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Abstract. Investigations of exotic cluster-like phenomena in the framework of the Skyrme-
Hartree-Fock approach are reported. The occurrence of highly excited isomeric states is 
discussed in connection with the question of their stability in static and time-dependent Hartree 
Fock (TDHF) calculations. We find rotational stabilization of a 4α chain structure in 16O 
occurring for a limited range of angular momenta. A toroidal configuration of 40Ca was also 
stabilized by rotation and provides a very interesting example of rotation about a symmetry 
axis with a strictly quantized total angular momentum. Finally we look at the formation of 
nuclear pasta phases in a time-dependent approach and their classification. 

1.  Complex isomeric states in Hartree-Fock calculations 
In an early paper on cluster structure of light nuclei [1] it was already found that in Hartree-Fock 
calculations exotic configurations can appear that appear to be as stable as the ground state but upon 
closer examination are found to in reality be unstable against some type of collective deformation.  
Fig. 1 illustrates how this works in practice: a chain configuration of three α-particles remains stable 
for several thousand static iterations in a Hartree-Fock code but then suddenly switches over to the 
ground state of 12C via a bending deformation described by the Q31 multipole accompanied by a drastic 
change in quadrupole deformation β. It is especially interesting in this context that the typical 
convergence criteria like the relative change in energy per iteration ΔE and uncertainty in the single-
particle energies Δh are at the same level for the chain state as for the ground state. 
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The reason for this behavior is not fully understood yet. It may depend on the numerical algorithm 
to what extent symmetries – like in this case axial symmetry – are preserved. Starting the calculation 
with a three α-particles not arranged on a line led to slow increase of bending and then transition into 
the compact shape. On the other hand, a dynamic distortion showed that instability is not 
instantaneous but only happens after several oscillations: it appears that just any excitation breaking 
axial symmetry is not enough but a more specific bending mode has to be present which comes in 
owing to the nonlinear coupling between these modes. 

2.  Stabilization of the 4α-chain state 
In a recent paper [2] (discussed also in [3]) we investigated the possible stabilization of such α-chains 
by rotation. For that purpose static Hartree-Fock calculations with a cranking constraint were 
performed. The initial configuration consisted of three or four α-particles not completely collinear to 
avoid spurious persistence of axial symmetry and see whether the particles would be pulled onto the 
axis by the centrifugal force. The initial configuration is illustrated in Fig. 3(a). 

 

Figure 3. Initial state and different final configurations for the rotating 4α-chain. 
 

 
For the 12C chain state no stabilization was observed: for slow rotation the chain folded back into 

the compact configuration, while for fast rotation fission occurred.  
Depending on the angular frequency used in the cranking constraint, for the 16O case various final 

configurations are achieved. Fig. 4 shows which of the configurations shown in Fig. 3 is achieved at 
different cranking ω by plotting the rotational energy factor as a function of iteration. The most 
interesting of these is (d), which corresponds to the configuration being stretched into the chain by 
rotation. The lowest curve in the figure corresponds to fission. 
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Figure 1. Quadrupole (full curve) and 
bending deformation (dashed) as functions 
of iteration number. 
 

 
Figure 2. Convergence criteria as functions of 
iteration number 
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Figure 4. Convergence to different final 
deformations depending on ω. 
 

 
Figure 5. Rotational energy factor vs. ω for 
three different Skyrme forces. 

The moment of inertia was calculated in two ways: from the angular momentum divided by ω and 
from the rigid-body expression. Both yielded essentially the same values for the chain configuration, 
which is not surprising considering the large deformation. 

The final result for the chain configuration is shown in Fig. 5.  It clearly shows that both the range 
of stable frequencies and the size of the deformation differ significantly between the SkI3/4 and Sly6 
cases. Centrifugal stretching is also noticeable. 

Time-dependent calculations were also performed for a 8Be+8Be collision and showed that for 
suitable initial orientations of the nuclei the chain state could appear as a long-lived (> 1000 fm/c) 
intermediate state. 

3.  Torus stabilization by rotation 
A more exotic scenario is that of a nuclear torus as originally suggested by C. Y. Wong [4], their 
collective rotation and possible stabilization effects was also studied in [5,6], where, however, rigid-
body rotation was assumed. For an ideally axisymmetric torus such a rotation about its symmetry axis 
is forbidden in quantum mechanics. There is an alternative in such cases via the alignment of the 
single-particle orbital and spin angular momenta producing a collective rotation as already suggested 
by Bohr and Mottelson [7] and realized in K-isomers. In contrast to rigid-body rotation this leads to a 
strongly quantized total angular momentum of the nucleus. 

In a first investigation [8] we examined the nucleus 40Ca in a rotating toroidal configuration. This 
was achieved by initializing a cranked static Hartree-Fock calculation with a ring of 10 α-particles. It 
was found that for a certain range of cranking frequencies ω a torus configuration with azimuthal 
symmetry was achieved. The quantal angular momentum, however, was constant over a wide range of 
values of ω.  Fig. 6 illustrates the general behavior for different ω: for slow rotation. The values of J 
appearing are 20, 60, and 100, but only for J=60 the configuration remains stable for a very large 
number of iterations. The values occurring here can be understood quite simply from the radially 
displaced harmonic oscillator model [9]. In practice the wave functions can be approximated quite 
well as Gaussians in the distance from the central circle of the torus, and by azimuthal factors like 
exp(imφ). The two spin orientations are almost degenerate. The total angular momentum is then 
generated by an asymmetric occupation of 10 m-values with four nucleons for each state. Occupying 
m from -4 to +5 yields a total projection of 20, for -3 to +6 we get 60, and for -2 to +7 finally a value 
of 100 results. This explains the large jump in projection values observed. It is made a bit smoother 
once spin is included, but the basic features are apparent in this way. 
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FIG. 1. (color online) Total density for (a) the initial condition
of the HF iterations and (b) the calculated result with !ω = 1.5
MeV at the 15000 HF iterations. The density is integrated in the
z direction. The contours correspond to multiple steps of 0.05
fm−2. The color is normalized by the largest density in each plot.

z axis as the symmetry axis. We first define the effective
Hamiltonian, Ĥ′, given by Ĥ′ = Ĥ − ωĴz, where Ĵz de-
notes the operator for the sum of the z components of the
total angular-momentum for each single particle, ĵz, given
by Ĵz =

∑
i

ˆj(i)z . In the HF approximation, Ĥ′ is rewritten
as Ĥ′ =

∑
i{ĥi − ω ˆj(i)z }, where ĥi denotes the Hamiltonian

for each single particle. The eigenvalue of H′ is given by〈
Ĥ′
〉
=
∑

i{(ei − λ) − !ωΩi}, where λ denotes the Fermi
energy at ω = 0 and ei and Ωi denote the energy and the z
component of the total angular momentum in the unit of !
for each single particle, respectively. In the present study,
we search for the stable state using the equivalent cranked
Skyrme HF equation, δ

〈
Ĥ − ωĴz

〉
= 0 [14, 15], by scan-

ning a large range of ω.
Before the HF calculations, we here discuss the shell

structure of the torus configuration using the radial dis-
placed harmonic oscillator (RDHO) model [9]. For the
torus configuration, not only Ω but also the z component of
the orbital angular momentum, Λ, are good quantum num-
bers (Ω = Λ + Σ, where Σ denotes the z component of the
spin values, ±1/2). Two nucleons in each Λ energetically
degenerate with the different spin values. At !ω = 0, the
lowest configuration for 40Ca is Λ = 0, ±1, ±2, ±3, and ±4
and the residual two nucleons can occupy any two states
with Λ = ±5. At !ω ! 0, the possible spin aligned config-
urations are (i) Λ = 0, ±1, ±2, ±3, ±4 and +5 for the total
angular momentum J = 20 ! [= 5 ! × 2 (spin degeneracy)
× 2 (isospin degeneracy)], (ii) Λ = 0, ±1, ±2, ±3, +4, +5
and +6 for J = 60 ! [= 15 ! × 2 × 2], and (iii) Λ = 0, ±1,
±2, +3, +4, +5, +6 and +7 for J = 100 ! [= 25 ! × 2 × 2].

In the self-consistent calculations, the single-particle
wave functions are described on a Cartesian grid with a grid
spacing of 1.0 fm. We take 32 × 32 × 24 grid points for the
x, y, and z directions, respectively. This was sufficiently ac-
curate to provide converged configurations. The damped-
gradient iteration method [16] is used, and all derivatives
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FIG. 2. Convergence behavior of the expectation value of Jz in
the HF calculations versus the number of iterations. The dashed,
dash-dotted, solid, and dotted lines denote the calculated results
with !ω = 0.5, 1.0, 1.5, and 2.0 MeV, respectively.

are calculated using the Fourier transform method. We take
three different Skyrme forces which all perform well con-
cerning nuclear bulk properties but differ in details: SLy6
as a recent fit which includes information on isotopic trends
and neutron matter [17], and SkI3 and SkI4 as recent fits es-
pecially for the relativistic isovector structure of the spin-
orbit force [18]. However, except for the effective mass,
the bulk parameters (equilibrium energy and density, in-
compressibility, and symmetry energy) are comparable in
the all interactions.

For the initial wave functions, we chose the ring configu-
ration with 10 α particles placed on the x-y plane, as shown
in Fig. 1(a). Each α particle is described by the Gaussian
function with its center placed on z = 0. Using this ini-
tial condition, we perform the HF iterations with 15000
times and investigate the convergence of the calculated re-
sults. Figure 2 shows the convergence behaviors of

〈
Ĵz
〉

versus the number of the HF iterations with various ω’s
using the SLy6 interaction. We can see that the result cal-
culated with !ω = 1.5 MeV converges rapidly to Jz = 60 !.
Figure 1(b) shows the density obtained with !ω = 1.5 MeV
at the 15000th iteration step. The calculated result is in-
deed the torus configuration. The obtained density distribu-
tion, ρ(r, z), can be well fitted by ρ(r, z) = ρ0e−{(r−r0)2+z2}/σ2 ,
where ρ0 = 0.13 fm−3, r0 = 6.07 fm, and σ = 1.61 fm for
the SLy6 interaction.

On the other hand, the calculated results with !ω = 0.5
and 1.0 MeV lead to unstable states. That for !ω = 2.0
MeV leads to the fission. Although it seems that

〈
Ĵz
〉
’s

with !ω = 0.5 and 1.0 MeV converge at the 15000th step,
those are in fact unstable. In Fig. 2, we can see that these
states first converge to a quasi-stable state. After that, the

 
Figure 6. Convergence of angular momentum for 
the torus for different constraint ω. 
 

 
The true stability of the configuration at J=60 is not easy to establish in static calculations, although 

starting with a distorted ring-like configuration showed convergence back to azimuthal symmetry for 
some range of distortion magnitudes. Therefore also a dynamic calculation was done to check how 
resilient the torus is with respect to a time-dependent sausage-like perturbation. In practice a positive 
time-dependent external potential was applied to act as a disrupting mechanism. It was of Gaussian 
shape with σ=1.8 fm and temporally also had a Gaussian profile with the duration of 20 fm/c. For a 
peak value of 40 MeV there was still no break-up of the torus but an initial disturbance was quickly 
repaired. For larger values, however, the ring broke up. The sequence of shapes shown in Fig. 7 
illustrates this and also shows the collective rotation: the point of disruption clearly moves in a 
counter-clockwise direction. 

  
  

Figure 7. Sequence of shapes for the rotating torus when an external potential causes a break-up. The 
external potential acts at the right-hand side of the torus. 

 
If the state with the torus configuration is formed at J = 60, the macroscopic circulating current 

strongly violates the time-reversal symmetry in the intrinsic state. It is interesting to investigate how 
this fascinating new state can be observed in experiments. The state with the torus configuration at J = 
60 would have an extremely large magnetic moment (μ = 30μN). This would lead to a procession 
motion under an external magnetic field. 

A question then arises how such a “femtoscale magnet” rotates spontaneously. When the spherical 
symmetry is broken, the collective rotation emerges spontaneously, in principle, to restore the broken 
symmetry. However, it is unclear whether such a state built with significant amount of circulating 
current can rotate about the perpendicular direction to the symmetry axis or not. If not, such a state 
would be an anomalous one, which has not yet been recognized in the experiments. Even if the state 
can rotate, the rotational band built on such a state would show interesting behaviors for their M1/E2 
transition strengths and moment of inertia. 
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4.  Time-dependent formation of nuclear pasta 
The “pasta” phases of nuclear matter have been investigated intensively in various models, including 
Skyrme-force Hartree-Fock [10]. We have performed investigations in a time-dependent scenario to 
investigate the transition from some unordered initial state into the pasta phases depending on the 
density and temperature assumed initially [11]. 

For this purpose we set  up a random initial state in a Cartesian periodic box. This state contained a 
number of α-particles at randomly selected positions (but rejecting positions with the particles too 
close) plus a background gas of neutrons in plane-wave states to produce a proton fraction of 1/3. Both 
the α-particles and the neutrons were given initial velocities from a thermal distribution. The typical 
grid consisted of 163 grid points with a spacing of 1 fm.  

The calculated time dependence then showed a relatively rapid formation of one of the familiar 
pasta structures, which of course still contain time-dependence in the sense of vibrations remaining in 
the structures. This usually happens within less than 1000 fm/c. Since only a relatively small number 
of calculations could be performed, large fluctuations are present which, e. g., sometimes lead to 
different pasta structures for similar initial conditions. 

While the average density is simply given by the number of particles in the computational grid,  the 
temperature is given only indirectly. Since TDHF preserves the total energy, not the temperature, the 
latter has to be calculated for the final pasta configuration, which is not identical to the artificial 
temperature used to assign the initial velocities. In practice we estimated it by calculating the 
excitation energy relatively to the HF ground state and using the Fermi-gas formula. The resulting 
phase structure is shown in Fig. 8, while a graphical impression of the pasta structures attained is 
given in Fig. 9. 
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(a) sphere (b) rod (c) rod(2)

(d) rod(3) (e) slab

(f) rod(2) bubble (g) rod bubble (h) sphere bubble

FIG. 1. Typical shapes of pasta structures at the lowest tem-
peratures. These continue to evolve with time but do not
change their morphological character anymore. Bubble shape
illustrations show gas phase, which is indicated by the col-
orscale.

energy E to the ground state energy E0. The latter is
computed by solving the statc HF problem for the given
density. This amounts to

T =
1

π

√

2εF
E∗

N
. (1)

This excitation temperature T is to be distinguished
from the “initial temperature” Tinit which we use to
boost stochastically the initial ensemble of α particles
and the background neutrons. Calculating the excita-
tion temperature T for the different values of the ini-
tial temperature Tinit, we find empirically T ≈ 7 MeV +
√

Tinit(Tinit + 100 MeV)/6. This is taken henceforth for
a rough calibration of T .

C. First overview

Each setup is evolved in time for 1500 fm/c. After that
time, shapes do not change significantly. The system goes
over into a pasta state where some type of equilibrium
is achieved. Depending on the temperature differently
strong fluctuations can be observed.
In FIG. 1 many different pasta shapes are classified.

Among the structures found are rod and slab struc-
tures which have been discovered, e.g., by QMD calcu-
lations [36]. Rod(2) corresponds to rods forming a two-
dimensional layer. The shape rod(3) describes three rods

sphere rod rod(2) rod(3) slab

rod(2) bubble rod bubble sphere bubble uniform
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FIG. 2. Map of pasta shapes achieved in a TDHF calculation
starting from a gas of α particles with neutron background for
various real temperatures and mean densities. The proton
fraction is 1/3. Each dot represents two calculations. The
solid black line shows a phase seperation line discussed in
Sec. VI.

in x-, y- and z-direction which cross in one point. Similar
shapes were discovered in [21, 48] and the rod(3) struc-
ture was also found in [15].
FIG. 2 shows for which density and temperature the

different shapes appear. Note that two calculations for
each point in the map were performed. As we have ran-
dom initial conditions, the final shapes may differ al-
though the same values for temperature and mean den-
sity are assumed. The hatched areas with a mixture of
colors indicate the different final states reached in these
cases. At higher densities, bubble structures can be seen
(the gas phase has a pasta like shape). Many shapes can
coexist here in one point of the map.
In the region of slab and rod(3) structures, the final

state which is formed seems to highly depend on the ini-
tial condition. The similarity of these two structures is,
that the liquid phase and gas phase have the same shapes.
So gas and liquid phase symmetrically complement each
other and fill out almost the same volume.

IV. MINKOWSKI FUNCTIONALS

As already outlined in section I, a powerful tool to
quantify the involved pasta shapes are Minkowski func-
tionals [26]. There are four Minkowski functionals Wν

defined for a spatial domain K in three dimensions: they
are proportional to its volume W0 ∝ V , its surface-
area W1 ∝ A, the integrated mean curvature W2 ∝
∫

∂K
dA (κ1 + κ2)/2, and the topological Euler-Poincaré

characteristic W3 ∝ χ, which is equal to the integrated
Gaussian curvature

∫

∂K
dAκ1 · κ2. Here, κ1 and κ2 are

the principle curvatures on ∂K, the bounding surface of
K. The Euler characteristic is a topological constant.
TAB. I summarizes these definitions of the Minkowski
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Figure 8. Phase diagram of the pasta structures 
reached in dependence on density and temperature. 
Taken from [11]. 
 

Figure 9. Overview of the pasta structures 
reached in the simulations. Blue color indicates 
the lowest and red the highest densities. 
 

Since the geometric structure was quite complicated in many cases, we used the method of 
Minkowski scalars [12] to distinguish the various cases. This was already applied to similar situations 
in [13]. For this purpose the density threshold is selected to separate the system into “empty” and 
“filled regions” with clearly defined surfaces dividing them. Using these surfaces the geometric 
invariants can be calculated; we found the integral mean curvature and Euler characteristic most 
useful. The results are quite stable for a broad range of threshold densities. The main results are 
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summarized in the Table 1, which shows that indeed the classification can be done practically 
completely using just these two quantities. 

Table 1. Classification of pasta configurations using the integral mean curvature and Euler 
characteristic. The letter “b” denotes the “bubble” configuration with high and low density regions 
exchanged. 

Shape Sphere Rod Rod(2) Rod(3) Slab Rod(2) b Rod b Sphere b 

W2 >0 >0 >0 - to + ≈0 <0 <0 <0 

W3 >0 =0 <0 <0 =0 <0 =0 >0 
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