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Zusammenfassung

Kohärente Strukturen sind zusammenhängende Bereiche in einem Fluid, in denen Va-

riablen wie die Komponenten des Windfeldes oder die Temperatur eine hohe Korrela-

tion mit sich oder anderen Variablen aufweisen. Diese Gebiete, welche deutlich größer

sind als die kleinsten Skalen der Turbulenz, sind als regelmäßige Muster im Windfeld

der atmosphärischen Grenzschicht erkennbar. Die Strukturen tragen im hohem Maße

zu turbulenten Flüssen bei und beeinflussen so Transport und Durchmischung in der

Grenzschicht. Nahe der Erdoberfläche können kohärente Strukturen mit Längenskalen

von 100 m bis zu wenigen Kilometern beobachtet werden.

Doppler-Lidare sind aktive Fernerkundungsinstrumente, die besonders für die Unter-

suchung atmosphärischer Windfelder in der Grenzschicht geeignet sind. Der Einsatz

zweier synchron gesteuerter Lidare ermöglicht die Vermessung des horizontalen Wind-

feldes in Bodennähe auf Gebieten von der Größe mehrerer Quadratkilometer mit ho-

her räumlicher und zeitlicher Auflösung. Obwohl Doppler-Lidare damit für die Unter-

suchung kohärenter Strukturen optimal geeignet scheinen, wird ihre Detektion durch die

im Messverfahren inhärenten räumlichen und zeitlichen Mittelungsprozesse erschwert.

Es ergibt sich die Frage: Wie gut können kohärente Strukturen mit dem Dual-Doppler

Lidar Verfahren detektiert und vermessen werden?

Um diese Frage zu beantworten werden hochaufgelöste Grobstruktursimulationen der

Grenzschicht als Grundlage für virtuelle Lidar-Messungen verwendet: mit Hilfe ma-

thematischer Modelle für Lidar-Messungen wird berechnet, was ein Doppler-Lidar in

durch die Grobstruktursimulation vorgegebenen Windfeldern messen würde. Damit

ist es möglich, die Effekte des Lidar-Messverfahrens auf die detektierte Struktur des

Windfeldes direkt sichtbar zu machen und zu analysieren. Auf die Grobstruktursimula-

tionsdaten und die virtuellen Doppler-Lidar-Daten werden bekannte Strukturdetektions-

techniken angewandt: die Bestimmung der räumlichen integralen Längenskala, eine

Wavelet-Analyse sowie die Gruppierung zusammenhängender Bereiche geringer Wind-

geschwindigkeit. Mittels theoretischer Betrachtungen und einer Fehleranalyse werden



außerdem Techniken zur Optimierung von Dual-Doppler Lidar Verfahren und zur Be-

wertung und Korrektur der gemessenen Struktur-Längenskalen entwickelt.

Qualitativ ergibt sich, dass große Strukturen (> 10∆xy) zuverlässig detektiert werden

können, die Größe kleinerer Strukturen (< 1 bis 5∆xy) jedoch überschätzt wird, wobei

die Strukturgröße im Verhältis zur Lidar-Auflösung ∆xy zu betrachten ist.

Die quantitative Analyse zeigte, dass die integrale Längenskala nach Korrektur ein ge-

eignetes Maß zur Bestimmung der räumlichen Korrelationslänge aus Lidar-Daten darstellt.

Die Wavelet-Analyse eignet sich zur Untersuchung einzelner Strukturen nur dann, wenn

diese eine Mindestgröße von 5 bis 10 ∆xy überschreiten welche durch die Lidar-Auflösung

festgelegt wird. Die Gruppierungsmethode ist für die vorliegenden Lidar-Daten unge-

eignet.

Die hier erarbeiteten theoretischen Ergebnisse werden in der Durchführung und Auswer-

tung des HOPE-Experiments im Frühjahr 2013 mit den KIT Lidar-Systemen angewandt.



Abstract

Coherent structures are connected regions in a fluid in which variables like wind speed

or temperature exhibit a high correlation with themselves or other variables. These re-

gions, which are much larger than the smallest scales of turbulence, appear as regular

patterns in the wind field of the atmospheric boundary layer. The structures account

for a large proportion of turbulent fluxes and thereby influence atmospheric boundary

layer mixing and transport. Close to the earth’s surface the structures on length scales of

100 m to few kilometers can be observed.

Doppler lidars are active remote-sensing instruments for atmospheric wind measure-

ments in the boundary layer. The deployment of two synchronously scanning ground-

based lidars facilitates the measurements of the horizontal wind field close to the surface

on an area of several square kilometers with unprecedented time and spatial resolution.

Although Doppler lidars appear ideally suited to investigate these structures, the inherent

averaging processes involved in lidar measurements complicate the structure detection.

The question arises: How well do Doppler-lidars perform in the detection and measure-

ment of coherent structures?

To answer this question high-resolution large-eddy simulations of the boundary layer

are used as a basis for virtual dual-lidar measurements. This way it becomes possible

to directly visualize and analyze the effects of the lidar measurement technique on the

detected wind field structure. Three common structure detection techniques are applied

to both the large-eddy simulation data and the virtual lidar scan data: the computation of

spatial integral length scales, a wavelet-analysis, and the clustering of low wind-speed

regions. Based on theoretical investigations and an error discussion techniques are de-

veloped to optimize dual-lidar scans and to assess and correct the measured coherent

structure length scales.

The qualitative evaluation reveals that large structures (> 10∆xy) can be detected reli-

ably, whereas the size of smaller structures (< 1 to 5∆xy) is overestimated. Structures

are seen as large or small relative to the lidar resolution ∆xy. The quantitative analysis



shows that the integral length scales derived from lidar-data are after a correction suit-

able to determine spatial correlations lengths. The wavelet-analysis is best suited for the

investigation of single structures, provided that these exceed a length scale of 5 to 10

∆xy determined by the lidar resolution. The clustering algorithm is unsuitable for the

application on the present dual-lidar data.

The theoretical results developed in this study were applied during the KIT dual-lidar

system deployment and the subsequent data analysis in the HOPE-experiment in spring

2013.
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1. Introduction

Atmospheric turbulence describes the random and chaotic motion of air in elements

(‘eddies’) of different scales over several orders of magnitude, which form, interact, and

decay. Hinze (1959) defines: “Turbulent fluid motion is an irregular condition of flow

in which the various quantities show a random variation with time and space coordi-

nates, so that statistically distinct average values can be discerned.” It is created through

wind shear and buoyancy, which become particularly relevant near the earth’s surface.

Turbulent mixing is the most important transport process in the atmospheric boundary

layer, i.e. the part of the atmosphere which is influenced by the earth’s surface, with a

height of up to 3 km. Although it is generally agreed that the Navier-Stokes-Equations

describe turbulent motions, the mathematical problems they pose, which are caused by

their non-linearity, remain unsolved. In fact, a proof of the existence and smoothness

of a solution has been posed as one of the seven ‘Millennium Problems’ (Carlson et al.,

2006).

The stochastic nature of turbulence in fluids has been studied for more then 100 years

under laboratory and free atmospheric and oceanic conditions. Recurrent coherent struc-

tures are rather regular patterns in fully developed turbulent flow fields, such as in the

atmospheric boundary layer.1

In the surface layer, which is the boundary layer region close to the ground, these struc-

tures are responsible for a large, possibly the dominant, part of the fluxes of momentum

and heat. In the shear-driven surface layer, they appear as elongated streaks of alternat-

ingly low- and high-speed fluid which coincide with up- and downdrafts, respectively,

and which become the starting points for horizontal convective rolls in the sheared con-

vective boundary layer. Under conditions of free convection, the updraft regions arrange

in regular, hexagonal patterns.

1Various more detailed definitions of the term ‘coherent structures’ can be found in Chap. 2.2.
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1. Introduction

The surface layer structures occur on length scales from less than 100 meters to a few

kilometers. Although they approach the resolution of mesoscale forecast models like

COSMO-DE, these structures are not considered in the sub-filter-scale parameterization.

During several decades of research, these structures have been investigated with atmo-

spheric measurements, wind tunnel measurements, and numerical models. However,

there is still no conclusive knowledge about their scales, intensities, and contributions to

fluxes and turbulent kinetic energy, which have been found to depend on shear, stability,

boundary layer height, surface roughness, and heterogeneity.

A main difficulty is the challenge of capturing the large-scale structures with meteoro-

logical instruments:

For years, point measurements from towers and aircrafts were the sole source of data

on coherent structures in the atmospheric boundary layer. Recently, remote sensing in-

struments have become available for coherent structure research: Doppler lidars are,

depending on their specifications, able to measure the wind component in beam direc-

tion with a resolution of about 50 to 100 meters over a range of ten to fifteen kilome-

ters. Compared to Doppler radars, which only detect liquid water content, Doppler lidar

pulses have a wavelength in the infrared which is back-scattered by atmospheric aerosols

moving with the wind. Lidars are therefore well suited for wind speed measurement in

the boundary layer.

Two Doppler lidars scanning the surface layer synchronously are able to retrieve the

complete horizontal wind field on an area of several square kilometers. This approach

has first been applied by Rothermel et al. (1985). Using this method, the structures in the

surface layer can been detected. However, the scanning time and the spatial averaging

involved in lidar measurements are important error sources whose influence on structure

detection has not yet been investigated. This advanced measurement technique therefore

requires an assessment of its accuracy. Comparative measurements are complicated by

the fact that no other instruments provide data with comparable range and resolution.

Increasing computational power has lead to a considerable improvement in boundary

layer modeling. Large-eddy simulations (LES) are able to resolve turbulence down to

scales of a few meters and have been widely used to investigate boundary layer struc-

tures. However, LES analyses must be accompanied by measurements since the smallest

2



scales of turbulence and the region close to the surface, which are particularly important

for the structure generation, have to be parameterized.

This study has the objective to determine the quality of coherent structure detection tech-

niques in dual-Doppler surface layer scan data. To this effect, surface layer wind fields

from LES are employed which exhibit coherent structures. Virtual dual-Doppler lidar

scans and retrievals are performed based on the LES fields with a lidar simulation tool

developed as a part of this work. The lidar simulator yields the radial wind velocities that

a real lidar would ‘see’ in the LES atmosphere. By comparing the structures determined

with different techniques from the ‘real’ LES, including virtual tower measurements,

and the ‘measured’ virtual lidar data, the quality of the techniques are assessed. Where

possible, correction techniques are developed based on the mathematical model of lidar

measurements.

With these results, real dual-Doppler lidar measurements can be interpreted and the

present coherent structures can be characterized including error estimates.

In the HOPE experiment (HD(CP)2 Observational Prototype Experiment), which was

part of the HD(CP)2 campaign in Jülich in spring 2013 (High Definition Clouds and

Precipitation for Advancing Climate Prediction)2, the KIT dual-Doppler lidar system

performed low-elevation surface-layer scans, using a synchronized control system and

an optimized scanning pattern developed as a part of this study. The analyses of this

work will be used to evaluate and correct the structure scale of the experimental results.

An outlook on is given in the conclusion.

This work is organized as follows:

In Chap. 2, the concept of coherent structures in turbulent fluids is introduced, and the

current state of research about atmospheric structures from both tower and remote sens-

ing data as well as LES is summarized.

Chap. 3 gives an overview of single and dual-Doppler lidar measurements in the bound-

ary layer, as well as the lidar simulation tool used for virtual measurements based on

LES data. Data from real and virtual dual-lidar measurements are reassembled using a

2Until January 2014 no articles on the HD(CP)2 experiment were published, but an overview of the

experiment could be found at the website http://hdcp2.zmaw.de .

3



1. Introduction

retrieval algorithm also introduced here.

In Chap. 4 the various error sources and their influence on dual-Doppler measurements

are discussed, which leads to an optimization algorithm for scanning patterns. This opti-

mization is applied in Chap. 5, where virtual dual-Doppler measurements and retrievals

are performed on four LES data sets with varying shear and convective forcings.

In Chaps. 7 and 6, the high-resolution LES data and the virtual dual-lidar retrieval data

are both evaluated with the same four coherent structure detection techniques. While

in Chap. 6 length scales in the horizontal wind field are investigated using correlation

lengths, a wavelet algorithm and a clustering approach, in Chap. 7 structures in the ver-

tical wind are detected using a Lagrangian Coherent Structure algorithm. The various

methods are compared with respect to their applicability with dual-Doppler data and

where possible correction methods are developed and tested.

Finally, Chap. 8 summarizes the results and gives recommendations for dual-Doppler

lidar scan and evaluation techniques for coherent structure detection. Additionally, first

results from the HOPE experiment are presented.

4



2. Coherent Structures in the Atmospheric Boundary Layer

This chapter gives an overview of coherent structure research, reaching from their dis-

covery and visualization in low Reynolds number flows of wind tunnels to their investi-

gation in atmospheric boundary layers.

The current knowledge about atmospheric coherent structures and their relation to bound-

ary layer scaling parameters was shaped by numerical simulations using LES, and mea-

surements with meteorological towers and remote sensing instruments.

2.1. Scaling Parameters in the Atmospheric Boundary Layer

The atmospheric boundary layer is a turbulent fluid in which turbulent kinetic energy

(TKE) is generated from buoyant and shear forcing. This is expressed by the first two

terms on the right hand side of the TKE-equation (Stull, 1988):

∂e
∂ t

+u j
∂e
∂x j

= δi3
g

θ v

(
u′iθ ′v

)
−u′iu

′
j
∂ui

∂x j
−

∂u′je

∂x j
− 1

ρ

∂u′i p′

∂xi
− ε , [2.1]

where e= 1
2u′i

2 is the turbulent kinetic energy, ui the ith wind field component {u1,u2,u3}=
{u,v,w}, g the gravitational constant, θv the virtual potential temperature, ρ the density

of air, p the pressure and ε the dissipation. Summation over repeated indices is assumed,

δi j is the Kronecker symbol. Here, x denotes the average of a variable x, and x′ its devi-

ation from the average: x′ = x− x.

To estimate the relative influence of shear and buoyancy, the friction velocity u∗ and

the convective velocity scale w∗ are introduced as scaling parameters (Deardorff, 1972;

Stull, 1988):

u∗ =
(

u′w′
2
0 + v′w′

2
0

)1/4
, [2.2a]

w∗ =
g

θ v

(
w′θ ′v0 · zi

)1/3
. [2.2b]
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2. Coherent Structures in the Atmospheric Boundary Layer

Here, zi is the boundary layer height, and the index 0 denotes the values at the surface.

The scaling parameters are used as the relevant scales for the dimensionless groups in

similarity theory (Buckingham, 1914).

In the lower part of the boundary layer, about the lowest 10%, the fluxes are approx-

imately constant. In this part, called the surface layer, Monin-Obukhov similarity is

assumed when considerable shear is available. The relevant scales for length and wind

speed given are by the Obukhov-length L∗, u∗, and the roughness length z0. It is assumed

that the boundary layer height does not affect the surface layer.

On the other hand, in the mixed layer with calm or light winds, shear becomes irrelevant

and mixed-layer similarity is assumed, where lengths and wind speeds scale with zi and

w∗ (Stull, 1988).

The Obukhov-length L∗ is defined as

L∗ =−

(
u′w′

2
0 + v′w′

2
0

)3/4

g
θ v

w′θ ′v0 ·κ
, [2.3]

where κ ≈ 0.4 is the von Kármán constant. One physical interpretation of L∗ is that it is

a measure for the height above ground at which buoyancy first dominates of shear (Stull,

1988).

As a measure for stability, the ratio

− zi

L∗
= κ

w3
∗

u3∗
[2.4]

is commonly used. When− zi
L∗ > 0, buoyant production exceeds buoyant consumption at

the surface and the boundary layer is convective and unstable. When − zi
L∗ > 1, buoyant

production exceeds shear production. For larger −zi/L∗ the flow becomes increasingly

unstable. On the other hand, negative −zi/L∗ means an excess of buoyant consumption,

and the stratification becomes stable.

In comparisons with laboratory experiments, the Reynolds number becomes another

important scaling parameter:

Re =
U L
ν

. [2.5]

Here, U and L are the velocity and length scale of the flow, respectively, and ν is the

kinematic viscosity.
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2.2. Organized Motions in Wall-Bounded Turbulent Flows

The Reynolds number is a measure for the range of scales between the largest and the

smallest turbulent elements (‘eddies’) (Fröhlich, 2006, Chap. 2):

L
η

= Re3/4 , [2.6]

where L is the largest scale of turbulence, and η =
(
ν3/ε

)1/4 is the Kolmogorov mi-

croscale which denotes the size of the smallest eddies. Turbulence spectra show that

the large eddies carry the largest proportion of energy. This energy is transported down

across the inertial range to the smallest scales of the spectrum, where it is finally dis-

sipated into heat. While in laboratory settings low Reynolds numbers can be achieved

(Re< 1000), the atmospheric boundary layer exhibits Re> 107, meaning that five orders

of magnitude lie between the smallest and largest turbulent scales. This is a challenge

for turbulence research in the atmospheric boundary layer, which can only partly be

overcome by the application of similarity theories.

2.2. Organized Motions in Wall-Bounded Turbulent Flows

Several decades ago it was discovered in laboratory experiments with low-Reynolds

number flows that turbulent shear flows close to the surface exhibit ordered structures

in the wind field and other variables (Grant, 1958; Kline et al., 1967): The streamwise

turbulent wind component, u′, showed spatially coherent regions with u′ < 0, which

were elongated in the direction of the mean wind and which alternated in spanwise di-

rection with regions of enhanced wind velocity, u′ > 0. These regions were denoted as

‘streaks’ or ‘streaky structures’. They appear also in high-Reynolds-number fluids like

the atmospheric surface layer, as shown in the large-eddy simulation of Fig. 2.1. The

streaks feature an anticorrelation between u′ and w′ (cf. Fig. 2.2), therefore the regions

with u′ > 0 and w′ < 0 are commonly called sweeps, whereas regions with u′ < 0 and

w′ > 0 are called ejections.

Streaks are only one manifestation of what is generally called ‘coherent structures’ or

‘coherent motions’. These terms are used to describe repetitive patterns in the boundary

layer variables, although the scientific community has not yet agreed on what exactly

constitutes a coherent structure and the vortices often associated with the structures

(Robinson, 1991; Mathieu and Scott, 2000, Chap. 5.5). Common definitions are either

7



2. Coherent Structures in the Atmospheric Boundary Layer
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2.2. Organized Motions in Wall-Bounded Turbulent Flows

too vague to allow comparable quantitative analyses, inextricably linked with a certain

detection method, or require highly resolved information on one or more variable of the

fluid over a certain volume. Below, some exemplary definitions are summarized. Fur-

thermore, Chakraborty et al. (2005) compare various local vortex identification schemes

which are used for the definition of structures.

Hussain (1983) “A coherent structure is a connected, large-scale turbulent fluid mass

with a phase-correlated vorticity over its spatial extent. [. . . ] The largest spatial

extent over which there is coherent vorticity denotes the extent of the coherent

structure.”

Robinson (1991) “[. . . ] a coherent motion is defined as a three-dimensional region of

the flow over which at least one fundamental flow variable (velocity component,

density, temperature, etc.) exhibits significant correlation with itself or with an-

other variable over a range of space and/or time that is significantly larger than the

smallest local scales of the flow.”

Jeong and Hussain (1995) “Turbulent shear flows have been found to be dominated

by spatially coherent, temporally evolving vortical motions, popularly called co-

herent structures. [. . . ]

S and ΩΩΩ are the symmetric and antisymmetric components of ∇u; i.e. Si, j =
1
2 (ui, j +u j,i) and Ωi, j =

1
2 (ui, j−u j,i). [. . . ] Thus, we [. . . ] define a vortex core as

a connected region with two negative eigenvalues of S2 +ΩΩΩ2.”

Lin et al. (1996) “[. . . ] ‘coherent structures’ [. . . ] are recurrent, spatially local flow

patterns which are long-lived in a Lagrangian reference frame (i.e., moving with

the local fluid velocity) and which have deterministic, chaotic, intermittently dis-

sipative dynamics.”

Adrian (2007) “One of the principal schools of thought in the study of turbulence seeks

to break the complex, multiscaled, random fields of turbulent motion down into

more elementary organized motions that are variously called eddies or coherent

structures. These motions can be thought of as individual entities if they persist for

long times, i.e., if they possess temporal coherence. By virtue of fluid continuity,

all motions possess some degree of spatial coherence, so coherence in space is not

9
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sufficient to define an organized motion. Only motions that live long enough to

catch our eye in a flow visualization movie and/or contribute significantly to time-

averaged statistics of the flow merit the study and attention we apply to organized

structures.”

Zhang et al. (2011) “In ABL, coherent structures are usually defined as low-frequency,

large-scale phase-related organized motions that interact with well-known high-

frequency, small-scale turbulence.”

Zeeman et al. (2013) “It is generally accepted that vertical transport near the surface

exhibits forms of organized motion. These are termed ‘coherent structures’ and

contribute to momentum transfer and transport from within canopies through in-

termittent, shear-induced gusts or ‘sweeps’ that in turn cause upward bursts or

‘ejections’ from the canopy.”

Coherent motions manifest as streaks, quasi-streamwise and hairpin-shaped vortices in

the surface layer which can move and grow through the mixed layer, as large-scale hor-

izontal roll vortices or hexagonal spoke-patterns in the vertical wind. The latter two ex-

amples appear to require convective conditions for their development. Robinson (1991)

and Adrian (2007) give reviews on coherent structures in low-Reynolds number wall-

bounded flows, streaks and rolls in the atmospheric boundary layer are reviewed in

Young et al. (2002).

The ambiguity about coherent structure definitions exacerbates the comparability of

quantitative results. It also underlines the fact that the different research fields and

groups have different objectives in investigating coherent structures, which reach from

the characterization of single vortical elements in shear flows (e.g. Adrian et al., 2000)

to the statistical contributions of coherent motions to large-scale turbulent fluxes in the

atmosphere (e.g. Kim and Park, 2003).

2.3. Structure Characteristics in Low-Reynolds-Number Flows

Laboratory experiments on fluid dynamics usually study low-Reynolds-number flow in

a flat-plate boundary layer without surface heat-flux. Early flow visualizations in labo-
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ratory settings reported low-speed streaks in the near-wall region with an approximate

spanwise spacing of 100 viscous wall units δν = ν/u∗ (Kline et al., 1967), and turbulent

bulges in the outer layer with length scales of 2-3 zi (Falco, 1977).

Using conditional sampling techniques, Willmarth and Lu (1972) showed that in the

near-wall low-speed regions ‘bursting’ processes occur, which are intermittent and strong

events in which the fluid is ejected away from the wall. These ejections are the dominant

source of Reynolds-stress and TKE production in the wall region (z/δν ≤ 100), followed

by the contribution of the reversed motions of sweeps.

Increasing evidence suggested that the near-wall structures are associated with vortical

motions, variably called arches, quasi-streamwise vortices, horseshoe-vortices, hairpin-

vortices and similar (cf. Robinson, 1991).

When the evolution of computational power allowed large-eddy simulations (LES) and

Direct Numerical Simulations (DNS) of the flow, the existence of hairpin-shaped vor-

tices was confirmed in these models (Moin and Kim, 1985; Kim and Moin, 1986).

Adrian and Liu (2002) used DNS to extract the shape of a ‘conditional eddy’, which

is an ensemble-average of the flow-field around strong ejections. This approach to de-

fine a coherent structure has the advantage of being oriented towards determination of

large contributions to the Reynolds-stress. The shape of the structure closely resembles

a hairpin-vortex with a lifted arch-shaped ‘head’ and trailing ‘legs’ consisting of two

counter-rotating streamwise vortices. Strong ejections occur inside the hairpin, whereas

downstream the vortex induces a less intense sweep motion.

Based on research results up to that point, Adrian, Meinhart, and Tomkins (2000) devel-

oped a conceptual model to explain coherent structures in the flat-plate boundary layer:

When a spanwise vortex filament close to the wall is lifted by a random disturbance,

the strong shear will lead to a stretching in the mean-flow direction, which then leads to

the evolution of the hairpin-shape. This intensifies the ejection, leading to further lift-

ing and stretching. One structure can produce secondary structures up- and downstream

through vortex roll-up of the ejected or sweeped fluid, respectively. This autogeneration

process was confirmed by DNS studies (Zhou et al., 1999). The streamwise alignment

of hairpins leads to zones of uniform momentum, i.e. elongated regions of u′ < 0, which

form a packet of structures which evolve and grow through the boundary layer as their

are advected downstream. Further secondary structures are created in the wall region
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through roll-up of the downwashed fluid outside the wall-attached hairpin-legs (Brooke

and Hanratty, 1993).

Adrian, Meinhart, and Tomkins (2000) summarize the length scales of hairpin vortices

and packets as derived from particle-image-velocimetry for flows with different low

Reynolds numbers: Near-wall hairpin structures have an approximate streamwise length

of 200 viscous wall units δν with a distance of 50 δν between their legs, and the vortex

heads are lifted at an angle of about 45◦ from the wall. They occur at a distance of

several hundred δν in streamwise and about 100 δν in spanwise direction. The packets

grow at a mean angle of 12◦ from the wall throughout the boundary layer. They can

reach lengths of up to 2 zi, which is also the length of the streaks induced by the packets’

zones of uniform momentum.

Even though the descriptive model integrates earlier findings, it allows neither quantita-

tive conclusions nor does it explain the complete spanwise coverage and regularity of the

structures. Additionally, it is restricted to shear-flow without the influence of buoyancy.

An interesting aspect of the physical model is its contradiction of the common knowledge

about the energy cascade in boundary layer flows, in which turbulent kinetic energy

is transferred from larger to smaller eddies (cf. Chap. 2.1). Therefore, the bottom-up

mechanism of the structure-packet evolution cannot be the only turbulence-generating

mechanism (Adrian, 2007). Hunt and Morrison (2000) propose that, while dominant for

small Reynolds numbers, the bottom-up mechanism is no longer valid for very high Re,

where streaky structures are an effect of larger eddies impinging on the ground.

Young et al. (2002) notes two major competing mathematical theories for the creation

and maintenance of streaks. According to Hamilton et al. (1995), streaks are created

from streamwise vortices, which strengthen and become unstable, creating new vortices

in their decay process. On the other hand, Foster (1997) showed that transient non-

normal mode optimal perturbations can occur, which agree with the time and spatial

scales of streaks. None of the theories has been verified or falsified yet (Young et al.,

2002).
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2.4. Detection and Characterization of Coherent Structures in the

Atmospheric Boundary Layer

Atmospheric boundary layers flows are characterized by high Reynolds numbers and,

apart from neutral stratification, by an important influence of buoyancy in the turbulence

production.

The Reynolds number is a measure for the relation between the largest and smallest

scales of turbulence (Eq. 2.6), therefore the wall region (z/δν ≤ 100) takes up a consid-

erably smaller portion in high-Reynolds number flows compared to smaller Re. As an

example, u∗ = 0.3 m/s and the kinematic viscosity of air, ν = 1.5 · 10−5 m2/s, result in

δν = 5 ·10−5 m, so the wall region only covers the lowest half centimeter of the bound-

ary layer. It is still unclear if the structure generation mechanisms of the hairpin-packet

model are valid in the shear-driven atmospheric boundary layer (Adrian, 2007; Lin et al.,

1996).

In the atmospheric boundary layer, three types of structures have been reported (Agee,

1984; Young et al., 2002): streaks and local vortical motions comparable to the hairpin

vortices in shear-driven boundary layers (Hommema and Adrian, 2003; Newsom et al.,

2008), horizontal convective rolls in moderately convective situations with shear (Etling

and Brown, 1993; Hartmann et al., 1997), and polygonal spoke patterns in buoyancy-

driven boundary layers without shear (Feingold et al., 2010).

The largest obstacle in atmospheric turbulence research is the long range of turbulent

scales, which exacerbates measurements as well as simulations: no meteorological in-

strument captures all scales between the Kolmogorov microscale (O(1 mm)) and the

largest scales (O(zi)). Likewise, the number of grid points required renders DNS mod-

eling impractical with the currently available computational powers. Large-eddy simu-

lations provide an intermediate solution: the turbulence is resolved down to a filter scale

on the order of meters or tens of meters, and the smallest turbulence scales are parame-

terized (cf. Chaps. 3.2.1 and 3.2.2).

Scientific interest in the atmospheric boundary layer structures is founded in their contri-

bution to the Reynolds stress tensor. In weather forecast models, the Reynolds stress ap-

pears as a variable which has to be parameterized using closure techniques. Up to now,
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organized motions are not considered in the sub-filter-scale parameterizations, which

usually assume homogeneous and isotropic turbulence on the smaller scales (Doms

et al., 2011). It can be expected that their influence becomes apparent when the fore-

cast model grid resolution approaches typical structure length scales in the atmosphere.

A parameterization which includes structures could therefore enhance mesoscale nu-

merical models. Technically, this could be reached through a triple-decompositions of

the flow-fields into the mean flow, the organized turbulence represented by the coher-

ent structures, and the random turbulence (Hussain, 1983; Lykossov and Wamser, 1995;

Hellsten and Zilitinkevich, 2013).

The inhomogeneity apparent in the structured wind fields is also a candidate to explain

the energy-balance closure problem, since it was shown that spatially averaged heat flux

measurements yield higher fluxes than those detected with the eddy covariance method

(Foken, 2008).

Apart from the phenomenology, understanding the formation and evolution of these sur-

face layer structures could enhance insight in turbulent processes in general, including

the initiation of convection.

2.4.1. Large-Eddy Simulations

Throughout the last years, several LES studies investigated coherent structures in bound-

ary layers for varying magnitudes of shear and buoyant forcings.

Moeng and Sullivan (1994) and Lin et al. (1996) found the streaky ejection-sweep pat-

terns in neutrally stratified boundary layers (w∗ = 0). The anisotropy becomes less

pronounced and the streaks become broader and fewer farther away from the surface.

Using ensemble averages of strong ejections, Lin et al. (1996) showed that these condi-

tional eddies in the surface layer are elongated in the mean-wind direction, with length

scales of about 0.2 zi, and become more circular in the mixed layer. The investigation

of Khanna and Brasseur (1998) of horizontal integral length scales in the vertical wind

component showed that the aspect ratio between the streamwise and spanwise compo-

nent is Lwx/Lwy ≈ 9−12 at the top of the surface layer and decreases linearly with z/zi

down to unity at the top of the boundary layer. Tracing the structures in time, Lin et al.
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(1996) showed that most eddies are generated in the surface layer and move upwards,

always aligned with the local mean wind. During the process, most conditional eddies

decay and only some reach and traverse the mixed layer. Remarkably, isosurfaces of vor-

ticity around the conditional eddies resemble the hairpin-shapes found in low-Reynolds

number simulations (Adrian, 2007), albeit at a larger scale. Lin et al. (1997) derived an

equation for the streak-spacing λ in the neutral boundary layer:

z
zi
= a + b · λ

zi
, [2.7]

with a =−0.24±2.3 ·10−2 and b = 0.56±3.38 ·10−2.

Results from Khanna and Brasseur (1998) confirm the linear increase from λ/zi ≈ 0.5

close to the ground for stabilities−zi/L∗≤ 8, with b becoming smaller for larger−zi/L∗.

For increasingly convective situations, the surface layer structures are tilted away from

the ground (Kim and Park, 2003) and they begin to extend higher into the boundary

layer (Khanna and Brasseur, 1998). Kim and Park (2003) showed for −zi/L∗ = 1.95

that ejections contribute 75% to the upward momentum flux at the bottom of the mixed

layer.

In the stability regime 1.5 ≤ −zi/L∗ ≤ 9.5 some streaks develop into horizontal rolls

which reach from the surface to the top of the boundary layer (Sykes and Henn, 1989;

Moeng and Sullivan, 1994) with a spanwise spacing of 2 to 3 zi (Khanna and Brasseur,

1998; Moeng and Sullivan, 1994). An example from LES is shown in Fig. 2.3. Mean-

while, the surface layer remains populated with low-rise streaks, the vertical growth of

which is suppressed by the roll-induced downdrafts. The aspect ratio between stream-

wise and spanwise scales remains unchanged by the onset of roll convection (Khanna

and Brasseur, 1998).

The horizontal integral length scales studied by Khanna and Brasseur (1998) showed an

increase in structure length scale up to z/zi ≤ 0.5 and a subsequent decrease for both the

convective and the shear-dominated simulations. The aspect ratio between streamwise

and spanwise integral scales was found to be Lwx/Lwy ≤ 2 for −zi/L∗ ≥ 10.

For buoyancy-driven boundary layers with very small u∗, Khanna and Brasseur (1998,

with u∗ = 0.16,−zi/L∗ = 841) find that hexagonal structures develop with narrow up-

draft regions enclosing larger downdraft-cells. Those structures are associated with
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Figure 2.3: Vertical wind field (color)

in a spanwise vertical plane from

LES with −zi/L∗ = 7.2 background

geostrophic wind (cf. Tab. 5.2). The

vectors show the projection of the wind

field on the plane.

Rayleigh-Bénard cell convection (Lord Rayleigh, 1916). Hellsten and Zilitinkevich

(2013) find that these structures contribute more than 90% to the momentum flux in

the mixed layer. The cells disappear quickly as soon as the shear gains influence (Mo-

eng and Sullivan, 1994, with u∗ = 0.56,−zi/L∗ = 19). These structures show a similar

behavior to the convective streaks and rolls, i.e. the updraft regions become broader and

less intense with height, summarizing smaller-scale structures from below and suppress-

ing low-rise structures in the downdraft regions.

Although LES have proven to be reliable boundary layer models, small-scale turbulence

close to the wall cannot be resolved, which consequently makes the properties of surface

layer structures sensitive to the subgrid-scale model (Khanna and Brasseur, 1998). Ad-

ditionally, the lowest grid-level is often parameterized using Monin-Obukhov similarity

(Raasch and Etling, 1991). However, shear-generated vortical structures appear to have

their source near the surface before they grow through or traverse the boundary layer. It

is therefore necessary to supplement the LES results with measurements to validate the

model results.
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2.4.2. Atmospheric Boundary Layer Observations

Large-scale convective structures can become apparent in the cloud structure on top of

the boundary layer. Cloud streets of several kilometer length have been observed atop

cold-air outbreaks over oceans, indicating the formation of counter-rotating horizontal

convective rolls (Hartmann et al., 1997; Brümmer, 1999). However, Etling and Brown

(1993) note that the observation of clouds alone is not sufficient to quantify the roll

scales and spanwise spacing.

Hexagonal patterns have been observed in the cloud tops of convection driven boundary

layers (Feingold et al., 2010). Here, open cells form with narrow updraft bands enclos-

ing larger downdraft areas when the convection is driven by heating from the bottom

boundary, whereas cooling at the top leads to a closed cell structure with narrow down-

drafts enclosing larger updraft areas.

Hairpin-like surface layer structures and packets were visualized by Hommema and

Adrian (2003) using smoke as a passive marker over a desert floor in the nighttime.

The observed packet growth angles agreed with the hairpin-packet model of Adrian,

Meinhart, and Tomkins (2000).

As discussed above, quantitative atmospheric turbulence research faces the challenge of

having to simultaneously capture data from a large volume of air with high time and

spatial resolution.

Traditionally, meteorological towers were used for high-resolution point measurements

while assuming Taylor’s hypothesis of frozen fields to infer the spatial structure (Stull,

1988). In this manner, the streamwise wind field can be investigated. The most notable

coherent structure detection technique used on tower time series of wind field and tem-

perature data in recent years is the wavelet analysis (Collineau and Brunet, 1993a). With

this technique the expected ejection-sweep-patterns can be detected, and their contribu-

tion to TKE and turbulent fluxes on different length scales can be determined.

The method has been extensively used in recent years on time series from tower data at

various heights in the surface layer (Lykossov and Wamser, 1995), and especially to in-

vestigate the flow structure in and atop forest canopies (Collineau and Brunet, 1993a,b;

Thomas and Foken, 2007; Segalini and Alfredsson, 2012; Zeeman et al., 2013). Depend-

ing on stability, measurement and canopy height and the particular detection technique
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the length scales of structures vary between few tens of meters and almost one kilometer

(Barthlott et al., 2007). Likewise, their relative contribution to the turbulent fluxes is

determined to lie between 10% (Zhang et al., 2011) and 100% (Feigenwinter and Vogt,

2005). Barthlott et al. (2007) give a summary over the studies before 2007. In general,

the structures become more elongated as the stratification becomes more unstable, and

shorter again for very unstable situations (Thomas and Foken, 2005; Barthlott et al.,

2007). The characteristic ejection-sweep-patterns are observed in the time series of the

wind components u′ and w′, as well as those of temperature T ′ and humidity q′. For u′

and w′, the structure intensity is approximately proportional to u∗ (Zhang et al., 2011).

Attempts have been made to retrieve the structure shape in the x-z-plane from simultane-

ous measurements at different heights, but the spanwise component remains unretriev-

able from tower data.

Lenschow and Stankov (1986) studied the horizontal autocorrelation of the wind field

in the convective boundary layer (10 ≤ −zi/L∗ ≤ 62) with aircraft measurements, and

found for the mean streamwise horizontal integral length scales Lα for the wind compo-

nent α , that

Lw

zi
= 0.28

(
z
zi

)1/2

, [2.8a]

Lu +Lv

2zi
= 0.53

(
z
zi

)1/2

. [2.8b]

The results reflect the structure growth through the boundary layer and agree well for

the vertical wind at z/zi ≤ 0.5 in the two most convective cases of Khanna and Brasseur

(1998), and even approximately for the shear-dominated case. The aspect ratio between

streamwise and spanwise integral scales was found to be Lwx/Lwy ≤ 2 for −zi/L∗ ≥ 10.

Inagaki and Kanda (2010) used 40 sonic anemometers to characterize the surface-layer

flow and were able to visualize the streaky structures. However, the setup is rather im-

practical for high-resolution measurements of large-scale structures.

To overcome these issues, remote sensing instruments have increasingly been used for

atmospheric flow measurements, since they provide a high time and spatial resolution

over long ranges. Kropfli and Kohn (1978) detected horizontal convective rolls with

Doppler radar. The smaller-scale surface-layer streaks are best investigated using high-
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resolution Doppler lidars. Drobinski et al. (1998) furthermore used a Doppler lidar and

a sodar to investigate horizontal convective rolls.

When deployed in dual-lidar mode, the complete horizontal wind field can be retrieved

in an area of several square kilometers. Newsom et al. (2008) used this method to detect

surface layer streaks and measure the streamwise and spanwise correlation length of the

wind field. They found that the integral length scales of the streamwise wind component

became maximal for neutral conditions, with Lx ≈ zi, and Lx ≈ 0.5zi for weakly stable

and unstable conditions.

Tang et al. (2011a,b) analyzed the horizontal wind field from lidar measurements in

terms of Lagrangian coherent structures (Shadden et al., 2005) to detect vertical gusts

and even footprints of hairpin structures on airport runways. Lagrangian coherent struc-

tures are persistent barriers in two-dimensional flow derived from the flow-field trajec-

tories and which are observed frequently in ocean currents (Lekien et al., 2005). Close

to the atmospheric boundary layer surface, flow barriers coincide with updrafts, so La-

grangian coherent structures can be indicative of positive vertical wind velocities and

thereby used to measure convective cell patterns.

Dual-lidar deployments can also be used for volume measurements as in Iwai et al.

(2008), who showed that the surface-layer streaks are the starting points for horizontal

convective rolls with a spanwise spacing of approximately 2 zi.

As a goal, the research of boundary layer coherent structures should lead to a parameter-

ization of their scales and contribution to the Reynolds stress to improve sub-filter-scale

parameterizations in mesoscale models and thereby enhance their accuracy. The ev-

idence shows that their length scales, spacings and intensity are influenced by shear,

stability, and boundary layer height. The surface roughness length may play a role as

well (Lin et al., 1997). However, no consistent parameterization is available up to now.

The focus lies here on the detection of recurring patterns in the flow field, without too

much emphasis on the question of what exactly constitutes a coherent structure. The

exact separation of the flow field in a structured and an unstructured part should be mo-

tivated by practical considerations concerning parameterization, respective contributions

to the fluxes, and their coupling terms. This can only take place after a reliable detection

method is established.
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3. Dual-Doppler Lidar: Measurements and Simulations for
Coherent Structure Detection

In this chapter, the lidar measurement principle is introduced and, based on its mathe-

matical description, a pulsed Doppler lidar simulation tool is developed which operates

on LES simulations with the PALM model. Subsequently, a retrieval algorithm is dis-

cussed which allows to reassemble the two-dimensional wind field from either virtual or

real dual lidar planar scans.

3.1. Pulsed Doppler Lidar Measurements

3.1.1. Measurement Principle of Pulsed Doppler Lidars

The acronym lidar stands for LIght Detection And Ranging and was created based on

the word radar (RAdiowave Detection And Ranging, Middleton and Spilhaus, 1953). A

lidar emits laser radiation into the atmosphere and detects the scattered return signals.

For pulsed lidars, the time lapse between laser emission and detection of the scattered

light can be used to determine the position of the scatterers along the lidar beam.

A laser consists in general of an active medium, an energy pump and an optical resonator

(Demtröder, 2009). In thermal equilibrium, the energy states Ek and Ei with Ek < Ei in

the active medium have a population Nk > Ni. The pump is used to create a population

inversion, i.e. it stimulates transitions into the higher state Ei, until Ni is large enough

compared to Nk that an incoming photon hν = Ei−Ek will not lead to an excitation

Ek→ Ei, but rather lead to a stimulated emission of another photon: Ei→ Ek. The mul-

tiplication of photons, reflected back and forth in the resonator, leads to a cascade of

stimulated emissions: a pulse of high-intensity, coherent, monochromatic light.
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The power of the backscattered lidar return signal P is related to the power of the outgo-

ing laser pulse P0 via the lidar equation (Klett, 1981):

P(r,λ ) = P0
cτ

2
A
r2 β (r,λ )e

−2
r∫

0
dr′α(r′,λ )

, [3.1]

where r is the signal origin along the beam, λ the pulse wavelength, τ the temporal pulse

width, A the detector area, β the backscatter coefficient related to the scatterer concen-

tration and their scattering cross section, and α the atmospheric extinction coefficient.

Common types of lidar are (Wandinger, 2005):

• The elastic-backscatter lidar, which measures properties of aerosols and clouds

from their elastic scattering properties in the return signal (Spuler and Mayor,

2005),

• The differential-absorption lidar (DIAL), which is used to measure the concen-

tration of atmospheric trace gases, e.g. ozone and water vapor, from their differ-

ent absorption coefficients for different wavelengths (Wulfmeyer and Bösenberg,

1998),

• The Raman lidar, which detects gases, especially water vapor, from the Raman

scattering return signals and can be used for temperature profiles (Radlach et al.,

2008),

• The resonance scattering lidar, which detects molecules and ions from resonant

fluorescent scattering at known energy transitions (Alpers et al., 2004),

• The Doppler lidar, which is used to measure the velocity of aerosols and molecules

from the Doppler shift in the return signal.

This work is focus pulsed coherent or heterodyne-detection Doppler lidars. The het-

erodyne technique mixes the monochromatic lidar pulses with frequency f0, which are

emitted into the atmosphere, and the return signal with the Doppler shift ∆ f with the

signal of a local oscillator (LO) of known frequency fLO. The intensity of the resulting

signal is given by (Werner, 2005)

I ∝ cos(2π [ fLO− (∆ f + f0)])+ cos(2π [ fLO +(∆ f + f0)]) . [3.2]

22



3.1. Pulsed Doppler Lidar Measurements

The high-frequency part of the signal is filtered out, whereas the first part, the so-called

beat signal, has a low frequency which can be analyzed with high accuracy using a Fast

Fourier Transform (FFT).

The Doppler shift

∆ f =− f0 ·2
vr

c
, [3.3]

where vr is the local wind vector projected on the lidar beam direction (the so-called ra-

dial or line-of-sight wind speed) and c is the speed of light (Werner, 2005). For v= 1 m/s

this results in a shift of only 1 MHz for f0 = 1.5 ·1014 Hz.

The lidars usually operate with frequencies f0 in the infrared for which Mie-scattering by

aerosols exceeds Rayleigh-scattering by air molecules. All particles exhibit random mo-

tion with a kinetic energy proportional to their temperature superimposed on their mean

motion, but since aerosols have a higher mass their velocity fluctuations are smaller,

which in turn leads to less spectral broadening in the return signal (Werner, 2005). The

Doppler lidar therefore detects the radial velocity of aerosols, which is assumed to equal

the wind velocity.

Pulsed Doppler lidars emit laser pulses at a given pulse repetition frequency (PRF) and

record the return signals with a certain sampling rate (SR). The number of samples (SpG)

used for the FFT corresponds to a segment of the lidar beam, the so-called range gate,

with length

∆p =
SpG · c
2 ·SR

. [3.4]

For some instruments, the user can define the lengths of the range gates and their distri-

bution along the beam. The detected Doppler shift is a weighted average produced by the

radial velocities of all particles illuminated by the pulse moving through the range gate.

An estimate of the measured radial velocity rv(R0) for a range gate centered around R0

is usually computed from the average spectra of several consecutive pulses to decrease

the random error (Frehlich, 1997).

A mathematical model for solid-state pulsed Doppler lidar velocity estimation was given

by Frehlich et al. (1998):

rv(R0, t) =
∞∫
−∞

dxvr(x, t)W∆p(x−R0) , [3.5]
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with the normalized weighting function

W∆p(x) =
∞∫
−∞

dr In(x− r)θ∆p(r) , [3.6]

defined by a range gate indicator function θ∆p,

θ∆p(x) =

{
1/∆p ,x ∈ [−∆p/2,∆p/2]

0 ,otherwise
, [3.7]

which is unity on the range gate and zero otherwise, and the Gaussian pulse envelope of

the beam:

In(x) =
2√

πστc
e
− 4x2

σ2
τ c2 , [3.8]

where στ is the standard deviation of the pulse in time domain.

Depending on the velocity estimator of the lidar system, it is also possible to have a

tapered gate window and thereby a non-uniform range gate indicator function θ∆p (Kris-

tensen et al., 2010).

Eqs. 3.6 - 3.8 show that the weighting function is only a function of ∆p, στ and the

distance x from the range gate center, therefore according to similarity theory (Bucking-

ham, 1914) the dimensionless weighting function W∆p ·∆p can be written as a function

of the dimensionless groups x/∆p and ∆p/(στc):

W∆p(x) ·∆p = W̃
(

x
∆p

,
∆p
στc

)
, [3.9a]

with W̃ (a,b) =

1/2∫
−1/2

da′
2b√

π
e−4b2(a−a′)2

. [3.9b]

Consequently, the relative weight at a distance x/∆p from the range gate center only

depends on the relation of range gate length to pulse with, which is shown in Fig. 3.1:

For ∆p� στc, the weighting function approaches the range gate indicator function θ∆p

(Eq. 3.7), whereas for ∆p� στc it approaches the pulse envelope In (Eq. 3.8). The lidar

resolution is therefore naturally limited by the pulse width. For a laser pulse to be con-

sidered monochromatic its width in the frequency domain must be very small. Since the

width of a Gaussian in frequency and time domain are inversely proportional, στ cannot

become smaller without a loss in wavelength accuracy. This inherent spatial averaging

means that Doppler lidars can never perform point measurements.
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Figure 3.1: The lidar weighting func-

tion in relative coordinates accord-

ing to Eqs. 3.9 as a function of x
∆p

for ∆p
στ c = {0.5,1,1.5,2,2.5,3,3.5,4}

(darker shades mean smaller values).
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For scanning or moving lidars, producing a velocity estimate from several consecu-

tive pulses means that the beam movement must be included in the weighting function.

This can be accomplished with a linear average in the direction of the beam movement

(Frehlich, 2001):

rv(R0, t) =

y2∫
y1

dy
∞∫
−∞

dxvr(x,y, t)W∆p(x−R0) , [3.10]

when during one velocity estimate the range gate center moves from y1 to y2 on the y-

axis, which is defined by the range gate center trajectory. The resulting relative weights

for a scanning beam are shown in Fig. 3.6.

In recent years, long-range high-resolution Doppler lidars have become increasingly

stable and affordable. As an ideal remote-sensing instrument for boundary layer wind-

field research, they have been used to study the convective boundary layer (Lothon et al.,

2006), convective roll vortices (Drobinski et al., 1998), entrainment processes on the top

of the mixed layer (Träumner et al., 2011), the nocturnal low-level jet (Banta et al., 2002)

and the cloud-topped boundary layer (Lottman et al., 2001). They also play a role in

engineering application, measuring wake vortices behind wind turbines (Krishnamurthy

et al., 2013; Käsler et al., 2010). Their deployment in dual- or even multi-Doppler mode

is discussed in Chap. 3.1.3.
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3.1.2. The KIT Doppler-Lidar Systems

At Karlsruhe Institute of Technology (KIT), the Institute for Meteorology and Climate

Research (IMK-TRO) operates two coherent pulsed Doppler lidars of the ‘WindTracer’-

type. The instruments were manufactured by Lockheed Martin Coherent Technologies,

Inc.(LMCT), Louisville, Colorado, USA.

The sensitive systems are encased in containers with heat and humidity control, which

in turn are mounted on swap body structures for easy transportation with trailers. The

instruments have been used in several international measurements campaigns, e.g., the

Convective and Orographically-induced Precipitation Study (COPS, Kottmeier et al.,

2008; Wulfmeyer et al., 2008), the HYdrolocial cycle in the Mediterranean EXperiment

(HyMeX, Kalthoff et al., 2013), and the HOPE experiment as a part of HD(CP)2 (High

Definition Clouds and Precipidation for advancing Climate Prediction).

Tab. 3.1 gives an overview of the technical specifications of the lidar systems. Both sys-

tems have solid-state lasers (thulium-doped lutetium aluminum garnet in WindTracer 1,

and erbium-doped yttrium aluminum garnet in WindTracer 2). The emitted pulses con-

form to the Gaussian approximation (Eq. 3.8) with a standard deviation of στ = 370 ns

and 300 ns, which correspond to a full width at half maximum (FWHM) of 92 m and

75 m, respectively (Frehlich et al., 1998). The high pulse repetition frequency (500 Hz

and 750 Hz) facilitates highly accurate radial velocity estimations with a measurement

frequency of up to 10 Hz. With wavelengths larger than 1.4 µm, the lasers are consid-

ered eye-safe (Henderson et al., 1993). The instruments have a range of up to 12 km

under clear conditions and a pulse width of approximately 70-90 m. An almost identi-

cally constructed lidar system was described in detail by Grund et al. (2001).

Because of their equality, the systems can be operated in dual-Doppler mode, i.e. they

can be steered synchronously in coordinated measurements.

A common challenge in many dual-Doppler measurements is the time-synchronization

(Calhoun et al., 2006): for scanning lidars, a high time-resolution in the measurements

requires an agreement of the systems clocks over the duration of the measurement, as

well as scanning patterns which do not accumulate relative phases shifts. This issue

commonly prevents measurements from being conducted with the highest achievable

time resolution (cf. Newsom et al., 2008). Often this problem arises from restrictions
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‘WindTracer’ 1 2

year of construction 2004 2009

type of laser Tm:LuAG Er:YAG

wavelength 2023nm 1617nm

pulse length 370ns 300ns

pulse energy 2.0mJ 2.7mJ

pulse repetition frequency 500Hz 750Hz

sampling rate 250MHz 250MHz

Table 3.1.: Technical specification of the KIT ‘WindTracer’ systems.

in the beam-steering software: many lidar systems only allow pre-defined PPI (plan-

position indicator, e.g. fixed elevation angles el) and RHI (range-height indicator, i.e.

fixed azimuth angles az) scans, but no free beam-steering (cf., e.g., Grund et al., 2001).

The KIT dual-Doppler lidar system can be operated by a unique control software, which

was developed as a part of this work. This software runs on an external PC, the Remote

Operating Station (ROS), which is connected to both lidars and receives their status up-

dates every second. It is based on a C-library of basic control functions for the single

lidar systems supplied by the manufacturer, which can be used to set the lidar control

parameters and steer the beams. By combining the single lidar controls in dual-lidar

steering functions in a C++-based library, it became possible to program complex scan-

ning patterns which synchronize automatically without relying on the single lidar clocks.

Important functions in the control software are:

• Setting lidar control parameters like range gate length, measurement frequency,

position of range gate centers, recorded data types and others,

• Beams steering from one (az,el)-position to another with a constant angular veloc-

ity for each angle,

• Dual-lidar synchronization by including waiting intervals until each lidar is at the

desired position,

• Real-time adaptability of scan patterns to external parameters, line wind direction

and boundary layer height.
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WindTracer 1 WindTracer 2

ROS

SES I SES II

measurement datasystem status

atmospheric
parameters

scanner
control

DD scanning program

Figure 3.2.: Stawiarski et al. (2013): Schematic overview of the dual-Doppler control system. ‘Wind-

Tracer 1’ and ‘WindTracer 2’ are the two control computers of the individual instruments, ROS is the

remote operation station, SES are storage and evaluation stations. c©2013 American Meteorological So-

ciety. Used with permission.

With this software, repetitive complex scanning patterns can easily be realized, e.g. the

synchronized scan of a plane alternating with RHI or velocity-azimuth-display scans for

vertical profiles (VAD, cf. Browning and Wexler, 1968).

Each lidar stores its measurement data on a Storage-and-Evaluation Station (SES). On

these computers, MATLAB-based programs evaluate the data in real time: vertical wind

profiles (from VAD and RHI scans) and the boundary layer height (from vertical stares)

are computed whenever suitable scans were performed. The SES send the results to the

ROS, thus enabling users to program scans which adapt to the current atmospheric con-

ditions. Possible applications for this feedback-loop are coplanar-scan optimization with

respect to the horizontal wind speed (Chap. 4.2) and virtual tower measurements where

the tower height adapts to the boundary layer height (Röhner and Träumner, 2013).

The local network is sketched in Fig. 3.2.

3.1.3. Dual-Doppler Measurements

Operating two lidars in dual-Doppler mode means that velocity estimates are obtained

simultaneously from two lidars at (approximately) the same point in space. Thereby two

linearly independent components of the wind fields are measured as long as the beams

are not parallel, from which the two-dimensional wind vector at the crossing point in the

lidar plane (i.e., the plane spanned by the beams) can be deduced.

Two examples for dual-lidar set-ups are the intersecting beams technique, which is used
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e.g. in virtual tower measurements, and the planar scan technique.

In the former, the wind field is only retrieved on the trajectory of the beam intersection,

which yields a point measurement with a high frequency. During the planar scan tech-

nique, both lidars scan the same area to obtain the wind field in the full overlap region,

albeit with a decreased time resolution.

Dual-Doppler Intersecting Beam Techniques

Assume two lidars with current azimuth and elevation angles {azi,eli}, i = 1,2. The unit

vectors of their beam directions in Cartesian coordinates are then given by

r̂i =


sin(azi) cos(eli)

cos(azi) cos(eli)

sin(eli)

 , i = 1,2 . [3.11]

If the beams intersect at a point x, at each point in time the velocity estimates {rv1,rv2}
measured by the lidars in the range gates closest to x can be used to derive the wind

vector: (
rv1(t)
rv2(t)

)
=

(
r̂T

1
r̂T

2

)
·u(x, t) . [3.12]

The system of equations 3.12 is underdetermined for a wind vector with three com-

ponents. In long-time averages, it is often assumed that the vertical wind component is

zero, thereby reducing the system to two equations and rendering it solvable (cf. Calhoun

et al., 2006). However, to reap the full advantage of the high time resolution, no such

assumption can be made in the turbulent boundary layer, and only the two-dimensional

projection uH of the wind vector u on the lidar plane can be retrieved:

uH = u− (u · n̂n) n̂n , [3.13]

where n̂n = r̂1× r̂2/ ‖ r̂1× r̂2 ‖ is the normal vector of the plane spanned by the lidar

beams.

Usually, a local coordinate system is defined in the lidar plane. The component u j of uH

on the axis determined by the direction of the normalized vector ê j can be derived from

the unique linear combination of the r̂i which forms ê j:

ê j = q1 r̂1 +q2 r̂2 [3.14a]

⇒ u j = u · ê j = q1 rv1 +q2 rv2 [3.14b]
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a) b)

Figure 3.3.: Stawiarski et al. (2013): Relevant vectors and angles in the lidar plane. The squares denote

the lidar positions. a) Lidar beam vectors r̂1, r̂2 spanning the lidar plane (shaded area). n̂n is the plane

normal vector, k̂ points in the vertical direction. The plane is tilted away from the horizontal by an angle

γz. The wind vector u is projected on the plane to give uH , the retrievable wind vector. b) View on the lidar

plane with beams r̂1, r̂2, planar wind vector uH , direction of evaluation ê j and mean lidar beam direction

r̂m. The three angles suffice to fix the relative vector positions. All angles are measured in the positive

sense, i.e. counter-clockwise. The dotted lines indicate the projections of uH on r̂1, r̂2 and ê j with lengths

rv1,−rv2 and u j, respectively (note that rv2 < 0). c©2013 American Meteorological Society. Used with

permission.

Note that u · ê j = uH · ê j, since ê j⊥n̂n.

Fig. 3.3 shows the lidar plane. The intersecting beam angle ∆χ , the angle α j between ê j

and the mean lidar beam direction rm, and the angle γuH between the wind vector uH and

the direction of evaluation ê j determine the relative position of these four vectors. The

pre-factors q1, q2 in Eq. 3.14b can be expressed in these angles, which yields (Stawiarski

et al., 2013):

u j = u · ê j =
rv1 sin(α j +

∆χ

2 )− rv2 sin(α j− ∆χ

2 )

sin(∆χ)
. [3.15]

The intersecting beam technique with a high time resolution in the lidar plane was used

by Collier et al. (2005) in the Invest-to-Save Budget project 52 (ISB52) for the validation

of dispersion models in the boundary layer. In this measurement, a time resolution of

5 s was achieved.

On the other hand, Calhoun et al. (2006) used the technique for longer averaging times,

so that the assumption w = 0 became valid. Furthermore, the averaging allowed them

to scan along the height range of virtual towers without synchronization, since the time
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shifts become irrelevant compared to the averaging interval. This method is referred to

as the ‘virtual tower’ technique.

Dual-Doppler Planar Scan Techniques

In planar scanning patterns, the wind field is retrieved not only at the beam intersection

point, but on a larger area which is scanned by the two lidars. Geometrically, any such

plane is fixed by the position of the two lidars and a slope, which determines the azimuth

and elevation angles during the scan. Except for horizontal and vertical planes, which

can be realized with fixed elevation an azimuth angle scans, respectively, this requires a

lidar steering software in which azimuth and elevation can both vary smoothly during a

scan.

To retrieve the two-dimensional wind field in the lidar plane one has to assume that the

variation of the radial wind velocity is negligible during the time of a beam sweep, since

the lidar beams do not traverse each point of the plane at the same time. Consequently,

the time resolution of the retrieved wind field is determined by the duration of the beam

sweeps. The spatial resolution in the plane depends on the range gate length and lidar

pulse width. However, to account for the uneven distribution of measurement points in

the plane, the area is usually divided into grid cells which contain several velocity es-

timates, the weighted average of which is used to retrieve the velocity using Eq. 3.15.

One possible retrieval algorithm is described in Chap. 3.3.

Planar scan patterns have been used by Newsom et al. (2008) and Iwai et al. (2008)

(low-elevation sector PPI scans to retrieve the horizontal wind field), as well as Hill et al.

(2010) (RHI scans to retrieve the vertical wind and the horizontal wind in the direction

of the lidar connection line). Iwai et al. (2008) furthermore extended the measurement

to higher elevations for a three-dimensional retrieval of u and v, the horizontal wind

components.

Towards a retrieval of the three-dimensional wind field

In principle, the three-dimensional wind field can be retrieved from the velocity esti-

mates of three Doppler lidars (Mann et al., 2009). However, research in this area is

rare, which is probably due to the high acquisition and maintenance costs of Doppler
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lidars. Instead, attempts have been made to retrieve the three-dimensional wind field

from single and dual lidar data. This requires further assumptions about the wind field.

Less computationally expensive models retrieve volume data of the horizontal wind field

from volume scans and deduce the vertical wind component from the integration of the

continuity equation between horizontal layers (Drechsel et al., 2009; Iwai et al., 2008).

Newsom et al. (2005) point out that this method has shortcomings for rapidly evolving

structures in the fields. Therefore, a more complex four-dimensional variational data

assimilation technique (4DVAR) is used often, where the output from single (Chai et al.,

2004) and dual lidar data (Newsom et al., 2005; Xia et al., 2008) is fitted to a dynamical

model to retrieve the complete wind field. The disadvantage lies here in high computa-

tional costs and the underlying assumptions in the model.

The general disadvantage of volume scans is the poor time resolution (e.g., 172 s for

Lin et al., 2008). A higher resolution can be achieved with planar scans and a one-step

integration of the continuity equation from the ground to the observation height, which

is attempted in Chap. 7.

3.2. Simulations of Doppler-Lidar Measurements

The ability to retrieve horizontal wind fields with a resolution of the order of tens of me-

ters is a unique feature of planar dual-Doppler lidar measurements. As a consequence,

the whole data set cannot be compared with other instruments. The theory of Chap. 3.1.1

implies that the dual-lidar measurement acts like a low-pass filter in time and both spa-

tial directions and on both components, with a spatial filter length given by the range

gate length and/or the pulse width, although the exact filter function remains unknown.

A Doppler lidar simulator in combination with a realistic turbulence-resolving atmo-

spheric model can help to transfer the theoretical knowledge about single lidar mea-

surements to predictions about the performance of dual-lidar retrieval data in coherent

structure detection schemes: Detection algorithms can be applied to the high-resolution

boundary layer model data and to the simulated dual-lidar measurements in the model,

and a comparison can be used to assess the agreement of results and potentially to cor-

rect the lidar results.

For realistic comparisons, it is essential that the lidar simulator produces velocity esti-

mates which are in accordance with the theoretical model. Drechsel et al. (2010) de-
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veloped a dual-lidar simulation scheme to optimize volume scans, which was based on

analytical mesoscale model wind fields with 100 m resolution, in which the virtual lidar

performed point measurements of the radial velocity while the field was kept station-

ary. The rapidly evolving small-scale structures of the surface layer however impose

stronger demands on the time and spatial resolution. Therefore, a lidar simulator was

developed (Chap. 3.2.3) which is applied to large-eddy simulations (Secs. 3.2.1, 3.2.2)

with a grid spacing much smaller than the lidar averaging scale, which allows all lidar-

relevant turbulent scales to be resolved in the model. The simulator is based solely on

the mathematical description (Chap. 3.1.1), and thereby includes the important aspects

of lidar measurements: the averaging in beam direction as determined by pulse shape

and range gate length, the cross-beam linear averaging for scanning beams, and the full

time resolution.

3.2.1. Large Eddy Simulations

The atmospheric boundary layer is a fluid with a high Reynolds number which exhibits

turbulent flow. Conservation of momentum is described by the Navier-Stokes equations

(e.g. Etling, 2008),

∂ui

∂ t
=−u j

∂ui

∂x j
−gδi3− εi jk f juk−

1
ρ

∂ p
∂xi

+ν

(
∂ 2ui

∂x2
j
+

1
3

∂ 2u j

∂xi ∂x j

)
, [3.16]

with the wind vector components ui, i = 1,2,3, the pressure p, the density of air ρ , the

molecular kinematic viscosity ν , the coriolis parameter f = (0,2Ωcosϕ,2Ωsinϕ) at lat-

itude ϕ and angular frequency Ω of the earth rotation, and the gravitational acceleration

g. Summation over repeated indices is implied.

In combination with the conservation of mass, described by the continuity equation,

∂ρ

∂ t
+

∂ (ρu j)

∂x j
= 0 , [3.17]

the conservation of energy, which is the first law of thermodynamics,

∂θ

∂ t
=−u j

∂θ

∂x j
+νθ

∂ 2θ

∂x2
j
+Qθ , [3.18]

with the potential temperature θ , thermal diffusivity νθ and the source term Qθ , and the

ideal gas law,

p = ρ RL T , [3.19]
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with the gas constant RL of air, one obtains a set of six governing equations for the dry

atmosphere (cf., e.g., Etling, 2008; Stull, 1988). These are the equations of motion of the

atmospheric state variables u, p, ρ , and θ (the potential temperature). Moisture content

or other scalar quantities can be included with further equations of conservation.

Atmospheric turbulence can be regarded as a superposition of interacting vortices (‘ed-

dies’) on different scales (Breuer, 2002, Chap. 3). Turbulent kinetic energy is generated

on the largest scales (on the order of the correlation length or boundary layer height)

and is transferred down to the smallest eddies on the Kolmogorov scale η =
(
ν3/ε

)1/4,

where the energy is dissipated with a rate ε into heat through viscous forcing (Stull,

1988).

The equations of motion 3.16-3.19 can only be solved numerically if all scales of tur-

bulence are resolved. With L/η ∼ Re3/4 orders of magnitude between the smallest

and largest turbulent scale (cf. Eq. 2.6), such a direct numerical simulation (DNS) is

extremely computationally expensive for large Reynolds numbers that are usual in the

atmospheric boundary layer (cf. Chap. 2). It can therefore be useful to divide the full

range of scales into two parts: the large scales, which describe the large scale flow,

and the small scales. Splitting up each variable in Eqs. 3.16-3.19 in this way leads to

governing equations for the large scale flow. Since the small and large scales are not

independent, those equations are coupled to the small-scale flow via flux terms, which

have to be parameterized with approximations using the large scale variables. This is

known as the closure problem. The exact position of the spectral separation depends

on the scale of the atmospheric phenomena to be studied. Synoptic-scale weather fore-

cast models use the Reynolds-Averaged Navier-Stokes-Equations (RANS), in which the

scale separation is set to the atmospheric spectral gap (i.e., scales corresponding to a

duration of one half to one hour, cf. Stull, 1988), to distinguish mean flow and turbulent

flow. The average effect of turbulence on the mean flow is then parameterized, the struc-

ture of turbulence however cannot be investigated.

Large-eddy simulations attempt to bridge the gap between fully-resolved turbulence in

DNS and unresolved turbulence in RANS-models by setting the spectral division inside

the turbulent part of the spectrum. In this way, the energetically dominant turbulent

scales can be resolved with computational costs considerably lower than for DNS. The
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smallest scales of turbulence still have to be parameterized with a subgrid-scale (SGS)

model.

The separation of a variable φ into grid-scale part φ and subgrid-scale part φ ′ is given

by Breuer (2002):

φ(r, t) = φ(r, t)+φ
′(r, t) , [3.20a]

φ(r, t) =
∫

d3r′ G(r,r′;∆)φ(r′, t) , [3.20b]

where G is the filter kernel with characteristic filter width ∆.

The filter width is not necessarily given by the spacing of the numerical grid (cf. Breuer,

2002, Chap. 3.2). However, the present model (cf. Chap. 3.2.2) uses an implicit filter-

ing technique by Deardorff (1970) and Schumann (1975): the spatial differentials are

approximated by finite differences over the respective grid cell, which essentially means

that G is constant on the grid cell and zero otherwise, i.e., G is a top-hat filter (Breuer,

2002) with ∆ given by the grid spacing. This method has the advantage that it evolves

naturally from the numerical method, no explicit filtering is necessary. Furthermore,

φ = φ , i.e. the filtered variable is not changed by further filtering, which leads to less

coupling terms.

LES models have been widely used to investigate boundary layer structures. An overview

is given in Chap. 2.4.

3.2.2. The PALM Model

The model PALM (“A PArallelized LES Model”) is a large-eddy simulation model

which was developed by Raasch and Etling (1991) at the Institute for Meteorology and

Climatology at Leibniz Universität Hannover, Germany, and has since been expanded

and parallelized (Raasch and Schröter, 2001). Throughout the last years, several studies

have proven the ability of PALM to model turbulent boundary layers. An overview of

the model and published numerical studies can be found at the website of the PALM

group (Raasch, 2014). The simulations used for this study were created using PALM

version 3.9.

The governing equations in PALM are derived from Eqs. 3.16-3.19, using the Boussinesq-

approximation (Etling, 2008), which also implies incompressibility but allows for den-
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sity variations in the buoyancy term of the vertical component of the momentum equa-

tion, and a subgrid-scale parameterization according to Deardorff et al. (1980) . The

governing equations for the gridscale-variables in a dry atmosphere are (Heinze, 2013):

∂ui

∂ t
=−∂ (uiu j)

∂x j
+g

θ −〈θ〉
θ0

δi,3− εi jk f juk + εi3k f3UGk−
1
ρ0

∂π

∂xi
−

∂τr
i j

∂x j
[3.21a]

∂ui

∂xi
= 0 [3.21b]

∂θ

∂ t
=−∂ (u jθ)

∂x j
− ∂τθ j

∂x j
+Qθ [3.21c]

∂e
∂ t

=−∂ (u je)
∂x j

− τi j
∂ui

∂x j
+

g
θ0

τθ3−
∂

∂x j

[
u′j

(
e′+

p′

ρ0

)]
− ε [3.21d]

p = π− 2
3

ρ0 e [3.21e]

where e = 1
2 u′2i is the subgrid-scale turbulent kinetic energy, π is the modified pres-

sure including the contributions from the diagonal of the subgrid-scale momentum flux

tensor τi j = u′iu
′
j , τr

i j = τi j− 2
3eδi j is the traceless subgrid-scale momentum flux tensor,

τθ j = θ ′u′j is the subgrid-scale flux of potential temperature, UG is the geostrophic wind

vector, and ε is the diffusion rate. The ground states are ρ0 = 1 kg/m3 and θ0 the initial

temperature profile. The higher-order moments to be parameterized in a subgrid-scale

model are therefore

τ
r
i j, τθ j, and u′j

(
e′+

p′

ρ0

)
. [3.22]

PALM uses a gradient transport approach to parameterize these moments and the dis-

sipation ε (Raasch and Etling, 1991; Heinze, 2013). Since the moments in 3.22 are of

second and third order, this method is called a one-and-a-half order closure technique

(Stull, 1988).

The set of equations 3.21 is complemented by equations and terms for moisture and

large scale subsidence, which are neglected here because they do not contribute to the

present study.

The equations 3.21 are solved numerically on a staggered Arakawa-C grid (Fig. 3.4

Arakawa and Lamb, 1977) for improved spatial resolution. Spatial differentials are ap-

proximated by finite differences (i.e., ∂

∂xi
→ ∆

∆xi
) for terms linear in prognostic vari-

ables, and a Wicker-Skamarock-scheme (Wicker and Skamarock, 2002) for the flux-
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Figure 3.4.: Illustration of the staggered Arakawa-C grid used in PALM for a grid spacing ∆ = 10 m:

The horizontal layers of u, v and scalars (left) and of w (center) are stacked alternately in vertical direction

at ∆z/2-intervals. The right panel shows one grid cell.

terms. Time integration is executed with a third order Runge-Kutta scheme (cf. Bal-

dauf, 2008). Numerically, the incompressibility condition Eq. 3.21b is preserved by

a predictor-corrector method (Steinfeld, 2009): The Navier-Stokes equations 3.21a are

integrated without the pressure term to obtain a preliminary solution for the ui, which

in combination with the time-integrated pressure term must yield the incompressible

real wind field. With this condition, the wind field can be determined from a Poisson-

equation for the pressure, with is solved with an FFT (Fast Fourier Transform) algorithm.

To be solvable, the system of differential equations requires boundary conditions. At the

start time of the simulations, all variables are prescribed by vertical profiles, assuming

horizontal homogeneity. Laterally, cyclic boundary conditions are assumed. The bound-

ary conditions at the top and bottom of the simulated region for the LES in this study are

listed in Tab. 5.1. Between the bottom at z = 0 and the first layer of resolved wind field

components at zp, a Prandtl-layer is defined (Steinfeld, 2009), which allows to derive the

bottom boundary values at zp for the subgrid-scale momentum flux terms u′w′ and v′w′

by integrating the Businger-Dyer equations (e.g. Stull, 1988) from the roughness length

z0 to zp. Furthermore, a constant surface heat flux is prescribed at the bottom.

If the simulation is carried out over a homogeneous surface, no turbulence will develop

naturally. Therefore, random disturbances with small amplitudes are superimposed on

the wind fields at constant time intervals, until a steady turbulent state has developed.
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3. Dual-Doppler Lidar: Measurements and Simulations for Coherent Structure Detection

Figure 3.5.: Stawiarski et al. (2013): Geometry of the lidar simulation: The position and orientation of

each range gate in the LES data grid (red) is determined from the virtual lidar position at (x0,y0,z0) in the

LES axes and the azimuth and elevation angles (az,el) at the time of measurement. The green cylinders

with height ∆peff indicates the approximate region of LES data points used for averaging with a fixed

beam. c©2013 American Meteorological Society. Used with permission.

The scope of PALM reaches beyond the dry boundary layers with flat surfaces described

above: the model allows to simulate moisture and clouds (Riechelmann et al., 2012), La-

grangian movement of particles (Steinfeld et al., 2008) and oceanic turbulence (Raasch

and Etling, 1998). Depending on computational power, the grid spacing can reach down

to 2 m (Raasch and Franke, 2011), and it is possible to include heterogeneous surfaces

(Letzel et al., 2008).

In this study, PALM simulations are used for a comparison of ‘real’ LES boundary layer

wind fields with those derived from virtual lidar measurements in the LES fields. The

model set-up is described in Chap. 5.

3.2.3. Doppler Lidar Simulations based on LES

To perform virtual Doppler lidar measurements inside an LES boundary layer, a lidar

simulation software package was developed.

The simulator is controlled via a text file, in which the crucial input parameters are spec-

ified: the LES data set, range gate lengths, number and positions along the lidar beam,

laser pulse width, measurement frequency, lidar position and scan pattern (cf. App. B).
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Figure 3.6.: Velocity estimation in the lidar simulator: A virtual lidar at x = 5000 m and y = 2500 m

scans the horizontal plane with ω = 6.9◦/s. For a measurement frequency of f =1 Hz, the beam covers

an angle ω/ f per velocity estimate (gray area). Of this section, a part of length ∆peff is considered around

each range gate center (blue area). The LES wind field components are interpolated to the local grid with

relative weights according to Eq. 3.10 (inset).

The scan patterns are defined for a certain time interval on the LES time axes, i.e. dif-

ferent scan types can be performed consecutively in the same virtual lidar measurement.

The geometric information contained in the scan pattern, the range gate positions and the

lidar position are combined to compute the spatial position of each range gate along the

beam at each time step during the scan in the LES grid (cf. Fig. 3.5). The time axis for the

velocity estimation is defined by the measurement frequency f : At time tk = k/ f + tstart,

a velocity estimate is computed for each range gate using the beam position in the time

interval ∆t(k) = [tk− 1/(2 f ), tk + 1/(2 f )]. As discussed in Chap. 3.1.1, the mathemat-

ical model for the velocity estimate in one range gate is given by a weighted average

over the radial velocity along the beam, with an additional linear average over all beam

positions during ∆t(k) in the case of scanning lidars.
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3. Dual-Doppler Lidar: Measurements and Simulations for Coherent Structure Detection

Numerically, the velocity estimator is implemented as follows: For range gate n at dis-

tance r0(n) along the beam, the radial weighting function around the range gate center is

computed (Eq. 3.6). Since the mathematical model for the weighting function is always

positive, a cutoff has to be chosen: Here only the beam segment is considered on which

the weighting function is larger than 20% of its maximum value at r0(n), resulting in an

effective range gate length ∆peff. Hereafter the area is computed which is covered by

the beam segment [r0(n)−∆peff/2,r0(n)+∆peff/2] during the time ∆t(k). This area is

filled with a grid of points (cf. Fig. 3.6), to which each of the three 3D wind field compo-

nents of the LES is interpolated using MATLAB built-in cubic spline interpolation. The

grid point spacing equals the LES grid constant to make full use of the LES resolution.

An average value is computed for each wind field component after assigning relative

weights to the interpolation points according to Eq. 3.10. The radial velocity estimate is

subsequently computed as the projection of the average wind vector on the lidar beam

direction. Note that averaging and projecting are independent linear operations and can

be interchanged, therefore performing the wind vector component averages before the

projection on the radial direction is not a source of error. This single velocity estimation

is repeated for all range gates centered at r0(n), n = 1, . . . ,range gate number, and all

points on the time axis tk.

The accuracy of the lidar simulator, i.e. its ability to produce realistic virtual lidar mea-

surements in an LES boundary layer given that the mathematical models for beam aver-

aging are correct, depends of the relation of lidar averaging length scales to the LES grid

spacing LG: When ∆p� LG, the average along the beam can be assumed to be realistic.

Here, typical values are ∆p≥ 60 m and LG = 10 m. However, the real lidar beam width

of approximately 10 cm means insufficient resolution in both directions perpendicular

to the beam. The scanning patterns described in Chap. 5 only use fast-scanning beams,

therefore only the direction normal to the scanning plane remains poorly resolved. In the

following it will be assumed that the large-scale averaging in the two lidar plane direc-

tions, as well as the time-averaging involved, will smooth out all small-scale processes.

Furthermore, the comparative LES data are interpolated to the scanning plane using the

same technique (Chap. 5.4), thereby restoring the comparability of the results.

40



3.3. Dual-Doppler Retrieval of the Horizontal Wind Field

The lidar simulator only performs single lidar measurements. Therefore, for synchro-

nized dual-Doppler measurements, the scan patterns of both lidars have to be planned

to perform synchronized scans on the same LES data. After the two single lidar simu-

lations are completed, both are reassembled in the dual-lidar retrieval algorithm, which

works equally for both simulated and measured lidar data.

3.3. Dual-Doppler Retrieval of the Horizontal Wind Field

The data from dual-lidar scans can be used to retrieve the projection of the wind vector

in the two-dimensional lidar plane.

For unsynchronized scans which take T1 and T2 for a full back-and-forth sector sweep,

respectively, the best achievable time resolution of the retrieval is T0 = max{T1,T2}.
To obtain the highest possible time resolution, the scan should be synchronized, i.e. the

beams arrive at their turning points simultaneously, thereby T1 = T2. Since no phase shift

is accumulated, T0 = T1/2 in this case, which means the duration of one beam sweep is

sufficient to gather dual-lidar data in the whole overlap area.

A retrieval algorithm was developed based on Newsom et al. (2008) for zero- or low-

elevation scans, i.e. the retrieval plane is the horizontal plane at lidar height. A detailed

description can also be found in Stawiarski et al. (2013).

The retrieval accepts real lidar measurement data or virtual lidar data created by the

simulation tool (Chap. 3.2.3). Before the retrieval, real data are filtered from erroneous

velocity estimates using a hard target filter (removing data points with high SNR and

low absolute wind speed), an SNR filter (removing data points with low SNR) and a

velocity jump filter (eliminating outliers in the time series of each range gate velocity

estimate). The threshold values for the respective filters can be specified by the user.

The retrieval algorithm starts by subdividing the dual-lidar measurement time axis into

time intervals of length T0. The horizontal overlap area is then covered by a Cartesian

grid with lattice constant ∆xy = ∆p.1 Each grid point is surrounded by a circular grid

cell, and all radial velocities are associated with this cell if their range gate center falls

into the cell at some point during the T0 interval. The radius of the circles is set to

1Full area coverage could also be obtained by setting ∆xy = range gate center distance, but the lidar

resolution remains limited by ∆p.
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Figure 3.7: Dual lidar retrieval: A

scanning lidar beam (dashed lines) with

range gate centers (black bullets) mov-

ing through three exemplary grid cells.

The velocity estimates are associated

with the grid cells and weighted with

the length of the beam chord inside the

cells, indicated by the colored beam

segments. Figure adapted from Staw-

iarski et al. (2013).

R = ∆xy/
√

2, i.e. the smallest value to cover the whole grid (Fig. 3.7). This leads to

smoother results with less errors compared to a nearest-neighbor approach, since the

retrieval is computed from more data.

For each grid cell around the point r0 and each time interval, the most probable horizon-

tal wind vector uH is then given as the minimum of the cost function (Stawiarski et al.,

2013)

J = ∑
n

gn (rvn−uH(r0) · r̂n)
2 [3.23]

with the radial velocities rvn accumulated in the cell, and their associated normalized li-

dar beam direction vectors r̂n. The relative contribution of the deviation of rvn from the

‘true’ radial wind in this direction is additionally weighted with a factor gn, which was

not used in the original algorithm by Newsom et al. (2008). Here, gn is set to the length

of the beam segment which lies inside the cell. Thereby, the importance of data from

range gate centers close to the edge of the cell is suppressed compared to those which

are closer to the center of the cell. This reflects the fact that, the shorter the beam chord

inside the cell, the more information from outside the cell is contained in the velocity

estimate, which should not contribute to the cell result for uH(r0).
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3.3. Dual-Doppler Retrieval of the Horizontal Wind Field

The minimization of Eq. 3.23 with δJ = 0 yields (Stawiarski et al., 2013):

M ·uH(r0) = b , [3.24]

with

M= ∑
n

gn r̂n r̂T
n and [3.25a]

b = ∑
n

gn rvnr̂n , [3.25b]

where r̂n is to be understood as a two-component column vector on the basis formed by

the Cartesian horizontal axes:

r̂n =

(
sin(azn)cos(eln)
cos(azn)cos(eln)

)
. [3.26]

Eq. 3.24 is solved for each grid cell in each time interval, thereby the horizontal wind

field is obtained for the whole overlap region and measurement time. Note that the ma-

trix M is not invertible if all r̂n are equal save for a scalar factor, i.e. the lidar beams must

not be collinear in the grid cells.

Newsom et al. (2008) used a similar retrieval algorithm for the investigation of surface

layer coherent structures in dual-Doppler lidar measurements during the Joint Urban

2003 (JU2003) field campaign. They achieved a time resolution of T0 =30 s and a spa-

tial resolution of ∆xy = 100 m with the unsynchronized lidars. Hill et al. (2010) adapted

the algorithm for the retrieval in vertical planes during the Terrain-Induced Rotor Exper-

iment (T-REX) with T0 =40-50 s and ∆xy = 130 m.

Iwai et al. (2008) attempted a three-dimensional retrieval of the wind field, which re-

quired PPI-scans at different elevation angles for each retrieval interval. Therefore, they

only realized a time resolution of T0 =12 min and ∆xy = 100 m.

During the HOPE-experiment (cf. Chap. 8 for an overview), the KIT dual-Doppler lidar

system achieved a time resolution of T0 =12 s and a spatial resolution of ∆xy = 60 m for

horizontal scans.

In realistic lidar set-ups, it is hardly ever possible to perform zero-elevation coplanar

scans: hard targets such as houses, trees or even transmission towers can block the beam

path. The former can often be avoided using a small elevation, which leads to slightly
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3. Dual-Doppler Lidar: Measurements and Simulations for Coherent Structure Detection

tilted lidar planes. The consequences, as well as error contributions from angles, random

noise, time undersampling etc. are discussed in Chap. 4, where an optimization scheme

is developed for error reduction.

44



4. Errors in Dual-Doppler Lidar Measurements

The following error analysis of dual-Doppler lidar measurements, as well as the asso-

ciated appendix chapter (App. A), are an excerpt from the publication

Stawiarski, Träumner, Knigge, and Calhoun, 2013: Scopes and Challenges of Dual-

Doppler Lidar Wind Measurements - An Error Analysis. J. Atmos. Ocean. Tech., 30(9),
2044-2062. c©2013 American Meteorological Society. Used with permission.

4.1. Error Sources in Dual-Doppler Lidar Measurements

The usage of dual-Doppler system accounts for several errors. In this section, we discuss

the errors listed in Tab. 4.1 and their relative influence for the different scan types of

Chap. 3.1.3. App. A contains the detailed error propagation of single lidar errors to

dual-Doppler results.

As a convention, we write 〈ξ 〉n for the nth moment of any variable ξ , i.e. 〈ξ 〉1 is the

expectation value and 〈ξ 〉2 the variance.

4.1.1. Single Lidar Random Errors

The measured radial velocity of a Doppler lidar is typically described as follows (Frehlich,

2001; Davies et al., 2005):

rvM
i (R0, t) = rvi(R0, t)+ εi(R0, t)+brv

i (R0, t) [4.1]

for a range gate centered around R0. brv
i (R0, t) is a systematic error with the assumptions

〈|brv
i |〉1 = |biasrv,est

i |, and 〈biasrv
i 〉2 = 0 and εi(R0, t) is a random error with 〈εi〉1 = 0 and

〈εi〉2 = σ
rv,rnd
i (see Tab. 4.1 for sources).

For the error analysis of the single lidar systems, measurements against the 200 m tower

(Barthlott et al., 2003) at KIT, Campus North, were performed. Both data sets were

obtained when the lidar systems first became operational, i.e. for ‘WindTracer 1’ (2 µm)

from January 19 to 24, 2005 and for ‘WindTracer 2’ (1.6 µm, cf. Tab. 3.1) from January
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4. Errors in Dual-Doppler Lidar Measurements

Error Symbol Source

Single Lidar Errors

Single lidar uncorrelated

noise (random error)

σ
rv,rnd
i Random measurement inaccuracy due to

speckle effect, detector noise

(Frehlich, 2001).

Single lidar bias

(systematic error)

biasrv,est
i Measurement bias due to frequency drift of

the laser, nonlinear amplifiers, digitization

errors, non-ideal noise statistics

(Frehlich et al., 1994).

Direction errors σ
az
i , σ el

i ,

biasaz
i ,

biasel
i

The azimuth and elevation angles are

slightly imprecise, due to an imperfect ad-

justment of the lidar systems and/or the

moving of the scanner.

Derived Single Lidar

Errors

In-plane error σ
rv,ip
i ,

biasrv,ip
i

Direction errors, projected on lidar plane,

lead to line-of-sight velocity estimation er-

rors.

Out-of-Plane error σ
rv,oop
i ,

biasrv,oop
i

Direction errors perpendicular to lidar plane

lead to errors in rv that scale with perpen-

dicular wind speed.

Dual Lidar Errors

Single Lidar Propagated

Error

σ
single
DD ,

biassingle
DD

Propagation of single lidar errors to dual-

Doppler result.

Time Averaging Error σT
DD Data from both lidars is not synchronous or

does not cover full/same retrieval time.

Volume Error σV
DD Both lidar beams cover different/large vol-

umes of air, due to scan/beam separa-

tion/beam direction.

Table 4.1.: Overview of the occurring errors in dual-Doppler lidar measurements
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Figure 4.1: Uncorrelated noise

of the two KIT lidar systems as

a function of signal-to-noise ra-

tio. At the top, the results for

‘WindTracer 1’ and at the bot-

tom, the results for ‘WindTracer

2’ are shown. Light and dark

gray dots denote 10 Hz and 1 Hz

measurement frequency, respec-

tively. The black dots and er-

ror bars are SNR bin means and

standard deviations. The dashed

lines are linear fits to the bin

means.
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26 to 31, 2011. The laser beams were arranged in a way that the centers of the 10th

range gates were located near sonic anemometers located in 100 m and 200 m height at

the tower.

The local morphology shows low-rise buildings in the first 1.5 km along the laser beam

and a forest area behind. During the test measurements in 2005 a 50 pulse average was

applied (resulting in a measurement rate of 10 Hz), during 2011 a 75 pulse average was

used from 24 to 27 January (10 Hz measurement rate) and a 750 pulse average afterwards

(1 Hz measurement rate).

To evaluate the systematic error the line-of-sight velocity measured by the lidar was

compared with the line-of-sight projection of the wind vector measured by the sonic

anemometer. However, the bias between the two measured wind velocities depends

strongly on the wind direction, i.e. there seem to be strong effects by the tower which

render the used method inapplicable. From the unperturbed areas we derive biasrv,est
i ≤

0.2 m/s, i = (1,2).
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4. Errors in Dual-Doppler Lidar Measurements

To estimate the uncorrelated noise, the technique based on the difference between lag

zero and and lag one of the autocorrelation function was used (Lenschow et al., 2000).

This procedure leads to a slight overestimation of the uncorrelated noise but is more

robust than fitting techniques or the use of the spectra. The autocorrelation function was

calculated for 30 min time intervals. Fig. 4.1 shows the results for both lidar systems.

The used SNR has a 6 MHz bandwidth. A strong increase in the uncorrelated noise is

visible at around -2 dB for the ‘WindTracer 1’ and ‘WindTracer 2’ when averaging 50

and 75 pulses, respectively. If 750 pulses were averaged the noise increases at about -8

dB. For SNR higher than the given thresholds, the uncorrelated noise σ
rv,rnd
i is below

0.2 m/s.

4.1.2. Single Lidar Direction Error

Systematic direction errors occur if the lidar systems are not set-up properly. We mostly

estimate that the azimuth and elevation direction are precise up to a bias of about 0.2◦,

denoted here as biasaz/el
i . The scanner is aligned by detecting hard-target backscatter

signals from far-away objects, and estimates of the biases can be derived from known

accuracies of lidar and object positions and the statistical accuracy of the scanner. Mea-

surements using repeated scanner movements to this alignment position show that the

scanner does not accumulate further bias when scanning, and that the statistical errors

σ
az/el
i in both angular directions are smaller than 0.1◦.

Depending on the measurement, the movement of the scanner during the velocity es-

timation can be seen as either a desired feature, or an additional source for statistical

errors. For a sampling frequency of 10 Hz and a scan velocity of 5◦ per second, the

angle is never better located than 0.5◦, which corresponds to a spatial interval of about

17 m in a distance of 2 km. Some scan patterns make it necessary to tilt the lidar beam

away from the desired direction, e.g. to avoid obstacles. Both tilted and inaccurate lidar

beams lead to faulty velocity estimations, since even if the LOS velocity estimator were

free of errors, an incorrect wind field component is sampled. To estimate the magnitude

of these errors, we define an evaluation plane as the plane in which we want to retrieve

the two-dimensional wind field, regardless of the actual lidar plane. The radial velocities

in the evaluation plane are then perturbed by statistical errors and biases due to instru-

ment errors and beam tilt in or away from this evaluation plane.
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4.1. Error Sources in Dual-Doppler Lidar Measurements

For convenience, the angular errors are split into two parts, the in-plane and out-of-plane

error. This splitting is advisable, since the in-plane errors scale with the in-plane wind

velocity, which can be retrieved from measurement data, whereas the out-of-plane er-

rors scale with the plane-normal part of the wind vector, and therefore their estimation

requires additional measurements with other equipment (cf. App. A).

Using this, the errors in Eq. 4.1 become

(σ rv
i )2 =

(
σ

rv,rnd
i

)2
+
(

σ
rv,ip
i

)2
+
(
σ

rv,oop
i

)2
+ cov(ip,oop) [4.2]

and

|biasrv
i |=

∣∣biasrv,est
i

∣∣+ ∣∣∣biasrv,ip
i

∣∣∣+ ∣∣biasrv,oop
i

∣∣ . [4.3]

In App. A, formulae for the statistical errors and biases are derived. They are functions

of the wind speed (in-plane and out-of-plane), wind direction, plane orientation and an-

gle between lidar beams. The symbols for these parameters are introduced in Chap. 3.1.3

and summarized in Fig. 3.3.

To estimate the magnitude of the in-plane error, we consider as an example the configu-

ration of a ground-parallel plane, k̂× n̂n = 0, with γz ∈ {0◦,180◦}, and el1 = el2 = 0. In

App. A, the upper bounds of the variance and bias were derived:(
σ

rv,ip
i

)2
= u2

H sin2
(

α j∓
∆χ

2
− γuH

)
(σaz

i )2

≤ u2
H (σaz

i )2 [4.4a]∣∣∣biasrv,ip
i

∣∣∣= |uH |
∣∣∣∣sin

(
α j∓

∆χ

2
− γuH

)∣∣∣∣ |biasaz
i |

≤ |uH | |biasaz
i | . [4.4b]

For a wind speed of uH = 5 m/s and the direction error estimations above, the statistical

error therefore has an upper bound of 0.01 m/s and the bias has an upper bound of

0.02 m/s. Both are one order of magnitude smaller than the statistical error in rv due

to instrument noise and can thus be neglected. However, the in-plane errors becomes

relevant if higher wind speeds, in-plane angular biases or statistical errors occur.

The out-of-plane error is the counterpart to the in-plane error and arises if the desired

lidar plane is not the actual retrieval plane given by the span of the two lidar beams. This
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occurs if one of the lidar beams is tilted slightly away from the plane, which leads to an

undesired contribution of the perpendicular wind component. The results are given in

the App. A. Analogous to the in-plane case, we give an example for a a horizontal planar

scan:

(
σ

rv,oop
i

)2
= w2

(
σ

el
i

)2
[4.5a]∣∣biasrv,oop

i

∣∣= |w| ∣∣∣biasel
i

∣∣∣ . [4.5b]

Since 〈w〉 is approximately zero (depending on the measurement time scale), a hori-

zontal planar measurement is only influenced by an additional statistical variance which

scales with w2. According to Kaimal and Finnigan (1994), the vertical wind velocity

standard deviation in the surface layer follows Monin-Obukhov similarity with

φw =

√
w′2

u∗
, [4.6a]

φw =

{
1.25(1+3|z/L|)1/3,−2≤ z/L≤ 0

1.25(1+0.2|z/L|) , 0≤ z/L≤ 1
, [4.6b]

with u∗ the friction velocity and L the Obukhov length. The horizontal planar scans in the

JU2003 study (Newsom et al., 2008) used elevations of 0.5◦ and 1.2◦, and the stability

conditions lead to out-of-plane error contributions of σ rv,oop = 0.01 m/s to 0.05 m/s,

which is small compared to the random instrument error. The out-of-plane error should

be computed nevertheless for every scan to assure its negligibility, since it depends on

atmospheric conditions. The covariance between the in-plane and the out-of-plane error,

cov(ip,oop), is zero for the given example (cf. App. A). This contribution to the error

becomes only relevant for evaluation planes which lie neither parallel nor perpendicular

to the ground.

4.1.3. Dual Lidar Propagation Errors

In the most general case, we are interested in the wind field component u j = ê j ·u in a

certain direction ê j in the evaluation plane. The errors of the individual lidar instruments

50



4.1. Error Sources in Dual-Doppler Lidar Measurements

Figure 4.2: Logarithm of error-

magnifying pre-factor of Eq. 4.8,

i.e. log((sin2(α j +
∆χ

2 ) + sin2(α j −
∆χ

2 ))1/2/|sin(∆χ)|) , as a function

of the angle ∆χ between lidar beams

and the angle α j between the desired

retrieved wind component direction ei

and the mean lidar beam direction. The

pre-factor diverges in the black areas.
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will sum according to Eqs. 4.2 and 4.3. The total errors propagate to the retrieved u j (see

Eq. 3.15), using Gaussian error propagation (Hill et al., 2010):

(
σ

single
DD (u j)

)2
=

(
∂u j

∂ rv1
σ

rv
1

)2

+

(
∂u j

∂ rv2
σ

rv
2

)2

=
sin2(α j +

∆χ

2 )

sin2(∆χ)
(σ rv

1 )2 +
sin2(α j− ∆χ

2 )

sin2(∆χ)
(σ rv

2 )2 . [4.7]

Using the simplification σ rv
1 =σ rv

2 =σ rv , which holds for identically constructed Doppler

lidar systems, this simplifies to

(
σ

single
DD (u j)

)2
=

sin2(α j +
∆χ

2 )+ sin2(α j− ∆χ

2 )

sin2(∆χ)
(σ rv)2 . [4.8]

The pre-factor in Eq. 4.8 is illustrated in Fig. 4.2. While it is obvious that collinear

beams can only resolve the wind direction in which they both point, it should be noted

that a twenty degree angle ∆χ between the lidar beams will still lead to four times

the single radial velocity error for a wind field direction orthogonal to the lidar beams

(α j = 90◦). Only very few angular combinations can lead to a decrease in error (white

regions in Fig. 4.2). The best achievable result for one wind field component is an error

halving, but it is accompanied by a high error increase in the orthogonal component.

An optimal result for two orthogonal wind field components is given for a ninety-degree

angle between lidar beams, in this case the factor for both components is one.
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Figure 4.3: Logarithm of the error-

magnifying factor, log(1/|sin(∆χ)|),
for two lidars positioned at (x,y) =

(1,0) and (−1,0). The pre-factor di-

verges in the black areas.

For two perpendicular velocity components, we find that(
σ

single
DD (u)

)2
+
(

σ
single
DD (v)

)2
=

(σ rv
1 )2 +(σ rv

2 )2

sin2(∆χ)
, [4.9]

which also holds for σ rv
1 6= σ rv

2 . This is equivalent to the results for the dual-Doppler

radar application in Davies-Jones (1979). The crucial pre-factor 1/|sin(∆χ)| is mapped

in Fig. 4.3. We find that this pre-factor can lead to extremely high errors on the retrieval

results. Fig. 4.3 can help to plan scan patterns where the expected errors on the retrieval

results are reasonably small. App. A shows that the propagated bias also scales with this

pre-factor

It is important to note that planar scan patterns, which use N > 1 velocity estimates per

lidar for one grid cell retrieval, exhibit a reduced statistical variance by the factor N/2

compared to the intersecting beam case. This is due to the higher statistical certainty

(Bronstein et al., 2001).

4.1.4. Dual Lidar Time Averaging Error

Time averaging errors are defined as errors that occur if both lidars do not provide data

at the same time interval, or not for the full time interval of one retrieval.

For measurements in dual-Doppler mode with high time resolution (cf. Chap. 3.1.3) it

is recommended that the time standard does not differ between the two instruments,

i.e. the system clocks have to be synchronized. Time shifts become a problem when
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Figure 4.4: rv time series during a sec-

tor PPI scan performed with ‘Wind-

Tracer 2’ on 24 Sep, 2011 in Hatzen-

bühl, Germany. The depicted data

shows rv as a function of the azimuth

angle az during three consecutive scans

of the angle sector (1st scan: black,

2nd scan: dark gray, 3rd scan: light

gray). The scan was performed with

T0 = 10.5 s, ∆p = 30 m and a constant

elevation of 2◦.
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regarding turbulence, and the correlation terms between the two measured radial wind

velocities become apparent. The importance of synchronization errors in the intersect-

ing beam case decreases if the time interval considered becomes longer. In the planar

scan method (Chap. 3.1.3), where data is aggregated in one grid cell during time T0,

synchronization is much less crucial. However, in this method appears a different time

averaging error: the temporal undersampling error.

During the time interval T0 (cf. Chap. 3.3), each lidar beam passes a grid cell only once

for synchronized systems, and the velocity estimates recorded are supposed to represent

the complete time interval. The temporal undersampling error arises because of the de-

viation of the T0-mean of the measured radial velocities from the desired T0-mean. Since

we do not have continuous wind speed measurements in the grid cells, we measure the

fluctuation by the change in rv in each range gate and each angle from one beam sweep

to the next.

Fig. 4.4 shows the time series of three range gates for three consecutive sweeps as a

function of the azimuth angle (elevation was kept at 2◦). The data was recorded with

‘WindTracer 2’ on Sep 24, 2011. It is obvious that the contribution of small scale pro-

cesses leads to variations of the radial wind velocity and thus considerable time under-

sampling errors in the grid cells. Indeed, the average over all absolute rv-changes is

0.35 m/s for these three sweeps, which makes it the highest error contribution to planar

scans.

In Chap. 4.2, we will investigate the dependence of this error on the mean wind and the
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4. Errors in Dual-Doppler Lidar Measurements

range gate length, and develop a method to decrease it.

4.1.5. Dual Lidar Volume Error

Volume errors arise because radial velocity estimates used for retrievals are always aver-

ages over a certain volume of air, which is not the same volume for both lidars or not an

average over the desired volume. In situations with strong tilt or strong shear this may

become a problem for the dual-Doppler application, because the velocity field changes

quickly and the volumes of the two lidars see may contain different turbulent structures.

In many dual-Doppler scan scenarios there are displacements between the range gate

centers whose radial velocities are used for retrieval. These may arise from non-perfect

synchronization but also to avoid hard targets, as discussed in Chap. 3.3. Often the wind

field is considered horizontally homogeneous (Stull, 1988), i.e. we can neglect effects

due to horizontal shifts. To estimate the effects in the vertical, the current wind pro-

file may give a reference point. In general, we assume the displacement effect to be

negligible if the beam displacement is much smaller than the range gate length, so that

turbulence structures of the displacement scale can be assumed to average out. The error

cannot be quantified without additional measurements.

For intersecting beams, the inherent spatial averaging property of the lidar becomes

the source of a volume error: While the desired retrieval result is the wind field at the

beam intersection point, the range gates stretch much further. This deviation from a

point measurement can be estimated by the velocity fluctuations inside the range gate.

Frehlich (1997) finds that, for homogeneous and isotropic flow and the Kolmogorov

model structure function, these fluctuations are given by

(
σ

V
i
)2

=
9

40
Cv ε

2/3(∆p)2/3 [4.10]

where Cv ≈ 2 is the Kolmogorov constant and ε the dissipation rate, leading to σV ≈
0.3 m/s for ε = 10−3 m2/s3 and ∆p= 100 m. The influence of this error is most important

for high time resolutions, whereas it can become negligible if the time scale is long

enough to average out all scales up to the range gate length. Even though the spatial
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4.1. Error Sources in Dual-Doppler Lidar Measurements

averaging does not lead to a bias in the velocity estimation, the suppression of the small

scales in the turbulence spectra means that momentum fluxes and variances computed

from lidar measurements will usually underestimate the real value (Mann et al., 2010).

In contrast, the spatial average contained in the velocity estimates is a desired feature of

planar scans. Here, the intended result is, for each grid point, to measure the wind speed

in the evaluation plane, averaged over the grid cell with radius R = ∆p/
√

2 and averaged

over the time interval T0. Volume errors arise from uneven line averaging weights inside

and non-zero weights outside of the grid cells.

In the retrieval method in Chap. 3.3, data from both lidars is aggregated and evaluated

at the same time. Note that this method is similar to first producing one average radial

velocity for each lidar with the help of weights gn, and subsequently minimizing Eq. 3.23

with only these two mean radial velocity entries. We will take this point of view here to

simplify the error analysis.

The grid cell mean radial velocity from one lidar is the result of spatial averaging of

the real radial velocity field in and around the grid cell centered at xc with a weighting

function W (x;xc).

If a range gate center transverses the grid cell during scanning, each velocity estimate is

a product of the radial averaging process given by Eq. 3.5. This implies that velocities

outside the grid cell are taken into account. This effect intensifies if the overlap the lidar

beam has with the grid cell decreases. Therefore, individual weights gn are chosen as

the length of the lidar beam line segment that lies within the circle of radius R: gn =

2(R2− s2
x;xc)

1
2 (cf. Fig. 4.5).

For a grid cell with center xc, which is passed through by a range gate center in an

approximately straight line at distance D from the center, the overall weight function at

point x in the plane is then given by

W (x;xc) =

 W∆p(rx;xc) ·gn(sx;xc) ,
sx;xc√
R2−D2

≤ 1

0 ,
sx;xc√
R2−D2

> 1
[4.11]

with the single lidar weighting function W∆p as given in Eq. 3.6.
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beam Figure 4.5: Modeled weighting of

data at grid cell point x. The lidar

range gate center moves through the

cell along the dotted line, at a displace-

ment D from the grid cell center. The

weights have a radial part depending on

rx,xc and a cross-radial part depending

on sx,xc , where rx,xc is the displacement

from the center in beam direction and

sx,xc is the displacement in cross-beam

direction (see text).

W is furthermore a function of R, ∆p and D. rx;xc is defined as the distance of x from the

range gate center in lidar beam direction r̂i, whereas sx;xc is the corresponding distance

in direction perpendicular to the lidar beam as shown in Fig. 4.5:

rx;xc = (x− (xc +D r̂i)) · r̂i [4.12a]

sx;xc = |(x−xc)× r̂i| . [4.12b]

For comparison with the ideal weighting function, W must be normalized:

Wn(x;xc) =W (x;xc)/
∫

cell

d2xW (x;xc) . [4.13]

The ideal weighting function for the velocity estimate of a grid cell is W0(x;xc),

W0(x;xc) =

{
1/(πR2) , |x−xc| ≤ R

0 , |x−xc|> R
, [4.14]

which is a solely function of R. The influence of the spatial averaging error can therefore

be estimated as

(
σ

V,sa
DD

)2
=

∫
cell

d2x(Wn(x;xc)−W0(x;xc)) rv(x)

2

[4.15]

where rv(x) is the real radial wind velocity.

To estimate this error, we produce random test fields with normal distribution centered

around means of−20 m/s to 20 m/s, and with standard deviations of 0.5 m/s to 5.5 m/s.
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Figure 4.6: The mean error in radial

velocity estimation in one grid cell due

to non-optimal weighting.
20 40 60 80 100 120 140

0.05

0.1

0.15

0.2

0.25

0.3

Δ p [m]
sp

at
ia

lr
v

er
ro

r[
m

/s
]

Using these, W and W0 were computed for range gate lengths between 30 m and 140 m

and randomly distributed distances D = 0.05 R to D = 0.95 R, with R = ∆p/
√

2 and

στ = 300 ns. Fig. 4.6 shows the maximum value of σ
V,sa
DD for all test wind fields as

a function of ∆p. It is obvious that the volume error increases, i.e. the real weighting

function exhibits stronger deviations from the desired averaging, for smaller range gates.

This is a result of the beam weighting function W∆p approaching the Gaussian pulse

envelope for range gate lengths much smaller than the pulse width στc. This leads to

non-negligible contributions from outside the cell and to an uneven weighting of data

inside the cell.

The spatial error contribution is still on the order of the random error in the realms of

realistic range gate lengths. For shorter range gate lengths it is advisable to choose the

grid cell radius R larger to achieve a smaller spatial averaging error.

4.1.6. Summary

The relevant error processes are threefold: (i) the single lidar errors, i.e. the lidar ran-

dom error and the in-plane and out-of-plane error, which influence every line-of-sight

velocity estimate, and (ii) the spatial and (iii) temporal averaging errors, which arise

from inaccurate spatial and temporal averaging depending on time- and length scales of

the scan.

During planar scans, the single lidar errors are often negligible since the number of sam-

ples N which are used for one retrieval leads to a decrease in the standard deviations by
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the factor 1/
√

N. The dominant errors contributions here come from the time and spatial

averaging errors, although the latter only becomes important for very small ∆p.

On the other hand, the intersecting beam case is dominated by propagated single lidar

errors and spatial averaging errors. The latter arise because the averaging volume for

each velocity estimate is much larger than beam intersection volume. Time averaging

errors can also become important if the lidars are not properly synchronized.

All errors have to be propagated to the retrieval result in the lidar plane using Eq. 4.8 with

the appropriate value for ∆χ for each grid cell or intersection point. Figs. 4.2 and 4.3 can

be used to estimate the error magnification for certain retrieved wind field components

in the lidar overlap area. Scan patterns should be planned accordingly.

4.2. Optimization of Horizontal Scan Patterns

Chap. 4.1.4 showed that the dominant error process in planar scans is the undersampling

of the radial velocity inside each grid cell during the time interval T0, i.e., the few ve-

locity estimates in each grid cell cannot reliably reproduce the mean velocity. Indeed,

for Gaussian random variable with mean µ and variance σ2, the mean computed from

N samples will be Gaussian as well, with mean µ and a variance of σ2/N (Bronstein

et al., 2001). It is not possible to significantly increase the number of rv samples in the

grid cells, since the time during which the velocity is sampled in one grid cell always

remains only a small fraction of T0. Consequently, we have to decrease the variance

of the radial velocities in the T0-interval. To do so, we assume a cartesian grid cover-

ing the evaluation plane with a lattice constant of ∆l = ∆p for highest possible spatial

resolution, and accordingly a radius of influence of R = ∆p/
√

2 (cf. Chap. 3.3). By

Taylor’s hypothesis the turbulence elements can be regarded to be frozen in space and

advected with the mean wind. The characteristic length scale of the measurement is the

distance the wind field is transported in T0: λ = u ·T0, where u is the mean wind velocity.

If λ � ∆p, major turbulence elements will not be averaged out by the lidar averaging

process, which only covers scales up to ∆p. Therefore the wind speed variance of those

elements will be visible in the rv time series. On the other hand, if λ � ∆p the variance

will be small, because all turbulence elements of the scale λ are averaged out by the ra-

dial velocity measurement process. We can therefore minimize the time sampling error
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by minimizing T0 (and consequently the length scale λ ) with respect to ∆p.

As a cutoff, we demand

First Optimization Condition: Small Sampling Error

T0 ·u≤ ∆p . [4.16]

A very high angular scan velocity could therefore theoretically solve this time sampling

problem, if it were not connected with decreasing data density: If we attempt to cover

an area with maximum distance d from the lidar, the distance between two consecutive

velocity estimates in the outermost range gate centers must still be smaller or equal to

∆l = ∆p, to ensure at least one velocity estimate from each lidar in each grid cell. For a

fixed measurement frequency f and the full angle β covered in T0 (i.e., twice the angle

sector for a back-and-forth sweep scan), this can be summed up in the

Second Optimization Condition: Sufficient Data Density

T0 ·∆p≥Cs with Cs =
2πβd
f 360◦

. [4.17]

A dual-Doppler lidar scan pattern is optimized if T0 and ∆p are chosen from all pa-

rameter pairs that fulfill both conditions in a way that minimizes ∆p. From the above

equations we deduce the optimized values, keeping in mind that ∆p has an effective

lower bound of ∆pmin =
√

log2στc, which is the full width at half maximum for the

spatial pulse envelope In (Eq. 3.8):

Ideal Scan Parameters

If
√

uCs ≥ ∆pmin : ∆popt =
√

uCs

T0opt =
√

Cs/u

If
√

uCs < ∆pmin : ∆popt = ∆pmin

T0opt = Cs/∆pmin

[4.18]

In the following, we will demonstrate the effect of optimization on the time sampling

error.
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4.2.1. Lidar Data Results

Lidar measurements were performed by the KIT ‘WindTracer 2’ with a wavelength of

λ = 1.6 µm (cf. Chap. 3.1.2). We used 75 pulses to average for each velocity estimate,

which means a measurement frequency of 10 Hz. Data was recorded on 8 days in fall

2011 and spring 2012, on which the lidar was positioned on farmland in Hatzenbühl,

Germany. The scanning area mainly covered fields with different crops, interspersed

with few bushes and trees, therefore an elevation of two or three degrees had to be used.

The scanned area spans an azimuthal range of around 100◦ around the west/northwest

direction. Additional wind speed data was retrieved as 10 min averages from a 20 m-

tower anemometer, located approximately 10 m next to the lidar. This measured wind

speed can be seen as representative for the mean wind speed in the scanning area over

this mostly homogeneous terrain.

We define T0 as the full back-and-forth scan time. Since T0 and ∆p were kept relatively

constant for all measurements while the mean wind u varied, we introduce the relative

optimization parameters:

fp = ∆p/∆popt , [4.19a]

fT = T0/T0opt . [4.19b]

The optimization conditions Eqs. 4.16 and 4.17 can then be summarized as

fT ≤ fp , [4.20a]

fT ≥ 1/ fp . [4.20b]

and the optimal parameters are reached for fT = fp = 1.1

For the analysis, all lidar data was cut into time slices of 3 minutes during which u can

be seen as constant. Velocity estimates with low SNR were rejected. The variability in

each grid cell was computed as the mean absolute velocity change from one sweep to

the next, the grid cell variability of the complete 3 minute time slice is the average over

the results in all grid cells. The final results are shown in Fig. 4.7. An inset in the figure

shows an error histogram for all data inside the optimization region (i.e., data points with

fp ≥ 1 which lie in between the two curves).
1Eq. 4.20a is valid only when

√
Csu≤ ∆pmin. Otherwise, it should read fT ≤ fp ·∆p2

opt/(Csu).

60



4.2. Optimization of Horizontal Scan Patterns

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

f
p

= Δp/Δp
opt

f T
=

T
0
/T

0
,o

p
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m/s

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

3 min mean rv variation in grid cell [m/s]

nu
m

be
ro

fi
nc

id
en

ts

Figure 4.7.: Time undersampling error: Mean radial velocity changes in ‘WindTracer 1’ lidar data from

one sweep to the next, averaged over all grid cells of the ∆p-spaced grid and three minutes, as a function

of the relative optimization parameters fT and fp. u was taken from nearby tower measurements in height

of 20 m. The curves denote borders of the optimization region. The inset shows a histogram of the errors

for parameter pairs in the optimized region.

In general, the computed errors show the same qualitative behavior as those retrieved

from lidar simulations, and it is clearly visible that optimizing the scan parameters leads

to the desired error reductions. For the present lidar, an average time undersampling

error in the optimized region would be about 0.25 m/s.

In application, the real time undersampling error can always be computed from the

present data, and overview plots like Fig. 4.7 can help in adjusting an optimized scan

pattern to the desired error limits.

For highly synchronized dual-Doppler systems, data from one lidar scan are sufficient

for the retrieval, which means halving T0 and β in Eqs. 4.16 and 4.17 (cf. Chap. 3.3).

We see from Eq. 4.18, that this leads to a reduction of the optimized range gate length

and time constant each by a factor
√

2, and therefore a much better spatial and temporal
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resolution in the realms of ∆popt > ∆pmin. For such applications, a synchronous control

system as described in Chap. 3.1.2 is necessary.
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In this chapter, the large-eddy simulation data sets are described which are the basis for

the virtual dual-Doppler lidar measurements, including the boundary conditions used

in the PALM model (cf. Chap. 3.2.2). Furthermore, the parameters for simulation and

retrieval of the dual lidar data are discussed, followed by a quality analysis of the virtual

measurements based on the error discussion in Chap. 4.

The LES were provided by Dr. Christoph Knigge and Carolin Helmke, PALM group,

Institute of Meteorology and Climatology at Leibniz Universität Hannover.

5.1. Large-Eddy Simulation Data

The analyses of Chaps. 7 and 6 are based on four 30 min data sets of LES data, generated

by the PALM model. The main difference between the four data sets is the pre-defined

geostrophic wind of {0 m/s, 5 m/s, 10 m/s, 15 m/s} in x-direction, respectively. All

simulations were computed on a grid of 5 km length in each direction, with a resolution

of ∆x = ∆y = ∆z = 10 m below z = 1800 m, and a slightly larger ∆z for higher z. The

time resolution was 1 s. All simulations were carried out for dry atmospheres over a

flat surface and driven by a constant kinematic heat flux w′θ ′s at the surface and the

geostrophic wind. In all simulations with background wind the kinematic surface heat

flux was 0.03 K m/s. In the calm situation it was set to 0.23 K m/s to induce strong

convection. All simulations started with a pre-defined vertical potential temperature

profile indicating a stable boundary layer, with a lapse rate of dθ/dz = 0.08 K/m below

z = 1200 m and dθ/dz = 0.74 K/m above. The time interval of the data output followed

the simulation spin-up, consisting of a 1D-model pre-run (except in the calm situation)

and one hour of 3D-simulation. In this simulation random impulses of 0.25 m/s ampli-

tude were imposed on the wind field in 100 s intervals to initiate turbulence despite the

flat boundary. The top and bottom boundary conditions for the atmospheric variables

are summarized in Tab. 5.1. Laterally, periodic boundary conditions were applied for
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Variable Bottom Boundary Top Boundary

Pressure ∂ p
∂ z = 0 hPa/m p = 0 hPa

Horizontal Wind u = v = 0 m/s u = uG, v = vG

Vertical Wind w = 0 m/s w = 0 m/s

Potential Temperature ∂θ

∂ z = 0 K/m ∂θ

∂ z = ∂θ

∂ z initial

TKE ∂e
∂ z = 0 m/s2 ∂e

∂ z = 0 m/s2

Table 5.1.: Top and bottom boundary conditions of atmospheric variables in the simulated boundary

layers.

all variables. Furthermore, a Prandtl-layer was assumed between the roughness length

z0 = 0.15 m (corresponding to a vegetation of hedges and few trees, cf. Stull, 1988) and

the first grid points at 5 m height. The integration of the governing equations was carried

out using the numerical schemes described in Chap. 3.2.2.

Note that, in the LES, u is the wind field component aligned with the geostrophic wind,

and v is the corresponding perpendicular component. Only after simulation and retrieval

the wind fields at evaluation height were rotated in the mean wind direction for further

evaluation (cf. Eq. 5.1).

The data output consisted of the three-dimensional wind field with 1 s time resolution,

as well as 10 min averages of temperature and flux profiles. The boundary layer height

was computed from the height at the minimum of the vertical heat flux (Deardorff et al.,

1980) as well as from the bottom of the lowest temperature inversion (Kaimal et al.,

1976). From the profiles, the friction velocity u∗ and convective velocity w∗ were com-

puted with Eq.2.2, using the flux time and spatial averages at the lowest grid points (cf.

Tab. 5.2) and zi(w′θ ′).

uG [m/s] u∗ [m/s] w∗ [m/s] L∗ [m] zi (θ ) [m] zi (w′θ ′) [m] −zi/L∗ stability

0 0.04 2.09 -0.02 1330 1208 57000 very unstable

5 0.32 0.84 -80 1142 602 7.2 very unstable

10 0.51 0.85 -330 1114 613 1.9 unstable

15 0.68 0.87 -778 1152 665 0.8 unstable

Table 5.2.: Atmospheric scaling Parameters in the LES data sets.
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Figure 5.1.: Profiles of the potential temperature θ (left), the kinematic sensible vertical heat flux w′θ ′

(center), and the mean wind u (right) for the four LES data sets (darker blue means higher uG). w′θ ′

includes the heat flux on the sub-grid scale.

The resulting Obukhov-length L∗ (Eq. 2.3) and the stability parameter −zi/L∗ indicate

unstable stratification for all simulated boundary layers.1 This result agrees with the

lapse rate of the temperature profiles in Fig. 5.1. This figure also shows the profiles of the

kinematic sensible heat flux and mean wind throughout the simulated boundary layers.

In comparison with the stability regimes of earlier studies (cf. Chap. 2), the development

of streaks can expected here for uG > 0, whereas the simulation with uG = 0 has ideal

conditions for the development of hexagonal convective structures.

To obtain reliable results from the LES independent of the subgrid-scale model, it must

be ensured that the resolved-scale energy (EGS) is much larger than the subgrid-scale

energy (ESGS). The intended virtual lidar measurements (see below) evaluate the LES

at 10 m height. Fig. 5.2 shows that the average TKE profiles yield a ratio (EGS +

ESGS)/EGS between three and ten, which shows that a this height, the LES are only

just reliable. It should be noted that Maronga (2013) discussed that the LES is not ac-

curate in the lowest six resolved layers. However, the goal of this work is to assess the

performance of dual-Doppler lidar measurements in coherent structure detection. For

this study, it is sufficient that the LES used for comparison exhibit structures compara-

ble to those detected in real surface layers. The present LES are the best approximations

of virtual boundary layers that could be obtained with manageable computational cost

1Although it is disputable considering the profiles in Fig. 5.1 which method for boundary layer height

estimation should be favored, the choice has no effect on L∗ and the overall stability classification.
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Figure 5.2.: Mean profiles of grid scale (EGS) and sub-grid scale (ESGS) turbulent kinetic energies in the

LES data sets (left), as well as the relation of full TKE, E = EGS+ESGS, to the sub-grid scale TKE. Darker

shades correspond to higher uG.

for simulation and retrieval.

5.2. Single Lidar Simulations

For optimal dual-Doppler retrieval results, the virtual lidar measurements were per-

formed with the lidar simulation tool (Chap. 3.2.3) according to the error reduction tech-

nique developed in Chap. 4.2. The LES data sets covered a horizontal area of 5000 m

by 5000 m, in which the lidars were positioned at (x1, y1, z1) = (5000 m, 2500 m, 10 m)

and (x2, y2, z2) = (2500 m, 0 m, 10 m), respectively (cf. Fig. 5.3). Each lidar scanned at

a constant elevation of 0◦. The azimuth sectors spanned 90◦ each, i.e. az1 = 315◦−45◦

and az2 = 225◦− 315◦. Fig. 5.3 shows that the overlap region is chosen such that the

lidar beams are almost perpendicular in the center and the error multiplying pre-factor

(Eq. 4.9 and Fig. 4.3) is thus relatively small.

For realistic results, the lidar parameters were, wherever possible, chosen as those typi-

cal of the KIT Doppler lidars: measurements are performed with a frequency of 10 Hz

with 110 range gates, starting at an offset distance of 350 m from the lidars and up to

a maximal distance of 5520 m to cover the full data area. The pulse width was set to

300 nm and 370 nm for Lidar 1 and Lidar 2, respectively. The minimal range gate length

in the optimization algorithm (Eqs. 4.18) is set to 60 m, which is slightly smaller than

the pulse width, to allow for the highest possible resolution. From these parameters and
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5.3. Dual-Doppler Retrieval

Figure 5.3.: Horizontal scanning areas on the LES data sets for the first (left) and second (center) virtual

lidar. The right panel shows the overlap region with contour lines at constant lidar beam intersection

angles ∆χ [◦].

the wind speed at measurement height, the range gate lengths ∆p and the scanning time

T0 were derived via the optimization algorithm, as summarized in Tab. 5.3. The full

set of simulation parameters can be found in Tab. B.1. Since the lidar scans were syn-

chronized, i.e. the beams reach the turning points of the scan simultaneously , the beam

angle β = 90◦ and T0 equaled the duration of one sweep.

5.3. Dual-Doppler Retrieval

The dual lidar data were retrieved using the software described in Chap. 3.3. Owing

to synchronization, the retrieval was operated in ‘one sweep mode’, i.e. the horizontal

wind field was computed for time intervals with the length of one beam sweep. The

grid constant ∆xy was chosen as the range gate length ∆p which determines the highest

achievable resolution (even though the range gate center distance was smaller). The

uG [m/s] 0 5 10 15

Wind Speed at 10 m Level [m/s] 0.0 3.0 5.1 6.8

Range Gate Length ∆p [m] 60.0 60.0 66.0 76.8

Scan Time T0 [s] 14.6 14.6 13.1 11.4

Angular Scan Velocity ω0 [s−1] 6.2 6.2 6.9 7.9

Table 5.3.: Optimized lidar simulation parameters for the four LES data sets.
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Parameter uG = 0 m/s uG = 5 m/s uG = 10 m/s uG = 15 m/s

Time Constant T0 [s] 14.6 14.6 13.1 11.4

Grid Resolution ∆xy [m] 60.0 60.0 66.0 76.8

Grid Cell Radius R [m] 42.4 42.4 46.6 54.3

Table 5.4.: Retrieval parameters for the virtual dual lidar measurements in the four LES data sets.

grid cell radius of influence R was set to the smallest possible value, R = ∆xy/
√

2. The

retrieval parameters are summarized in Tab. 5.4.

The retrieval was performed on axes aligned with the Cartesian grid of the LES, and

consequently the wind field components ũ, ṽ were the projections of the wind vector on

the respective axes. After the retrieval, they were converted to the wind field component

in mean wind direction, uRET, and the associated component in crosswind direction,

vRET, and the fields were rotated to align the x-axis with the mean wind direction. The

mean wind used for this conversion was derived from the original LES data for better

comparison, with the mean wind direction and the crosswind direction unit vectors, ex

and ey, defined in the LES axes by

ex =
1√

〈ũ〉2 + 〈ṽ〉2

(
〈ũ〉
〈ṽ〉

)
, [5.1a]

ey =

(
0 −1

1 0

)
ex , [5.1b]

where ũ, ṽ are the time and spatial means of the original horizontal LES wind field com-

ponents at height 10 m.

5.4. LES Data Sets for Comparison

The original LES data are stored on a staggered grid (Fig. 3.4), where u and v are given at

5 m and 15 m height and w at 10 m height. For the comparative analysis in Chaps. 7 and

6, u and v had to be interpolated to the measurement height of 10 m using cubic splines

(Bronstein et al., 2001). Even though this method implies a certain amount of smoothing,

it outperforms linear or nearest-neighbor interpolation in capturing the strong curvature

of the wind profile this close to the ground. Additionally, u and v were interpolated to
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5.5. Quality of the Horizontal Wind Field Retrieval

the x- and y-axes of w to achieve an evaluation at the same grid points. Subsequently,

the fields were converted into streamwise and spanwise component. Additionally, they

were rotated in mean wind direction in the same manner as the retrieval fields and using

the same ex and ey (Eq. 5.1). All comparative LES results in the following chapters were

produced from these interpolated and rotated fields, uLES and vLES, unless specifically

stated otherwise.

To estimate the influence of the temporal averaging process involved in the dual-lidar

simulation and retrieval, the interpolated horizontal LES data were averaged over the

retrieval time intervals T0, resulting in a data set with full spatial LES resolution and a

time resolution of the retrieval. This data set is called the time averaged LES data set.

All analyses in the following chapters are applied to the retrieval data (abbreviated as

RET), the high-resolution LES data (LES) and the time-averaged LES data (LESAVG).

A comparison between the three data sets is shown in Fig. 5.4. The time-averaging has

only a small effect on the visible turbulence structures, whereas the dual-lidar retrieval

data show considerable spatial smoothing and a much less structured field.

5.5. Quality of the Horizontal Wind Field Retrieval

The errors in the virtual lidar measurements can be analyzed in the framework presented

in Chap. 4. The lidar simulator exhibits neither instrumental noise nor biases in the an-

gles or the velocity estimator. However, certain errors in the velocity estimation occur

since the LES grid data has to be interpolated to the virtual lidar beam. This error can be

treated as a random error on the velocity estimate, σ
rv,rnd
i . All other single lidar errors,

as listed in Tab. 4.1, are zero. Thus the single lidar propagated error results solely from

σ
rv,rnd
i . To limit the influence of this random noise, the retrieval area was reduced to

include only beam intersection angles ∆χ beween 30◦ and 150◦, thus limiting the error

magnifying factor to |sin(∆χ)|−1 ≤ 2 (Eq. 4.9 and Fig. 4.3).

Spatial and time averaging errors are as relevant in virtual lidar data as they are in real

measurements. The time averaging error was minimized by the optimized scan, how-

ever, the required data density limits the achievable accuracy. Its magnitude can be

estimated from Fig. 5.5, where the time sampling error was computed for the present

LES data sets around their respective optimization point: the change of mean radial ve-
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Figure 5.4.: Comparison of the wind-parallel field u from LES (top), LESAVG (center) and RET (bottom)

for uG = {0,5,10,15} m/s (left to right) at a random retrieval time step. The LES data shown correspond

to the center of the retrieval time interval. The axes are the original LES axes without rotation in the mean

wind direction. Note the difference in color scale between the columns.

locity in a grid cell from one sweep to the next, averaged over all grid cells, is 〈rv〉 =
{0.10, 0.12, 0.19, 0.25} m/s for uG = {0, 510, 15} m/s. Note that for uG = 0 m/s and

uG = 5 m/s the minimal range gate length determines the optimization, for uG = 0 m/s

the error limit curve is too steep to even be displayed. In general, the time undersampling

errors exhibit the expected variability with the range gate length and the time constant:

the error decreases with increasing ∆p and increases with increasing T0.

Fig. 5.6 shows a comparison between the retrieval and the time-averaged LES wind

fields. For the comparison, the time-averaged LES fields were interpolated linearly to
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Figure 5.5.: Virtual lidar time undersampling error as a function of range gate length ∆p and sweep

time T0 (relative to their optimized values) as derived from one back-and-forth sweep of Lidar 1 for

uG = {0, 5, 10, 15} m/s (left to right). 〈∆rv〉 is the absolute change of mean radial velocities in a grid

cell from one sweep to the next, averaged over all grid cells. The black lines denote the optimization

boundaries and ∆pmin. Optimized values are circled. Cf. Fig. 4.7 for real lidar data.

the retrieval axes. All errors are well described by a Gaussian distribution, the fit results

are shown in Tab. 5.5.

As expected, the standard deviation of u increases with the mean wind speed. The

increase is smaller in the crosswind component due to the shifting wind direction and

increased small scale shear turbulence. The larger surface heat flux in the calm situation

has the same effect of increasing small scale turbulence. In comparison, the bias is for

both components on the scale of few cm/s and therefore negligible.

Naturally, the difference between the spatial means of the retrieval and LES data are

smaller than the errors in the point-by-point comparison above. Fig. 5.7 shows that the

spatial mean wind is captured by the retrieval with errors smaller than 0.1 m/s. The wind

direction, in the presence of background wind, exhibits errors smaller then 1◦. However,

the strong differences in the absence of geostrophic wind are a result of the negligible

absolute values.

0 m/s 5 m/s 10 m/s 15 m/s

Wind Field σ
[m

s

]
µ
[m

s

]
σ
[m

s

]
µ
[m

s

]
σ
[m

s

]
µ
[m

s

]
σ
[m

s

]
µ
[m

s

]
u 0.56 -0.08 0.33 -0.04 0.68 -0.05 1.02 -0.06

v 0.49 -0.07 0.26 -0.04 0.39 -0.02 0.56 -0.00

Table 5.5.: Standard deviations σ and means µ as obtained by a least-squares fit of a Gaussian function

to the distributions in Fig. 5.6
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trieval and the time averaged LES (interpolated to retrieval axes).
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Figure 5.7.: Comparison of the horizontal means of wind speed (top) and wind direction (bottom) as

obtained from the retrieval data (red) and the LES data (black) for all four LES data sets (uG increasing

from left to right).
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Figure 5.8.: Comparative spectral density of the u-component along (left) and across (right) the mean

wind direction for the four data sets (uG increasing from top to bottom). The spectra are shown for the

retrieval results (red), the time-averaged LES results (blue) and the LES results (black). The dashed line

indicates the slope of k−5/3. The pale red lines show a random choice of ten retrieval spectra. The red

mark on the k-axis indicates the effective resolution of the simulation and retrieval.
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Fig. 5.8 shows the comparative spectral density of the u-component of the retrieval data,

the time-averaged LES data and the original LES data. The spectra were computed from

all time steps of the retrieval and the time-averaged LES, as well as from 100 random

time steps in the LES. For better resolution, the wind fields at each time step were zero-

padded to 1024 grid points before performing the Fourier transform.

The LES-spectra agree well with the time-averaged LES results, with deviations only

for high wave numbers k and, caused by advection, increasingly for higher wind speeds.

Both show approximately the expected decay with k−5/3 in the inertial range (Stull,

1988). The slight increase around the highest wave number can result from interpola-

tion effects. This is also visible in the retrieval data.

It is obvious that the virtual lidar results fail to resolve the full spectral energy already on

scales much larger than the effective retrieval scale (cf. Chap. 3). For small wave num-

bers, the agreement is very accurate for the calm situation and the spectra in y-direction.

However, with increasing background geostrophic wind the scales up to which the spec-

tra deviate becomes considerably larger, up to half an order of magnitude loss of spectral

density at 1/k = 1 km for uG =15 m/s. This effect is visible neither in the y-spectra of

the u nor in the v-component (cf. the v-spectra in App. C), and only very slight in

the x-spectra of v. The sole occurrence of the large-scale spectral underestimation for

x-spectra, its dependency on the background wind, and the stronger deviation in the

streamwise component indicate that this effect is caused by advection.

The effect is investigated in more detail in Fig. 5.9, where the time-averaged LES spec-

tra are reproduced alongside spectra of the time-averaged LES wind fields which were

spatially smoothed in x-direction, y-direction and both x- and y-direction using a moving

average. The corresponding results for the v-component are shown in App. D.

Averaging over lengths ∆ in the direction of spectral analysis leads, as expected, to a loss

in spectral density at high wave numbers k, i.e. at k ≥ 1/(2∆). Furthermore, it becomes

obvious that the spatial averaging across the direction of spectral analysis has a substan-

tial influence as well: it leads to a decrease in spectral density which is approximately

constant over the full range of wave numbers. As in Fig. 5.8, this underprediction be-

comes apparent only when the direction of spectral evaluation coincides with the mean

wind direction, and it increases with uG. Averaging in both directions yields both types

of loss-effects.
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Figure 5.9.: Effect of spatial smoothing on the spectral density of the u-component along (left) and

across (right) the mean wind direction for the four data sets (uG increasing from top to bottom). The

mean spectra are shown for the time-averaged LES results after applying a moving average filter with the

span (∆x, ∆y) in x- and y-direction, respectively: (∆x,∆y) = (0 m,0 m) (blue), (∆x,∆y) = (∆,0 m) (dark

purple), (∆x,∆y) = (0 m,∆) (light purple), and (∆x,∆y) = (∆,∆) (red). ∆ = {70 m,70 m,70 m,90 m} for

uG = {0 m/s,5 m/s,10 m/s,15 m/s}.

75



5. The Virtual Dual-Doppler Lidar Data Set

Qualitatively, this result can be expected when streaky structures are energetically dom-

inant: when the structure widths becomes smaller than ∆, the averaging process in y-

direction levels the wind field significantly, thereby reducing the spectral content in x-

direction as well. On the other hand, when the streak-length in x-direction is larger than

∆, the x-directional averaging will not have a large effect on the y-spectra. Therefore, the

large-scale spectral loss is caused by advection in the sense that shear shapes the streaky

structure of the surface layer wind fields.
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6. Assessment of Dual-Doppler Lidar Capability to Detect and
Quantify Aspects of Coherent Structures

This Chapter presents the results from comparative coherent structure length scale anal-

ysis on the LES and the virtual lidar data. Three methods were used for coherent

structure detection: measurement of spatial integral length scales, wavelet analysis,

and structure clustering. The influence of the lidar averaging processes is furthermore

investigated theoretically, leading to quality control and correction techniques for the

methods.

6.1. Spatial Correlation and Integral Length Scales

Integral length scales are a common tool to investigate the length scale up to which fields

are correlated (cf. Chap. 2). In this way, the streamwise elongation of streaks and the

resulting anisotropy can be analyzed. With this method only the mean correlation length

can be derived, the single structures and their positions remain unknown.

6.1.1. Correlation Length Definitions

The autocorrelation function of a scalar field f at lag x is defined as

r f (x) =
1

σ2
f
〈 f ′(x+ x′) f ′(x′)〉x′ , [6.1]

where

f ′ = f −〈 f 〉 [6.2]

is the turbulent component and

σ
2
f = 〈 f ′

2〉 [6.3]

is the variance.

Here, 〈·〉 denotes the average over all arguments in the function, typically space and time
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variables, and 〈·〉x means an average over the argument x of the function.

The spatial autocovariance ρ f (x) is defined as the non-normalized autocorrelation:

ρ f (x) = σ
2
f r f (x) . [6.4]

For fields with a finite number of data points f = { f1, f2, . . . , fN}, the definition becomes

r f , i =
1

σ2
f

1
N− i

N−i

∑
k=1

f ′i+k f ′k , i = 0,1, . . . ,N−1 , [6.5]

where i is the relative shift.

Accordingly,

σ
2
f =

1
N

N

∑
j=1

f ′j
2
. [6.6]

If f is a scalar function on the 2D plane, the autocorrelation function can be computed

in two dimensions,

r f (x) =
1

σ2
f
〈 f ′(x+x′) f ′(x)〉x′ , [6.7]

where x is a vector in the plane.

For discrete fields f = { f(1,1), f(1,2), f(2,1) . . . , f(N1,N2)},

r f ,(i, j) =
1

σ2
f

1
(N1− i)(N2− j)

N1−i

∑
k=0

N2− j

∑
l=0

f ′(i+k, j+l) f ′(k,l) , [6.8]

with

σ
2
f =

1
N1N2

∑
k

∑
l

f ′
2

(k,l) . [6.9]

These definitions can easily be extended to three spatial dimensions and the time dimen-

sion.

The integral scales are length scales which measure the distance up to which the wind

field can be seen as correlated with itself. The integral scale for a function f on R1 is

defined as

L f =

∞∫
0

dxr f (x) , [6.10]

where r f is the spatial autocorrelation a defined above. A common approximation

(Lenschow and Stankov, 1986) is to integrate only up to the first zero-crossing of the

autocorrelation:

L f ≈
r≡0∫
0

dxr f (x) , [6.11]
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which is to the first maximum of the integral. This approximation is used here since the

computed autocorrelation becomes increasingly noisy for higher lags x.

For functions f on R2, the integral scale is furthermore a function of the direction in

which the correlation is analyzed. For the horizontal plane, the x-axis is defined as usual

as the direction of the mean wind, and the y-axis as the right-handed axis perpendicular

to the x-axis. L f ,x and L f ,y are defined as the integral length scales in x- and y-direction,

respectively. Using Eq. 6.11,

L f ,x =

r≡0∫
0

dxr f (x · ex) [6.12a]

and L f ,y =

r≡0∫
0

dyr f (y · ey) . [6.12b]

For discrete wind fields, the spacings ∆x and ∆y between adjacent components of f must

be taken into account:

L f ,x =
r≡0

∑
i=0

r f ,(i,0)∆x , [6.13a]

L f , =
r≡0

∑
j=0

r f ,(0, j)∆y . [6.13b]

The anisotropy or aspect-ratio of the wind field can be measured using

A f =
L f ,x

L f ,y
. [6.14]

6.1.2. Theoretical Considerations

Integral length scales from dual-lidar data

A theoretical prediction about the ability of the lidar to estimate correlation lengths accu-

rately can be derived from the averaging processes that influence the dual-lidar retrieval

data:

From the mathematical models for single lidar velocity estimation (Eqs. 3.5-3.8) and the

dual-lidar retrieval techniques (Chap. 3.3) it is known that the dual-lidar retrieved wind

field at a certain grid point can be described as a weighted average of the real wind field
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in the vicinity of the grid point. Frehlich (1997) investigated the effect of single-lidar

pulse averaging on velocity variance measurements and developed a method to correct

the results using the single lidar weighting function. However, no analytic expression

for the weighting function can be given in the dual-Doppler case, since not only spatial

parameters, but also the time shift between the two scanning lidars and the wind field

evolution during this time shift are factored into the final result. However, it can be

safely assumed that this weighting function is approximately constant on the grid cell,

zero for points far away from the grid cell and decreasing noticeably around distances

from the grid cell center of the order of the lidar resolution.

This view is supported by the comparison of LES and retrieval spectra (cf. Fig. 5.8): A

drop-off in spectral energy occurs in the lidar spectra as compared to the LES spectra

at scales of three to four times the estimated lidar resolution. The smaller the scales

become, the less spectral energy can be ‘seen’ by the lidar. However, on larger scales,

the instrument is mostly able to resolve the full spectral content of the LES, the cases

where an underestimation occurs on large scales as well can be explained by the cross-

directional averaging (Fig. 5.9).

Let f be one of the fully resolved wind field components, and f̃ the same component as

retrieved from the dual-lidar measurement. Under the assumption that the weighting is

the same for all points in the plane, the retrieved field can be written

f̃ (x) =
∫

dx′ f (x′)w(x−x′) , [6.15]

where w stands for the appropriate weighting function.

Using Eq. 6.15, the autocorrelation function r f̃ for the dual-lidar wind fields yields

r f̃ (x) =
1

σ2
f̃

∫
dx′ f̃ ′(x+x′) f̃ ′(x′) [6.16a]

=
∫

dx′ r f (x+x′)W (x′) , [6.16b]

with

W (x) =
σ2

f

σ2
f̃

∫
dx′w(x′)w(x′+x) . [6.17]

This means that the lidar autocorrelation function is a smoothed version of the fully re-

solved autocorrelation. With our assumptions about the lidar spatial averaging function,

w, the autocorrelation smoothing should occur on scales of the order of the scales in w.
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Figure 6.1.: The one-dimensional weighting

function wx0 , Eq. 6.18.
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Figure 6.2.: The overestimation factor L̃/L

from Eq. 6.19.

Note that W is not normalized, so that on average r f̃ is larger than r f by a factor σ2
f /σ2

f̃ .

Autocorrelations r which decrease slowly can appear almost linear to the smoothing

function, so the autocorrelation functions from the LES and from the lidar data should

nearly coincide. On the other hand, if the fully resolved autocorrelation decreases

rapidly to zero, the positive curvature is noticeable in the smoothing. The effect on

the correlation length can be estimated using the example of an exponential autocorrela-

tion function (Lothon et al., 2006): Let r(x) = exp(−|x|/L) represent the fully resolved

1D-autocorrelation with integral scale L, and let w be given by a constant average over

a 2x0 interval (cf. Fig. 6.1):

wx0(x) =

{
1

2x0
, −x0 ≤ x≤ x0

0 , otherwise
. [6.18]

The smoothed autocorrelation can be computed from Eq. 6.16b, from which the integral

scale L̃ is derived using Eq. 6.10:

L̃
L
=

σ2
f

σ2
f̃

=

1
2

(
2x0
L

)2

2x0
L + exp(−2x0

L )−1
. [6.19]

This relation, shown in Fig. 6.2 predicts the overestimation simply as the relation of

variances, which in turn is a function of the ratio between averaging scale and integral

length scale.
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As a result, the lidar should overestimate the correlation lengths if they are of the order of

or shorter than the lidar averaging scales. The overestimation effect should increase the

shorter the correlation lengths become. Correlation lengths much larger than the lidar

averaging scales should be accurately estimated by the lidar. If the 1D-model approach

(Eq. 6.19) is valid, the overestimation factor can be computed as the relation of LES and

retrieval variances.

Integral length scales from tower data

As noted in the introduction, coherent structure detection is usually based on time series

from tower measurements. It is therefore necessary to discuss the accuracy of correlation

length computations from point measurements. Using Taylor’s hypothesis, the one-

dimensional autocorrelation function of the field f in mean wind direction is given by

r f ,Taylor(x) =
1

σ2
f

〈
f ′
(
x′, t ′

)
f ′
(

x′, t ′− x
〈u〉

)〉
t ′

[6.20]

for a tower positioned at x′, with the mean and variance of f computed using 〈·〉t ′ .

It is important to note that, in the present LES data set, the ergodic condition (Stull, 1988)

is not fulfilled: the temporal 30 min means vary considerably depending on the position

of the virtual tower, and the standard deviation of the temporal means is about one order

of magnitude larger than the temporal variation of the spatial means (cf. Fig. 6.3). This

variability has a crucial effect on the autocorrelation computation and, as a result, on the

integral scales:

Let ρ f (t) denote the temporal autocovariance of a function f (x, t) on the time interval

[0,T ] with time-shift t, computed from the full data set (i.e., using averages 〈·〉), and

82



6.1. Spatial Correlation and Integral Length Scales

Figure 6.3: Standard deviation of mean

values of the u (light) and v (dark) fields

used for the correlation length compu-

tation. The squares and circles mark

the results for temporal and spatial cor-

relations, respectively, i.e., σ2
〈 f (x′,t ′)〉t′

and
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let ρ̃ f (t) be the average of all time series autocovariances (Eq. 6.20), measured at fixed

points x′:

ρ f (t) =
1

NxNt
∑
x′,t ′

(
f (x′, t ′+ t)−〈 f (x′, t ′)〉

)(
f (x′, t ′)−〈 f (x′, t ′)〉

)
, [6.21a]

ρ̃ f (t) =
1

NxNt
∑
x′,t ′

(
f (x′, t ′+ t)−〈 f (x′, t ′)〉t ′

)(
f (x′, t ′)−〈 f (x′, t ′)〉t ′

)
, [6.21b]

where Nx is the number of spatial grid points and Nt the number of time steps in the

overlap time interval (T − t). If the temporal shift t is small compared to the full length

of the time series,

1
Nt

∑
t ′

f (x′, t ′+ t)≈ 1
Nt

∑
t ′

f (x′, t ′)≈ 〈 f (x′, t ′)〉t ′ , [6.22]

which yields

ρ f (t)− ρ̃ f (t)≈
1

Nx
∑
x′

(
〈 f (x′, t ′)〉t ′−〈 f (x′, t ′)〉

)2
= σ

2
〈 f (x′,t ′)〉t′ . [6.23]

This shows that the averaged autocovariance from smaller subsets of the full data set is

given by the full autocovariance minus the variance of the averages from the subsets.

Lenschow et al. (1994) show that σ2
〈 f (x′,t ′)〉t′

≈ 2ρ f (0)Lτ/T , if T is much larger than the

temporal integral length scale Lτ . Consequently,

r f (t) =
ρ f (t)
ρ f (0)

≈
ρ̃ f (t)+σ2

〈 f (x′,t ′)〉t′
ρ̃ f (0)+σ2

〈 f (x′,t ′)〉t′
> r̃ f (t) ∀ t : ρ̃ f (t)< ρ̃ f (0) [6.24]
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if t is sufficiently small. Therefore, the integral length scales computed from the time

series will be shorter than the length scales computed from spatial data.

One can attempt to correct this by subtracting the full mean of the data set from the

time series instead of the time series mean, and normalizing with the full variance in-

stead of the series-wise variance. However, this approach may not be possible with real

data, where therefore the validity of the ergodic condition has to be ascertained before

comparisons between temporal and spatial data are possible.

6.1.3. Results

For u and v of all three data sets, i.e. the LES, time-averaged LES and the retrieval data,

the autocorrelation function was computed using the algorithm given in Eq. 6.8 for each

time step. The mean and variance in this equation were taken from the respective time

step only. From the autocorrelation the integral scales were obtained for each time step

using Eq. 6.13a, where multiplication with the respective grid resolution led to results in

metric units. The anisotropy follows from Eq. 6.14.

Furthermore, correlation lengths were computed from 2700 time series, taken from vir-

tual towers1 equally distributed across the area in 100 m intervals. Time series yield only

correlation length of u and v in x-direction (i.e., mean wind direction), therefore neither

Ly nor the anisotropy could be computed.

Due to the known effects of the missing ergodicity in the data set (Eq. 6.24), the time

series results were computed in two ways: firstly, under the assumption that the ergodic

condition holds, autocorrelations were computed using the mean and variance of each

time series (Eq. 6.20), and secondly, to remove errors due to fluctuations in the means of

the time series, the autocorrelations were computed using the overall mean wind speed

and mean spatial variance. The results from the second method will hereafter be called

the corrected results.

In App. E, Tab. E.1 gives an overview of the data set size. Data loss occurred whenever

the autocorrelation function had no zero-crossing in a certain direction.

App. F shows the time averages of the spatial autocorrelation for the three data sets in

the x > 0 half plane. (Note that Eq. 6.7 shows that r(x) = r(−x), therefore, one half
1The virtual towers described here, i.e. time series at fixed grid points in the LES data, should not be

confused with dual-lidar virtual towers (Chap. 3.1.3)
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Figure 6.4.: Development of the spatial autocorrelation in the LES u wind fields with the background

wind, uG = {0, 5, 10, 15} m/s from left to right.
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Figure 6.5.: Development of the spatial autocorrelation in the retrieved u wind fields with the background

wind, uG = {0, 5, 10, 15} m/s from left to right.

plane contains all information). It is evident from Figs. F.3 and F.4 that the dual lidar

data are qualitatively capable of capturing the repetitive structure on the shear-driven

wind fields.

The development of the u autocorrelation with increasing wind speed for the LES and

retrieval data is shown in more detail in Figs. 6.4 and 6.5. The LES results (Fig. 6.4)

show that, as expected, the correlation increases for lags in mean wind direction with

increasing background wind, whereas the correlation in cross-wind direction y appears

to decrease slightly. The retrieval results (Fig. 6.5) appear qualitatively similar, however,

the autocorrelation is clearly overestimated.

Fig. 6.6 shows the resulting distributions of integral correlation lengths of u and y in x-

direction as box plots with the centers indicating the median and the bars ranging from

25th to 75th percentile. The figure includes the corrected results from the time series.

The difference between the corrected and the uncorrected time series results is shown in

Fig. 6.7.
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Figure 6.6.: Integral length scales: Scales Lx of the u (left) and v (right) wind fields in mean wind

direction for all data sets: the retrieval results (red), the averaged LES fields (blue), the LES fields (black),

and the time series (green). The bars cover the range between the 25th and 75th percentile, the circles

mark the median.
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Figure 6.7.: Integral length scales: Scales Lx of the u (left) and v (right) wind fields in mean wind

direction for the time series, computed with the full mean and variance of the data set (light green) and

the mean and variance of the respective series (dark green). The black bars show the comparative LES

results. The bars cover the range between the 25th and 75th percentile, the circles mark the median.
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Figure 6.8.: Integral length scales: Scales Ly of the u (left) and v (right) wind fields in cross-wind

direction for all data sets. Colors and range as in Fig. 6.6.

Fig. 6.8 shows the integral length scales in y-direction, and the anisotropy of both wind

field components is shown in Fig. 6.9.

The LES data show that the correlation length in wind direction for u increases with

wind speed, whereas it decreases with wind speed for v. Both u and v show a decrease

of correlation length in y-direction. Both fields exhibit considerable anisotropy, which

increases with the mean wind but appears to level at higher wind speeds. The correlation

length perpendicular to the wind direction is extremely small for all wind speeds apart

from zero, and approaches the lower bound, i.e. 10 m for the LES data.

The time averaged LES data show nearly no difference from the LES data, albeit a no-

ticeable slight deviation for higher wind speeds. The small overestimation of correlation

lengths conforms to the theory of expected overestimation in the retrieval data when

time averaging is regarded as another form of spatial averaging.

The corrected time series results in Fig. 6.6, as well as the comparison of corrected and

uncorrected time series results in Fig. 6.7 behave as expected from the theoretical con-

siderations: whereas the corrected results approximately match the LES results apart

from a slight underestimation, the uncorrected results severely underestimate the inte-
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Figure 6.9.: Integral length scales: Anisotropy Lx/Ly of the u (left) and v (right) wind fields for all data

sets. Colors and range as in Fig. 6.6.

gral scales although they exhibit a much more localized distribution.

The correlation lengths measured by the lidar simulator show the same qualitative devel-

opment for each data set and component as the LES length scales. However, for all wind

fields, the virtual lidar data exhibit a considerable overestimation of correlation lengths.

The lidar overestimation of length scales is more pronounced in the y direction, since

there the correlation lengths are of the order of the lidar resolution. This leads to the

effect that the lidar generally underestimates the anisotropy (cf. Fig. 6.9), an effect that

becomes more pronounced the smaller the length scales in y direction become.

This was to be expected from theoretical consideration for shorter correlation lengths,

but the effect should be decreasing for larger length scales. Fig. 6.10 investigates the

validity of the theoretical model (shown in the left panel): The overestimation factor

is expected to approach unity if the median integral scales become several times larger

than the lidar resolution. Qualitatively, the effect is clearly visible. However, the over-

estimation factor only goes down to ≈1.2, even for length scales eight times as large

as the lidar resolution. This suggests that the approximate linearity of rLES, which is a

sufficient condition for accurate length scale estimation, is not necessarily fulfilled even

for large integral length scales.

Comparing the data points with the simple theoretical model shows that the model de-
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Figure 6.10.: Integral length scales: Overestimation factor LRET/LLES as a function of LLES/∆xy

from theory (left) and data (right). The theoretical curves result from Eq. 6.19 with L = LLES and

L̃ = LRET for different relations 2x0/∆xy of lidar averaging scales to retrieval resolution. The error bars

of the data results are based on the 25th and 75th percentile of the distributions, i.e. they range from

p25(LRET)/p75(LLES) to p75(LRET)/p25(LLES) on the ordinate and from p25(LLES)/∆xy to p75(LLES)/∆xy

on the abscissa. The data points in the right panel were computed accordingly using the medians of the

distributions. Their colors indicate wind speeds, darker blue means higher uG.

scribes the qualitative behavior well, but that the effective averaging length 2x0 is larger

than the lidar resolution by a factor of approximately seven.

According to the 1D-model (Eq. 6.19), the overestimation factor can be predicted from

the quotient of LES and lidar variances in the fields.

Fig. 6.11 shows that the equation is a good approximation. Even though variances com-

puted from time series provide less precise results, especially for the calm situation, it

is most likely that real measurement campaigns will use time series to estimate the real

wind field variance. Therefore, the retrieval data shown in Fig. 6.12 were corrected by

division with the overestimation factor computed from the time series variances. The

factor was computed as the quotient of median variances for each wind field.

The correction method reduces the error notably. Except for the calm wind fields, the

bias nearly vanishes. The remaining errors lead to a substantial, albeit smaller bias in

the anisotropy. An important exception are the calm wind fields, where the correction

increased the bias. Fig. 6.11 shows that time series in the calm situation are unable to ac-
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Figure 6.11.: Integral length scales: Overestimation factor LRET/LLES for all fields f ∈ {u,v} as a func-

tion of σ2
LES/σ2

RET for σ2
LES from virtual tower time series (left) and for σ2

LES from the spatial variance

in each time step (right). Data points and error bars were computed as in Fig. 6.10. The line marks the

theoretical identity, cf. Eq. 6.19. The colors indicate wind speeds as in Fig. 6.10.

curately estimate the spatial variances. The correction method can therefore be applied

whenever it is possible to measure spatial variances, or when ergodicity can be assumed.

6.2. Wavelet Analysis

Throughout the last years, wavelet analysis has become a common tool for coherent

structure detection in time series data (cf. Chap. 2). The analyses differ in certain as-

pects, e.g. in the wavelets used for structure detection, the determination of structure

lengths and the type of time series used. What they have in common is the application

of the wavelet transform to a time series of data and the analysis of the transforms with

respect to maxima, minima, zero crossings, and energy distributions to detect signatures

of structures.

Wavelet analysis allows to detect single structures in the wind field instead of only char-

acterizing mean length scales. Usually, only the energetically dominant structures are

investigated, which leads to a certain amount of smoothing.
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Figure 6.12.: Integral length scales: The results from Figs. 6.6, 6.8, and 6.9, computed with the corrected

retrieval results, i.e. LRET,corr = σ2
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LES from virtual tower time series and σ2

RET from

the mean spatial variance in the respective fields.
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6.2.1. The Wavelet Transform

Dirac-Notation of States in Hilbert Spaces

The function space L2(R) is the set of all complex-valued functions on the real numbers

R for which

f ·g =

∞∫
−∞

dt f ∗(t)g(t) ∀ f ,g ∈ L2(R) , [6.25]

defines a scalar product between two functions and the norm ‖ f ‖ of each function f is

finite:

‖ f ‖2=

∞∫
−∞

dt f ∗(t) f (t)< ∞ . [6.26]

Normed vector spaces in which the norm is given by a scalar product, like L2(R) or

the Euclidean vector space, are called Hilbert spaces (Bronstein et al., 2001). Functions

f ∈ L2(R) are called square-integrable.

For each Hilbert space H over a field C, there is a dual space H ∗, which is defined as

the set of all linear mappings from H to C. A subset of L2(R)∗ is the set of bilinear

forms
{

f∗ : L2(R) 7→ C, f∗(h) = f ·h| f ∈ L2(R)
}

. This means that for each function f

in the Hilbert space, there is a mapping f∗ in the dual space, which maps any function h

of the Hilbert space to the field C by taking its scalar product with f . The scalar product

f · g on the Hilbert space can therefore be understood not only as an operation on two

functions of the Hilbert space, but also as the mapping of g on the field C via the linear

mapping associated with f :

f ·g = f∗(g) = g∗( f )∗ ∀ f ,g ∈ L2(R) . [6.27]

Here, the exponential ∗ denotes the complex conjugate.

A subset of a Hilbert space is called a basis if every element of the Hilbert space can be

written as a unique linear combination of the elements of the subset. The description of

elements of L2(R) in different bases is used frequently, e.g. when a function is described

by its Fourier series: The functions
{

t 7→ 1√
2π

eiωt |ω ∈R
}

are the basis functions, and
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the unique coefficients for the linear combination of these basis functions are given by

their the scalar product with the respective function f ∈ L2(R):

F : L2(R) 7→ L2(R) , [6.28a]

F{ f}(ω) = f̂ (ω) =

∞∫
−∞

dt f (t)
1√
2π

e−iωt , [6.28b]

F−1{ f̂}(t) = f (t) =
∞∫
−∞

dω f̂ (ω)
1√
2π

eiωt . [6.28c]

The function f̂ is called the Fourier transform of f .

The Wavelet transform is conceptually similar to the Fourier transform, the only differ-

ence being the choice of basis functions: where the Fourier transform uses plane waves,

the Wavelet transform uses wavelet functions (see below).

A useful notation for the description of scalar products and changes of bases is the Dirac

notation (Cohen-Tannoudji et al., 1977).

Let H be a Hilbert space and an isometric isomorphism (Bronstein et al., 2001) to L2(R):

For each element in f ∈ L2(R), define an element | f 〉 ∈ H in a way that the mapping

L2(R)→ H is linear and preserves the scalar product:

|α f +g〉= α| f 〉+ |g〉 f ,g ∈ L2(R); α ∈ C , [6.29a]

〈 f |g〉 := | f 〉 · |g〉= f ·g f ,g ∈ L2(R) . [6.29b]

It follows that

〈 f |g〉= 〈g| f 〉∗ f ,g ∈ L2(R) . [6.30]

The notation 〈 f |g〉 := | f 〉 · |g〉 implies that 〈 f | is a linear operator mapping from H to C

that maps each element |g〉 of H onto the scalar product of f and g. Therefore, 〈 f | is an

element of the Dual space H∗ of H.

The structures |·〉 and 〈·| are called ‘ket’ and ‘bra’, respectively, which makes the scalar

product a ‘bra-ket’ or bracket. The notation 〈 f |g〉 provides a convenient short form of

the scalar product between functions.
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Let {|ω〉|ω ∈R} be the subset of H that corresponds to the Fourier basis function subset{
t 7→ 1√

2π
eiωt |ω ∈R

}
of L2(R). It is easy to validate that

〈ω| f 〉= f̂ (ω) ∀ω ∈R, f ∈ L2(R) . [6.31]

Therefore, | f 〉 can be interpreted as the function f in general, and 〈ω| as the linear

operator which leads to an evaluation of f at the angular frequency ω . Extending this

interpretation, the function value f (t) is just the abstract function f , evaluated at some t

(also called the time-domain representation of f ):

〈t| f 〉= f (t) , t ∈R, f ∈ L2(R) . [6.32]

The elements |t〉 ∈H need some corresponding functions in L2(R), and it can be shown

that those ‘functions’ are δt , the Dirac delta distributions centered at t, which in a scalar

product with f give the function value f (t).

The Fourier transform can thus be written

f (t) = 〈t| f 〉=
∞∫
−∞

dω 〈t|ω〉〈ω| f 〉=
∞∫
−∞

dω
1√
2π

eiωt f̂ (ω) , [6.33a]

f̂ (ω) = 〈ω| f 〉=
∞∫
−∞

dt 〈ω|t〉〈t| f 〉=
∞∫
−∞

dt
1√
2π

e−iωt f (t) . [6.33b]

The sets of elements |ω〉 and |t〉 are bases of H since they are complete,

∞∫
−∞

dω |ω〉〈ω|=
∞∫
−∞

dt |t〉〈t|= 1H , [6.34]

where 1H is the unit operator on H. Each single operator |ω〉〈ω| is a projector on the

state |ω〉, because the states are normalized:

〈ω|ω ′〉dω = δ (ω−ω
′)dω , [6.35]

where δ is the Dirac-distribution (Cohen-Tannoudji et al., 1977).

In this case, the states are also orthogonal, which means that the scalar product between

different states is zero. Such bases are called orthonormal bases. However, bases do not

have to be orthogonal or normalized, completeness is the only defining condition for a

basis.
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Wavelet Bases

A wavelet is a function ϕ ∈ L2(R) that fulfills the admissibility condition for wavelets

(Louis et al., 1998):

cϕ = 2π

∞∫
−∞

dω
|ϕ̂(ω)|2
|ω| < ∞ . [6.36]

A set of basis functions in L2(R) can be constructed from a single so-called mother

wavelet ϕ by shifting the function on the real axis by an offset b ∈ R, and by scaling it

with a factor a ∈R\{0}:{
t 7→ 1
√cϕ

1√
|a|

ϕ

(
t−b

a

)
|b ∈R,a ∈R\{0}

}
. [6.37]

The mappings

U(a,b) : L2(R) 7→ L2(R2,dµ) , [6.38a]

U(a,b){ f}(t) = 1√
|a|

f
(

t−b
a

)
∀b ∈R,a ∈R\{0} , [6.38b]

which induce the shifting and scaling are a representation of the affine group on L2(R)

(Louis et al., 1998), where every group element is defined by a distinct set (a,b). The

elements of the Hilbert space H associated with the wavelet basis functions [6.37] are

|a,b〉, given by

〈t|a,b〉= 1
√cϕ

U(a,b){ϕ}(t) . [6.39]

This set of states in H is not necessarily orthogonal, but normalized if ϕ is a normalized

function. It can be shown (Louis et al., 1998) that the states fulfill the necessary property

of completeness:

∫
dµ(a,b) |a,b〉〈a,b| :=

∞∫
−∞

da
a2

∞∫
−∞

db |a,b〉〈a,b|= 1H [6.40]

where dµ(a,b) = dadb
a2 is a so-called Haar measure on the space of wavelet transforms

L2(R2,dµ), and 1H is the identity operator on the Hilbert space.
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The wavelet transform can now be defined in analogy to the Fourier transform, Eqs. 6.28:

Wϕ : L2(R) 7→ L2(R2,dµ) , [6.41a]

(Wϕ f )(a,b) = f̃ϕ(a,b) =
1
√cϕ

1√
|a|

∞∫
−∞

dt ϕ
∗
(

t−b
a

)
f (t) , [6.41b]

(W−1
ϕ f̃ϕ)(t) = f (t) =

1
√cϕ

1√
|a|

∫
dµ(a,b)ϕ

(
t−b

a

)
f̃ϕ(a,b) . [6.41c]

The shorthand Dirac notation makes the derivation of the formulas more clear:

f̃ϕ(a,b) = 〈a,b| f 〉=
∞∫
−∞

dt 〈a,b|t〉〈t| f 〉 , [6.42a]

f (t) = 〈t| f 〉=
∫

dµ(a,b)〈t|a,b〉〈a,b| f 〉 . [6.42b]

With the help of Fourier basis states of L2(R), a representation of wavelet coefficients

in Fourier space can also be found:

f̃ϕ(a,b) =

√
|a|
√cϕ

∞∫
−∞

dω eiωb
ϕ̂
∗(aω) f̂ (ω) , [6.43a]

f̂ (ω) =
1
√cϕ

∫
dµ(a,b)

a√
|a|

e−iωb
ϕ̂(ωa) f̃ϕ(a,b) . [6.43b]

These wavelet transforms are called continuous wavelet transforms (CWT), which means

that the group elements of G vary continuously with their parameters (a,b), creating an

uncountable set of basis functions.

Properties of Wavelet Transforms

Wavelet functions are well localized in direct and Fourier space (Louis et al., 1998).

The localization on the time axis means that only a small portion of the signal f around

the wavelet position b is used to compute the wavelet coefficient. Consequently, the

positions of certain events in the signal can be detected. This is in contrast to Fourier

analysis, where plane waves are used that extend infinitely on the time axis.

The short-time Fourier transform (STFT), also called the windowed Fourier transform,

in which the signal is transformed with a windowed part of the plane wave, has a similar
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advantage of localization. However, the STFT data window is of fixed width, whereas it

scales inversely proportional to the frequency in the wavelet transform. This property of

the wavelet transform allows for the detection of small-scale structures at high frequen-

cies.

To interpret wavelet transforms, several techniques have been proposed.

Using Eq. 6.42b, ∫
dt | f (t)|2 =

∫
daẼ f (a) [6.44]

with

Ẽ f (a) =
1
a2

∫
db
∣∣ f̃φ (a,b)

∣∣2 . [6.45]

Thereby, when f represents a wind field component, Ẽ f (a) is the distribution of energy

per mass over different wavelet scales.

However, shorter wavelets can occur more often than longer ones, therefore a high en-

ergy contribution on small scales does not necessarily mean a high contribution for each

occurrence. Ẽ f (a) is normalized with a factor 1/a, which scales with the maximum

event occurrence, to arrive at a different energy scale:

Ẽ f ,1(a) =
1
a

∫
db
∣∣ f̃ϕ(a,b)

∣∣2 . [6.46]

The function Ẽ f ,1(a) gives us the average energy per (possible) event. The function

Ẽ f ,1(a) is often referred to as the scalogram of a CWT (Collineau and Brunet, 1993a).

With these two functions of energy, the most energy-dominant wavelets can be detected:

maximizing Ẽ f (a) returns the most important energy scale, maximizing Ẽ f ,1(a) returns

the scale of highest energy per event.

In time series analysis, the wavelet transform is usually only evaluated at the dominant

energy scale a0, defined by

Ẽ f ,1(a0) = max
a
{Ẽ f ,1(a)} . [6.47]

In this way, only the energetically dominant contributions to the signal are evaluate.

6.2.2. Wavelet-Algorithm for Coherent Structure Detection

To detect a certain signature pattern in a temporal or spatial series, the wavelet analysis

should be performed with a mother wavelet which has the general shape of the structure.
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Figure 6.13: Example of a localized event in

an exponentially damped sine curve (black) with

the wavelet coefficients f̃ϕ(1,x) using the WAVE

(red) and MHAT (blue) wavelet.

The wavelet transform will then have a maximum at the position of the overlap. To de-

tect ejections, this analysis follows Segalini and Alfredsson (2012) by using the WAVE

wavelet (cf. Fig. 6.15), which is the first derivative of a Gaussian function. The WAVE

wavelet has the appropriate shape of an ejection-sweep-cycle in the wind field data, as

shown by the ensemble averages of structures measured by Zhang et al. (2011).

The wavelet transform will exhibit a maximum at points where the signal transitions

from positive to negative values, thus denoting the ’start’ of the ejection. However, in-

stead of using the odd WAVE wavelet, Collineau and Brunet (1993a,b) point out that the

detection yields better results using an even MHAT wavelet (Mexican Hat, cf. Fig. 6.15),

which exhibits a zero-crossing at the position of the sign change (cf. Fig. 6.13). There-

fore, the MHAT is used here to detect structure positions and lengths, but the WAVE

wavelet is used to distinguish the ‘important’ (i.e., those having a large WAVE coeffi-

cient) from the ‘unimportant’ structures.

The MHAT and WAVE mother wavelets are given by

ϕWAVE(x) =
(

2
π

) 1
4
(−2x)e−x2

, [6.48a]

ϕMHAT(x) =
2
√

3π
1
4

e−
1
2 x2

(1− x2) . [6.48b]

To determine the length scales of the single structures, it has been proposed to use the

energetically dominant scales as a measure (Collineau and Brunet, 1993a). However,

Barthlott et al. (2007) point out that the structure length can best be determined using a

ramp length algorithm, which defines the end point of the structure as the point in the
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time series where the MHAT wavelet transform exhibits the previous maximum. This

has the added advantage that the scale on each structure is detected separately, albeit

only at the dominant energy scale, instead of only a time series mean.

Wavelet analysis can be applied on spatial data just as well as on time series. Here,

the analysis is performed for one-dimensional subsets of the two-dimensional LES and

retrieval data, which are oriented in either streamwise or spanwise direction.

For coherent structure detection, therefore the following algorithm is used for the spatial

series of wind speed data u and v, which is similar to the algorithms used by Segalini

and Alfredsson (2012) and Barthlott et al. (2007):

• Perform the wavelet transforms f̃MHAT and f̃WAVE of the signal for an appropriate

range of scales. To suppress border effects, the signal has to be detrended and

zero-padded at both ends (Thomas and Foken, 2005).

• Compute the wavelet spectrum ẼWAVE,1(a) using Eq. 6.46 and identify the scale of

maximum energy per structure, a0.

• Evaluate f̃MHAT(a0,b) and detect the structure beginnings bi
0, i= 1, . . . ,N, by iden-

tifying the zero-crossings with negative slope. This indicates transitions from

sweep to ejection.

• To eliminate noise, evaluate f̃WAVE(a0,bi
0), and reject all detected structures for

which f̃WAVE(a0,b0) < K ·maxb f̃WAVE(a0,b). K has to be pre-defined, with 0 ≤
K ≤ 1

• For all valid structure positions, compute the ramp length L(bi
0), i.e. the distance

from b0 to the consecutive MHAT-maximum.

An example of the results for one 5 km LES streamwise spatial series is shown in

Fig. 6.14.

To evaluate time series data, the algorithm must be adapted for the inverted direction

of the series, i.e. the MHAT-transform has a positive slope around zero crossings, the

WAVE-transform f̃WAVE(a0,b0) has a minimum at detected structures, and the value

must not exceed K ·minb f̃WAVE(a0,b). Furthermore, the ramp length is defined by the

preceding MHAT maximum. Lengths in time series analyses are converted to units of
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Figure 6.14.: A 1D series x 7→ u′(x,y0, t0) in uG = 10 m/s LES data for some random y0, t0, normalized

with σu (a), its dimensionless WAVE wavelet coefficient f̃W/
√

∆x as a function of shift x and scale a(b),

the corresponding Ẽ1 spectrum (c), the WAVE (d) and MHAT (e) coefficients on the dominant scale. ∆x is

the distance between adjacent data points in the u′ series. Circles denote the beginnings of structures (zero-

crossing in MHAT coefficient with negative slope), and +-signs denote structure endings (subsequent

maxima in the MHAT coefficients). Normalization with cϕ was neglected for better scaling.

length, as usual, by multiplying with the mean wind.

6.2.3. Theoretical Considerations

The influence of the lidar averaging processes on the wavelet coefficients can be assessed

using the 1D averaging model of Eq. 6.15 on the spatial series data used for the wavelet

transform. The lidar wavelet coefficients for the field f become

f̃ϕ(a,b) =
1
√cϕ

1√
|a|

∞∫
−∞

dxϕ
∗
(

x−b
a

)
fRET(x) [6.49a]

=
1
√cϕ

1√
|a|

∞∫
−∞

dx
∞∫
−∞

dx′ϕ∗
(

x−b
a

)
wx0(x

′− x) fLES(x′) . [6.49b]
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Figure 6.15: The WAVE and MHAT wavelets

(top panels, WAVE: red, MHAT: blue), and the

resulting effective wavelets (Eq. 6.52) for a = 1

and x0/a = {0.3,2,5} (top to bottom).
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Since x and x′ are independent variables, the x-integral can be executed first. Thereby,

the effect of the averaging function wx0 is shifted from the field f to the wavelet ϕ , which

results in an effective wavelet Φ:

f̃ϕ(a,b) =
1
√cϕ

1√
|a|

∞∫
−∞

dx′Φ∗
(

x′−b
a

,
x0

a

)
fLES(x′) [6.50]

with

Φ

(
x′−b

a
,
x0

a

)
=

∞∫
−∞

dx ϕ

(
x−b

a

)
wx0(x

′− x) . [6.51]

The effect of the averaging process can now be studied by comparing the ϕ and Φ

wavelets. In the case of WAVE and MHAT wavelets ϕ , Φ can be computed analytically:

ΦWAVE

(
x−b

a
,
x0

a

)
=

a
2x0

(
2
π

) 1
4 [

e−z2
]z= x−b

a +
x0
a

z= x−b
a −

x0
a

, [6.52a]

ΦMHAT

(
x−b

a
,
x0

a

)
=

a
2x0

2
√

3π
1
4

[
ze−

z2
2

]z= x−b
a +

x0
a

z= x−b
a −

x0
a

. [6.52b]

The effective wavelets are functions of (x−b)/a and x0/a, so the averaging scale x0 only

becomes relevant in relation to the scale a. ΦWAVE and ΦMHAT are shown in Fig. 6.15

for different x0/a: The effective wavelets remain similar to the original wavelets for
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Figure 6.16: Position of the outermost

peaks |xext| in ΦWAVE(x,a,b,x0) (red) and

ΦMHAT(x,a,b,x0) (blue) for b = 0 as a

function of the relation between lidar av-

eraging scale x0 and wavelet scale a.

small x0/a, but as soon as the averaging scale becomes larger than the wavelet scale, the

wavelet begins to split along their central axis. Those split parts move further apart the

larger x0/a becomes (cf. Fig. 6.16).

For the wavelet analysis of lidar data, this effect means that as soon as the lidar aver-

aging scales are larger than the detected dominant wavelet scales in the spectrum, the

resulting wavelet coefficients no longer contain information: The wind field is evalu-

ated at two separate points, so a large overlap with the WAVE-wavelet no longer means

an ejection-sweep cycle, but rather an ejection at one point and a sweep some distance

away, whereas the information in between is lost. It can therefore be expected that the

lidar ramp lengths will match the LES results for scales larger than the lidar averaging

scale 2x0, whereas for short scales the results will be unreliable.

The ramp length algorithm described above focuses on detected structures on the en-

ergetically dominant wavelet scale a0. However, the breakdown of the lidar spectrum

on the high-frequency end also means that the energy contribution to smaller wavelet

scales is damped. Therefore, the dominant scale in the retrieval data has an effective

lower limit, which will lead to an overestimation for ramp lengths of the LES which fall

below the lidar averaging scale.

6.2.4. Results

The analysis was performed as described above for a set of randomly selected spatial

series data in x- and y-direction of all u and v wind fields.
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Figure 6.17.: Median ramp lengths in meters calculated from the wavelet algorithm as a function of

dominant scales from all data sets (left). The same median ramp lengths in pixels, linear fit: slope = 2.81

px, intercept= 3.13 px (center). The same ramp length in meters after removing the ordinate-intercept

from the pixel-data (right). Colors as in Fig. 6.6.

For the LES data set, one random position y1 on the y-axis was chosen at each time

step t1, and the wavelet analysis was performed on the resulting 1D series in mean wind

direction x, e.g. x 7→ u(t1,x,y1). The number of data points varied for different y1 due to

the rotation in mean wind direction, therefore a restriction was imposed which required

the series to have at least 80% of the largest possible number of data points. The series

in cross-wind direction were selected in the same way.

In the averaged LES and the retrieval data set, five random series in each direction were

choses for wavelet analysis.

Furthermore, the algorithm was applied to time series data from virtual towers in the

LES, positioned every 250 m. The length scale results of the time series were converted

to spatial scales by multiplying with the mean wind speed.

Ramp lengths L can only be computed when a clear maximum, the dominant energy

scale a0, can be identified in the wavelet spectrum Ẽ1(a). Tab. E.2 in App. E.2 gives an

overview of the data set size and data loss due to the absence of a maximum a0. When a

valid maximum was detected, the structure detection algorithm was applied for cutoff-

levels K = {0,0.2,0.4,0.6,0.8}.

After the analysis, a rescaling algorithm was applied to the ramp length data. The ramp

lengths are defined above as the distances between structure starts b0 and the following

maxima of MHAT. However, this definition allows for a certain inaccuracy, since the

position of the maximum is only defined with the accuracy of the data series used. If a
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Figure 6.18.: Wavelet analysis: Ramp lengths Lx of the u (left) and v (right) wind fields in mean wind

direction for all data sets at cutoff K = 0. Colors and range as in Fig. 6.6.

bias is introduced here, the length scale over- or underestimation will affect the retrieval

data more strongly, since here a ‘one-pixel-error’ corresponds to scales six or seven

times as large as in the LES case. To remove such a bias, the assumption can be made

that the mean ramp lengths at scale a are proportional to a,

〈ramp lengths(a)〉 ∝ a , [6.53]

since a appears as a linear scaling factor in the wavelet functions.

Fig. 6.17 shows the relation between dominant scales a0 and the mean ramp lengths,

which supports the assumption in Eq. 6.53. A linear fit,

〈ramp lengths(a0)〉= m ·a0 +b ⇒ m = 2.81, b = 3.13 , [6.54]

reveals that the length scales in pixel units are over-estimated. The bias of b = 3.13

pixels, converted into the metric unit equivalent, is removed from all ramp length data.

The comparison of LES and retrieval results of length scales is depicted in box plots as

in Chap. 6.1, shown in Figs. 6.18 and 6.19. App. G shows the ramp length distributions

for the different cutoff levels. Here only the results for K = 0 are shown, since the accu-

racy of the retrieval results is not sensitive to the cutoff value.
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Figure 6.19.: Wavelet analysis: Ramp lengths Ly of the u (left) and v (right) wind fields in cross-wind

direction for all data sets at cutoff K = 0. Colors and range as in Fig. 6.6.

The general behavior of the LES wavelet analysis results differs considerably from the

integral length scale computations, Figs. 6.6-6.9. Whereas the integral scale of the u

fields in x-direction increases with the mean wind, the energetically dominant wavelet

scale remains practically constant. The length scale values themselves are higher and

have a larger spread. The spread results from the fact that each structure in the series is

analyzed, in contrast to the single fixed mean length scale value resulting from the inte-

gral length scale algorithm for each time step. The structures are only recorded for the

energetically dominant wavelet scales a0, and the low-pass filtering property of wavelets

puts a lower bound on the resulting ramp lengths, which therefore have higher values

than the integral scales.

In contrast to the correlation length algorithm, Chap. 6.1, and the clustering algorithm,

Chap. 6.3, the Lx and Ly scales are not obtained in pairs for each time step or structure, as

in the former and latter case, respectively. Therefore, the anisotropy cannot be measured,

but must rather be estimated. Fig. 6.20 shows the range between p25(Lx)/p75(Ly) and

p75(Lx)/p25(Ly), where pn denotes the nth percentile. The centers mark the quotient of

median values.

As in the former analysis, the difference between the averaged and fully-resolved LES

ramp lengths is negligibly small compared to the data spread. The time series data show
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Figure 6.20.: Wavelet analysis: Anisotropy Lx/Ly of the u (left) and v (right) wind fields for all data

sets at cutoff K = 0. Colors as in Fig. 6.6. The bars range from p25(Lx)/p75(Ly) to p75(Lx)/p25(Ly), the

centers mark the relation of median values.

similarly good results - their high resolution facilitates neither wavelet overestimation

nor splitting effects, and the sole analysis of local ramp length neglects possible prob-

lems with the ergodic condition.

However, the retrieval results match the LES only for the largest scales, and clearly

overestimate for smaller scales, leading again to an underestimation of anisotropy. Fur-

thermore, the length scale spread in the retrieval data becomes larger in comparison for

smaller LES ramp lengths.

Both observations agree with the theoretical considerations above: the spread can be

explained with the unreliable results due to the wavelet splitting, and the overestimation

can be explained by the damped spectrum in high-frequency regions for the LES data.

No explanation can be given here why the splitting leads to a strong overestimation.

Fig.6.21 shows the overestimation factor LRET/LLES for all data sets of u and v for the

different background winds, directions of analysis and cutoff levels. The length scales

agree very well for the largest scales. A strong overestimation is visible for LLES smaller

than approximately four times the lidar grid resolution, which is the effective lidar aver-

aging scale (cf. Fig. 5.8).
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Figure 6.21.: Wavelet analysis: Overestimation factor LRET/LLES as a function of LLES/∆xy for all wind

fields at different wind speeds and cutoff levels K. The colors mark wind speed (darker blue means higher

uG) in the left panel and wavelet cut-off levels in the right panel (darker blue means higher absolute cutoff

values). Data points and error bars were computed as in Fig. 6.10.

The wavelet splitting effect, resulting in more noise, can be expected for x0/a0 > 1,

which means
L

∆xy
> 2.81 · x0

∆xy
, [6.55]

where the numeric factor stems from the linear fit between ramp lengths and scales,

Eq. 6.54. This means that the spread should decrease only for values LLES/∆xy of 5.5

or larger. Even though the median values approach unity in this region, the error bars

still range from about 0.5 to 2, so large statistics are necessary to estimate ramp lengths

correctly.

6.3. Clustering of Low Speed Streaks

The clustering algorithm provides the most descriptive method for structure analysis:

By aggregating those regions in the wind field which fall below a certain threshold the

typical shapes and scales of structures can be analyzed. No smoothing is involved in this

method, which makes it particularly objective, but also sensitive to the lidar averaging

effects.
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Figure 6.22.: Example of the clustering algorithm: 1.5× 1.5 km region in one time step of LES

data, fields u (left) and v (right). The contours show clustered ejections with cutoff levels of

{−2.5,−1.5,−0.5} ·σu and σv, respectively.

6.3.1. The Clustering Algorithm

The clustering algorithm is used to detect all connected areas in the wind fields in which

the wind speed is lower than a certain cutoff level K. The lengths in x- and y-direction

are measured as the distance between the outermost points in the cluster.

For discrete wind fields f = { f(1,1), f(1,2), f(2,1), . . .}, each clusters is a set C⊂ f , and the

length scales Lx, Ly and area A are computed using

Lx =

(
max

f (i, j)∈C
(i)− min

f (i, j)∈C
(i)
)
·∆xy , [6.56a]

Ly =

(
max

f (i, j)∈C
( j)− min

f (i, j)∈C
( j)
)
·∆xy , [6.56b]

A = ∑
f (i, j)∈C

(∆xy)2 . [6.56c]

This method allows to measure the actual shapes and lengths of low-speed structures,

using neither a statistical measure like integral length scales, nor any artificial smoothing

like the wavelet algorithms. One example for the clustering is shown in Fig. 6.22.

Time series data can also be subjected to clustering. Here, the structure length is defined

as the 1D extent of the cluster, suitably multiplied with the Taylor scales to give units of
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Figure 6.23.: Effect of smoothing on clustering length scales: 30 min time series, smoothed with moving

average over {1,10,30,60} s (left, top to bottom), and the resulting low-speed cluster lengths below the

cutoff-level K =−0.5 ·σu.

length. However, a cluster area cannot be defined in this way.

In order to determine average cluster shapes, ensemble averages can be computed: All

clusters of one wind field for a certain cutoff level K are normalized with respect to its

length and width, so that Lx = Ly = 1. Subsequently, the structures are stacked with the

centers on top of each other. The map M(x̃, ỹ) is used to count the number of normalized

structures which cover a certain point (x̃, ỹ) in the normalized coordinates. A contour

line in M at the level 0.5 ·max(M) then gives the median shape of the clusters.

6.3.2. Theoretical Considerations

Since the clustering method evaluates the length scales of every single structure without

further smoothing or averaging, the effects of the inherent averaging in the retrieval data

is expected to be most severe compared to the two other methods of analysis.

Fig. 6.23 shows the effects that are to be expected in the retrieval data due to spatial

averaging: The smallest scales in the structures disappear, and larger scales can become

even larger. The exact position at which any function crosses a certain cutoff level

is determined by an interplay of all its spectral components and can therefore not be

described by a simple mathematical model.
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The length scales Lx measured with virtual towers can be expected to underestimate the

LES scales: whereas the spatial analysis measures the maximal extent of a 2D structure,

the time series cuts the same structure at a random point y, which will, in most cases,

not be the point of largest extent.

6.3.3. Results

The 2D clustering algorithm was applied to all time steps of the u and v data in the

averaged LES and the retrieval data sets. Since the method is computationally expensive,

only 100 randomly selected time steps were used for the analysis of the LES data. For

each selected time step in the respective fields, the wind speed standard deviations (σu

or σv, respectively) were computed, and the clusters aggregated as connected areas in

which the wind speed fell below the cutoff level k ·σ . The analysis was performed for

k = {−3,−2.5,−2,−1.5,−1,−0.5}.
The same method was applied to time series data from 500 virtual towers in the LES

data, evenly distributed across the area. The large number of towers was possible since

1D-clustering can be executed much quicker than its 2D counterpart.

An overview of the data set size can be found in Tab. E.4. No further criterion had to be

fulfilled by the data sets to make the analysis possible, so no data loss occurred.

As in the wavelet case, a rescaling algorithm was applied to the length scales to correct

possible pixel errors. Making the assumption that the product of length scales should be

proportional to the area of a structure,

Lx ·Ly ∝ A , [6.57]

and assuming that the error in both x- and y-direction is given by a constant bias ∆ in

pixel units, this bias is determined by a least square fit,

A = (Lx−∆) · (Ly−∆) ·m , [6.58]

where the respective Lx, Ly and A are given by the median values for each field for all

data sets. The fit yields ∆ =−1.52 px, m = 0.48 px. With these results, all length scales

were corrected in pixel units,

Lx→ Lx−∆ , [6.59a]

Ly→ Ly−∆ . [6.59b]
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Figure 6.24.: Median cluster length products Lx ·Ly in meters from the clustering algorithm as a function

of cluster area from all data sets (a), the same data in pixels (b), the same ramp length in pixels after

removing the length scale offset −1.52 px from fit (c), the corrected pixel results converted to m2. Colors

as in Fig. 6.6.

and subsequently converted to metric units. The process is shown in Fig. 6.24.

Figs. 6.25 and 6.26 show the length scale distribution in x- and y-direction for a cutoff

level −1.5σ . The length scales in the LES data are much smaller than those detected

with the correlation length or wavelet algorithm, since here no additional smoothing

occurs. Most wind fields exhibit median length scales well below 100 m, which cannot

be expected to be resolved by the lidar. The temporal averaging has, again, only a very

small overestimation effect which increases with the wind speed. However, the lidar

data yield a considerable overestimation. The smallest detectable scales appear to be of

the order of 150 m. The qualitative development of length scales with the wind speed is

hardly detectable in the lidar data.

App. H shows the results for the other cutoff values. It is evident that the quality of

results is almost independent of the precise value. The structures become smaller with

increasing absolute cutoff, and the data spread decreases due to the fact that for the

strictest cutoff values only very few structures were detected (cf. Tab. E.5).

Since the overestimation is again most pronounced in the cross-wind direction as here

the scales are smallest, the anisotropy is underestimated (Fig. 6.27).

Fig. 6.28 shows a summary of the overestimation factors. Their values as well as their er-

ror bars are much larger than the results from any other method, even though the median
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Figure 6.25.: Clustering: Structure lengths Lx in mean wind direction of the u (left) and v (right) wind

fields for all data sets. Colors and range as in Fig. 6.6.
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Figure 6.26.: Clustering: Structure lengths Ly in cross-wind direction of the u (left) and v (right) wind

fields for all data sets. Colors and range as in Fig. 6.6.
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Figure 6.27.: Clustering: Structure anisotropy Lx/Ly of the u (left) and v (right) wind fields for all data

sets. Colors and range as in Fig. 6.6.
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Figure 6.28.: Clustering: Overestimation factor LRET/LLES as a function of LLES/∆xy from cluster

lengths. The colors in the left panel mark wind speed (darker blue means higher uG) and wavelet cut-

off levels in the right panel (darker blue means higher absolute cutoff values). Data points and error bars

were computed as in Fig. 6.10.

values almost collapse on a curve. The values become exceedingly large for LLES < ∆xy,

which can be expected from the lidar.

Apart from a tendency towards smaller structures for larger cutoff values, the quality of
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Figure 6.29.: Clustering: Overlay of structure shapes (median contours) in retrieval u data for the dif-

ferent cutoff levels k, with uG increasing from left to right panel. The shapes are stretched to the median

length scales for the respective set. Structures from larger absolute cutoff values are shown in darker

colors.
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Figure 6.30.: Clustering: Overlay of structure shapes in LES u data for the different cutoff levels k, with

uG increasing from left to right panel. Method and colors as in Fig.6.29.

the lidar results does not depend on the cutoff value.

Although the method is capable to determine the precise shape and size of structures,

the present scales are much too small to be adequately detected using dual-lidar mea-

surements.

Figs. 6.29-6.31 show the median contours for the different data sets and wind speeds.

As expected, the structures are stretched in mean wind direction as the wind speed in-

creases. In the LES and averaged LES data, the median structure scales are largest at an

intermediate cutoff value, which is possible when the number of small-scale structures

increases rapidly for the cutoff value approaching zero.

Although the length scales are inadequately represented by the lidar results, the general

shape and elongation of the structures is qualitatively visible. The shapes at the largest

retrieval cutoff values appear uneven due to the very few structures that could be used

for ensemble averaging.
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Figure 6.31.: Clustering: Overlay of structure shapes in averaged LES u data for the different cutoff

levels k, with uG increasing from left to right panel. Method and colors as in Fig.6.29.

6.4. Comparative Results

The spatial averaging in dual-Doppler lidar data necessarily leads to an overestimation

in all methods of analysis. Fig. 6.32 shows the comparative overestimation factors. The

length scale and resulting anisotropy estimations from dual-lidar data vary considerably

in their performance.

The best agreement between LES and virtual lidar results is shown by the correlation

length algorithm, especially considering that it is possible to derive the real integral

length scales from the lidar data when the spatial averaging processes in the lidar are

known, or when further measurements provide a reliable method to measure spatial

wind field variances. However, its disadvantage lies in its inability to describe single

structures, it is only a statistical measure for the complete time step.

The wavelet algorithm can detect single structures, if only in one dimension, which ex-

plains its larger data spread. The performance is very accurate for scales larger than 5

to 6 times the retrieval grid spacing, with median overestimation factors below 1.5. It is

mathematically impossible to reliably detect structures with smaller scales or to correct

the results.

The clustering algorithm is a theoretically valuable approach since is detects structure

features without further smoothing or averaging. However, the detected structures are

too small to be accurately detected by the lidar. The spatial averaging on a scale of the

structure size leads to very large overestimation factors and errors. At the moment, no

method is available to correct the results.

For the scan times T0, time averaging has for all methods only a minor contribution to

the overestimation.

Time series analyses only yield mean wind direction length scales. The results are gen-

erally very accurate, although possible problems due to a lack of ergodicity have to be
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Figure 6.32.: Comparative length scale results:

Integral length scales (top): Overestimation factor LRET/LLES as a function of LLES/∆xy from uncorrected

(left) and corrected data (right). Method and colors as in Fig. 6.10. Wavelet analysis (center): Overestima-

tion factor LRET/LLES as a function of LLES/∆xy. Method and colors as in Fig. 6.21. Clustering (bottom):

Overestimation factor LRET/LLES as a function of LLES/∆xy. Method and colors as in Fig. 6.28. For better

visibility, the y-axis was truncated.
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taken into account for the integral length scales. Time series have the additional dis-

advantage of providing no spatial data for calm situations, and no information can be

obtained about the wind field in spanwise direction.

Both spatial autocorrelation and clustering show a slight tilt of the structures away from

the axis of mean wind speed under a small positive angle. Since the LES data used was

interpolated to only 10 m height this effect does not have to be significant for surface

layers in general. However, it should be noted that the retrieval is able to qualitatively

capture this tilt.
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7. Techniques for the Derivation of the Vertical Wind Field

Horizontal lidar scans reproduce only the horizontal wind field components. The esti-

mation of vertical momentum fluxes requires further measurements of the vertical wind

fields. In this chapter, the Finite Time Lyapunov Exponent is applied to the virtual

lidar data, a method which identifies regions of convergence and divergence in two-

dimensional data. Its applicability for the prediction of near-surface vertical winds is

investigated.

7.1. Finite Time Lyapunov Exponents and Lagrangian Coherent

Structures

The following methods and definitions for the Finite Time Lyapunov Exponent and the

Lagrangian Coherent structures were developed by Shadden et al. (2005), based on ear-

lier works by Haller (2001). A thorough introduction can be found in Shadden (2012).

7.1.1. Lagrangian Coherent Structures

Lagrangian coherent structures (LCS) can be defined for a two-dimensional vector field

(here, the horizontal wind field) over an area D ⊂ R2 and a time interval [t0, t0 + T ].

The wind field determines the trajectory of any particle over the time interval T , always

assuming that it moves freely with the wind. Keeping T and t0 constant, a vector valued

mapping φ can be defined, where φ
t0+T
t0 (x) is the position of a particle in D at the time

t0 +T , which started from x at t0:

x 7→ φ
t0+T
t0 (x) . [7.1]

For better readability, the indices t0 and t0 +T are omitted in the following.
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To obtain a measure for convergence of the vector field, the distance between φ(x) and

the displacement of a particle starting from an infinitesimal distance δx =
(

δx1
δx2

)
away

from x is considered:

δφ = φ(x+δx)−φ(x) =
∂φ

∂xi
(x)δxi . [7.2]

Here and hereafter, summation over repeated indices is implied.

The absolute value of this displacement is then given by

‖ δφ ‖2 = δx†
∆δx , [7.3a]

with ∆ =

(
dφ

dx

)†

·
(

dφ

dx

)
, i.e., ∆i, j =

∂φ ∗k
∂xi

∂φk

∂x j
. [7.3b]

For constant ‖ δx ‖, the displacement is only a function of the direction of δx. Among

all possible directions, that one is selected which is aligned with the eigenvector of ∆

which has the highest eigenvalue, λ = max{λ1,λ2}.
Consequently,

‖ δφ ‖2= λ ‖ δx ‖2 . [7.4]

The Finite Time Lyapunov Exponent (FTLE) is defined as (Shadden et al., 2005):

σ
T
t0 (x) : =

1
|T | ln

(√
λ

t0+T
t0 (x)

)
, [7.5]

where λ
t0+T
t0 is the aforementioned highest eigenvalue of the ∆ matrix, constructed from

the φ
t0+T
t0 fields.

Thereby, the FTLE is a measure for convergence or divergence of the trajectories of a

vector field. σ < 0 indicates areas of convergence, while σ > 0 indicates areas of diver-

gence (cf. Fig. 7.1). If backwards trajectories are computed (i.e., T < 0), the meaning of

the FTLE-field is reversed, with positive values indicating areas of convergence.

A Lagrangian coherent structure (LCS) is now defined as a ridge in the FTLE-field.

A ridge is an injective curve in the 2D plane which fulfills the conditions that (1) the

gradient of the FTLE-field is zero perpendicular to the curve, and that (2) the curvature

in the same direction is negative, indicating a local maximum.

This means a curve c : s 7→ D ⊂ R2,s ∈ (a,b) ⊂ R, is called a Lagrangian coherent
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Figure 7.1: Illustration of the FTLE algorithm:

Two infinitesimally spaced particles at time t0 di-

verge over the time interval T .

structure of the field σ : D 7→ R if and only if all of the following conditions apply

(Shadden et al., 2005):

• ∀s ∈ (a,b) : ∇σ(c(s)) 6= 0⇒ c′(s) ‖ ∇σ(c(s)) , [7.6a]

• ∀s ∈ (a,b) : ~n(c(s))T
Σ(c(s))~n(c(s))< 0, with [7.6b]

Σ : D 7→R2×2, Σi, j(x) =
∂ 2σ

∂xi∂x j
(x) the Hessian of σ and

~n(c(s)) · c′(s) = 0, i.e. ~n points in cross-ridge direction.

Shadden et al. (2005) additionally derived a formula to estimate the flux through the

Lagrangian Structures and point out that “for well-defined ridges or ones that rotate at a

rate comparable to the local Eulerian field and are computed from a FTLE field which

has a sufficiently long integration time, the flux across the LCS is expected to be small”.

Therefore, LCS can be viewed as barriers in the horizontal flow that shift as the wind

field evolves. The lines of convergence denote regions where horizontal air movements

are converted to vertical movements, and accordingly lines of divergence denote regions

of conversion from vertical to horizontal flow.

7.1.2. The Finite Domain Finite Time Lyapunov Exponent

Tang et al. (2010) point out that the borders of available horizontal wind velocity data

regions appear as attractors in the FTLE algorithm, since trajectories stop at the bound-

aries. To reduce this effect, they proposed a smoothing algorithm, which is also applied

here. This algorithm embeds the region of valid data into a larger structure-free back-

ground wind field: Let D be the region of valid data, and D ⊂ G ⊂ R2, where the

region G is much larger than D. For each time step t, a linear background wind field
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vL : G 7→ R2 is defined as the divergence-free wind field which assumes the minimal

distance in functional sense from the available wind field u on the subset D:

vL(x, t) =

(
a11 a12

a21 a11

)
·x+

(
b1

b2

)
, [7.7]

where vL can be determined by minimizing the functional

J[v] = ∑
x∈D
‖ v(x, t)−u(x, t) ‖2 , [7.8]

hence

min
v
{J[v]}= J[vL] . [7.9]

The field vL is by definition free of LCS.

The smoothing function S is designed to allow the data field u to fade out into the back-

ground linear field around the edges of the data region. Let dist(x) : D 7→ R be the

distance of each point in D from the edges of the data region, and ∆ the cutoff-distance,

then

S : G 7→R,S(x) =


0, x /∈ D

−2(x/∆)3 +3(x/∆)2, x ∈ D,dist(x)≤ ∆

1, x ∈ D,dist(x)> ∆

[7.10]

is the lowest order continuously differentiable function that performs the increase from

0 to 1 over the transition region of thickness ∆. The smoothed wind field is then given

by

usmooth(x, t) = vL(x, t)+S(x)(u(x, t)−vL(x, t)) . [7.11]

The resulting FTLE-fields are also called the ‘Finite Domain Finite Time Lyapunov

Exponents’ (Tang et al., 2010).

7.2. Theoretical Considerations

For measurements close to the ground, it is reasonable to assume a correlation between

convergence and upwards movements and between divergence and downwards move-

ments.
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7.3. Results

A Eulerian approach to estimate the vertical wind can be derived from the incompress-

ibility approximation, ∂ui/∂xi = 0, which is exactly true in the LES data (cf. Chap. 3.2.2):

w(x,y,z) =−
z∫

0

dz′
∂u
∂x

(x,y,z′)+
∂v
∂y

(x,y,z′) [7.12a]

≈−z ·
(

∂u
∂x

(x,y,z)+
∂v
∂y

(x,y,z)
)

. [7.12b]

This finite difference approach becomes less accurate with increasing height z, since it

neglects changes in the horizontal divergence in the layers between z and the ground.

Furthermore, lidar measurements provide only limited spatial resolutions, so the accu-

racy of the horizontal divergence results will be limited.

The FTLE, on the other hand, provides a Lagrangian view of wind field convergence.

The time integration could improve the estimation of horizontal divergence compared to

the finite difference method. However, the lidar data also have a limited time resolution,

therefore further errors will be introduced by inaccurate trajectory computations.

A quantitative investigation is needed to determine how accurately the vertical wind field

can be deduced from the FTLE field or the horizontal divergence and to determine the

relative influences of the advantages and disadvantages of both methods for different

integration times T and background wind speeds.

7.3. Results

The FTLE algorithm, as detailed above, was applied to the retrieval data sets, the time

averages LES data sets and the full resolution LES data sets.

The following steps were executed on the retrieval data sets:

• Wind field smoothing
For each time step in the four retrieval data sets, the smoothed 2D wind field

uRET,smooth was computed from the retrieved wind uRET, as described in Chap. 7.1.2,

on an area nine times the size of the original retrieval area. The constant ∆, which

determines the length scales of the transition between the original wind field in the

center and the surrounding linear field vL was set to ∆ = 2 ·∆xy. Fig. 7.2 shows the

effect of the smoothing around the edges of the data region.
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• Backward trajectories
Starting from each time frame t0 of the retrieval data, 6 trajectories were computed

backwards over time intervals of T = T0 · {1,2,3,5,8,13}, where T0 is the time

resolution of the retrieval. The end points of the trajectories starting from grid

point x, φ
t0−T
t0 (x) (cf. Eq. 7.1), were determined using finite difference integration

of the retrieved wind field:

With the starting values for position and horizontal wind field,

x0 = x , [7.13a]

u0 = uRET,smooth(x0, t0) , [7.13b]

the stepwise trajectory values are approximated to

xi = xi−1−ui−1 ·∆t [7.14a]

ui = uRET,smooth(xi, t0− i ·∆t) , i = 1, . . . ,T/∆t , [7.14b]

to obtain the final point

φ
t0−T
t0 (x) = xT/∆t . [7.15]

The integration time step ∆t was T0 for the retrieval data sets, and uRET,smooth(xi)

was determined by linear interpolation of uRET,smooth to the point xi.

• FTLE
From the displacement fields φ

t0−T
t0 , the Finite Time Lyapunov Exponent field σT

t0

was computed as detailed in Chap. 7.1.1. To this effect, the partial differentials in

the ∆-matrix (Eq. 7.3b) were approximated with a finite difference method, i.e.

∂φk

∂x
(n,m)≈ φk(n+1,m)−φk(n−1,m)

2∆xy
[7.16a]

∂φk

∂y
(n,m)≈ φk(n,m+1)−φk(n,m−1)

2∆xy
[7.16b]

where (n,m) are (x,y)-grid-indices and ∆xy is the resolution of the wind field grid

in meters.

The time averaged LES data were treated in the same way. For the full resolution LES

data, the starting times t0 were chosen as the time steps closest to the retrieval time

frames, and the backwards integration was executed with ∆t =1 s over the same time
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Figure 7.2.: Wind field smoothing for the FTLE algorithm in finite domains, uG = 0 m/s: original (left)

and smoothed (right) LES u field at the edge of the data region (no data for x < 0 or y < 0). The smoothing

constant is ∆ = 2∆xy = 120 m.

intervals T , rounded to the full second due to the 1 s LES time resolution.

Furthermore, for each time step in each data set, an approximation for the horizontal

divergence was computed. For the LES and time averages LES data, the relative shift of

the u, v and w grids (Fig. 3.4) facilitates the computation, using

∇HuLES ≈
u
(
x+ ∆x

2 ,y
)
−u
(
x− ∆x

2 ,y
)

∆x
+

v
(

x,y+ ∆y
2

)
− v
(

x,y− ∆y
2

)
∆y

[7.17]

with ∆x = ∆y = ∆xyLES= 10 m.

The retrieval uses the same grid for u and v components, therefore forward differences

were used as an approximation:

∇HuRET ≈
u(x+∆x,y)−u(x,y)

∆x
+

v(x,y+∆y)− v(x,y)
∆y

. [7.18]

From the horizontal divergence, the approximate vertical wind fields were obtained,

using Eq. 7.12:

wDIVH(x) =−10 m ·∇Hu . [7.19]

The results for FTLE and horizontal divergence can be compared with the appropriate

vertical wind fields. For the LES and time averaged LES, the vertical wind fields chosen

for comparison are obviously the full resolution and time averaged LES w fields, respec-

tively. The retrieval data were compared with the time averaged LES w fields in two

different ways: firstly, wLESAVG was linearly interpolated on the retrieval axes, and sec-

ondly, wLESAVG was smoothed using a moving average over an area of Ssmooth×Ssmooth

125



7. Techniques for the Derivation of the Vertical Wind Field

w [m/s]

F
T
L
E

[1
/
s]

 

 

−2 0 2

−0.3

−0.2

−0.1

0

0.1

log(number)

1 2 3 4

w [m/s]

 

 

−2 0 2

log(number)

2 4 6 8

w [m/s]

 

 

−2 0 2

log(number)

2 4 6 8

w [m/s]

 

 

−2 0 2

log(number)

1 2 3 4

Figure 7.3.: uG = 0 m/s: 2D histograms of vertical winds w and FTLE fields for the data sets I - IV, i. e.

the retrieval, the retrieval in comparison with smoothed w, the time averaged LES and full resolution LES

data sets (left to right) in logarithmic units in the range [0,0.8·max{FTLE}]. The solid lines are the linear

fit results.

with Ssmooth ≈ ∆xy before interpolating it to the retrieval axes. The former case corre-

sponds to point measurements of w (available from towers or vertically staring lidars in

measurement data), whereas in the latter case w is averaged down to the lidar scale. The

smoothing constant Ssmooth was chosen as the shortest length spanning an odd number

of LES grid cells, i.e. Ssmooth = {70, 70, 70, 90} m for uG = {0, 5, 10, 15} m/s.

Tab. 7.1 summarizes the data sets used for comparison.

Since the quantitative relationship between FTLE and the vertical wind is not obvious,

the FTLE is converted into an approximate vertical wind field wFTLE by fitting it to the

real w field.

# Data Set u,v for FTLE computation w-field Resolution

I RET retrieved wind fields time avg. LES wind field (intp.) ∆xy, ∆t = T0

II RET retrieved wind fields time avg. LES wind field (intp., sm.) ∆xy, ∆t = T0

III LESAVG time avg. LES wind fields time avg. LES wind field ∆xyLES, ∆t = T0

IV LES LES wind fields LES wind field ∆xyLES, ∆t = 1 s

Table 7.1.: Overview of horizontal wind fields used for FTLE computation and the associated vertical

wind fields for the three types of data sets.
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Figure 7.4.: uG = 10 m/s: 2D histograms of vertical winds w and FTLE fields for the data sets I - IV.

Method and colors as in Fig. 7.3

Figs. 7.3 and 7.4 show the joint FTLE and w distribution with uG = 0m/s and uG = 10m/s

for the three data sets. The histograms indicate that the relation between FTLE and w is

approximately linear. The colored lines show the results from the linear least squares fit

w = m ·σ t0−T
t0 +b. The fit parameters are summarized in Tabs. I.1 and I.2. The predicted

vertical wind from the FTLE is then defined by

wFTLE(x) = mfit ·σ t0−T
t0 +bfit . [7.20]

Figs. 7.5 and 7.6 show the comparison between the vertical wind, wDIVH and wFTLE for

an integration time T = T0 for one exemplary time frame in the uG = 0 m/s and the

uG = 10 m/s data sets, respectively. While the divergence appears to reproduce w best in

the LES and time averaged LES case, the results are less clear in the retrieval case. Both

wDIVH and wFTLE capture the dominant convergence lines of the smoothed vertical wind

field at uG = 0 m/s qualitatively well. Those lines are less apparent in the unsmoothed

w-fields, the agreement of which with the predicted wind fields is unsurprisingly less

good. For uG = 10 m/s, nearly all structures are averaged out, but wDIVH appears the

reproduce the remaining fluctuations better than wFTLE.

The correlation coefficients rw,FTLE and rw,DIVH between vertical wind fields and the

FTLE fields, which were derived from the full data sets, are shown in Fig. 7.8. Fur-

thermore, the mean absolute error (MAE) between the predicted vertical winds and w,
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Figure 7.5.: uG = 0 m/s: Comparison between w, wDIVH and wFTLE (top to bottom) for the data sets I -

IV, i. e. the retrieval, the retrieval in comparison with smoothed w, time averaged LES and full resolution

LES data sets (left to right) on a 2 km×2 km area for one time frame. The FTLE-fields have an integration

time of T = 1 ·T0.

normalized with the standard deviation of w, is shown in Fig. 7.9. The MAE for two

fields w1,w2 on the same grid with (Ni,N j,Nk) grid points in the (x,y, t) dimensions is

given by

MAEw1,w2 =
1

Ni ·N j ·Nk

Ni,N j,Nk

∑
i, j,k=1

|w1(i, j,k)−w2(i, j,k)| . [7.21]

In a direct comparison of both vertical wind prediction methods, the FTLE algorithm

outperforms the horizontal divergence in the retrieval case. Therefore one can conclude

that the time integration can in part compensate for the low spatial resolution in deter-

mining the horizontal divergence. The good agreement between wDIVH and the vertical

wind can be seen in the LES results. The deviation can be explained by the necessary

rough approximation of the integral, Eq. 7.17. Small errors can also occur due to the

interpolation of the u and v fields (Chap. 5.4). In contrast, the LES results show a bet-

ter performance of the horizontal divergence method compared to the FTLE. It should
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Figure 7.6.: uG = 10 m/s: Comparison between w, wDIVH and wFTLE (top to bottom) for the data sets I -

IV, i. e. the retrieval, the retrieval in comparison with smoothed w, time averaged LES and full resolution

LES data sets (left to right) on a 2 km×2 km area for one time frame. The FTLE-fields have an integration

time of T = 1 ·T0.

be noted that T = T0 is the shortest possible integration interval for the retrieval data,

whereas the LES data with a time resolution of 1 s could allow for a much shorter inte-

gration time.

The LES time averaging appears to have a small positive effect on the result quality.

It is evident that the best agreement of w with wFTLE is always obtained for shorter inte-

gration times T .

For all data sets, the errors increases and the correlation decreases for larger uG in the

comparison between w and wFTLE. Note that the theoretical FTLE results (Chap. 7.1.1)

are not affected by a constant background wind, rather the rapid change of the wind field

appears to introduce larger errors during the trajectory computation. The effects can be

seen in a direct comparison between the smoothed time averages vertical wind field and

the T = T0-FTLE-field from the retrieval data in Fig. 7.7: Even though the structures and
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Figure 7.7.: The vertical wind field wLESAVG,intp,sm, overlaid with contours of wRET,FTLE at levels {-0.3,-

0.2,...,0.2,0.3} m/s.

their shapes are reproduced in the FTLE, their location is increasingly displaced from

their position in w. Furthermore, the FTLE fields appear increasingly blurred and unable

to resolve small-scale structures.

The effect is not visible in the comparison with wDIVH, which only uses the instanta-

neous wind field so that the advection has no influence on the results.

Quantitatively, both wFTLE and wDIVH perform rather poorly in predicting the vertical

wind from the retrieval data. The absolute error lies between 0.8 σw and 0.9 σw for the

horizontal divergence when comparing with the vertical point measurements, and even

increases for the smoothed vertical wind fields. Additionally, the correlation coefficient

is small enough for the fields to be considered uncorrelated. The horizontal divergence

method is therefore impractical to predict the vertical wind field.

The FTLE results are more promising, with a correlation coefficient of up to 0.4 for the

unsmoothed and up to 0.6 for the smoothed vertical wind field. The mean absolute errors

remain large, with values between 0.7 and 0.8 σw (unsmoothed) and between 0.6 and 0.8

(smoothed), respectively. Nevertheless, the FTLE method proves clearly advantageous

for vertical wind field prediction.

Instead of determining the vertical wind speed, the FTLE field can be used to predict

the sign rather than the magnitude of w. The further advantage lies in the theoretical

agreement of sign(w) and sign(FTLE) (cf. Eq. 7.5), where no further fit of the FTLE to

otherwise obtained vertical wind data is required.
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Figure 7.9.: Mean absolute error between the predicted vertical winds wFTLE, wDIVH and the vertical

wind w, normalized with the standard deviation of the respective vertical wind field. Colors as in Fig. 7.8.

In Fig. 7.10 the performance for this less strict predictand is investigated. The plots

show the hit rate, i.e. the number of data points where sign(w) and sign(FTLE) coincide,

normalized with the total number of data points (Wilks, 1995). The full contingency

tables for the agreement between the signs can be found in Tab. I.3 for the FTLE fields

and in Tab. I.4 for the horizontal divergence.
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Figure 7.10.: Hit rate for the prediction of sign(w): Number of data points with sign(FTLE) ≡ sign(w)

(or sign(wDIVH)≡sign(w)), divided by total number of data points. Colors as in Fig. 7.8.

The retrieval results accurately predict the sign of w only in 50% to 65% of all cases

(unsmoothed w) and 55% to 70% (smoothed w), respectively. Only for uG = 0 m/s

is the hit rate significantly larger than 50%. Interestingly, the FTLE-performance for

uG > 0 m/s is not significantly better for the LES and time averaged LES data sets.

Even though the visual agreement is better than in the retrieval case (cf. Fig. 7.6), small

displacements introduced though time integration errors lowers the hit rate significantly.

7.4. Summary

The Finite Time Lyapunov Exponent is a measure for divergence in two-dimensional

wind fields which uses the spread of trajectories using time integration. This Lagrangian

approach can be seen in contrast to the Eulerian horizontal divergence computation from

a single time step.

The present LES data sets show a good agreement between negative divergence and the

vertical wind. However, neither the FTLE nor the horizontal divergence are accurate

predictors for the vertical wind, or even its sign, when applied to virtual dual-lidar re-

trieval data.

The best predictor for w from retrieval is the FTLE-field with the shortest integration

time. For the calm situation, it achieves at correlation coefficient of 0.6, a mean absolute

error of 0.65 σw and a hit rate of 70% when compared to the vertical wind field on the
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retrieval scale. However, the quality rapidly deteriorates with increasing background

wind speed.

Despite the large errors, the FTLE-field and the vertical wind field agree qualitatively

well and the Lagrangian coherent structures are clearly visible. The method appears

promising for further analyses that do not rely on the exact position but rather the spa-

tial statistics of convergence lines like their shape and intensity distribution or the ridge

curvature of the Lagrangian structures. Furthermore, it is conceivable that the structure

localization could be improved with enhanced spatial resolution and time integration

techniques.
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8. Conclusion and Outlook

Coherent structures appear as regular patterns in boundary layer wind fields. They play

a significant role in turbulent transport processes in the boundary layer, but their forma-

tion and properties are still too little understood to include them in parameterizations of

mesoscale atmospheric models.

The applications of Doppler lidars has meant important progress in coherent structure

research. With dual-lidar measurements, the two-dimensional wind field can be mea-

sured with high time and spatial resolution. However, the measurement results require

an independent quality validation.

The goal of this study was to assess the performance of surface layer coherent structure

detection techniques on dual-Doppler lidar planar scan data. To this effect, virtual dual-

Doppler lidar measurements were performed in four different LES-generated boundary

layers.

Virtual lidar measurements were generated from high-resolution LES data. The large-

eddy simulations were driven by background geostrophic winds from 0 m/s to 15 m/s

and varying surface heat fluxes, and thereby covered a range from purely convective

boundary layers without shear to shear-dominated boundary layers.

The visual inspection of the LES data agree with the results from earlier studies: The

data show streaks of varying length scales in the sheared surface layer streamwise wind

fields, and cellular structures in the vertical wind of the highly convective surface layer.

To perform the virtual measurements, a lidar simulation software tool was developed

which operates on given wind fields on a three-dimensional grid. After setting the li-

dar position, pulse and scan parameters, the software generates radial velocity estimates

along the beam from the underlying model data based on the mathematical description

of Doppler lidar wind estimation. If the grid constant is small compared to the lidar

pulse width, this method yields realistic virtual measurements. Here, the LES had a spa-

tial resolution of 10 m, whereas the pulse width was between 70 m and 90 m.
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In dual-Doppler lidar measurements, two lidars scan the same area, and their radial

velocity estimates are reassembled to yield two of the three wind components. These

dual-lidar measurements were accomplished with the simulator by placing two virtual

lidars in the same LES data.

To investigate surface layer structures, a promising approach is to study two-dimensional

cross-sections of the wind field. To realize this, the two lidars were programmed to per-

form synchronized ground-parallel scans on a coplanar area at z = 10 m in the LES data

sets. The lidar parameters were chosen to match those of the KIT dual-Doppler lidar

system. The virtual measurements were preceded by a fundamental error-analysis on

dual-Doppler lidar planar scans, which revealed the lidar spatial averaging and time-

undersampling as the dominant error sources. Based on this analysis, an optimiza-

tion scheme for scan patterns was developed which facilitated error-minimization in

the scans. The optimized duration T0 of one planar scan in the given LES set-ups ranged

from 11.4 s for high background wind speeds to 14.6 s in the calm situation. In total,

each virtual measurement covered a timespan of 30 min and a horizontal area of approx-

imately 15 km2.

A retrieval algorithm based on a weighted cost function was implemented to convert the

virtual dual-lidar data into the horizontal streamwise and spanwise wind components, u

and v, on a two-dimensional Cartesian grid in the horizontal lidar scanning plane.

Thereby, the ‘real’ horizontal wind fields from high-resolution LES and the ‘measured’

virtual dual-lidar wind fields could be compared directly, including results from wind

field based algorithms to classify boundary layer characteristics. This allowed for the

first time a quality assessment of dual-Doppler lidar measurements. For further compar-

ison, two other data sets were generated: Firstly, the LES data were time-averaged over

the lidar scan intervals to determine the influence of rapidly changing wind fields, and

secondly, virtual towers were placed in the LES data to compare the spatial results with

high-resolution time series analysis.

Since the dual-lidar data yield only the horizontal wind field, the quantitative analysis

was divided into two parts: In the first part the structure length scales in the horizontal

wind field were determined, whereas in the second part a derivation of the vertical wind
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w was attempted.

The first part, Chap. 6, comprises the application of three different structure detection

techniques on the horizontal wind fields from lidar, LES, time-averaged LES, and vir-

tual towers. The tower length scales were converted into units of length by multiplication

with the mean wind speed.

The first method used the integral over the two-dimensional spatial autocorrelation func-

tion to determine the integral length scales Lx and Ly of u and v in streamwise and span-

wise direction, respectively. This approach cannot be used to investigate single struc-

tures, but rather their mean properties at each time step. Theoretical analyses revealed

that the inherent spatial averaging in the dual-lidar data leads to an overestimation of

length scales LRET from the lidar compared to the real length scales LLES. Assuming a

simplified model for the lidar averaging process, it was found that the length scale over-

estimation is given by the ratio of variances of the high-resolution and the lidar averaged

field,
LRET

LLES
=

σ2
LES

σ2
RET

, [8.1]

which in turn could be expressed as an analytic function of 2x0/LLES, where 2x0 is the

effective lidar spatial averaging scale. The comparison between LES and dual-lidar data

agreed with these results and the effective averaging scale was found to be 2x0 ≈ 7∆xy,

where ∆xy is the cell length of the lidar Cartesian data grid. Further analyses showed

that the overestimation factor can be corrected using Eq. 8.1 when σ2
LES is taken from

virtual tower data. An overall value of LRET/LLES < 1.5 was achieved, even for LLES as

small as 0.5 ∆xy. The correction failed, as expected, for uG = 0 m/s.

This means that integral length scales can be determined accurately for uG > 0 from

dual-Doppler lidar measurements, as long as high resolution wind field data from a sin-

gle meteorological tower are available to perform the scale correction.

The second method used one-dimensional wavelet analysis in both streamwise and span-

wise direction on the lidar and LES wind fields, as well as the virtual tower data.

Ejection-sweep cycles, i.e., rapid changes from low to high wind speeds, were detected

in u with the WAVE and Mexican Hat wavelet. The same algorithm was applied to
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v. The length scale analysis was only performed on the energetically dominant wavelet

scale, where the ramp length was determined for each detected structure. For evaluation,

the length scale distributions were compared for the different data sets.

The detected structure lengths LRET in the dual-lidar data again generally overestimate

the real lengths, LLES. The results show LRET/LLES ≈ 2 for LLES ≈ 3 ∆xy, which slowly

decreases to one at LLES ≈ 9 ∆xy. For smaller LLES, the overestimation becomes larger

and noisier; it is no longer a monotonous function of LLES/∆xy.

Theoretical analysis showed that for dominant wavelet scales shorter than the lidar av-

eraging scale the lidar averaging process effectively results in a splitting of the wavelet

function into two separate parts located at the borders of the lidar averaging region. With

these split functions, a wavelet analysis is no longer meaningful and the results cannot

be corrected. On the other hand, wavelet scales much larger than the lidar averaging

scales result in a low-pass filtering of also the high-resolution LES data, so that the lidar

spatial averaging has no longer any effect on the results.

Consequently, wavelet analysis is a method best suited for the investigation of single

structures, as long as an independent measurement is available to ensure that the ener-

getically dominant scales are large enough for the analysis to perform correctly. In all

other cases, an interpretation of the wavelet analysis results becomes virtually impossi-

ble.

As the third method, a clustering algorithm was applied to the wind components: All

coherent regions with u or v smaller than a certain cutoff-value were analyzed in terms

of lengths in streamwise and spanwise direction.

The analysis revealed that although the streaky structures appear very elongated in

streamwise direction, they are frequently interrupted by small-scale high-speed fluid

regions. The clustered low-speed regions are, on average, shorter than 2.5 ∆xy in any

direction. Accordingly, the dual-lidar cannot resolve these small structures, leading to

overestimation factors ranging from 2.5 to 12. Therefore, applying this method of anal-

ysis is unsuitable for dual-lidar data under the present circumstances.

The time series data were able to reproduce the streamwise length scale results for all

three algorithms for uG > 0. The estimated length scales showed the highest agreement

with the LES spatial analysis in the wavelet analysis. The correlation lengths showed a
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larger error and a negative bias due to reduced ergodicity, and the cluster lengths were

underestimated since the tower does not necessarily probe the structures at the point of

their longest spanwise extent.

However, time series cannot provide any data in spanwise direction, and the analysis

inevitably fails at uG = 0. They should therefore mainly be used to complement spatial

analyses.

In the second part, Chap. 7, the Finite Domain Finite Time Lyapunov Exponent (FDFTLE),

which is a measure for convergence of the horizontal wind field trajectories, was used

to predict the vertical wind under the assumption that updrafts coincide with horizontal

wind field convergence close to the ground. The predicted vertical winds wp showed a

high correlation with the vertical winds w from LES in the convective case with uG = 0:

rw,wp = 0.6 for the dual-lidar data, and rw,wp = 0.8 for the LES data for a windfield tra-

jectory computation backwards in time over one scan duration T0. The sign of w was

predicted correctly in 70% of all dual-lidar data points, and in 80% of LES data points.

Generally this Lagrangian method showed better results for vertical wind prediction in

the lidar data than the simple finite difference integration of the incompressible con-

tinuity equation. The prediction quality rapidly decreased with higher uG and longer

trajectory integration times.

The FDFTLE is, in summary, a suitable parameter to deduce convective structures in the

horizontal wind field data from dual-Doppler lidar, albeit the present time and spatial

resolutions result in a more accurate prediction of the sign of w than of the magnitude

of w. Therefore, no further structure analyses on the predicted vertical winds were per-

formed.

In all analyses, the time-averaged LES fields performed almost as well as the full-

resolution LES. However, the error analysis showed that the error in the radial velocity

estimation increases for larger scan times. It is therefore not the duration of the scan,

but rather the associated time-undersampling which leads to large errors: In each scan

interval of length T0 the lidar records velocity estimates in each grid cell only for the

duration ∆t� T0.

The good agreement between LES and virtual lidar results after the correction of spatial

averaging errors suggest that those constitute the dominant contribution to length scale
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estimation errors from dual-Doppler lidar. The remaining differences may stem from

time undersampling or inaccuracies of the simplified spatial averaging model.

In summary, the dual-Doppler lidar planar scan technique is well suited for the investi-

gation of surface layer coherent structures. A dual-Doppler lidar system, in combination

with a single meteorological tower, can be used to accurately estimate surface layer in-

tegral length scales and the coherent structure statistics on the energetically dominant

scale as revealed by wavelet analysis. In calm situations, convective cell structure can

be detected with reasonable accuracy. A more precise measurement of w is needed be-

fore momentum fluxes u′w′ can be estimated.

Although the structure detection techniques are not new, their applicability to dual-

Doppler lidar data as well as their possible shortcomings and necessary corrections had

not yet been investigated. With the results shown here, real dual-Doppler lidar measure-

ments in the atmospheric surface layer can be interpreted reliably.

Several results in this study showed that the main limiting factor for dual-lidar research

is the lidar spatial resolution. Unless lasers with shorter wavelength are used, the ap-

plication of which is limited since they are not eye-safe, the lidar spatial resolution can

only be increased at the expense of velocity estimation accuracy or time resolution. The

highest achievable spatial resolution at the moment is about 30 m at 1 Hz in Doppler

lidars by HALO Photonics, UK (Pearson et al., 2009). This means that Doppler lidars

for atmospheric applications will remain at the limit of resolutions required for coherent

structures research. The development and general implementation of optimized scans

and analyses techniques as shown here is therefore of crucial importance for research

results.

As a recipe for coherent structure detection with dual-Doppler lidar measurements, the

most important aspects can be summarized as follows:

• The lidar overlap area should cover several square kilometers. Since streaks align

in the mean wind direction, the extent in the main wind direction should be at least

three kilometers.
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• To reduce errors, the lidar intersecting beam angle should be as close as possible

to 90◦ on the lidar overlap area. The lidar elevation should be as small as possible.

• The lidars should scan as fast as possible while maintaining sufficient data density

in the outermost scanning area. To achieve this, the optimization method described

in Chap. 4.2 can be applied.

• If possible, the lidars should perform synchronized beam sweeps, which doubles

the time resolution.

• The lidar measurement should be supplemented with a high-frequency tower wind

measurement at lidar measuring height, which can be used for correlation length

correction.

• The horizontal wind field retrieval should be performed with a data grid constant

∆xy according to the lidar range gate length used for time optimization.

• The correlation length algorithm (Chap. 6.1) can be applied to the resulting hori-

zontal wind fields, giving average streamwise and spanwise correlation lengths for

each time frame. The results have to be corrected according to Eq. 6.19. Here,

the tower data are necessary to estimate the wind field variance. After correction,

the resulting scales can be considered accurate for structures larger than ∆xy. The

correction fails for calm situations.

• To analyze single structures, the wavelet algorithm (Chap. 6.2) can be applied. The

derived length scales are only accurate for structures larger than approximately 5

to 9 times ∆xy. For smaller scales, the wavelet analysis fails.

In spring 2013 the first opportunity arose to transfer the theoretical results of this study

to real measurements:

The dual-Doppler lidar planar scan technique was implemented during the HOPE ex-

periment (HD(CP)2 Observational Prototype Experiment) in Jülich, Germany, as a part

of the project “High Definition Clouds and Precipitation for Advancing Climate Pre-

diction”. The two KIT Doppler lidars were positioned approximately 2.5 km apart and

scanned a coplanar area of about 12 km2. The scanning plane was elevated 2◦ due to

obstacles, so the mean measurement height was 60 m on average.
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Figure 8.1.: Horizontal wind vectors (left) and convergence−∇HuH(right) of the dual-Doppler lidar wind

field around 12:07 UTC on April 7, 2013. The black dots denote the lidar positions. The eddy covariance

station measured w′θ ′ = 0.19 Km/s, u∗ = 0.3 m/s, L∗ = −10 m. The mean wind speed measured by the

lidars was uRET ≈ 0.2 m/s, the lidar detected a boundary layer height of zi = 2130 m.

As a part of this study, a dual-lidar control software was developed which allowed syn-

chronized beam steering and facilitated the implementation of the optimization algo-

rithm for the scanning patterns. The radial winds were measured over a total period of

300 hours, and the Cartesian horizontal wind components were retrieved using the algo-

rithm developed in this work.

The data analysis, which was not part of this thesis, is still in progress. Figs. 8.1 and 8.2

give an impression of the observed structures: Streaks are visible in the shear-driven sur-

face layer, whereas under convective conditions cell structures of narrow convergence

lines occur in the horizontal wind field.

First results show that, in unstable conditions, the integral length scales derived from

the dual-Doppler lidar data vary with the wind speed in the same way as shown in this

study. Detailed quantitative analyses of the data will be published shortly, including an

integral length scale and wavelet analysis.

The HOPE experiment yielded more than 300 hours of dual-Doppler lidar data. At the

same time, several other instruments were deployed: energy balance stations, a 30 m
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Figure 8.2.: Streamwise wind field component u′ of the dual-Doppler lidar wind field around 08:25 UTC

on April 17, 2013 (left, w′θ ′ = 0.02 Km/s, u∗ = 0.21 m/s, L∗ =−27 m, uRET = 2.86 m/s, no measurement

for zi was available), and around 09:05 UTC on April 8, 2013 (right, w′θ ′ = 0.14 Km/s, u∗ = 0.58 m/s,

L∗ =−109 m, uRET = 7.45 m/s, zi=1000 m). The notation follows Fig. 8.1. The arrows indicate the wind

direction in the lidar plane.

meteorological tower, regularly launched radiosondes, other wind and Raman lidars and

a DIAL. The combined data evaluation can be expected to enhance our understanding

of surface layer structure formation and characteristics and how these influence and are

determined by the state of the boundary layer.

Building upon these results the implementation of coherent structure properties in the

subgrid-scale parameterization of mesoscale forecast models can be investigated. Since

these models usually assume horizontal homogeneity on the subgrid-scale this will re-

quire the development of new mathematical and numerical concepts. Considering the

important contribution of structures to the surface layer transport their integration in

subgrid-models can lead to high advancements for mesoscale modeling.

Since this analysis showed that the horizontal field alone is not sufficient for vertical

wind analysis the experimental dual-Doppler lidar results can in the future be extended

by the deployment of further wind lidars scanning vertically or in RHI scans to enhance

the vertical wind and momentum flux measurements. In combination with measure-

ments from advancing remote-sensing instruments for water-vapor, temperature, and
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8. Conclusion and Outlook

trace gas detection a quantitative characterization and parameterization of surface layer

transport processes will soon become possible.
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A. Single Lidar Error Propagation to Dual-Lidar

This appendix chapter is an excerpt from

Stawiarski, Träumner, Knigge, and Calhoun, 2013: Scopes and Challenges of Dual-

Doppler Lidar Wind Measurements - An Error Analysis. J. Atmos. Ocean. Tech., 30(9),
2044-2062. c©2013 American Meteorological Society. Used with permission.

A.1. Error Sources in Intersecting Beam Retrieval

The retrieved wind field component in direction of ê j in the lidar plane is given by

u j =
1

sin(∆(χ))

[
rv1 sin(α j +

∆χ

2
)− rv2 sin(α j−

∆χ

2
)

]
, [A.1]

where ∆χ is the mathematically positive angle measured from r̂1 to r̂2 in the plane

where r̂1, r̂2 are right-handed, and α j is the detection angle between ê j and (r̂1 + r̂2)/2,

likewise measured in the mathematically positive sense.

Single lidar errors occur, if rvi, azi and eli are biased or have a random error. We consider

the evaluation plane as fixed, and sum up all radial velocity estimation and angular errors

in the variables rv1,rv2.

Ideally, the radial velocities are given by

rv1 = r̂1 ·u = uH cos(α j−
∆χ

2
− γuH ) , [A.2a]

rv2 = r̂2 ·u = uH cos(α j +
∆χ

2
− γuH ) , [A.2b]

where γuH is the angle between ê j and the projected wind vector in the plane (again,

measured in the positive sense), and uH is the modulus of said projected wind vector.

The first error source is the velocity estimation itself, leading to a statistical random error

on the velocity estimates and a supposedly negligible bias. The second error source, the

lidar angles, leads to a shift in lidar beam direction. This shift has a component in the
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evaluation plane (the in-plane erorr), and a perpendicular component (the out-of-plane

error). Both can be propagated to the velocity estimates given by Eqs. A.2.

We assume that the statistical errors and biases in azi,eli and rvi are known and derive

their propagation to u j. This is accomplished by first propagating the angular errors to

the rvi, and subsequently propagating the total rvi errors to u j.

A.2. Propagating Angular Errors to rvi

In contrast to Eqs. A.2, the measured radial velocities are given by

rvM
1 = r̂′1 ·u , [A.3a]

rvM
2 = r̂′2 ·u , [A.3b]

where we define r̂′1, r̂′2 as the actual lidar beam unit vectors, which deviate from the ideal

ones due to angular errors.

To first order in the errors, we have

rvM
i = rvi +δ rvi +

∂ rvM
i

∂azi

∣∣∣∣
r̂′i=r̂i

δazi +
∂ rvM

i
∂eli

∣∣∣∣
r̂′i=r̂i

δeli , [A.4]

with δazi, δeli denoting the angular deviation from the ideal position and δ rvi denoting

the lidar random error.

In Eq. A.4, r̂′i can be expressed in terms of a right-handed local trihedron (r̂i,m̂i, n̂n):

r̂i and m̂i both lie in the evaluation plane, with r̂i being the ideal lidar beam vector

withour errors, m̂i being perpendicular to r̂i and n̂n being the plane-normal vector on the

evaluation plane (cf. Chap. 4.1.2). For a more formal definition, we use

n̂n =
r̂1× r̂1

‖ r̂1× r̂2 ‖
, [A.5a]

m̂i = n̂n× r̂i . [A.5b]

Decomposing r̂′i into its parts along the axes of this local orthogonal coordinate sys-

tem,we find that

rvM
i =

(
r̂′i · r̂i

)
rvi +

(
r̂′i · n̂n

)
(n̂nu)+

(
r̂′i · m̂i

)
(m̂iu) . [A.6]
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Careful computation shows that

∂ r̂′i
∂azi

∣∣∣∣
r̂′i=r̂i

= r̂i× k̂ , [A.7a]

∂ r̂′i
∂eli

∣∣∣∣
r̂′i=r̂i

=
1

cos(eli)

(
r̂i× k̂

)
× r̂i =

1
cos(eli)

(
k̂− sin(eli)r̂i

)
, [A.7b]

and from this we derive the expressions for the scalar products:

∂ r̂′i
∂azi

∣∣∣∣
r̂′i=r̂i

· n̂n = m̂i · k̂ , [A.7c]

∂ r̂′i
∂azi

∣∣∣∣
r̂′i=r̂i

· m̂i =−n̂n · k̂ , [A.7d]

∂ r̂′i
∂eli

∣∣∣∣
r̂′i=r̂i

· n̂n =
1

cos(eli)
n̂n · k̂ , [A.7e]

∂ r̂′i
∂eli

∣∣∣∣
r̂′i=r̂i

· m̂i =
1

cos(eli)
m̂i · k̂ . [A.7f]

With these results, we find from Eq. A.6:

∂ rvM
i

∂azi

∣∣∣∣
r̂′i=r̂i

=
(
m̂i · k̂

)
(n̂n ·u)−

(
n̂n · k̂

)
(m̂i ·u) , [A.8a]

∂ rvM
i

∂eli

∣∣∣∣
r̂′i=r̂i

=

(
n̂n · k̂

)
(n̂n ·u)+

(
m̂i · k̂

)
(m̂i ·u)

cos(eli)
. [A.8b]

We can write down explicit expressions for the scalar products:

n̂n ·u = u⊥ , [A.9a]

m̂i ·u =−uH sin(α j∓
∆χ

2
− γuH ) , [A.9b]

n̂n · k̂ = cos(γz) , [A.9c]

m̂i · k̂ =± 1
|sin(∆χ)| [sin(eli′)− sin(eli)cos(∆χ)] . [A.9d]

Here, u⊥ is the wind speed perpendicular to the evaluation plane, γz is the angle between

the plane-normal vector n̂n and the z-axis k̂. The upper sign applies if the respective li-

dar i is Lidar 1, the lower sign applies if it is Lidar 2. The index i′ indicates the other lidar.

It should be noted that the expressions in Eq. A.8 each contain two summands, one of

which scales with the perpendicular wind speed u⊥, and the other of which scales with
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the in-plane wind, uH . Those two components arise from the angular error contributions

to out-of-plane tilt or in-plane tilt, respectively. In the error propagation below, we will

cosider both contributions separately.

A.3. Statistical Error Propagation

The random error in the retrieved wind field component is given by

[σ
single
DD (u j)]

2 = ∑
i=1,2

(
∂u j

∂ rvi

)2

(σ rv
i )2

=
sin2(α j +

∆χ

2 )

sin2(∆χ)
(σ rv

1 )2 +
sin2(α j− ∆χ

2 )

sin2(∆χ)
(σ rv

2 )2 . [A.10]

The statistical radial velocity variances consists of the random error of velocity estima-

tion, the variance due to in-plane angular errors and the variance due to out-of-plane

errors. The latter two are not statistically independent, because both have contributions

from elevation and azimuth angles. It is therefore necessary to also consider their co-

variance. Nevertheless, the splitting is advisable, since the in-plane error is the only part

that can be estimated with the measurement results alone, i.e., the wind speed in the lidar

plane. Without the splitting, no quantitative statement respective the angular errors can

be made at all.

(σ rv
i )2 =

(
σ

rv,rnd
i

)2
+
(

σ
rv,ip
i

)2
+
(
σ

rv,oop
i

)2
+ cov(ip,oop) . [A.11]

The random part is known. The in-plane and out-of-plane parts and their covariance can

be traced back to the contributing angles using the results from the previous section:(
σ

rv,ip
i

)2
= u2

H sin2(α j∓
∆χ

2
− γuH ) [A.12]

·
{

cos2(γz)(σ
az
i )2 +

(sin(eli′)− sin(eli)cos(∆χ))2

sin2(∆χ)cos2(eli)

(
σ

el
i

)2
}

,

(
σ

rv,oop
i

)2
= u2

⊥ [A.13]

·
{
(sin(eli′)− sin(eli)cos(∆χ))2

sin2(∆χ)
(σaz

i )2 +
cos2(γz)

cos2(eli)

(
σ

el
i

)2
}

,
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cov(ip,oop) = 2u⊥uH sin(α j∓
∆χ

2
− γuH ) [A.14]

· ±cos(γz)

sin(∆χ)
(sin(eli′)− sin(eli)cos(∆χ)) ·

{
(σaz

i )2−
(
σ el

i
)2

cos2(eli)

}
.

A.4. Bias Error Propagation

We can assume the radial velocity estimator to work bias-free, therefore we only have to

propagate the angular and out-of-plane biases as absolute errors to obtain the bias of u j:∣∣∣biassingle
DD (u j)

∣∣∣= ∑
i=1,2

∣∣∣∣ ∂u j

∂ rvi

∣∣∣∣ |biasrv
i | , [A.15]

with

|biasrv
i |=

∣∣∣biasrv,ip
i

∣∣∣+ ∣∣biasrv,oop
i

∣∣ . [A.16]

We find that ∣∣∣biasrv,ip
i

∣∣∣= uH

∣∣∣∣sin
(

α j∓
∆χ

2
− γuH

)∣∣∣∣ [A.17]

·
{
|cos(γz)| |biasaz

i |+
|sin(eli′)− sin(eli)cos(∆χ)|

|sin(∆χ)cos(eli)|
∣∣∣biasel

i

∣∣∣ } .

Accordingly, the bias or absolute out-of-plane error is given by

∣∣biasrv,oop
i

∣∣= |u⊥| [A.18]

·
{ |sin(eli′)− sin(eli)cos(∆χ)|

|sin(∆χ)| |biasaz
i |+

|cos(γz)|
|cos(eli)|

∣∣∣biasel
i

∣∣∣} .

A.5. Generalization to Scanning Beam Retrievals

For scanning beams, a retrieval is made using all radial velocity estimates inside one

grid cell of the scanning plane, which were recorded in the time interval T0. As before,

we assume the desired beam angles to define the lidar plane. Therefore, all single lidar

errors appear in the radial velocity estimates in the vector b of Eq. 3.24.

Inside on grid cell and during time T0, we can assume the single lidar statistical errors

and biases on the velocity estimates to be constant for each lidar. They can be computed

using the formulas given above.
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Using the notation from Chap. 3.3, we find for the statistical error in the u j-component

of the wind field in the evaluation plane:

[σ
single
DD (u j)]

2 = ∑
n,L1

g2
n
(
ê j ·M−1 · r̂n

)2
(σ rv

1 )2 + ∑
n,L2

g2
n
(
ê j ·M−1 · r̂n

)2
(σ rv

2 )2 , [A.19]

where the L1 and L2 sums stand for sums over data taken at lidars one or two, respec-

tively.

The absolute error is given by∣∣∣biassingle
DD (u j)

∣∣∣= ∑
n,L1

gn
∣∣ê j ·M−1 · r̂n

∣∣ |biasrv
1 |+ ∑

n,L2
gn
∣∣ê j ·M−1 · r̂n

∣∣ |biasrv
2 | . [A.20]

As a rule of thumb, the statistical variance in the scanning beam method is approximately

given by the statistical variance in the intersecting beam method, divided be half the

number of velocity estimates that enter into the matrix Eq. 3.24. This is due to the fact

that, in the scanning beam method, one grid cell usually contains more than one velocity

estimate per lidar, which leads to reduced statistical uncertainty. For the approximation

one should use average angle values inside the grid cell.

[σ
single
DD (u j,scanning)]2 ≈ [σ

single
DD (u j, intersect.)]2

N/2
. [A.21]

On the other hand, the bias can be approximated by the intersecting beam bias, since it

does not scale with the number of data points:∣∣∣biassingle
DD (u j,scanning)

∣∣∣≈ ∣∣∣biassingle
DD (u j, intersect.)

∣∣∣ . [A.22]
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B. Lidar Simulation Parameters

The steering parameters used for lidar simulation match those used in the set-up of the

LMCT Doppler lidars of the WindTracer type (Chap. 3.1.2). Tab. B.1 summarizes the

virtual lidar control parameters. From those parameters, the position and range of each

range gate can be computed:

The sampling rate (SR) is the frequency with which the detector records the backscat-

tered signals of the outgoing laser pulses. Each sample has therefore a duration of 1/SR.

The number of samples per gate (SpG) then determines the full length of one range gate

in time domain:

∆pt =
SpG
SR

, [B.1]

which corresponds to a spatial length of

∆p =
SpG
2SR

· c , [B.2]

where c is the speed of light.

The range gates are distributed evenly along the lidar beam, starting at the offset range

(OR) and ending at the maximum distance (MaxD). Thereby, the distance between range

gate centers is given by

RGdist =
MaxD−∆p
RGnum−1

, [B.3]

where RGnum is the range gate number. This means that the position of the nth range

gate centers is located at

r0(n) = OR+
∆p
2

+(n−1) ·RGdist , n = 1, . . . ,RGnum . [B.4]

The overlap (OL) of adjacent range gates is given by

OL = ∆p−RGdist . [B.5]
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Lidar Parameter uG = 0 m/s uG = 5 m/s uG = 10 m/s uG = 15 m/s

Lidar 1 Sampling Rate [Hz] 2.5 ·108 2.5 ·108 2.5 ·108 2.5 ·108

Samples per Gate 100 100 110 128

Offset [m] 350 350 350 350

Maximum Distance [m] 5520 5520 5520 5520

Range Gate Number 110 110 110 110

Pulse Width [s] 3.0 ·10−7 3.0 ·10−7 3.0 ·10−7 3.0 ·10−7

Measurement Frequency [Hz] 10 10 10 10

Pulse Percentile 20 20 20 20

Azimuth Range [◦] [315,45] [315,45] [315,45] [315,45]

Angular Velocity [◦/s] 6.2 6.2 6.9 7.9

Elevation Range [◦] [0,0] [0,0] [0,0] [0,0]

Angular Velocity EL[◦/s] 0 0 0 0

Position (x,y,z) [m] [2500,0,10] [2500,0,10] [2500,0,10] [2500,0,10]

Lidar 2 Sampling Rate [Hz] 2.5 ·108 2.5 ·108 2.5 ·108 2.5 ·108

Samples per Gate 100 100 110 128

Offset [m] 350 350 350 350

Maximum Distance [m] 5520 5520 5520 5520

Range Gate Number 110 110 110 110

Pulse Width [s] 3.7 ·10−7 3.7 ·10−7 3.7 ·10−7 3.7 ·10−7

Measurement Frequency [Hz] 10 10 10 10

Pulse Percentile 20 20 20 20

Azimuth Range [◦] [225,315] [225,315] [225,315] [225,315]

Angular Velocity AZ[◦/s] 6.2 6.2 6.9 7.9

Elevation Range [◦] [0,0] [0,0] [0,0] [0,0]

Angular Velocity EL[◦/s] 0 0 0 0

Position (x,y,z) [m] [5000,2500,10] [5000,2500,10] [5000,2500,10] [5000,2500,10]

Table B.1.: Control parameters of the virtual lidar measurements used in this study.

If the overlap is negative, there are gaps between the range gates.

The angular velocity ω and the measurement frequency determine the angle ∆β which

is scanned by the lidar per mesurement:

∆β =
ω

f
. [B.6]

Depending on the distance r along the beam, this angle translates into a circular arc of

length

∆s =
r ·∆β

180◦
. [B.7]

172



C. Comparative LES and Retrieval Spectra of v
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Figure C.1.: Comparative spectral density of the v-component along (left) and across (right) the mean

wind direction for the four data sets (uG increasing from top to bottom). The spectra are shown for the

retrieval results (red), the time-averaged LES results (blue) and the LES results (black). The dashed line

indicates the slope of k−5/3. The pale red lines show a random choice of ten retrieval spectra. The red

mark on the k-axis indicated the effective resolution of the simulation and retrieval.
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D. Effect of Spatial Smoothing on v-Spectra
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Figure D.1.: Effect of spatial smoothing on the spectral density of the v-component along (left) and

across (right) the mean wind direction for the four data sets (uG increasing from top to bottom). The

mean spectra are shown for the time-averaged LES results after applying a moving average filter with the

span (∆x, ∆y) in x- and y-direction, respectively: (∆x,∆y) = (0 m,0 m) (blue), (∆x,∆y) = (∆,0 m) (dark

purple), (∆x,∆y) = (0 m,∆) (light purple), and (∆x,∆y) = (∆,∆) (red). ∆ = {70 m,70 m,70 m,90 m} for

uG = {0 m/s,5 m/s,10 m/s,15 m/s}.
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E. Data Sets for Spatial Scale Analysis

Data Set Field Direction Data Set Size Data Loss Count

at Wind Speed at Wind Speed

0 m/s 5 m/s 10 m/s 15 m/s 0 m/s 5 m/s 10 m/s 15 m/s

LES u x 1800 0 0 4 25

LES u y 1800 0 0 0 0

LES u t 2704 533 9 2 1

LES v x 1800 40 0 10 0

LES v y 1800 0 0 0 0

LES v t 2704 542 23 2 0

LESAVG u x 124 124 138 158 0 0 1 2

LESAVG u y 124 124 138 158 0 0 0 0

LESAVG v x 124 124 138 158 2 0 1 0

LESAVG v y 124 124 138 158 0 0 0 0

RET u x 124 124 138 158 0 1 1 0

RET u y 124 124 138 158 0 0 0 0

RET v x 124 124 138 158 0 0 1 6

RET v y 124 124 138 158 0 0 0 0

Table E.1.: Statistics of the data set used for correlation length computation. In x- and y-direction, the

correlation lengths are computed for each time step. Virtual towers on a 100 m grid were used to compute

the correlation length from time series. Data loss occurred when the autocorrelation function did not

exhibit a zero-crossing in the desired direction.
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Data Set Field Direction Data Set Size Data Loss Count

at Wind Speed at Wind Speed

0 m/s 5 m/s 10 m/s 15 m/s 0 m/s 5 m/s 10 m/s 15 m/s

LES u x 1800 0 10 85 134

LES u y 1800 272 0 0 0

LES u t 441 127 30 27 19

LES v x 1800 164 74 116 42

LES v y 1800 0 0 0 0

LES v t 441 110 83 30 19

LESAVG u x 620 620 690 790 0 24 15 15

LESAVG u y 620 620 690 790 106 0 0 0

LESAVG v x 620 620 690 790 74 89 24 5

LESAVG v y 620 620 690 790 17 0 0 0

RET u x 620 620 690 790 82 94 131 142

RET u y 620 620 690 790 154 18 4 11

RET v x 620 620 690 790 206 159 139 101

RET v y 620 620 690 790 50 25 22 22

Table E.2.: Statistics of the data set used for wavelet analysis. For each LES time step, one series in

x-direction at random y-position was analyzed, and vice versa, for each field. For LESAVG and RET data,

five random series were used per time step. Virtual towers positioned on a 250 m grid were used for the

time series analysis. Data loss occurred when a series did not exhibit a Ẽ1 maximum in the scale range

(cf. Chap. 6.2.4).

178



Data Set Field Dir Total Structure Count at Wind Speed and Levels

0 m/s 5 m/s

0 -0.2 -0.4 -0.6 -0.8 0 -0.2 -0.4 -0.6 -0.8

LES u x 9933 8765 6994 4984 3111 12190 9995 7153 4591 2726

LES u y 6281 5380 4079 2889 1944 49097 38480 23511 11537 4748

LES u t 1580 1345 988 667 438 3423 2824 1977 1218 698

LES v x 7042 5967 4457 3055 2030 10266 8267 5836 3769 2394

LES v y 10490 9090 7013 4862 2954 13047 11659 9269 6049 3313

LES v t 1759 1514 1169 760 466 2504 2046 1410 904 550

LESAVG u x 3220 2875 2297 1674 1045 3788 3148 2280 1514 928

LESAVG u y 2126 1826 1394 932 633 16586 13082 8079 3902 1650

LESAVG v x 2383 2022 1499 1037 687 3138 2578 1839 1140 748

LESAVG v y 3408 2974 2325 1601 970 4218 3776 3058 1997 1122

RET u x 1290 1164 916 700 507 1596 1381 1072 780 574

RET u y 1105 982 775 572 430 4266 2828 1862 1208 751

RET v x 1009 885 712 551 421 1236 1057 844 654 491

RET v y 1578 1454 1251 997 735 2250 2134 1803 1299 802

10 m/s 15 m/s

0 -0.2 -0.4 -0.6 -0.8 0 -0.2 -0.4 -0.6 -0.8

LES u x 10182 8598 6377 4210 2575 9960 8425 6236 4158 2545

LES u y 50446 42092 28090 14135 5412 49629 41766 28211 14534 5749

LES u t 4822 4010 2776 1645 857 5935 4903 3349 1900 929

LES v x 16097 12783 8377 4993 2768 18998 15375 10185 5810 3112

LES v y 27949 23578 16659 9519 4454 38090 32521 22425 12093 5149

LES v t 7046 5376 3152 1644 809 12717 9728 5631 2641 1109

LESAVG u x 3638 3081 2281 1553 961 4012 3482 2652 1795 1115

LESAVG u y 18818 15749 10861 5548 2154 21121 17928 12258 6418 2529

LESAVG v x 4964 4111 2828 1791 1064 6165 5123 3571 2208 1278

LESAVG v y 8717 7328 5269 3143 1578 14482 12401 8751 4812 2116

RET u x 1498 1277 975 762 593 1584 1328 1042 784 603

RET u y 5969 3636 2150 1329 768 6378 3622 1929 1138 677

RET v x 1802 1540 1187 857 613 2150 1884 1470 1054 729

RET v y 2570 2276 1770 1306 921 3266 2839 2202 1552 1034

Table E.3.: Total number of detected wavelet ramps for the data sets.
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Data Set Field Direction Data Set Size

at Wind Speed

0 m/s 5 m/s 10 m/s 15 m/s

LES u x 100

LES u y 100

LES u t 500

LES v x 100

LES v y 100

LES v t 500

LESAVG u x 124 124 138 158

LESAVG u y 124 124 138 158

LESAVG v x 124 124 138 158

LESAVG v y 124 124 138 158

RET u x 124 124 138 158

RET u y 124 124 138 158

RET v x 124 124 138 158

RET v y 124 124 138 158

Table E.4.: Statistics of the data set used for cluster analysis. For 100 random LES time steps, and all

RET and LESAVG time steps, clusters were computed for all fields in 2D. Time series at 500 virtual

towers, evenly distributed across the area, were used to compute 1D clusters in time direction. No data

loss occurred.
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Data Set Field Dir Total Structure Count at Wind Speed and Levels

0 m/s 5 m/s

-3 -2.5 -2 -1.5 -1 -0.5 -3 -2.5 -2 -1.5 -1 -0.5

LES u x/y 521 3027 9807 17969 23268 23446 1381 8531 25043 37333 33176 28917

LES u t 31 133 558 1470 2438 3145 42 203 942 2430 4175 5845

LES v x/y 396 3064 11002 20323 23597 20007 1108 4676 12891 21452 22312 16631

LES v t 33 156 539 1443 2461 3273 58 284 960 2272 3873 5126

LESAVG u x/y 474 2986 10246 18788 23816 23912 1727 9747 27318 40522 36455 31231

LESAVG v x/y 366 2983 11639 21641 24389 22563 1013 4583 12312 20146 20481 13118

RET u x/y 16 175 895 1965 2648 2467 42 258 1181 3073 4549 3859

RET v x/y 1 96 757 2405 3230 2462 11 273 993 2393 3268 2685

10 m/s 15 m/s

-3 -2.5 -2 -1.5 -1 -0.5 -3 -2.5 -2 -1.5 -1 -0.5

LES u x/y 198 5255 21140 32984 32322 29504 96 3117 17727 33955 34404 31018

LES u t 10 213 1239 3582 6267 8680 3 113 1300 4446 8613 11995

LES v x/y 2217 7059 16911 29894 34664 29591 2615 8001 19702 35926 45622 39877

LES v t 178 627 1808 4376 7831 11453 255 908 2728 6426 11854 17399

LESAVG u x/y 382 6942 24241 36908 34849 32165 143 4520 22841 41306 39835 34037

LESAVG v x/y 2120 6655 15696 26313 28396 20465 2692 8179 19900 33691 39369 30846

RET u x/y 1 122 898 2645 4205 3799 4 83 837 2446 3606 3676

RET v x/y 65 363 1379 2796 3499 3542 77 330 1229 2667 3879 4147

Table E.5.: Total number of detected clusters for the data sets.
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F. Spatial Autocorrelation Results
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Figure F.1.: Zoom into the time-averaged spatial autocorrelations of the u-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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Figure F.2.: Zoom into time-averaged spatial autocorrelations of the v-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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Figure F.3.: Full-range time-averaged spatial autocorrelations of the u-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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Figure F.4.: Full-range time-averaged spatial autocorrelations of the v-components of the wind fields

for uG = {0 m/s, 5 m/s, 10 m/s, 15 m/s} (bottom to top) for the three data sets retrieval results (red),

time-averaged LES results (blue), and full-resolution LES results (black).
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G. Wavelet Length Scales for Varying Cutoff Values
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Figure G.1.: Wavelet ramp lengths in x direction for varying cutoff values K =

{0,0.2,0.4,0.6,0.8}(bottom to top) for the wind fields components u (left) and v (right). Colors

and range as in Fig 6.18.
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Figure G.2.: Wavelet ramp lengths in y direction for varying cutoff values K =

{0,0.2,0.4,0.6,0.8}(bottom to top) for the wind fields components u (left) and v (right). Colors

and range as in Fig 6.18.
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H. Clustering Length Scales for Varying Cutoff Values

0 5 10 15

uG [m/s]
0 5 10 15

0

500

1000

uG [m/s]

L
x
[m

]

0

500

1000

L
x
[m

]

0

500

1000

L
x
[m

]

0

500

1000

L
x
[m

]

0

500

1000

L
x
[m

]

0

500

1000

L
x
[m

]

Figure H.1.: Cluster lengths in x direction for varying cutoff values σ · {−3,−2.5,−2,−1.5,−1,−0.5}
(bottom to top) for the wind fields components u (left) and v (right). Colors and range as in Fig 6.18.
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Figure H.2.: Cluster lengths in y direction for varying cutoff values σ · {−3,−2.5,−2,−1.5,−1,−0.5}
(bottom to top) for the wind fields components u (left) and v (right). Colors and range as in Fig 6.18.
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I. Data Sets for Vertical Wind Field Analysis

fit y to w 0 m/s 5 m/s

y = m ·σ +b steps [T0] m [m] b [m/s] m [m] b [m/s]

wLESAVG,intp , σRET 1 8.77 ± 7e-02 -0.08 ± 1e-03 7.29 ± 6e-02 -0.04 ± 4e-04

2 11.89 ± 1e-01 -0.07 ± 1e-03 10.12 ± 8e-02 -0.04 ± 4e-04

3 13.46 ± 1e-01 -0.06 ± 1e-03 11.69 ± 9e-02 -0.04 ± 4e-04

5 14.91 ± 1e-01 -0.04 ± 1e-03 13.44 ± 1e-01 -0.03 ± 4e-04

8 15.62 ± 1e-01 -0.02 ± 1e-03 14.86 ± 1e-01 -0.03 ± 4e-04

13 15.87 ± 2e-01 0.01 ± 1e-03 16.19 ± 2e-01 -0.03 ± 4e-04

wLESAVG,intp,sm , σRET 1 8.02 ± 4e-02 -0.07 ± 6e-04 6.65 ± 3e-02 -0.04 ± 3e-04

2 10.89 ± 5e-02 -0.06 ± 6e-04 9.23 ± 5e-02 -0.04 ± 3e-04

3 12.33 ± 6e-02 -0.05 ± 6e-04 10.68 ± 5e-02 -0.03 ± 3e-04

5 13.68 ± 7e-02 -0.04 ± 5e-04 12.31 ± 6e-02 -0.03 ± 3e-04

8 14.35 ± 7e-02 -0.02 ± 5e-04 13.66 ± 8e-02 -0.03 ± 3e-04

13 14.60 ± 8e-02 0.01 ± 5e-04 14.97 ± 9e-02 -0.02 ± 2e-04

wLESAVG , σLESAVG 1 8.86 ± 3e-03 -0.15 ± 1e-04 5.02 ± 2e-03 -0.09 ± 5e-05

2 12.10 ± 4e-03 -0.09 ± 1e-04 7.07 ± 3e-03 -0.08 ± 5e-05

3 13.80 ± 5e-03 -0.04 ± 1e-04 8.26 ± 4e-03 -0.08 ± 6e-05

5 15.53 ± 7e-03 0.03 ± 1e-04 9.65 ± 5e-03 -0.07 ± 6e-05

8 16.73 ± 1e-02 0.09 ± 2e-04 10.83 ± 7e-03 -0.05 ± 6e-05

13 17.79 ± 1e-02 0.15 ± 2e-04 12.09 ± 1e-02 -0.04 ± 6e-05

wLES , σLES 1 14.71 ± 4e-03 -0.17 ± 9e-05 104.74 ± 4e-02 -0.09 ± 4e-05

2 16.32 ± 4e-03 -0.12 ± 9e-05 58.49 ± 2e-02 -0.08 ± 4e-05

3 17.43 ± 5e-03 -0.07 ± 1e-04 40.35 ± 2e-02 -0.07 ± 5e-05

5 18.86 ± 7e-03 0.00 ± 1e-04 25.63 ± 1e-02 -0.06 ± 5e-05

8 20.16 ± 9e-03 0.08 ± 1e-04 17.01 ± 1e-02 -0.05 ± 5e-05

13 21.51 ± 1e-02 0.15 ± 1e-04 11.27 ± 9e-03 -0.03 ± 5e-05

Table I.1.: Fit parameters for the linear fit of the FTLE coefficients to the vertical wind field, Part I:

uG = 0 m/s and uG = 5 m/s
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fit y to w 10 m/s 15 m/s

y = m ·σ +b steps [T0] m [m] b [m/s] m [m] b [m/s]

wLESAVG,intp , σRET 1 5.86 ± 7e-02 -0.04 ± 6e-04 5.43 ± 9e-02 -0.04 ± 9e-04

2 8.25 ± 9e-02 -0.04 ± 6e-04 7.78 ± 1e-01 -0.04 ± 9e-04

3 9.56 ± 1e-01 -0.04 ± 6e-04 8.98 ± 1e-01 -0.04 ± 9e-04

5 10.93 ± 1e-01 -0.04 ± 6e-04 10.04 ± 2e-01 -0.04 ± 9e-04

8 11.89 ± 2e-01 -0.03 ± 6e-04 10.58 ± 2e-01 -0.03 ± 9e-04

13 12.77 ± 2e-01 -0.03 ± 6e-04 11.14 ± 3e-01 -0.03 ± 9e-04

wLESAVG,intp,sm , σRET 1 5.50 ± 4e-02 -0.04 ± 4e-04 4.87 ± 4e-02 -0.04 ± 5e-04

2 7.75 ± 6e-02 -0.04 ± 4e-04 6.95 ± 6e-02 -0.04 ± 5e-04

3 8.99 ± 7e-02 -0.04 ± 4e-04 8.05 ± 7e-02 -0.04 ± 5e-04

5 10.32 ± 8e-02 -0.04 ± 4e-04 9.07 ± 9e-02 -0.04 ± 5e-04

8 11.30 ± 1e-01 -0.03 ± 4e-04 9.61 ± 1e-01 -0.03 ± 5e-04

13 12.22 ± 1e-01 -0.03 ± 4e-04 10.18 ± 1e-01 -0.03 ± 4e-04

wLESAVG , σLESAVG 1 4.29 ± 2e-03 -0.12 ± 8e-05 4.27 ± 2e-03 -0.16 ± 1e-04

2 6.06 ± 3e-03 -0.12 ± 8e-05 6.04 ± 3e-03 -0.15 ± 1e-04

3 7.06 ± 4e-03 -0.11 ± 8e-05 7.01 ± 4e-03 -0.14 ± 1e-04

5 8.16 ± 6e-03 -0.09 ± 9e-05 8.06 ± 6e-03 -0.12 ± 1e-04

8 9.05 ± 8e-03 -0.07 ± 9e-05 8.88 ± 8e-03 -0.09 ± 1e-04

13 10.01 ± 1e-02 -0.06 ± 9e-05 9.77 ± 1e-02 -0.07 ± 1e-04

wLES , σLES 1 92.27 ± 4e-02 -0.12 ± 7e-05 92.32 ± 4e-02 -0.17 ± 9e-05

2 48.93 ± 2e-02 -0.11 ± 7e-05 46.39 ± 2e-02 -0.14 ± 1e-04

3 33.17 ± 2e-02 -0.10 ± 8e-05 31.47 ± 2e-02 -0.13 ± 1e-04

5 20.10 ± 1e-02 -0.08 ± 8e-05 18.65 ± 1e-02 -0.10 ± 1e-04

8 12.82 ± 1e-02 -0.06 ± 8e-05 11.78 ± 1e-02 -0.07 ± 1e-04

13 8.31 ± 1e-02 -0.04 ± 8e-05 7.63 ± 1e-02 -0.05 ± 1e-04

Table I.2.: Fit parameters for the linear fit of the FTLE coefficients to the vertical wind field, Part II:

uG = 10 m/s and uG = 15 m/s
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Contingency Table: 0 m/s 5 m/s 10 m/s 15 m/s

Agreement [%] w w w w

steps [T0] ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0

σRET , wLESAVG,intp ≥ 0 1 41 30 38 45 41 47 44 47

< 0 7 22 3 14 3 9 3 7

≥ 0 2 40 29 38 44 41 47 43 46

< 0 8 23 3 15 3 9 3 7

≥ 0 3 39 28 38 44 41 46 43 46

< 0 9 24 3 15 3 9 3 8

≥ 0 5 37 25 37 43 41 46 43 46

< 0 11 27 4 16 3 10 4 8

≥ 0 8 34 23 37 42 40 45 43 45

< 0 14 29 4 17 4 10 4 8

≥ 0 13 30 19 36 40 40 45 42 45

< 0 18 33 5 19 4 11 4 9

σRET , wLESAVG,intp,sm ≥ 0 1 46 25 41 41 44 45 46 44

< 0 5 24 2 15 2 9 2 8

≥ 0 2 45 24 41 41 44 44 46 43

< 0 6 25 2 16 2 10 2 8

≥ 0 3 44 22 41 40 44 44 46 43

< 0 7 26 2 16 2 10 2 8

≥ 0 5 42 20 41 39 43 44 46 43

< 0 9 29 3 17 3 10 3 9

≥ 0 8 39 18 40 38 43 43 46 42

< 0 12 31 3 18 3 11 3 9

≥ 0 13 35 15 39 37 42 42 45 42

< 0 16 34 4 20 4 12 4 10

σLESAVG , wLESAVG ≥ 0 1 46 18 41 45 44 48 46 47

< 0 2 35 0 14 0 7 0 7

≥ 0 2 43 14 40 44 44 48 46 46

< 0 4 39 0 15 0 8 0 7

≥ 0 3 40 11 40 43 44 47 46 46

< 0 8 42 1 16 0 9 1 8

≥ 0 5 34 7 39 42 43 46 45 44

< 0 13 45 1 18 1 10 1 9

≥ 0 8 27 5 38 39 42 44 44 43

< 0 20 48 2 20 2 11 2 11

≥ 0 13 21 3 37 37 41 43 43 42

< 0 27 50 4 23 3 13 3 11

σLES , wLES ≥ 0 1 46 18 40 45 43 47 45 46

< 0 2 35 0 15 0 10 0 9

≥ 0 2 43 14 39 44 43 47 44 45

< 0 5 39 0 16 1 10 1 10

≥ 0 3 40 11 39 43 42 46 44 45

< 0 8 41 1 17 1 11 2 10

≥ 0 5 34 8 38 41 41 45 43 43

< 0 14 45 2 19 2 12 3 11

≥ 0 8 27 5 37 39 40 43 41 42

< 0 20 48 3 21 3 13 4 13

≥ 0 13 21 3 35 37 39 42 40 41

< 0 26 50 5 24 5 15 5 14

Table I.3.: Contingency table: Agreement and disagreement of signs of the vertical wind w and the FTLE,

using the appropriate vertical wind fields (cf. Chap. 7.3).
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Contigency Table: 0 m/s 5 m/s 10 m/s 15 m/s

Agreement [%] w w w w

steps [T0] ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0 ≥ 0 < 0

DIVRET, wLESAVG,intp ≥ 0 1 27 23 22 24 23 25 24 25

< 0 21 28 18 36 21 31 22 28

DIVRET, wLESAVG,intp,sm ≥ 0 1 31 20 25 21 25 23 26 24

< 0 21 29 19 35 21 31 23 28

DIVLESAVG, wLESAVG ≥ 0 1 42 4 37 6 39 7 41 7

< 0 5 48 4 53 5 49 5 47

DIVLES, wLES ≥ 0 1 41 5 35 8 37 10 39 10

< 0 7 48 5 52 6 47 6 45

Table I.4.: Contingency table: Agreement and disagreement of signs of the vertical wind w and wDIV,

using the appropriate vertical wind fields (cf. Chap. 7.3).
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