
Reducing the Complexity of Quantified

Formulas via Variable Elimination

Aboubakr Achraf El Ghazi, Mattias Ulbrich, Mana Taghdiri and Mihai Herda

Karlsruhe Institute of Technology, Germany
{elghazi, ulbrich, mana.taghdiri}@kit.edu, mihai.herda@student.kit.edu

Abstract

We present a general simplification of quantified SMT formulas using variable elimina-
tion. The simplification is based on an analysis of the ground terms occurring as arguments
in function applications. We use this information to generate a system of set constraints,
which is then solved to compute a set of sufficient ground terms for each variable. Univer-
sally quantified variables with a finite set of sufficient ground terms can be eliminated by
instantiating them with the computed ground terms. The resulting SMT formula contains
potentially fewer quantifiers and thus is potentially easier to solve. We describe how a
satisfying model of the resulting formula can be modified to satisfy the original formula.
Our experiments show that in many cases, this simplification considerably improves the
solving time, and our evaluations using Z3 [9] and CVC4 [1] indicate that the idea is not
specific to a particular solver, but can be applied in general.

1 Introduction

Determining the satisfiability of first-order formulas with respect to theories is of central impor-
tance for system specification and verification. Current Satisfiability Modulo Theories (SMT)
solvers have made significant progress in handling this problem efficiently. SMT solvers such as
CVC4 [1], Yices1 [5], and Z3 [9] successfully address formulas containing quantifiers. They solve
quantified formulas using heuristic quantifier instantiation based on the E-matching instantia-
tion algorithm which was first introduced by Simplify [4]. Although E-matching, because of its
heuristic nature, is not complete, not even refutationally, it is best suited for integration into
the DPLL(T) framework. Some techniques (e.g. [11, 7]) have extended E-matching in order to
make it complete for some fragments of first-order logic.

In spite of all the advances, the presence of quantifiers still poses a challenge to the solvers.
In this paper, we propose a simplification of quantified SMT formulas that can be applied
as a pre-process before calling an SMT solver. Given a (skolemized) SMT formula A, our
simplification returns an equisatisfiable SMT formula A′ with potentially fewer universally
quantified variables. Our simplification approach is syntactic in the sense that it extracts a set
of set-valued constraints from the structure of A whose solution is a set of sufficient ground
terms for every variable. Those variables whose sets of sufficient ground terms are finite can
be eliminated by instantiating them with the computed ground terms. If the resulting formula
A′ is unsatisfiable, A is guaranteed to be unsatisfiable too. However, if A′ has a model, it is
not necessarily a model of A. We describe how any model of A′ can be modified into a model
for A without any significant overhead. This requires a special treatment of the interpreted
functions. Our simplification procedure can also be applied if the logic of the input formula is
not decidable; it can still reduce the number of quantifiers, thus simplifying the proof obligation.

Although our elimination process reduces the number of quantifiers, it may increase the
number of occurrences of the remaining quantified variables (if any) (Appendix A gives an
example). Depending on the complexity of the involved terms, this may introduce additional

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197543872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overhead for the solver. Therefore, in order to apply our simplification as a general preprocessing
step, it is important to balance the number of eliminated variables and the number of newly
introduced variable occurrences. We define a metric that aims for estimating the cost of variable
elimination, and allow the user to provide a threshold for the estimated cost.

We have applied our simplification approach to 201 benchmarks from the SMT competi-
tion 2012 using CVC4 and Z3. The results indicate that in many cases, this simplification
significantly improves the solving time, especially when a cost threshold is applied.

2 Background

This section provides a background on the first-order logic (FOL) (see [12] for more details).
Terms are constructed from variables in V ar, predicate symbols in P and function symbols in
F 1. Predicate and function symbols are given an arity by α : F ∪ P → N. Function symbols
with arity 0 are called constants and are denoted as Con ⊆ F . The set Term of terms and the
set For of formulas are defined inductively as usual. Terms without variables are called ground
terms and denoted as Gr ⊆ Term. The set Gr(t) denotes all the ground terms occurring as
subterms in a term t. We write t[x1:n] to denote that the variables x1, . . . , xn (for short x1:n)
occur in a term t. For an expression t ∈ Term ∪ For, a variable x and a ground term gt,
the expression t[gt/x] substitutes gt for all the occurrences of x in t. We apply substitutions
(aka. instantiations) also to finite sets S of ground terms as t[S/x] := {t[gt/x] | gt ∈ S}. The
Herbrand universe H(A) of a formula A is the set of all ground terms built from A. That
is, all constants occurring in A, are in H(A), and for each function f occurring in A and
gt1, . . . , gtα(f) ∈ H(A), f(gt1, . . . , gtα(f)) ∈ H(A).

A literal is an atomic formula or a negated atomic formula. A clause is a disjunction of
literals. A formula is in clause normal form (CNF) if it is a conjunction (C1 ∧ . . . ∧ Cn) of
clauses where all Ci are quantifier-free and all variables are implicitly universally quantified. We
assume, unless stated otherwise, that all considered formulas are in CNF and all variables are
unique. When required, we refer to clauses and CNFs as sets of literals and clauses, respectively.

A semantical structure (also called a model) M is a tuple (|M |,M), with a non-empty
universe |M |, and a mapping M that defines an interpretation for every symbol in F ∪ P ,
i.e. for f ∈ F , M(f) : |M |α(f) → |M |, and for p ∈ P , M(p) ⊆ |M |α(p). Variables get
their values from a variable assignment function β : V ar → |M |. The interpretation (M,β)(t)
of a term t is defined inductively, and the interpretation of a set of terms S is defined as
(M,β)(S) = {(M,β)(s) | s ∈ S}. For a formula A ∈ For, we use M |= A if M is a satisfying
model (or, for short, a model) of A, i.e. A is true in M. We use |= A if A is universally valid.

A theory T is a deductively closed set of formulas. A T -model M is a model that satisfies
all the formulas in T . A formula A ∈ For is satisfiable modulo theory T if there exists a
T -model with M |= A, for short M |=T A. The function symbols that have their semantics
(partially) fixed by T are called interpreted and all others are uninterpreted. If a term contains
an interpreted function which is applied to a variable, we call it an interpreted term, otherwise,
an uninterpreted term. We denote variables by x, y, . . . ; constants by a, b, . . . ; ground terms
by gti; uninterpreted functions by f, g, . . . ; interpreted functions by opi; predicates by p, q, . . . ;
terms by s, t, . . . ; formulas by A,B, . . . ; values by vi; and the considered SMT theory by T .

1We distinguish between functions and predicates only when needed.

(1) c1 6= c2
(2) ∀x | f(x) = f(c1)
(3) ∃z | ∀y | ¬p(y, z)∨ f(y) = c2
(4) ∃z | f(z) = c1

(1) c1 6= c2
(2) ∀x | f(x) = f(c1)
(3) ∀y | ¬p(y, c3)∨f(y) = c2
(4) f(c4) = c1

(1) c1 6= c2
(2) f(c1) = f(c1)
(2) f(c4) = f(c1)
(3) ¬p(c1, c3)∨f(c1) = c2
(3) ¬p(c4, c3)∨f(c4) = c2
(4) f(c4) = c1

(a) (b) (c)

M(c1) = 1,M(c2) = 2,M(c3) = 3,M(c4) = 4

M(f)(v) =

1 if v = 1

1 if v = 4

any value else

M(p)(v, 3) =

false if v = 1

false if v = 4

any value else

(d)

Mπ(c1) = M(c1) = 1,Mπ(c2) = M(c2) = 2,Mπ(c3) = M(c3) = 3,Mπ(c4) = M(c4) = 4

Mπ(f)(v) =

{
M(f)(v) if v ∈ {1, 4}
M(f)(M(c1)) else

= 1 for all v

Mπ(p)(v, c3) =

{
M(p)(v,M(c3)) if v ∈ {1, 4}
M(p)(M(c1),M(c3)) else

= false for all v

(e)

Figure 1: Example. (a) original SMT formula, (b) CNF formula, (c) instantiated formula, (d)
a model for the instantiated formula, and (e) a model for the original formula.

3 Example

Figure 1(a) shows an SMT formula (as a set of implicitly conjoined subformulas) in which c1
and c2 represent constants, f is a unary function, and p is a binary predicate. Figure 1(b)
shows the same formula after conversion to CNF: constants c3 and c4 denote the skolems for
the formulas (3) and (4), respectively. Instead of solving the original formula (denoted by A),
we produce an instantiated formula Ainst in which the x and y variables are instantiated with
certain ground terms. Ainst is given in Figure 1(c) where the numbers correspond to the lines in
the CNF (and original) formula. Formula Ainst has fewer quantifiers than A (in fact, it has zero
quantifiers), and thus is easier to solve. We use vGT (x) to represent the set of ground terms
that is used to instantiate a variable x. Variable x (in Formula 2) refers to the first argument
of f , and thus we instantiate it with all the ground terms that occur in that position, namely
{c1, c4}. We call this the set of ground terms of f for argument position 1, and denote it by
fGT (f, 1). Variable y (in Formula 3), on the other hand, refers to both the first argument of p
and the first argument of f . Therefore, vGT (y) = fGT (p, 1)∪ fGT (f, 1). In order to guarantee
equisatisfiability of Ainst and A, if two functions are applied to the same variable, they should
be instantiated with the ground terms of both functions (see Section 4). Therefore, in this
example, fGT (p, 1) = fGT (f, 1) = {c1, c4} although p is not directly applied to any constants.

The instantiated formula is an implication of the original formula. Hence, if Ainst is un-
satisfiable, A is also unsatisfiable. However, not every model of Ainst satisfies A. But the
instantiation was chosen in such a way that we can modify the models of Ainst to satisfy A.
Figure 1(d) gives a sample model M for Ainst which does not satisfy A. Since in Ainst, f is

only applied to c1 and c4, and p only to (c1, c3) and (c4, c3), M may assign arbitrary values to
f and p applied to other arguments. Although these values do not affect satisfiability of Ainst,
they affect satisfiability of A. Therefore, we modify M to a model Mπ by defining acceptable
values for the function applications that do not occur in Ainst. Figure 1(e) gives the modified
model Mπ that our algorithm constructs. It is easy to show that this model satisfies A.

The basic idea of modifying a model is to fix the values of the function applications that
do not occur in Ainst to some arbitrary value of a function application that does occur in
Ainst. This works well for this example as f and g are uninterpreted symbols and thus their
interpretations are not restricted beyond the input formula. Were they interpreted symbols, this
would be different. As an example, assume that p is the interpreted operator “≤”. In this case,
the original formula A≤ becomes unsatisfiable2, but its instantiation Ainst

≤ stays satisfiable3.
To guarantee the equisatisfiability in the presence of interpreted literals, we require the ground
term sets to contain some terms that make the interpreted literals false. This makes the solver
explore the cases where clauses become satisfiable regardless of the interpreted literals. In this
example, the interpreted literal ¬(y ≤ c3) becomes false if y is instantiated with the ground
term c3− 1. Instantiating A≤ with the ground terms {c1, c4, c3− 1} reveals the unsatisfiability.

4 Sufficient Ground Term Sets

Definition 1. Given a variable x in an SMT formula A (in CNF), a set of ground terms
S ⊆ H(A) is sufficient for x w.r.t a theory T if A and A[S/x] are equisatisfiable modulo T .

A variable x in a formula A can have more than one sufficient set of ground terms. H(A) is
always a sufficient set of ground terms as a result of the Gödel-Herbrand-Skolem theorem which
states that a formula A in Skolem Normal Form (SNF) is satisfiable iff A[H(A)/x] is satisfiable
[12]. But H(A) is usually infinite, and our goal is to determine whether a finite set of sufficient
ground terms exists, and to compute it if one exists. This computation is done by generating
and solving a system of set constraints over sets of ground terms.

Figure 2 presents our (syntactic) rules to generate the set constraints for a formula A in
CNF. The notation t ∈̇C denotes that a term t occurs as a subterm of a clause C. We use
SA to denote the set constraints system that results from applying these rules exhaustively
to all the clauses of A. The constraints range over the sets vGT (x) ⊆ Gr for all variables x
in A. These sets denote the relevant instantiations for the respective variables. Auxiliary sets
fGT (f, i) ⊆ Gr are introduced to denote the set of relevant ground terms for an uninterpreted
function f ∈ F at an argument position i ∈ N. We assume that the theory of integers is part
of the considered T , and that integers are included in the universe of every T -model M, i.e.
Z ⊆ |M |. The integer operators <,≤,+,−,≥, > are fixed with their obvious meanings.

Rule R0 of Figure 2 guarantees that the set of relevant ground terms is not empty for any
variable in A. Rule R1 establishes a relationship between sets of ground terms for variables
and function arguments. Rule R2 ensures that the ground terms that occur as arguments of
a function f are added to the corresponding ground term set of f . Rule R3 states that if a
term t[x1:n] with variables x1:n occurs as the i-th argument of f , then all the instantiations
of t with the respective sets vGT (xi) must be in fGT (f, i). Rule R4 states that our approach
does not currently handle the case where a variable x occurs as an argument of an unsupported

2(2) and (4) imply f(c1) = c1. y ≤ z holds for some pair of integers, thus (3) implies f(y) = c2 for some y.
But f(y) = f(c1) by (2) and so f(c1) = c2 = c1. This contradicts (1).

3A model is M ′(c1) = 1,M ′(c2) = 2,M ′(c3) = 0,M ′(c4) = 4,M ′(f) ≡ 1

R0:
x ∈̇C

vGT (x) 6= ∅
R1:

f(· · · ,
i-th︷︸︸︷
x , · · ·) ∈̇C

vGT (x) = fGT (f , i)
R2:

f(· · · ,
i-th︷︸︸︷
gt , · · ·) ∈̇C

gt ∈ fGT (f , i)

R3:
f(· · · ,

i-th︷ ︸︸ ︷
t[x1:n], · · ·) ∈̇C

t[vGT (x1)/x1, · · · , vGT (xn)/xn] ⊆ fGT (f , i)

R4:
op(· · · , x, · · ·) ∈ C, op 6∈ {=, <,≤, >,≥}

vGT (x) =∞
R5:

op(x, y) ∈ C, op ∈ {=, <,≤, >,≥}
vGT (x) =∞ vGT (y) =∞

R6:
(x ≤ gt) ∈ C

gt+ 1 ∈ vGT (x)
R7:

(x ≥ gt) ∈ C
gt− 1 ∈ vGT (x)

R8:
¬op(x, gt) ∈ C,where op ∈ {≤,≥}

gt ∈ vGT (x)

R9:
¬(x < gt) ∈ C
gt− 1 ∈ vGT (x)

R10:
¬(x > gt) ∈ C
gt+ 1 ∈ vGT (x)

R11:
op(x, gt) ∈ C,where op ∈ {<,>}

gt ∈ vGT (x)

R12:
¬(x = gt) ∈ C
gt ∈ vGT (x)

R13:
(x = gt) ∈ C, x ∈ Z

{gt− 1, gt+ 1} ⊆ vGT (x)
R14:

(x = gt) ∈ C, x /∈ Z
vGT (x) =∞

Figure 2: The syntactic rules for generating the set constraints system (SA).

interpreted function (supported operators are {=, <,≤, >,≥}), thus sets vGT (x) to infinity4

in order to be propagated to other relevant ground term sets. Moreover, we do not handle the
case where a supported interpreted operator has more than one variable argument (rule R5).
The remaining rules infer additional constraints for vGT (x) where x occurs as an argument of
a supported interpreted function. They constrain vGT (x) to contain at least one ground term
that falsifies the corresponding (interpreted) literal.

Let vGTSA denote a collection of finite sets of ground terms which satisfies the constraints
SA. We show that, if finite, vGT (x)SA is a sufficient ground term set for x in A. The variable
x can hence be eliminated by instantiating it with all the ground terms in vGT (x)SA . The
resulting formula A[vGT (x)SA/x] is equisatisfiable to A and does not contain x anymore.

Theorem 1 (Main Theorem). Let x be a variable in A with vGT (x)SA 6= ∞, then A and
A[vGT (x)SA/x] are equisatisfiable.

Proof. If A[vGT (x)SA/x] is unsatisfiable, so is A since the former is an implication of the latter.
If A[vGT (x)SA/x] is satisfiable with a modelM, then we construct a modified modelMπx (as
defined below) and show in lemma 3 that Mπx satisfies A.

Given a model M for the formula A[vGT (x)SA/x], we construct a modified model Mπx

as follows: |Mπx | := |M |. For any constant c ∈ Con, Mπx(c) := M(c). For any inter-
preted operator op, Mπx(op) := M(op). For any uninterpreted function f , Mπx(f)(v1:n) :=
M(f)(πx(f, 1)(v1), · · · , πx(f, n)(vn)), where πx(f, i) is defined as in Eq. 1. Intuitively, if
the ground term set of x does not subsume the ground term set of the ith argument of
f , or if vi is a value that M assigns to a ground term for the ith argument of f , then
Mπx(f)(.., vi, ..) := M(f)(.., vi, ..) Otherwise, πx(f, i) maps vi to a value that M assigns to
some ground term for the ith argument of f . Integers must be mapped to the closest such value
(see the proof of Lemma 1). A ground term set S subsumes a ground term set R, denoted by

4In theory, this infinite set denotes H(A), but we use it as the “unsupported” label that gets propagated to
other relevant sets.

R ⊆̇S, if for every ground term gt1 ∈ R there exists a ground term gt2 ∈ S such that gt1 is a
subterm of gt2.

πx(f, i)(v) =

v if fGT (f, i)SA *̇ vGT (x)SA
v else if v ∈M(fGT (f, i)SA)

v′ ∈M(fGT (f, i)SA) else if v 6∈ Z
v′∈M(fGT (f, i)SA), s.t . |v − v′| is minimal otherwise

(1)

πx(v) =

v if v ∈M(vGT (x)SA)

v′ ∈M(vGT (x)SA) else if v /∈ Z
v′ ∈M(vGT (x)SA), s.t . |v − v′| is minimal otherwise

(2)

We also define πx (as in Eq. 2) to denote the value projection with respect to a variable
x. If vGT (x)SA = fGT (f, i)SA , for instance because x occurs as the ith argument of f , then
πx = πx(f, i). Before showing the proof of lemma 3 used in our main theorem, we introduce
some auxiliary corollaries and lemmas. The proofs of the lemmas can be found in Appendix B.

Corollary 1. If vGT (x)SA 6=∞, then πx(v) ∈M(vGT (x)SA), for all v ∈ |M |.

The following lemmas show that if Mπx does not satisfy a literal l in a CNF formula A, a
modified variable assignment β′ can be found such that M together with β′ does not satisfy l.
Lemma 1 formulates the claim for interpreted literals, and Lemma 2 gives a stronger variant
(with value equality rather than implication) for uninterpreted literals.

Lemma 1. Let x be a variable with vGT (x)SA 6= ∞, M a model, β a variable assignment,
and β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′) |= l implies
(Mπx , β) |= l for all interpreted literals l in A.

Lemma 2. Let x be a variable with vGT (x)SA 6=∞, M a model, β a variable assignment, and
β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′)(l) = (Mπx , β)(l) for
all uninterpreted literals l in A.

Lemma 3. Let x be a variable in A with vGT (x)SA 6=∞ and M a model of A[vGT (x)SA/x],
then Mπx is a model of A.

Proof. Let A′ denote A[vGT (x)SA/x]. SinceM is a model of A′, for every variable assignment
β : V ar → |M |, we have (M,β) |= A′. Let β0 be an arbitrary variable assignment. By
corollary 1, we know that πx(β0(x)) = M(gt0) for some ground term gt0 ∈ vGT (x)SA . The
instantiation A[gt0/x] is included in A′ and thus (M,β) |= A[gt0/x] for any β. Let β′0 =
λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β0(y)) else β0(y). Assignment β′0 maps x to πx(β0(x)) =
M(gt0) and (M,β′0) |= A[gt0/x], therefore (M,β′0) |= A.
Assuming that A is in CNF, there must be for every clause C in A a literal lC in C with
(M,β′0) |= lC . Using lemma 1 for interpreted and lemma 2 for uninterpreted literals, we know
that also (Mπx , β0) |= lC . Hence, Mπx is a model for lC , C and finally for A.

Algorithm 1: Heuristic detection of expensive variables with respect to a threshold

Data: A : For, Cmax : N
Result: NoElim : Set<V ar>

1 begin
2 NoElim ← {x ∈ vars(A) | vGT (x)SA =∞}
3 repeat
4 for x ∈ vars(A) \NoElim do
5 repFactor ← |scopevars(x) ∩NoElim| = ∅ ? 0 : 1
6 costx ← (

∏
y∈scopevars(x)\NoElim

|vGT (y)SA |) ∗ repFactor

7 if costx > Cmax then
8 select m ∈ scopevars(x) \NoElim s.t. |vGT (m)SA | is maximum
9 NoElim ← NoElim ∪ {m}

10 until NoElim is unchanged;
11 return NoElim

5 Practical Optimizations

5.1 Simulating NNF

Previous section established that if the input formula is in CNF, we can instantiate variables
with their computed sets of sufficient ground terms. Computing such sets, however, does not
require the formula to be in CNF. That is, the constraint system of Figure 2 needs only the
CNF polarity of the literals of the input formula (see rules R6 to R13). Therefore, instead of
actually converting the original formula to CNF, we (1) simulate the NNF (negation normal
form) conversion (without actually changing the formula) to compute polarity, and (2) skolem-
ize all existential quantifiers5. This computation does not introduce any considerable overhead.
It should be noted that conversion to CNF using distribution (as opposed to Tseitin encoding
[13]) has the additional advantage that it minimizes the scope of each variable. This can signif-
icantly improve our simplification approach. Distribution, however, is very costly in practice.
Computing minimal variable scopes without performing distribution is left for future work.

5.2 Limiting Instantiations

Our simplification approach eliminates those variables that have finite sets of sufficient ground
terms by instantiating them with the computed ground terms. In practice, such instantiation
may increase the occurrences of non-eliminable variables (see the example of Appendix A). Our
experiments with Z3 and CVC4 show that this increase in the number of variable occurrences
can considerably increase the solving time, specially for nested quantifiers.

We use Algorithm 1 to estimate and limit the cost of variable elimination based on the
number of variable occurrences that it introduces. The algorithm tries to maximize the number
of eliminated variables while keeping the cost low. Given a formula A and a threshold cost
Cmax, this algorithm returns a set of variables NoElim whose elimination causes the cost to
exceed Cmax. Line 2 initializes the NoElim set to the set of all variables whose sets of sufficient

5If a formula A is not in CNF, the instantiation of a variable x with a set S of ground terms should be
adjusted as A[S/x] := A[

∧
gt∈S

Bx[gt/x]/Bx], where Bx is the smallest subformula containing x.

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0

cvc4
sufGT:comp

(a) CVC4, original vs. simplified (complete)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0 Z3

sufGT:comp

(b) Z3, original vs. simplified (complete)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0

cvc4
sufGT:100

(c) CVC4, original vs. simplified (Cmax = 100)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0 Z3

sufGT:100

(d) Z3, original vs. simplified (Cmax = 100)

Figure 3: Experimental results on the benchmarks of the SMT-COMP/AUFLIA-p

ground terms are infinite, and thus will not be eliminated by our approach. Lines 4-9 evaluate
the cost of eliminating a variable x that does not belong to NoElim. Instantiating x with its
sufficient ground terms, in the worst case, replicates all non-eliminable variables (either free or
bound) that appear in the scope of x (denoted by scopevars(x)), where the scope of x is the
body of the quantified formula that binds x. We estimate the cost of eliminating all eliminable
variables in the scope of x by costx. If this number exceeds the given threshold, then a variable
m with the maximum number of instantiations will be marked as non-eliminable. The process
then starts over.

6 Evaluation

We have implemented our approach in a prototype tool and performed experiments on the
SMT-COMP benchmarks of 2012 in the AUFLIA-p/2012 division, using CVC4 (version 1.0)
and Z3 (version 4.1) solvers. We ran both solvers on all benchmarks on an AMD DualCore
Opteron Quad, 2.6GHz with 32GB memory.

For each benchmark, we compare the original runtime of each solver (with no simplification)
against (1) a complete variable elimination, (2) a limited variable elimination where Cmax = 100.
Figures 3a and 3c give the comparison results for CVC4, and Figures 3b and 3d give the results
for Z3. The x-axis of each plot shows the benchmarks, sorted according to the original runtime
of the solvers, and the y-axis gives the runtime in seconds. Time-outs and ‘unknown’ outputs
are represented identically. The time-out limit is 600 seconds.

For CVC4, the complete variable elimination improves the solving time of 37 cases (18%)–
average speedup6 49x–out of which 16 were originally unsolvable, and worsens 55 cases (27%)–
average speedup 0.45. The limited variable elimination, on the other hand, improves 39 cases
(19%)–average speedup 57x–out of which 15 were originally unsolvable, and worsens 32 cases
(15%)–average speedup 0.48. Z3 is known to be highly efficient in the AUFILA division (winner
since 2008); its original runtime on many benchmarks is zero. The complete variable elimination,
however, worsens 70 of these benchmarks (34%)–average speedup 0.38–and improves 11 cases
(5%)–average speedup 10x–out of which one was originally unsolvable. The limited variable
elimination, on the other hand, worsens only 8 cases (4%)–average speedup 0.35–and improves
14 cases (7%)–average speedup 9.4x–out of which one was originally unsolvable.

The main reason for slow down is the introduction of too many variable occurrences when not
all variables are eliminable. Thus, as shown by these plots, for both solvers, the limited variable
elimination produces stronger results7. However, even when all variables are eliminated, it is
still possible that the solving time worsens as the number of instantiations that we produce can
be higher than the number of instantiations that the solver would generate while solving the
quantified formula. Although feasible in theory, this case was never observed in our experiments.

Although variable elimination with a limited cost can result in significant improvements of
solving time, the experiments show that in some cases such as the two new time-outs of Figure
3d, a finer-grained limitation decision is needed. Investigating such cases is left as future work.

7 Related Work

Quantifier elimination in its traditional sense (aka. QE) refers to the property that an FOL
theory T admits QE if for each formula φ, there exists a quantifier-free formula φ′ so that for
all models M, M |=T φ ⇔ φ′. Most applications of QE either provide decision procedures
for fragments of FOL, or only prove their decidability. For example, the decidability proof of
the Presburger arithmetic theory shows that the augmented theory with divisibility predicates
admits QE [6]. Another example is the Fourier-Motzkin QE procedure for linear rational
arithmetic (see [10]). QE is applicable to formulas that are purely in one of the known arithmetic
theories, and eliminates those variables whose enclosing formulas are in a theory that admits
QE. Consequently, it is not suitable as a general, stand-alone simplification for SMT formulas.

Another approach to eliminate quantifiers was proposed in [8] where partial FOL models
are represented as programs. A program generation technique tries to heuristically generate a
program Pi for a quantified formula φi in F := φ1 ∧ . . . ∧ φn such that the proof obligation
[Pi](φ1, . . . , φn ⇒ φi) can be discharged using a theorem prover. If such a program is found,
F is modified to φ′1 ∧ . . . ∧ φ′n (without φi) where φ′j ≡ [Pi]φj . The program generation and
verification loop can be repeated until all quantified formulas are eliminated. Such an approach
is very different from ours and is sound only for satisfiable formulas.

Our work was motivated by [3] and [7] in which quantifiers are eliminated via instantiation.
In [3], a decision procedure is proposed for the Array Property fragment of FOL which supports a

6Speedup = old solving time / new solving time, where 0 second is changed to 0.5 second.
7Detailed information of the benchmarks are available at http://i12www.ira.uka.de/~elghazi/sufGT_smt13_expData/

http://i12www.ira.uka.de/~elghazi/sufGT_smt13_expData/

combination of Presburger arithmetic for index terms, and equality with uninterpreted functions
and sorts (EUF) for array terms. Similar to ours, this work instantiates universally quantified
variables with a finite set of ground terms to generate an equisatisfiable formula. They prove
the existence of such sets for their target fragment. Our approach, however, targets general
FOL and leaves a variable uninstantiated if its set of ground terms is infinite. We believe that
we can successfully handle the Array Property fragment. Experiments are left for future work.

In [7], Model-based Quantifier Instantiation (MBQI) is proposed for Z3. Similar to ours, this
work constructs a system of set constraints ∆F to compute sets of ground terms for instantiating
quantified variables. Unlike us, however, they do not calculate a solution upfront, but instead,
propose a fair enumeration of the (least) solution of ∆F with certain properties. Assuming
such enumeration, one can incrementally construct and check the quantifier-free formulas as
needed8. If ∆F is stratified, F is in a decidable fragment, and termination of the procedure is
guaranteed. Otherwise the procedure can fall back on the quantifier engine of Z3 and provide
helpful instantiation ground terms. Consequently, this technique can only act as an internal
engine of an SMT solver and cannot provide a stand-alone formula simplification as ours does.

Variable expansion has also been proposed for quantified boolean formulas (QBF). In [2], a
reduction of QBF to propositional conjunctive normal form (CNF) is presented where univer-
sally quantified variables are eliminated via expansion. Similar to our approach, they introduce
cost functions, but with the goal of keeping the size of the generated CNF small.

8 Conclusion

We described a general simplification approach for quantified SMT formulas. Based on an anal-
ysis of the ground term occurrences at function applications, we compute sufficient ground term
sets for each universally quantified variable. We proved that instantiating (thus eliminating)
any variable whose computed set is finite, results in an equisatisfiable formula. Elimination of
each variable is independent of the others. Thus we improve the performance of our technique
by restricting the set of eliminable variables: we defined a prioritization algorithm that tries to
maximize the number of eliminable variables while keeping the estimated elimination cost below
a threshold. We evaluated our approach using two configurations and two solvers on a large
subset of the SMT-COMP benchmarks. Our results show that (1) SMT benchmarks contain
many variables that can be eliminated by our technique, (2) our complete variable instantiation
may introduce significant overhead and thus slow down the solvers, (3) instantiation along with
prioritization shows improvement of the solving time and score.

We believe that our technique can provide an easy framework for extending arbitrary SMT
solvers with quantifier support. If we ignore termination and performance related rules when
generating the set constraint system, we will have an incremental and fair procedure for building
ground term sets. Using a finite model checker, like in [7], can then provide a framework for
extending SMT solvers with quantifier support. Investigating this idea is left for future work.

References

[1] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim
King, Andrew Reynolds, and Cesare Tinelli. CVC4. In CAV, pages 171–177, 2011.

8In practice, they guide the quantifier instantiation using model checking which, in turn, uses an SMT solver.

[2] Armin Biere. Resolve and expand. In Proceedings of the 7th international conference on Theory
and Applications of Satisfiability Testing, SAT’04, page 59–70, Berlin, Heidelberg, 2005. Springer-
Verlag.

[3] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about arrays? In
VMCAI, pages 427–442, 2006.

[4] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program checking.
J. ACM, 52(3):365–473, May 2005.

[5] Bruno Dutertre and Leonardo de Moura. The yices SMT solver. 2006.

[6] Herbert Enderton and Herbert B. Enderton. A Mathematical Introduction to Logic, Second Edition.
Academic Press, 2 edition, January 2001.

[7] Yeting Ge and Leonardo Moura. Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In CAV, pages 306–320, 2009.

[8] Christoph D Gladisch. Satisfiability solving and model generation for quantified first-order logic
formulas. In FoVeOOS, pages 76–91, 2011.

[9] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS, pages 337–340,
2008.

[10] William Pugh. The omega test: a fast and practical integer programming algorithm for dependence
analysis. In Supercomputing, pages 4–13, 1991.

[11] Philipp Rümmer. E-matching with free variables. In LPAR, pages 359–374, 2012.

[12] Uwe Schöning. Logic for Computer Scientists. Birkhäuser, January 2008.

[13] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Automation of Rea-
soning, pages 466–483. Springer, 1983.

A Expansion Example

The following example illustrates a case where eliminating one variable can result in increasing
the occurrences of the other variables. This can introduce an overhead for the solver if the
involved terms are complex.

Example 1. Let ∀x | (ψ(x) ∨ ∀y, z | ϕ(x, y, z)) be the input formula, and Sy = {gt1, . . . , gtn}
be a set of sufficient ground terms for the variable y. Suppose that the sets of sufficient ground
terms of x and z are infinite. In this case, instantiating and eliminating y will result in the
formula

∀x | (ψ(x) ∨ ∀z | (ϕ(x, gt1, z) ∧ . . . ∧ ϕ(x, gtn, z)))

which has a higher number of occurrences of the variables x and z.

B Proofs

Corollary 1. If vGT (x)SA 6=∞, then πx(v) ∈M(vGT (x)SA), for all v ∈ |M |.

Proof. The claim follows directly from the definition of πx

Corollary 2. For all gt ∈ Gr(A), Mπx(gt) = M(gt).

Proof. By induction over the structure of gt. If gt ∈ Const , the claim follows directly from
the definition of Mπx . If, without loss of generality, gt := f(t), where f ∈ Fun and t ∈ Gr,
we get by the induction hypothesis, Mπx(f(t)) = Mπx(f)(Mπx(t))

i.h.
=Mπx(f)(M(t)). Now we

have to distinguish between interpreted and uninterpreted functions. If f is interpreted, the
claim follows directly from the definition of Mπx . If f is uninterpreted, we get Mπx(f)(M(t)) =
M(f)(πx(f, 1)(M(t))). Furthermore, we know, because of rule R2 and gt ∈ Gr(A), that t ∈
fGT (f, 1)SA . Now we can use the definition of πx(f, 1) and we get πx(f, 1)(M(t)) = M(t).

For a variable assignment β, a value v ∈ |M | and a variable x ∈ V ar, we use the notation
βvx to denote the modification of β where x is mapped to v.

Lemma 1. Let x be a variable with vGT (x)SA 6= ∞, M a model, β a variable assignment,
and β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′) |= l implies
(Mπx , β) |= l for all interpreted literals l in A.

Proof. Because of the rules R4 and R6, without loss of generality, we can restrict l to l :=

op(x, gt0) where op ∈ {=, <,≤, >,≥} and β′ to β′ = λy. β
πx(β(x))
x (y). Let us now assume that

(M,β
πx(β(x))
x) |= l and (Mπx , β) 6|= l. For op := " < ", we get from rule R5, gt0 ∈ vGT (x)SA and

from the assumptions the inequality system (β(x) ≥ gt0)∧ (πx(β(x)) < gt0), which implies that
|β(x)− πx(β(x))| is not minimal, since |β(x)− gt0| is strictly smaller. For op ∈ {≤, >,≥}, the
proof is similar to the previous case. For op := " = ", we get from rule R13, {gt0−1, gt0 + 1} ⊆
vGT (x)SA and from the assumptions, the inequality system (β(x) 6= gt0) ∧ (πx(β(x)) = gt0),
which is equivalent to (β(x) ≤ gt0 − 1) ∨ (gt0 + 1 ≤ β(x))) ∧ (πx(β(x)) = gt0) and implies that
|β(x) − gt0| is not minimal, since in the case (β(x) ≤ gt0 − 1), |β(x) − (gt0 − 1)| is strictly
smaller and in the case (gt0 + 1 ≤ β(x)), |β(x)− (gt0 + 1)| is strictly smaller.

Proposition 1 provides a stronger result compared to lemma 1. It better reflects the intuition
behind the rules R5, R7 to R13. They guarantee that if a variable x occurs as an argument
of an interpreted operator, then there is at least one gtl ∈ vGT (x)SA with 6|=T l[gtl/x]. That
is, C[gtl/x] is either valid or its satisfiability is determined by literals other than l. We proved
lemma 1 because it is sufficient for our main theorem, and it has a shorter proof.

Proposition 1. Let C be a clause in A, x a variable in C with vGT (x)SA 6=∞, and M a model
of C[vGT (x)SA/x], then either there exists an uninterpreted literal l ∈ C, where M |= l[gt/x]
for some gt ∈ vGT (x)SA , or there exists a (tautology) subclause C ′ of C whose literals are
interpreted and |=T C ′.

In the following, we use expressions to refer to both terms and formulas. That is, Expr =
Term ∪ For.

Lemma 2. Let x be a variable with vGT (x)SA 6=∞, M a model, β a variable assignment, and
β′ = λy. if vGT (y)SA ⊆̇ vGT (x)SA then πy(β(y)) else β(y). Then (M,β′)(l) = (Mπx , β)(l) for
all uninterpreted literals l in A.

Proof. To prove the claim, we show the statement (M,β′)(l) = (Mπx , β)(l) for all expressions
but variables l ∈ Expr \Var occurring in A using structural induction.

If l is a ground term in A, then the claim follows directly from corollary 2.
Let l = f(t1:n) be a function application in A with f an uninterpreted function. The

evaluations of l are

(Mπx , β)(f(t1:n)) = Mπx(f)((Mπx , β)(t1), . . . , (Mπx , β)(tn))

= M(f)(πx(f, 1)((Mπx , β)(t1)), . . . , πx(f, n)(tn))

(M,β′)(f(t1:n) = M(f)((M,β′)(t1), . . . , (M,β′)(tn))

It suffices to show that πx(f, i)((Mπx , β)(ti)) = (M,β′)(ti) for 1 ≤ i ≤ n. We do this by a case
distinction over the type of the terms ti.

If ti = y is a variable with vGT (y)SA *̇ vGT (x)SA , then β′(y) = β(y). Because of rule R1

we additionally get fGT (f, i)SA *̇ vGT (x)SA , which implies that πx(f, i) is the identity.
If ti = y is a variable with vGT (y)SA ⊆̇ vGT (x)SA , then β′(y) = πy(β(y)). Because of rule

R1 we get vGT (y)SA = fGT (f, i)SA ⊆̇ vGT (x)SA , which implies that πx(f, i) = πy.
If ti is a function application, we assume ti = s[x1:m] for some term s. By induction

hypothesis, πx(f, i)((Mπx , β)(s[x1:m]))
i.h.
= πx(f, i)((M,β′)(s[x1:m])). W.r.t. fGT (f, i)SA , there

is two possible cases to consider:

1) fGT (f, i)SA *̇ vGT (x)SA , then πx(f, i) is the identity and the claim follows directly.
2) fGT (f, i)SA ⊆̇ vGT (x)SA , then because of rule R3 vGT (xi)SA ⊆̇ fGT (f, i)SA ⊆̇ vGT (x)SA , for
all 1 ≤ i ≤ m. This implies that β′(xi) = πxi

(β(xi)) for all 1 ≤ i ≤ m. Using this fact together
with corollary 1, there exists for each xi a ground term gti, with πxi(β(xi)) = M(gti) and
gti ∈ vGT (xi)SA . So we can write, πx(f, i)((M,β′)(s[x1:m])) = πx(f, i)(M(s[gt1:m])). Because
of rule R3 we know that s[gt1:m] ∈ fGT (f, i)SA , and so M(s[gt1:m]) ∈M(fGT (f, i)SA). Finally
the claim follows from the definition of πx(f, i) for values in M(fGT (f, i)SA) and the assumption
that fGT (f, i)SA ⊆̇ vGT (x)SA .

Let l := f(t1:n) be an expression with f an interpreted function. Using the definition
of Mπx for interpreted functions, (Mπx , β)(f(t1:n)) = M(f)((Mπx , β)(t1), . . . , (Mπx , β)(tn)).
Since l is uninterpreted, all tis are non-variables and we can use the induction hypotheses
on them and get, M(f)((Mπx , β)(t1), . . . , (Mπx , β)(tn)) = M(f)((M,β′)(t1), . . . , (M,β′)(tn)).
Now the claim follows directly from the definition of M .

	Introduction
	Background
	Example
	Sufficient Ground Term Sets
	Practical Optimizations
	Simulating NNF
	Limiting Instantiations

	Evaluation
	Related Work
	Conclusion
	Expansion Example
	Proofs

