hν → 3 O2 (R21)

The self-reaction of the chlorine monoxide radicals (ClO)
form a chlorine monoxide dimer (Cl2O2) in this cycle.

Through the heterogeneous reactions on the surface of
PSC particles and the subsequent photolysis in polar spring it
is possible to explain the polar ozone depletion quantitatively
(Graedel and Crutzen, 1993).

2 The EMAC model

The Chemistry Climate Model (CCM) EMAC
(ECHAM5/MESSy Atmospheric Chemistry model;Jöckel
et al., 2006) has been developed at the Max-Planck-Institute
for Chemistry in Mainz. EMAC is a combination of the
general circulation model ECHAM5 (Roeckner et al., 2006)
and different submodels such as the chemistry submodel
MECCA1 (Sander et al., 2005) combined through the
Modular Earth Submodel System (MESSy,Jöckel et al.
(2005)).

In the vertical EMAC simulates (in a middle atmosphere
setup) the atmosphere from the ground to 0.01 hPa (ap-
prox. 80 km), i.e., including the troposphere, stratosphere
and mesosphere. Data are exchanged between the base
model (ECHAM5) and the submodels within one compre-
hensive model system. With the generalized interface struc-
ture MESSy the standardized control of the submodels and
their interconnections is possible.

Besides the submodel PSC for the simulation of polar
stratospheric clouds and MECCA1 for the gas-phase chem-
istry we have used for our performed EMAC simulation (see
Sect.5) the following submodels: OFFLEM for offline emis-
sions of trace gases and aerosols (Kerkweg et al., 2006b),
TNUDGE for tracer nudging (Kerkweg et al., 2006b), DRY-
DEP for dry deposition of trace gases and aerosols (Kerkweg
et al., 2006a), SEDI for the sedimentation of aerosol par-
ticles (Kerkweg et al., 2006a), JVAL for the calculation of
photolysis rates (Landgraf and Crutzen, 1998), SCAV for the
scavenging and liquid phase chemistry in cloud and precipi-
tation (Tost et al., 2006a), CONVECT for the parameteriza-
tion of convection (Tost et al., 2006b), LNOX for the source
of NOx produced by lightning (Tost et al., 2007b), PTRAC

for additional prognostic tracers (Jöckel et al., 2008), CV-
TRANS for convective tracer transport (Tost et al., 2010),
TROPOP for diagnosing the tropopause and boundary layer
height, H2O for stratospheric water vapour, RAD4ALL for
the radiation calculation, HETCHEM for calculating reac-
tion coefficients of heterogeneous reactions on aerosols (see
Jöckel et al., 2006, and references therein), and CLOUD for
calculating the cloud cover as well as cloud microphysics in-
cluding precipitation (Tost et al., 2007a).

3 The submodel PSC

The submodel PSC is based on the “Mainz Photochemical
Box Model” (Crutzen et al., 1992; Grooß, 1996; Meilinger,
2000; Müller, 1994) and was improved amongst others by
Buchholz(2005) andKirner (2008). It includes the simula-
tion of the different PSC types. In the submodel parameter-
isations for the formation of STS droplets, the formation of
NAT particles and the formation of ice particles exist. More-
over, it describes the sedimentation of these particles and the
calculation of the heterogeneous chemistry reaction rate co-
efficients, which take place on the surface of the PSC parti-
cles.

For the simulation of NAT particels there was until EMAC
version 1.8 only the thermodynamic parameterisation (de-
scribed in Sect.3.2.1) implemented in the submodel. A
new parameterisation for NAT particles based on the effi-
cient growth and sedimentation algorithm ofvan den Broek
et al.(2004) andCarslaw et al.(2002) has been implemented
(described in Sect.3.2.2) and is available since EMAC ver-
sion 1.9 (released 2010).

3.1 The parameterisation of STS droplets and
stratospheric liquid aerosols

The simulation of STS droplets (type 1b PSC) is imple-
mented in the computation of stratospheric liquid aerosol and
based onCarslaw et al.(1995b). With the aid of several pa-
rameterisations the fractions of H2SO4, HNO3, H2O, as well
as HCl, HOCl, HBr and HOBr in SSA and STS are calcu-
lated. These parameterisations fromCarslaw et al.(1995b)
are valid for the temperature range 185 K≤ T ≤ 240 K.

– The first step is the computation of the molar fractions
(in mol kg−1) of H2SO4 (bH2SO4(binary)) and HNO3
(bHNO3(binary)) in the supercooled binary solutions
(H2SO4 ·H2O (SSA) and HNO3 ·H2O). Each fraction
depends on pressure, temperature and on the mixing ra-
tio of H2O. At temperatures above 215 K the liquid frac-
tion of HNO3 is set to zero.

– In the second step the liquid molar fractions of H2SO4
(bH2SO4(ternary)) and HNO3 (bHNO3(ternary)) in the
droplets are calculated. At temperatures above 215 K
the bHNO3(ternary) is set to zero. After these cal-
culations the mass fractions (in kg kg−1) of H2SO4
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Table 1. Used constants in submodel PSC.

Constant Name Unit

Mair molar mass of air 0.02897 kg mol−1

MH2O molar mass of H2O 0.01802 kg mol−1

MH2SO4 molar mass of H2SO4 0.09809 kg mol−1

MNAT molar mass of NAT 0.117 kg mol−1

ρice the density of ice particles 990.0 kg m−3

ρNAT the crystal mass density of NAT 1626.0 kg m−3

Rgas universal gas constant 8.314 J(K mol)−1

NA Avogadro constant 6.022×1023mol−1

g acceleration of gravity 9.80665 m s−2

(wH2SO4) and HNO3 (wHNO3) in the liquid strato-
spheric aerosol are simulated (Carslaw et al., 1995b).

With the aid of the Henry coefficients (kH in
mol kg−1 mol−1, which mainly depend on the compo-
sition of the liquid aerosol, seeCarslaw et al., 1997),
the solubilities of HCl, HBr (parameterisation fromLuo
et al., 1995), HOCl (Huthwelker et al., 1995) and HOBr
(Hanson and Ravishankara, 1995) are calculated. With
these solubilities it is possible to calculate the mass frac-
tions of HCl (wHCl), HBr (wHBr), HOCl (wHOCl),
HOBr (wHOBr) (in kg kg−1) in the liquid stratospheric
aerosol. The mass fraction of H2O is 1.0 minus the cal-
culated total mass fraction of the other constituents.

– The third step is the calculation of the mixing ratios (to
dry air) of the substances in liquid phase (H2SO4(liq),
HNO3(liq), H2O(liq), HCl(liq), HBr(liq), HOCl(liq),
HOBr(liq) in mol(substance) mol−1(dry air)). It is
assumed that the total stratospheric H2SO4 is liquid
(H2SO4(liq)). The mixing ratios of the other liquid sub-
stances are than calculated in relation to H2SO4(liq).

For example H2O(liq) (amount of liquid H2O in mol
mol−1(dry air)) is calculated through:

H2O(liq)=
wH2O·MH2SO4 ·H2SO4(liq)

MH2O ·wH2SO4
(1)

with MH2O andMH2SO4 being the molar masses of H2O and
H2SO4, respectively (for constants see Table1).

3.2 The parameterisation of NAT particles

For the formation of NAT particles (type 1a PSC) two dif-
ferent parameterisations exist. The first one is based on an
instantaneous thermodynamical approach fromHanson and
Mauersberger(1988) and is referred to hereafter as “thermo-
dynamic NAT parameterisation”. The second one considers
the growth of the NAT particles with the aid of a surface
growth factor based onCarslaw et al.(2002) and is called
in the following as “kinetic growth NAT parameterisation”.

The thermodynamic NAT parameterisation has been imple-
mented in EMAC byBuchholz(2005), the kinetic growth
parameterisation has been new implemented.

3.2.1 Thermodynamic NAT parameterisation

The formation of solid PSC particles using the thermody-
namic NAT parameterisation is based on the assumption that
NAT only forms via heterogeneous formation of NAT on ice
particles (see Sect.1.2) and ice forms at supersaturation (see
Sect.1.3). For this approach a so called “phase concept” in
the submodel PSC exists.

The formation of PSC particles is controlled through the
model variablephase. It describes if the formation conditions
of STS, NAT and ice exist or not:

– phase = 0→ no formation conditions for PSC,

– phase = 1→ formation conditions for STS,

– phase = 2→ formation conditions for STS and NAT,

– phase = 3→ formation conditions for STS, NAT and
ice.

Outside a defined PSC region the variablephaseis 0, within
this regionphaseis always 1, 2 or 3, i.e., only in this region it
is possible to form PSC. The boundaries (latitude, lower and
upper altitute limits) of the PSC region can be determined via
the PSC submodel namelists (see Sect.4).

The heterogeneous NAT formation on ice particles is the
underlying assumption for the phase concept (Carslaw et al.,
1998). If the temperature drops belowTice, ice particles
are formed and it is also possible to form NAT. The vari-
able phasewill be set to 3 if the total partial pressure of
H2O (eH2O(total) in Pa, the sum of gas, liquid and solid H2O)
is greater than the saturation vapour pressure of H2O over
ice (Eice

H2O in Pa, calculated according toMarti and Mauers-
berger, 1993).

After melting of ice, the NAT existence is further possi-
ble as long as the conditions for NAT formation are given
(T 6 TNAT). The variablephasewill be set to 2 if the total
partial pressure of HNO3 (eHNO3(total) in Pa, the sum of gas,
liquid and solid HNO3) is greater than the saturation vapour
pressure of HNO3 over NAT (ENAT

HNO3
in Pa, calculated ac-

cording toHanson and Mauersberger, 1988).
Using the thermodynamic NAT parameterisation the ho-

mogeneous NAT formation (see Sect.1.2) is only possi-
ble if the parameterLHomNucNATfrom the PSC submodel
namelists is set to true (see Sect.4). With the default setup it
is not possible to changephasefrom 1 to 2.

With the help of the PSC submodel namelists, it is also
possible to set supersaturations for ice and NAT formation
(see Sect.4).

With the aid ofeHNO3(total) andENAT
HNO3

, depending on tem-
perature and on the mixing ratio of HNO3, it is possible
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to simulate the mixing ratio of HNO3 contained in NAT
(HNO3(NAT) in mol mol−1):

HNO3(NAT)=

(
eHNO3(total)−ENAT

HNO3

)
p

(2)

with p the ambient pressure (in Pa). It takes place, ifphase
is set to 2 or to 3.

3.2.2 Kinetic growth NAT parameterisation

Growth and contraction of NAT particles with the aid of
a surface growth factor

The kinetic growth NAT parameterisation assumes that the
homogeneous NAT formation starts from STS. The phase
concept is therefore not required in this approach.

NAT particles initially form with a radius of 0.1 µm and
a particle number density of 1.5×10−5 particles cm−3 when
the temperature is belowTNAT (Hanson and Mauersberger,
1988). With the help of the PSC submodel namelists, it is
also possible to set necessary supersaturations for the initial
NAT formation (see Sect.4).

After initialisation, the kinetic growth NAT parameterisa-
tion uses a surface growth factor (G in m2 s−1) based on
Carslaw et al.(2002) to calculate the growth and contrac-
tion of NAT. The time-related growth of the NAT particles
is a function of this surface growth factor and of the particle
radius (r in m):

dr

dt
=

G

r
(3)

with

G =
D∗

HNO3
MNAT

ρNATRgasT

(
eHNO3 −ENAT

HNO3

)
(4)

This equation describes the dependence of the surface growth
factor on the temperature, the difference between the partial
HNO3 vapour pressure (eHNO3) and the saturation vapour
pressure of HNO3 over NAT (ENAT

HNO3
), as well as from the

diffusion coefficient of HNO3 in air (D∗

HNO3
in m2 s−1).

The molar mass of NAT (MNAT), the universal gas constant
(Rgas) and the crystal mass density of NAT (ρNAT) are con-
stants. For positiveG, the radii of the NAT particles increase
through condensation of HNO3. For negativeG, the particles
contract through evaporation.

D∗

HNO3
is calculated to account for mass transfer non con-

tinuum effects for particles with sizes similar to the mean
free path (Carslaw et al., 2002):

D∗

HNO3
=

DHNO3

1+4 DHNO3/
(
vHNO3 r

) (5)

where DHNO3 (in m2 s−1) is the diffusion coefficient of
HNO3 in air andvHNO3 (in m s−1) is the mean molecular
speed.

Growth of NAT particles over size bins

With the aid of the surface growth factor it is possible to
simulate the growth and evaporation of NAT particles. For
integration of this growth concept in EMAC, which is an Eu-
lerian model, it is necessary to split the NAT particles into
different size bins. In the kinetic growth NAT parameteri-
sation of the submodel PSC consequently a separation into
eight size bins is implemented (see Table2). These are based
on a PSC algorithm in the chemistry transport model (CTM)
TM5 described byvan den Broek et al.(2004).

For every size bin a minimum, a maximum and a mean
radius (rNAT(bin) in µm) exist, as well as a maximum num-
ber density (in particles cm−3). The separation of the size
bins is based on observations by aircraft, performed in the
Arctic winter 1999/2000 byFahey et al.(2001). They ob-
served a total number density of NAT particles of 2.3×

10−4 particles cm−3, with radii up to greater than 10 µm.
The mean radii of the eight size bins (rNAT(bin)) used

in the PSC submodel are 0.1 µm, 0.6 µm, 1.5 µm, 4.0 µm,
7.5 µm, 10.5 µm, 14.0 µm and 18.0 µm (Table2). The max-
imum number densities are 3.28 × 10−5 particles cm−3

in the size bins 1–6 (2.3×10−4

7 particles cm−3) and
1.64 × 10−5 particles cm−3 in the size bins 7 and 8

(3.28×10−5

2 particles cm−3). The measured distribution of
NAT particles byFahey et al.(2001, Fig. 4) is considered
by the definition of the minimum and maximum radii of the
sizebins (Table2).

To use this size bin concept additional tracers have been
defined in EMAC. The mixing ratio of HNO3 contained
in NAT (HNO3(NAT)) had to be split up in eight tracers
(HNO3(NAT)(bin) in mol mol−1, one tracer per size bin) to
ensure transport and diffusion for the NAT particles.

The distribution of the NAT particles to the size bins are
calculated in a loop from size bin 1 to size bin 8.

– In a first step the initial number density of NAT in
the size bin (NNAT(bin)ini ) is calculated from the initial
HNO3(NAT)(bin)ini with the aid of the initial mass of
one NAT particle (mp(bin)ini in kg) with the mean radius
of this size bin (rNAT(bin)):

NNAT(bin)ini =
HNO3(NAT)(bin)iniMNAT

mp(bin)iniNA

(6)

with

mp(bin)ini =
4

3
πρNAT r3

NAT(bin) (7)

If in size bin 1 the mixing ration of HNO3(NAT)(1) is
equal to zero and the temperature is belowTNAT (Han-
son and Mauersberger, 1988), supersaturation can be
adjusted via the PSC namelists)NNAT(1)ini will be set to
1.5×10−5 particles cm−3.
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Table 2. The eight size bins in submodel PSC used for the kinetic growth NAT parameterisation.

Size bin 1 2 3 4 5 6 7 8

Minimum radius (µm) 0.0 0.2 1.0 2.0 6.0 9.0 12.0 16.0
Maximum radius (µm) 0.2 1.0 2.0 6.0 9.0 12.0 16.0 20.0
Mean radius (µm) 0.1 0.6 1.5 4.0 7.5 10.5 14.0 18.0
Maximum number density

3.28 3.28 3.28 3.28 3.28 3.28 1.64 1.64
(10−5 particles cm−3)

– In a second step a new radius (rnew(bin)) for the size
bin is calculated with the aid of the integrated form of
Eq. (3):

rnew(bin) =

√
r2
NAT(bin) +2G1t (8)

with the surface growth factorG (Eq. 4) and1t , the
time step (in s).

With rnew(bin) it is possible to calculate the new mass of one
particlemp(bin)new according to Eq. (7) and the new mixing
ratio of HNO3 contained in NAT (HNO3(NAT)(bin)new):

HNO3(NAT)(bin)new=HNO3(NAT)(bin)ini
mp(bin)new

mp(bin)ini
(9)

The new number density for NAT particles of the current size
bin (NNAT(bin)

) with the corresponding mean radius is calcu-
lated with

NNAT(bin) =
HNO3(NAT)(bin)newMNAT

rNAT(bin)NA

(10)

If NNAT(bin)
is larger than the maximum number density of

the current size bin, the overrun will be transferred to the
next larger size bin by transformation into the correspond-
ing number density of NAT particles with the mean radius
of this larger size bin. The overrun is also considered in the
calculation of HNO3(NAT)(bin)new (Eq.9).

After the loop over all size bins, it is possible to calculate
the total HNO3(NAT) as the sum of all HNO3(NAT)(bin):

HNO3(NAT)=
8∑

bin=1

HNO3(NAT)(bin) (11)

3.3 The parameterisation of ice particles

For the formation of ice particles (type 2 PSC) there is only
one parameterisation in the submodel PSC. It is based on the
thermodynamic approach ofMarti and Mauersberger(1993).

If phaseis set to 3, the water fraction in ice particles
(H2O(ice) in mol mol−1) is calculated as the difference of
the total partial pressure of H2O (eH2O(total)) and the satura-
tion vapour pressure of H2O over ice particles (Eice

H2O), which
depends on pressure and temperature:

H2O(ice)=

(
eH2O(total)−Eice

H2O

)
p

(12)

3.4 The calculation of surfaces, number densities and
mean radii of PSC particles

For the calculation of the reaction coefficients (κ) of the het-
erogeneous reactions (see Sect.3.5), which take place on the
surface of the solid PSC particles as well as on the surface of
the liquid stratospheric aerosols (STS and SSA), it is neces-
sary to calculate the total surface of liquid aerosols, NAT and
ice particles.

3.4.1 Surfaces and mean radii of liquid droplets

In the parameterisation for liquid droplets afterCarslaw et
al. (1995b) the total surface (Aliq in cm2 cm−3) and the mean
radius (rliq in cm) are simulated for the calculation of the
heterogeneous reaction coefficients.

To calculateAliq , first the total mass of the liquid phase
per air volume (mtotal in g cm−3) is calculated. After this, the
computation of the mass density of the liquid phase (densliq
in g cm−3) is possible. With the equation

Vliq =
mtotal

densliq
(13)

the total volume of the liquid droplets per air volume (Vliq in
cm3 cm−3) is calculated and alsoAliq following Grainger et
al. (1995):

Aliq = 8.406V 0.751
liq (14)

The mean radius of the liquid aerosols (rliq) is calculated with
the relation of the effective radius (reff), Vliq and the propor-
tion of rliq andreff assuming a logarithmic Gaussian distri-
bution with the following parameterisations afterGrainger et
al. (1995):

rliq = reff e−0.173 (15)

with reff = 0.357V 0.249
liq (16)

Aliq is used in the calculation of the heterogeneous reaction
coefficients (κ) on stratospheric liquid aerosols in Eq. (21).

3.4.2 Total number density and mean radius of solid
particles using the thermodynamic NAT
parameterisation

Using the thermodynamic NAT parameterisation, the total
number density (Nsolid in particles m−3) and the mean radius
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(rsolid in m) instead of the total surface of the solid particles
are calculated.

With the help of H2O(ice) (Eq. 12) and HNO3(NAT)

(Eq. 2) the total mass of solid particles (msolid) as well as
their total volume (Vsolid in m3) is calculated. The total num-
ber density of the solid particles (Nsolid) is then:

Nsolid= max

(
3 Vsolid

4 πr3
min

,Nmax

)
(17)

The minimum radius (rmin in m) is from the PSC submodel
namelists (see Sect.4). Nsolid is compared with a maximum
number density (Nmax), also determined in the PSC sub-
model namelists. IfNsolid is greater thanNmax, thenNsolid
is set toNmax (if this is the case,rsolid will be greater than
rmin, see Eq.18).

With the help ofNsolid the mean radius (rsolid) is calcu-
lated:

rsolid=
3

√
3 Vsolid

4 πNsolid
(18)

Within the thermodynamic NAT parameterisationNsolid and
rsolid are used for the calculation of the reaction coefficients
(κ) of heterogeneous reactions on the surface of ice and NAT
particles (see Eq.24). Nsolid is the sum of ice and NAT par-
ticles andrsolid the mean radius of these solid particles.

3.4.3 Total number density and mean radius of NAT
and ice particles using the kinetic growth NAT
parameterisation

In contrast to the thermodynamic NAT approach, in the ki-
netic growth NAT parameterisation the number densities of
NAT (NNAT) and ice particles (Nice in particles m−3), as well
as the mean radii of NAT particles (rNAT) and ice particles
(rice in m) are used for the calculation of the heterogeneous
reaction coefficients (κ) on the surface of NAT (Eq.25) and
ice particles (Eq.26).

The number density of NAT is calculated from the single
number density in each size bin (NNATbin):

NNAT =

8∑
bin=1

NNAT(bin) (19)

The mean NAT radius of all particles is calculated from the
radii of each size bin (rNATbin), weighted withNNAT :

rNAT =

√√√√(

8∑
bin=1

NNAT(bin) ·r
2
NAT(bin))/NNAT (20)

The number density of ice particles (Nice) and their radius
(rice) are defined in the same way asNsolid (Eq.17) andrsolid
(Eq.18).

3.5 The calculation of heterogeneous chemistry reaction
coefficients

The reaction coefficients for the heterogeneous reactions on
PSCs (see ReactionsR1–R11) are calculated in the PSC sub-
model. After calculation the reaction coefficients are de-
livered to the chemistry submodel MECCA1 (Sander et al.,
2005). In MECCA1 the corresponding heterogeneous chem-
istry is simulated.

3.5.1 Liquid droplets

The second order heterogeneous reaction coefficient1 (κ in
cm3 s−1) for liquid stratospheric aerosol (STS and SSA) is
calculated in a first step as a heterogeneous reaction coeffi-
cient of first order2 (κI in 1 s−1, Hanson et al., 1996):

κI
=

γliq ·cbar·Aliq

4
(21)

with γliq the reaction probability on liquid droplets,Aliq the
surface of the liquid droplets (Eq.14) andcbar (in m−2 s−1)
an auxiliary variable (Eq.22). In the majority of hetero-
geneous reactionsγliq depends on the radius of the liquid
aerosols and on the mixing ratios of the substances in the
gas phase involved in the reaction, as well on the tempera-
tures. For the specific heterogeneous reactionγ is calculated
afterCarslaw et al.(1995a,b), Luo et al.(1995), Hanson and
Ravishankara(1994) andHanson et al.(1996).

The variablecbar depends on a constant and on the temper-
ature:

cbar= c
√

T (22)

According to the specific heterogeneous reaction, the con-
stantc is in the range between 1221.4 (ReactionR6) and
1616.0 (ReactionR11). For more details seeCarslaw et al.
(1995b).

The heterogeneous reactions (ReactionsR1–R11) are bi-
molecular reactions, with one educt in gas phase and one
educt in liquid phase. To getκ from κI it is necessary to
divide κI by the gas phase concentration of the substance in
liquid phase (respectively solid phase by NAT and ice, see
below). For example for Reaction:

N2O5(g)+H2O(l,s)
het

−→ 2 HNO3(l,s) (R1)

κ is calculated as:

κ =
κI

[H2O]
(23)

This calculation is possible as the concentration of H2O is
much higher than the concentration of N2O5 and the concen-
tration of H2O is more or less independent of the reaction.
The concentration of N2O5 is therefore the limiting factor.

1true for bimolecular reactions
2true for monomolecular reactions
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Table 3. Reaction probabilitiesγ for heterogeneous reactions on ice
particles (γice) and on NAT particles (γNAT ) in the submodel PSC.
Not in italics: γ from laboratory studies, valid for the temperature
range in parentheses (Sander et al., 2003, 2006). In italics: γ as
used in the original code of the “Mainz Stratospheric Box Model”
(Carslaw et al., 1994).

Heterogeneous reaction on ice particles on NAT particles
(γice) (γNAT )

(R1) N2O5(g) + H2O(s) 0.02 (188–195 K) 4×10−4 (200 K)
(R2) N2O5(g) + HCl(s) 0.03 (190–220 K) 0.003 (200 K)
(R3) ClONO2(g) + H2O(s) 0.3 (180–200 K) 0.004 (200–202 K)
(R4) ClONO2(g) + HCl(s) 0.3 (180–200 K) 0.2 (185–210 K)
(R5) ClONO2(g) + HBr(s) 0.3 (200 K) 0.3 (200 K)
(R6) BrONO2(g) + H2O(s) 0.3 (190–200 K) 0.001
(R7) BrONO2(g) + HCl(s) 0.3 0.3
(R8) HOCl(g) + HCl(s) 0.2 (195–200 K) 0.1 (195–200 K)
(R9) HOCl(g) + HBr(s) 0.3 (189 K) 0.3
(R10) HOBr(g + HCl(s) 0.3 (180–228 K) 0.1
(R11) HOBr(g) + HBr(s) 0.1 (228 K) 0.1

3.5.2 Solid NAT and ice particles using the
thermodynamic NAT parameterisation

Using the thermodynamic PSC parameterisation the first step
of the calculation ofκ on NAT and ice particles is to calculate
κI with Nsolid andrsolid:

κI (r) =

4.56×104 γ

√
T

MA
r2
solid Nsolid

1+3.3×104 γ rsolid
p
T

(24)

with MA the molecular mass of substance A (educt of het-
erogeneous reaction in gas phase, in g mol−1), T the tem-
perature (in K),p the pressure (in hPa),rsolid the radius of
solid particles (in cm, see Eq.18), Nsolid the number density
of solid particles (Eq.17) andγ the reaction probability (see
Table3). Two calculations are performed, the first one calcu-
latesκI on ice particles usingγice, the second one calculates
κI on NAT particles usingγNAT . For more details on Eq. (24)
seeMüller (1994) andTurco et al. (1989).

To getκ for the specific heterogeneous reaction, it is nec-
essary to divideκI (see Eq.23) by the gas phase concentra-
tion of the substance contained in solid phase as educt in the
heterogeneous reaction.

The reaction probabilities (γ ) of the reactions on NAT
(γNAT) and ice particles (γice) used in the PSC submodel
are described in Table3. Most of the reaction probabilities
are fromSander et al.(2003, 2006). The others are trans-
ferred from the original code of the PSC submodel which is
based on the “Mainz Stratospheric Box Model” (Carslaw et
al., 1994).

3.5.3 Solid NAT and ice particles using the kinetic
growth NAT parameterisation

Using the kinetic growth NAT parameterisation, the hetero-
geneous reaction coefficients (second order,κ) for NAT par-
ticles are also calculated with Eq. (24). In this case neither
Nsolid norrsolid are used, butNNAT andrNAT . The calculation
of κI on NAT particles is then:

kI (r) =

4.56×104 γNAT

√
T

MA
r2
NAT NNAT

1+3.3×104 γ rNAT
p
T

(25)

with rNAT the mean radius of NAT (in cm, Eq.20), NNAT
the number density of NAT (Eq.19) andγNAT the reaction
probability on NAT (Table3).

The calculation ofκI on ice particles usesNice and rice
instead ofNsolid andrsolid in Eq. (24):

kI (r) =

4.56×104 γice

√
T

MA
r2
ice Nice

1+3.3×104 γ rice
p
T

(26)

with rice the mean radius of ice particles (in cm),Nice the
number density of ice particles andγice the reaction proba-
bility on ice particles (Table3).

In order to getκ for the specific heterogeneous reaction,
it is necessary to divideκI (see Eq.23) by the gas phase
concentration of the substance presented in solid phase as
educt in the heterogeneous reaction.

3.6 The sedimentation of PSC-particles

Depending on the applied PSC parameterisation the calcula-
tion of sedimentation is performed for solid particles (ther-
modynamic NAT parameterisation) or for NAT and ice parti-
cles (kinetic growth NAT parameterisation). In each case the
sedimentation can be separated into different parts.

After the calculation of the sedimentation velocity of the
PSC particles, the range of the sedimentation path during one
time step is calculated. Thereafter the change of mass frac-
tion of the PSC particles per time step and grid box, as well
as the changes of H2O and HNO3 in the gas phase are deter-
mined.

3.6.1 Calculation of the sedimentation velocity

Sedimentation velocity using the thermodynamic NAT
parameterisation

Using the thermodynamic NAT parameterisation the sedi-
mentation velocity is calculated for solid particles (vsed(solid)
in m s−1) with the parameterisation ofWaibel(1997). In this
parameterisation in a first step the calculation of an auxiliary
velocity (vy in m s−1) takes place:

vy =
g ρice r2

solid

4.5·η T
(27)
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with g the acceleration of gravity,ρice the density of ice par-
ticles, rsolid the mean radius of solid particles (in m) and a
factor η (6.45×10−8 kg m−1 s−1 K−1). The sedimentation
velocity for solid particles is calculated in a second step from
vy (in m s−1) and the variable valx (dimensionless):

vsed(solid) = 0.893vy valx (28)

with

valx = 1+
α1 T

p rsolid
+

α2 T e
−p rsolid

α3 T

p rsolid
(29)

andp the pressure (in Pa) as well as the auxiliary variables
α1 = 1.49×10−5 m Pa K−1, α2 = 5.02×10−6 m Pa K−1 and
α3 = 2.64×10−5 m Pa K−1.

Sedimentation velocity using the kinetic growth NAT
parameterisation

Using the kinetic growth PSC parameterisation, the sedimen-
tation velocity is not calculated for solid particles but for
NAT and ice particles. The calculation of the sedimentation
velocity for ice particles (vsed(ice) in m s−1) is performed with
rice using the parameterisation ofWaibel(1997) described in
the Eqs. (27)–(29).

The sedimentation velocity for NAT particles (vsed(NAT) in
m s−1) is based onCarslaw et al.(2002). The sedimentation
velocity is calculated for every NAT size bin (vsed(NAT)(bin)

).
vsed(NAT)bin depends on the mean radius of the NAT size bin
(rNAT(bin)) and on a sedimentation factor (S in ms−1):

vsed(NAT)(bin)
= Sr2

NAT(bin) (30)

with

S =
2gρNATCc

9ηa
(31)

with ρNAT the crystal mass density of NAT,Cc the “Cunning-
ham slip flow correction factor” (dimensionless) andηa the
viscosity of air (in g ms−1).

The correction factorCc is calculated by:

Cc = 1+
lHNO3

rNAT(bin)

1.257+0.4e

(
−1.1rNATbin

lHNO3

) (32)

with lHNO3 the mean free path of the HNO3-particles (in m)
(Carslaw et al., 2002).

3.6.2 Calculation of the range of the sedimentation path
(sedimentation step)

The vertical distance of a falling particle per time step is cal-
culated by using the sedimentation velocity. As the vertical

coordinate is pressure, this sedimentation step is a pressure
difference (SedStepin Pa).

SedStep=
gMairpvsed1t

RgasT
(33)

with Mair the molar mass of air,p the pressure (in Pa) and
1 t the time step (in s).

SedStepis calculated for solid particles (SedStepsolid) by
using the thermodynamic NAT parameterisation and for ice
particles (SedStepice) as well as for NAT particles with re-
spect to every size bin (SedStepNAT(bin)) when using the ki-
netic growth NAT parameterisation.

3.6.3 Calculation of the changes in gas phase H2O and
HNO3 due to sedimentation

With the help ofSedStepthe changes of the mixing ratios
of H2O and HNO3 in gas phase due to ice or NAT sed-
imentation are calculated. There are three different sedi-
mentation schemes in EMAC available: the “Simple Up-
wind Scheme”, the “Walcek2000 Scheme” (Walcek, 2000)
and the “Trapezoid Scheme” (Buchholz, 2005). In the PSC
submodel namelists (see Sect.4) it is possible to choose one
of it.

For example, using the “Simple Upwind Scheme” and the
kinetic growth parameterisation the change of HNO3 is cal-
culated for every size bin (HNO3(chg(bin,k))):

HNO3(chg(bin,k)) =
HNO3(bin,k−1) SedStepNAT(bin,k−1)

pbot(k) −ptop(k)

−
HNO3(bin,k)SedStepNAT(bin,k)

pbot(k) −ptop(k)

(34)

pbot(k) andptop(k) are the pressures at the top and the bottom
of the relevant grid boxk (k −1 means the grid box above
grid boxk), SedStepNAT(bin,k) the sedimentation step of NAT
and HNO3(bin,k) the HNO3 mixing ratio of the current size
bin in this grid box. The total change in HNO3 is the sum
over all size bins:

HNO3(chg(k)) =

8∑
bin=1

HNO3(chg(bin,k)) (35)

The new HNO3 mixing ratio is calculated as:

HNO3(new(k)) = HNO3(old(k)) +HNO3(chg(k)) (36)

For the changes in H2O (H2O(chg(k))
) the same calculations

are performed, but with the sedimentation step of ice parti-
cles (SedStepice).

Using the thermodynamic NAT parameterisation the
changes of H2O and HNO3 are calculated with the sedimen-
tation step of solid particles (SedStepsolid).

The “Walcek2000 Scheme” and the “Trapezoid Scheme”,
as well as an assessment of the three sedimentation schemes
are described inBuchholz(2005). The “Trapezoid Scheme”
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Table 4. The PSC Submodel CTRL and CPL namelists in the namelist file psc.nml, which is part of the MESSy user interface. The settings
have been used for the simulation which results are presented in Sect.5.

&CTRL

KinPar= T switch for the kinetic growth NAT parameterisation (True/False)

LAdvectIceNat= F influence of the advection to the formation of ice and NAT (True/False)
with KinPar=T → only influence to the formation of ice

LHomNucNAT= F homogen NAT-nucleation? (True/False)
with KinPar=T → irrelevant

NatFormThreshold=−3.0 supercooling for initialisation of NAT in K

minKhet= 0.0 minimal reaction rate for the heterogeneous reactions in cm3 s−1

maxKhet= 1.0×10−13 maximal reaction rate for the heterogeneous reactions in cm3 s−1

SupSatIce= 1.5 supercooling in percentage of H2O partial pressure

rmin = 1.0×10−7 with KinPar=F → minimal radius of solid particles (rsolid) in m
with KinPar=T → minimal radius of ice particles (rice) in m

Nmax= 42 000 withKinPar=F → maximal number density of solid particles in particles m−3

with KinPar=T → maximal number density of ice particles in particles m−3

SedScheme = 1 switch for sedimentation schemes:
1 = simple upwind scheme
2 = Walcek advection scheme
3 = trapezoid scheme
else = no sedimentation

&CPL

LCalcChem = F switch for computation of heterogeneous reaction rates in submodel PSC (True/False)

T empShif t = 0.0 internal change of temperature in K in submodel PSC

rlat = −55.0,45.0 latitude limit of PSC region (SH, NH)

rlb = 18000.0,18000.0 lower boundary of PSC region [Pa] (SH, NH)

rmb= 14000.0,10000.0 middle boundary of PSC region [Pa] (SH, NH)

rub= 500.0,500.0 upper boundary of PSC region [Pa] (SH, NH)

lfeedback= T feedback on dynamics

is implemented as “first order sedimentation scheme” in the
SEDI submodel and therefore also described inKerkweg
et al. (2006a). Buchholz (2005) recommends the “Trape-
zoid Scheme” using the thermodynamic NAT parameterisa-
tion. But applying the kinetic growth NAT parameterisation
Kirner (2008) recommends the “Simple Upwind Scheme”.

4 Namelists of the submodel PSC

The two namelists of the PSC submodel are presented in Ta-
ble 4. The CTRL namelist contains parameters for the inter-
nal control of the PSC submodel, the CPL namelist variables
are important for coupling with other submodels. With these
namelists it is possible to setup the submodel PSC with dif-
ferent parameters.

The most essential parameter in the PSC CTRL namelist
is KinPar. It stands for the option using the described kinetic
growth NAT parameterisation (KinPar = T) or the thermody-

namic NAT parameterisation (KinPar = F). With the choice
of KinPar some of the other parameters have different mean-
ings.

If LAdvectIceNatis set toT advected ice particles have in-
fluence on the formation of ice, i.e., if ice particles exist in a
grid box,phaseis set to 3 (see Sect.3.2.1) and no supercool-
ing (see below) is required to form ice particles. The same
is valid for the NAT formation, i.e. if NAT particles already
exist in a grid box,phaseis set to 2 and no supercooling is
required to form NAT. As the phase concept is not valid for
NAT formation in the kinetic growth NAT parameterisation
(KinPar = T), LAdvectIceNathas in this case no influence.

The parameterLHomNucNAThas also no influence on the
formation of NAT, if KinPar is set toT, as in the kinetic
growth NAT parameterisation the homogeneous NAT forma-
tion is assumed. But ifKinPar is set toF andLHomNucNAT
is set toT, homogeneous NAT formation is included in the
thermodynamic NAT parameterisation.
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Fig. 1. Time series from May 2007 to November 2007 (zonally averaged polewards of 87.9◦ S): Number density of NAT particles (NNAT in
particlesm−3, top left), number density of ice particles (Nice in particlesm−3, top right), mixing ratio of HNO3 (in nmolmol−1, bottom left)
and mixing ratio of H2O (in µmolmol−1, bottom right).

For the homogenous NAT formation it is possible to set
with NatFormThresholda required supercooling (in K). This
supercooling has an influence only, ifLHomNucNATis set
to T, or if the kinetic growth NAT parameterisation is used.
In any caseNatFormThresholdis only needed for the first
formation of NAT in a grid cell.

With minKhetand maxKhetit is possible to set minima
and maxima for the heterogeneous reaction coefficients. For
example, if the calculated coefficient is greater thanmaxKhet
the heterogeneous reaction coefficient is limited bymaxKhet.
The values ofminKhet and maxKhetare only relevant, if
LCalcChem(see below) is set toT.

The parameterSupSatIceis responsible for the supersatu-
ration for ice formation. It is denoted as a factor, for example
a SupSatIcevalue of 1.5 means that the H2O partial pres-
sure must be 50% higher as the H2O saturation pressure to
form ice particles. The supersaturation should be reduced
for coarse resolutions.

The parameters minimum radius (rmin) and maximum
number density (Nmax) are relevant for the calculation of
the mean radius and number density of PSC particles. They

are essential for the number density of solid particles using
the thermodynamic NAT parameterisation or for ice particles
using the kinetic growth NAT parameterisation, respectively
(Eq. 17). The higherNmax is chosen, the lower is the mean
radius and the sedimentation velocity of solid or ice particles,
respectively.

With the parameterSedSchemethe sedimentation scheme
for the denitrification and dehydration is chosen. The simple
upwind scheme is described in Sect.3.6.3.

If the parameterLCalcChemin the PSC CPL namelist (Ta-
ble 4) is set toT, the heterogeneous reaction coefficients are
calculated in the submodel PSC. To transfer this reaction co-
efficients to the chemistry submodel MECCA1, it is required
to sethet stream= “psc” in the CPL namelist of submodel
MECCA1.

With the parameterTempShiftit is possible to change the
temperature in the submodel PSC. For example, ifTempShift
is set to−2.0, the polar stratospheric clouds are calculated
with temperatures 2.0 K lower that the model temperatures.
This can be useful for sensitivity studies.
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The parametersrlat, rlb, rmb andrub describe the bound-
aries of the PSC region. Only within this region the calcu-
lations concerning the polar stratospheric clouds take place.
rlat (in degrees north) describes the borders of the PSC re-
gion in the Southern and Northern Hemisphere.rlb andrub
(in Pa) are the lower and upper altitude boundaries of the
Antarctic and Arctic PSC region.rmb (in Pa) describes the
boundary below which the PSC region is calculated with the
help ofTice andTNAT . Betweenrlb andrmb the PSC region is
defined, if the conditionTice6 TNAT is fulfilled.

With the help of the parameterlfeedback it is possible to
switch-off the dynamical-chemical feedback. In this case the
total HNO3 vapour pressure (eHNO3(total) in Pa) is described
through a pre-defined climatology. This HNO3 climatology
has to be imported, e.g. via the submodel OFFLEM (Kerk-
weg et al., 2006b).

5 Results

In Fig. 1 some results of an EMAC simulation (version 1.7,
updated with the new version of submodel PSC) using the
kinetic growth NAT parameterisation and the parameters of
the PSC namelists in Table4 are shown. During the Antarc-
tic winter 2007 the formation of type 1a PSC polewards
of 87.9◦ S begins mid May at altitudes between 20 hPa and
40 hPa. After that the NAT particles exist in the maximum
range from 180 hPa to 13 hPa and yield number densities of
maximal 230 particles m−3. Through the sedimentation of
NAT particles the denitrification takes place. Thus the mix-
ing ratios of HNO3 decrease rapidly from May to July at al-
titudes of the existing type 1a PSC and obtain minima less
than 0.5 nmol mol−1.

The formation of type 2 PSC starts at the beginning of
June and therefore later as type 1a PSC. In the follow-
ing time the ice particles exist in the maximum range from
180 hPa to 18 hPa and reach number densities of maximal
42 000 particles m−3. Through the sedimentation of ice par-
ticles the dehydration takes place in the stratosphere. The
mixing ratios of H2O rapidly decrease from June to August
at altitudes with existing ice particles and obtain minima less
than 1.0 µmol mol−1.

More results including a detailed evaluation of the effects
of the thermodynamic and kinetic growth NAT parameterisa-
tion on the simulated chemistry will be published byKirner
et al.(2011) elsewhere.

6 Conclusions

With the submodel PSC it is possible to simulate the polar
stratospheric clouds and their feedbacks to the chemistry in-
cluding denitrification and dehydration. Due to two different
NAT parameterisations and due to various parameters in the
PSC namelists the submodel is highly flexible and can be

setup according to different scientific theories of PSC forma-
tion and development.
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L., Hoor, P., Kerkweg, A., Lawrence, M. G., Sander, R., Steil,
B., Stiller, G., Tanarhte, M., Taraborrelli, D., van Aardenne, J.,
and Lelieveld, J.: The atmospheric chemistry general circulation
model ECHAM5/MESSy1: consistent simulation of ozone from
the surface to the mesosphere, Atmos. Chem. Phys., 6, 5067–
5104,doi:10.5194/acp-6-5067-2006, 2006.
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