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Abstract

Estimation of a trend of an atmospheric state variable is often performed by fitting a
linear regression line to a set of data of this variable sampled at different times. Often
these data are irregularly sampled in space and time and clustered in a sense that
error correlations among data points cause a similar error of data points sampled at5

similar times. Since this can affect the estimated trend, we suggest to take the full error
covariance matrix of the data into account. Superimposed periodic variations can be
jointly fitted in a straight forward manner, even if the shape of the periodic function is
not known. Global data sets, particularly satellite data, can form the basis to estimate
the error correlations.10

1 Introduction

Correct trend estimation is a key question in the discussion of climate change (IPCC,
2007). While fitting a straight line to a sample of data is an almost trivial task, errors
in the data set and non-representativeness of the sample add some difficulty to the
problem. Assuming normally distributed errors which are uncorrelated over the sample,15

each data point is simply weighted by the inverse of its variance to obtain a best linear
unbiased estimated of the trend (Aitken, 1935). Methods applicable to least squares
fitting of data where both the dependent and the independent variables are affected by
errors have recently been reviewed by Cantrell (2008).

If the assumption of normal error distribution is questionable, robust linear regression20

methods help to reduce the sensitivity of the trend to outliers in the sample (Muhlbauer
et al. 2009 and references therein). Another cure against non-normality of distributions
of residuals are bootstrap methods, introduced by Efron (1979) as a variant to Jackknife
methods and applied to atmospheric trend analysis by, e.g. Cox et al. (2002), Gardiner
et al. (2008) or Vigouroux et al. (2008).25
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Besides non-normality of the distribution of residuals, correlations between the sam-
pled data are another class of problems. When using multisite means to infer a trend,
the standard errors of the means σmean which determine the weight of each mean in
the regression analysis are not the standard deviation σ of the sample over the sites
divided by the square root of the number of sites n but5

σmean =

√
σ2

(
1+ (n−1)r̄

n

)
, (1)

where r̄ is the average intersite correlation coefficient (Jones et al., 1997). This can
easily be verified by multiplication of the averaging operator from the left and right to
the intersite covariance matrix Si according to multivariate Gaussian error propagation:

σ2
mean = (

1
n
,...,

1
n

)Si


1
n
...
1
n

 (2)10

This approach solves the problem of intersite correlations and is applicable, e.g., if
measurements of the same set of sites are used over the whole period. σmean calcu-
lated under consideration of r̄ accounts for the fact that the available sites do not fully
represent the population, i.e., the sample mean at a given time is not necessarily iden-
tical to the global mean. Since the same set of stations is used over the whole period,15

the measurements at the given sites are not a random sample.
Weatherhead et al. (1998) discuss how autocorrelations of noise in the data affect

the precision of the estimated trend, and they provide a practicable method to consider
these autocorrelations to avoid over-optimistic confidence estimated with respect to
inferred linear trends. Further, these authors present a tool to estimate the required20

length of the time series to significantly detect a trend.
None of these papers, however, tackles the problem how to derive trends on the ba-

sis of inhomogeneous data sets. In this technical note, we investigate the problem that
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the sampled data are clustered in a sense that the data are groupwise correlated in
the time domain, i.e. that data inhomogeneities cause systematic deviations between
subsets of the data of time series which, through irregular sampling in time, map onto
the time series as errors correlated in the time domain. Since these errors are system-
atic and are not autoregressive, the autocorrelation concept discussed above does not5

help. A typical example would be the estimation of a trend of one atmospheric state
variable from measurements at two different latitudes, where one measurement site
dominates the early part and the other measurement site the later part of the time se-
ries. The neglected latitudinal dependence of the observed quantity maps onto the time
domain if the atmosphere is irregularly sampled at the different observation sites. Such10

data sets, where the target variable depends on further variables except the indepen-
dent variable of the regression analysis, we call inhomogeneous. Irregular sampling of
inhomogeneous data leads to clustering, because certain values of the independent
variable may go along with certain values of the hidden variable. This dependence
can be formulated as correlations, typically the larger, the more similar the value of the15

hidden variable is. These correlations will, if neglected, not only render the significance
analysis of the trend insignificant but can actually change the slope of the regression
line, i.e. lead to different trends.

While the proposed concept is quite straightforward rather than novel, we hope that
it may be useful to the climate research community where currently error covariances20

in irregularly sampled data often seem to be ignored, even when inhomogeneous
datasets are analyzed.

2 Linear trends of clustered data

Assuming a linear trend, we can approximate the temporal development of an atmo-
spheric state variable y as a straight line. A straight line is defined as25

ŷ(x;a,b)=a+bx, (3)
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where the ˆ symbol indicates a modeled or estimated rather than a measured state
variable. In our application x is the time of the measurement, but this concept of
regression of clustered data is applicable to a wider context.

For normally distributed but possibly interdependent errors of yi , i = 1... n, of which
the ex ante1 estimates are represented by the n×n covariance matrix Sy , this straight5

line is the optimal regression line, when the cost function

χ2 = (y− (ae+bx))T Sy
−1 (y− (ae+bx)) (4)

is minimum, where e= (1,...,1)T and x= (x1,...,xn)T , y = (y1,...,yn)T , and T denotes
the transpose of a matrix. Coefficients a and b are inferred in a well established manner
by setting the derivatives ∂χ2/∂a and ∂χ2/∂b to zero. This gives10

∂χ2

∂a
= −2eTS−1

y (y−ae−bx)=0; (5)

eTS−1
y y = eTS−1

y ae+eTS−1
y bx;

a =
e
TS−1

y y−e
TS−1

y bx

eTS−1
y e

and

∂χ2

∂b
= −2xTS−1

y (y−ae−bx) (6)15

= xTS−1
y y−xTS−1

y ae−xTS−1
y bx=0;

xTS−1
y y = xTS−1

y bx+xTS−1
y ae.

1Ex ante error estimates we call error estimates based on propagation of assumed primary
errors through the system and can be calculated before the measurement actually has been
made, as opposed to ex post error estimates which are based on the standard deviation of a
sample of measurements (von Clarmann, 2006).
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Combining Eqs. 5 and 6 gives

xTS−1
y y = xTS−1

y bx+xTS−1
y ae (7)

= xTS−1
y bx+xTS−1

y e
e
TS−1

y y−e
TS−1

y bx

eTS−1
y e

.

This can be rearranged as

xTSy
−1bx−

x
TS−1

y ee
TS−1

y bx

eTS−1
y e

= (8)5

xTSy
−1y−

x
TS−1

y ee
TS−1

y y

eTS−1
y e

and finally solved to give b:

b =
x
TS−1

y y− x
T S−1

y ee
T S−1

y y

eT S−1
y e

xTS−1
y x− xT S−1

y eeT S−1
y x

eT S−1
y e

(9)

=
x
TS−1

y ye
TS−1

y e−x
TS−1

y ee
TS−1

y y

xTS−1
y xeTS−1

y e−xTS−1
y eeTS−1

y x
.

Inserting this into Eq. 5 allows to calculate a:10

a =
x
TS−1

y y−e
TS−1

y xb

eTS−1
y e

(10)

=
e
TS−1

y y−e
TS−1

y x
x
T S−1

y ye
T S−1

y e−xT S−1
y ee

T S−1
y y

xT S−1
y xeT S−1

y e−xT S−1
y eeT S−1

y x

eTS−1
y e
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For unity Sy this reduces to the widely used parameters ã and b̃ of a regression line
for data points of uncorrelated errors of equal variance:

ã=

∑
yi
n

− b̃

∑
xi
n

, (11)

where

b̃=
n
∑
xiyi −

∑
xi
∑
yi

n
∑
x2
i − (
∑
xi )2

(12)5

The uncertainty of the slope b is:

σ2
b =

(
x
TS−1

y e
TS−1

y e−x
TS−1

y ee
TS−1

y

xTS−1
y xeTS−1

y e−xTS−1
y eeTS−1

y x

)T

· (13)

Sy

(
x
TS−1

y e
TS−1

y e−x
TS−1

y ee
TS−1

y

xTS−1
y xeTS−1

y e−xTS−1
y eeTS−1

y x

)
From comparison of Eqs. (9) and (12) we see that the error correlations do not only
change the estimated error of the trend but also affect the trend itself, e.g. rotate the10

regression line.

3 Estimation of measurement covariances

Evaluation of Eq. (9) requires knowledge of the covariance matrix Sy . While for some
error sources such error assumptions are available and reasonable assumptions on
correlations within a class of measurements can be made (e.g. perfect correlation, i.e.,15

r = 1 for the calibration error component within all measurements based on the same
calibration standard may be reasonable), for evaluation of error covariances represent-
ing other error sources, external data may be needed. Typical error correlations in a
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time series can be caused by the fact that the sample is composed of measurements
at various locations. If the mean measurement times at two locations differ, any dif-
ference in the expectation value of the state variable with, e.g., latitude, will map onto
the trend. If the latitudinal dependence is too complicated for a simple correction, the
related error correlation should at least be included in the covariance matrix Sy .5

A source for correlation information are satellite measurements. While satellite data
sets often cover only a few years and thus are often not suitable to infer trends, they, in
contrast to station measurements or balloon measurements, in some cases cover the
globe densely enough for assessment of spatial variability.

If no regression model is available to correct inhomogeneous station data, or if the10

use of such a regression model seems not justified because the inferred model pa-
rameters may not be sufficiently representative, the satellite data still can be used to
estimate non-representativeness of the station data in terms of a covariance matrix.
Let I be the number of global satellite measurements available, ui be the global (or at
least multi-site2) field associated with the i th measurement, then the component of the15

covariance matrix accounting for the representativeness error is

1
I−1

I∑
i=1

(ui − ū)(ui − ū)T −Ssat, (14)

where ū is the average global field as measured by the satellite,

ū=
1
I

I∑
i=1

ui , (15)

and Ssat is the covariance matrix characterizing the measurement error of the satellite20

data. A precondition to this approach is that the time window covered by the satellite
data used to infer the representativeness error covariance matrix is small enough that
neglect of trends within this time window is justified.

2Instead of full global fields it is actually sufficient to include only locations for which station
measurements are available; each component of the vector represents one geolocation.
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4 Consideration of the annual cycle and related problems

A linear trend may be superimposed with a periodic function of known periodic time,
e.g. diurnal or seasonal variation, etc. There are several options to tackle this problem.

If the sample is large enough, the linear trend can be evaluated for subsets of data
recorded at the same phase of the periodical variation, and the overall trend is cal-5

culated as an optimal mean of the individual trends. This requires binning of data; in
the case of a seasonal cycle, the linear trend can be estimated as the mean of the
trend over all Januaries, Februaries, etc. Problems occur when the amplitude of the
seasonal cycle has a trend in itself and the whole observation period is not an integer
multiple of the time of one cycle.10

Another option is subtraction of the periodic signal prior to trend estimation. The pe-
riodic component of the signal can either be imported from an external source (model,
independent data) or from the sample itself. The latter approach is not quite trivial,
because the inferred mean periodical signal will, in turn, depend on the trend (periodic
analysis usually is defined only for stationary time series, i.e. zero trend), such that15

either an iterative approach or a multivariate optimization (see below) is required. Care
has to be taken to consider the reduction of degrees of freedom implied by inferring the
correction from the data themselves.

The problem of the non-stationary nature of time series, which is by definition in-
herent in trend analysis, can be solved by retrieving the trend, the amplitude of the20

periodic variation, and possibly the phase and the shape of the oscillation in one step.
In the case of a known function of unknown amplitude (e.g. sine) the amplitude can be
fitted along with the trend. In the case of unknown phase, it is usually more appropri-
ate to fit amplitudes of a sine and a cosine of the same period length rather than the
amplitude and the phase, in order to keep the fit linear. A regression model involving25

a linear trend superimposed with a single harmonic variation of unknown phase but
known period length l is written as

ŷ(x;a,b,c,d )=a+bx+csin
2πx
l

+d cos
2πx
l

. (16)
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Setting the partial derivatives of

χ2 = (y(x)− ŷ(x))TS−1
y (y(x)− ŷ(x)) (17)

with respect to the parameters of the regression model to zero gives

∂χ2

∂a
=−2eTS−1

y · (18)(
y(x)−ae−bx−csin

2πx
l

−d cos
2πx
l

)
=05

∂χ2

∂b
=−2xTS−1

y · (19)(
y(x)−ae−bx−csin

2πx
l

−d cos
2πx
l

)
=0

∂χ2

∂c
=−2(sin

2πx
l

)TS−1
y · (20)10 (

y(x)−ae−bx−csin
2πx
l

−d cos
2πx
l

)
=0

∂χ2

∂d
=−2(cos

2πx
l

)TS−1
y · (21)(

y(x)−ae−bx−csin
2πx
l

−d cos
2πx
l

)
=0

One might be too lazy to calculate a general algebraic solution for such a system of15

equations but prefer to solve this numerically for parameters a...d by any appropriate
solver provided by the program library at hand. The advantage of this approach is that it
does not require a stationary time series to evaluate the amplitudes of the oscillations.
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If need be, this type of analysis can also involve seasonal “overtones”, i.e. additional
periodic functions of periods which are an integer fraction of l , which may be made
subject to lowpass filtering. This generalization of the schemes presented here to
applications with more than one pair of periodic functions is straightforward, and the
relationship to harmonic analysis is obvious.5

If the shape of the periodic variation is not known a priori, it can be inferred from
the data themselves in one step with the trend estimation. For binned data (e.g. when
monthly means are used to infer a trend with superimposed seasonal variation) monthly
corrections are fitted along with slope and axis intercept. The regression model then is

ŷ =a+bx+cmonth(x), (22)10

where cmonth is the monthly correction applicable to time x. The cost function to be
minimized for this application is

χ2 = (y(x)− (a+bx+cTU))TS−1
y (y(x)− (a+bx+cTU)) (23)

where U is a selection matrix with all elements in the i th row zero except for column
j , where j represents the month when measurement xi was made, where the matrix15

element is one.
If binning or averaging is to be avoided, the periodic correction terms c can also be

defined points on the x axis rather than bins. The actual correction for a given y(x) can
then be estimated by interpolation, leading to the regression model

ŷ =a+bx+cmonth(x)+
cmonth+1−cmonth

d (month)
d (x), (24)20

where for clarity but without sacrificing a more general applicability of the concept we
assume cmonth(x) is the periodic correction of the first day of month, d (month) is the
number of days of the month, and d (x) is the day of the month. Periodicity is assumed
in a sense that month+12=month. The cost function to be minimized for this application
has the same structure as Eq. (23):25

χ2 = (y(x)− (a+bx+cTV))TS−1
y (y(x)− (a+bx+cTV)) (25)
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V is a matrix with all elements in the i th row zero except for column j and j +1 (or 1,
if j denotes the last column), where j and j +1 represent the month when measure-
ment x(i ) was made, and the subsequent month, respectively. The respective matrix
elements are the weights of the monthly correction factors cj and cj+1:

vi ,j =
d (x)

d (month)
(26)5

vi ,j+1 =
d (month)−d (x)+1

d (month)
(27)

The minimization of the cost functions of Eqs. (23) and (25) follows the same scheme
as outlined for the cost function in Eq. (17).

The number of fit variables may be unreasonably large compared to the sample
size, leading to poorly determined regression parameters. Since the reduction of sea-10

sonal correction parameters may be undesirable because it would imply quite crude
discretization, the correction function c can be smoothed by reduction of the month-
to-month differences. This can be achieved by a constraint as proposed by Tikhonov
(1963) or, in a context different from ours, by Phillips (1962) or Twomey (1963). This
leads to a modified cost function15

χ2 =
(
y(x)− (a+bx+cTV)

)T
S−1
y · (28)(

y(x)− (a+bx+cTV)
)
+

γcTLTLc

,

where γ is a scalar to adjust the strength of the smoothing, and L is a k×k (k is20

the number of seasonal correction parameters) cyclic first order differences matrix,
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enhanced by two zero rows to cope for the parameters representing axis intercept and
slope which shall not be subject to regularization3.

It may be desirable to allow for a seasonal variation of the strength of the constraint.
In this case we use a k×k-dimensional diagonal matrix D to control the regularization
strength and and use the following cost function:5

χ2 =
(
y(x)− (a+bx+cTV)

)T
S−1
y · (29)(

y(x)− (a+bx+cTV)
)
+

cTLTDLc

Again, it is the use of the full covariance matrix which makes the method applica-
ble to inhomogeneous data irregularly sampled in space and time. In any case the10

uncertainty of the slope in terms of variance is

σ2
b =
(
∂b
∂y

)T
Sy

(
∂b
∂y

)
(30)

and the uncertainty of the intersect is

σ2
a =
(
∂a
∂y

)T
Sy

(
∂a
∂y

)
. (31)

The off-diagonal elements of Sy will determine whether the data errors map either pre-15

dominantly onto the slope or onto the intersect of the regression curve. For example,
large positive correlations throughout the data lead to large intersect errors while the
slope remains quite well determined with sometimes surprisingly small uncertainties.

3Usually first order difference matrices as used in, e.g., vertical profile retrieval from remotely
sensed data (c.f., e.g. Steck and von Clarmann 2001) are of the size (k−1)×k. The difference
with respect to that application is that we have a cyclic application here, i.e. the 12th and the
1st month are also constrained to each other.
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The extreme case would be fully correlated data errors. It is well known that such a con-
stant bias in the data does not affect the trend at all. Consideration of full covariance
matrices allows the correct treatment of realistic cases, where the errors are neither
purely random nor purely systematic but may include correlations within subsets of the
data.5

5 Testing

If correct uncertainties and error covariances have been assumed and the errors are
normally distributed, we expect χ2 to equal the number of degrees of freedom. If χ2

is larger (or smaller) than the respective upper (or lower) percentile of the χ2 function,
the probability that the error characteristics disagree with the actual data and their un-10

certainties is larger than this percentile (1 minus percentile). The number of degrees
of freedom is n− i , where n is the number of data points and i is the number of fit-
ted parameters. If a cyclic first order differences smoothness constraint is applied as
proposed in Eq. (28), the number of degrees of freedom is the rank of the regular-
ization matrix LTL which is n− iu, where iu is the number of unregularized regression15

parameters. The number of degrees of freedom n− iu is a consequence of the cyclic
application of the constraint. For non-cyclic applications of the first order differences
smoothness constraint as applied in profile retrieval, the applicable number of degrees
of freedom would be n− iu−1. χ2-statistics will lead to meaningful results only if the
regularization term γLTDL represents the true statistics of the differences of the state20

variables between adjacent sampling points but not for ad hoc choices.

6 Application areas

Application areas for trend estimation under consideration of covariances are (a) mea-
surements at multiple sites, when at different times different sites dominate the sample

27688

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/9/27675/2009/acpd-9-27675-2009-print.pdf
http://www.atmos-chem-phys-discuss.net/9/27675/2009/acpd-9-27675-2009-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
9, 27675–27692, 2009

Trend estimation
from clustered data

T. von Clarmann et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

(e.g. Engel et al. 2009); (b) measurements with multiple measurement systems with
specific errors which are correlated for all measurements done with the same system
but independent between the measurement systems. Age of air measurements based
on different calibration standards as used by Engel et al. (2009) fall into this category,
where Eq. (9) should be used for trend estimation; (c) combination of data from two5

measurement systems which cover different episodes. The continuation of HALOE
water wapour time series (Randel et al., 2004; Rosenlof and Reid, 2008) with MIPAS
data (Milz et al., 2005) or any other set of satellite measurements of one trace gas by
different sensors would be a typical application. These time series contain significant
seasonality, hence trend estimation by minimization of cost functions Eqs. (16)–(17),10

(23), (25), (28), or (29) is recommended. In cases without overlap in time where the
data sets cannot be calibrated one to the other, this approach of treatment of system-
atic errors is particularly useful. This applies to, e.g., MIPAS H2O measurements before
(Milz et al., 2009) and after (von Clarmann et al., 2009) 2004, when the instrument was
operated at different spectral resolutions.15

7 Conclusions

In case of irregular temporal and spatial sampling and/or multiple measurement sys-
tems, intersite and/or intersystem error correlations have to be considered for trend
estimatation. To disregard the correlations not only renders the significance analysis
meaningless but leads to wrong estimates of the trend itself. Intersite correlations can20

be estimated from satellite data. The regression model can easily be adapted for pe-
riodic corrections of known period length but unknown phase, shape and amplitude.
This scheme solves the problem that usual approaches to infer periodic corrections
rely on the time series being stationary, which is inherently not true in the case of trend
estimation.25
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