
Hoecker and Kunze Journal of Cloud Computing: Advances, Systems and
Applications 2013, 2:14
http://www.journalofcloudcomputing.com/content/2/1/14

RESEARCH Open Access

An on-demand scaling stereoscopic 3D video
streaming service in the cloud
Maximilian Hoecker* and Marcel Kunze

Abstract

We describe a web service providing a complete stereoscopic 3D video multi-stream cloud application to serve a
potentially very large number of clients over the Internet. The system architecture consists of a stream provider that
leverages highly scalable and reliable cloud computing and storage services, with automatic load balancing capability
for live and content streaming. By use of a suiting flash media plugin the content is displayed on a wide variety of 3D
capable devices like for example 3D workstations or smart TV sets. Videos are made available by an on-line stream
provider for live broadcasting or by cloud storage services. Compared to conventional 3D video streaming over
satellite channels there are considerable savings in cost as well as a wider range of applicability and functional
improvements. Possible areas of application are medical surgery, live concerts, and sports events.

Introduction
The conventional method of distributing high definition
stereoscopic 3D live video streams is the transmission
via satellite links. While the provisioning of the neces-
sary bandwidth via satellite is technically feasible, live
transmission is very costly: An hour of satellite channel
costs approximately 700$ and the rental of a transmission
vehicle adds up to 2,000$ per day. Furthermore, secure
satellite transmission usually works point-to-point only
especially when stream encryption is used. It would thus
be interesting to develop methods to mass distribute 3D
live content over cheaper Internet broadcasting channels.
However, the Internet up to now has played a minor
role in this context due to the high bandwidth demand
of high definition 3D video streams. New compression
methods like H.264 and encoders as well as improvements
in the available bandwidth, however, have changed the
situation: While professional streams in medical applica-
tions with quadruple HD may require up to 40 MBit/s
uncompressed, the typical bandwidth consumption of a
compressed stereoscopic 3D video stream in 720p quality
is 2 MBit/s, ranging up to 5 MBit/s for 1024p.
The cloud application presented in this paper discusses

the live broadcasting of stereoscopic 3D video over the
Internet by use of automatically scalingmedia clusters and
user interface portals based on commodity cloud services.
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The paper is organized as follows: First we describe
the application context with its specific requirements. In
the next chapter we discuss the architectural aspects of
an on-demand, scaling live video broadcasting environ-
ment. Then we present performance studies and the paper
concludes with a summary and outlook.

Stereoscopic 3D video streaming
Stereoscopic 3D video presents each eye of the observer
with a slightly different perspective to enable a realistic 3D
experience. A corresponding video streaming setup thus
has to transport two pictures synchronously, one for each
eye. Various techniques have been employed to provide
stereoscopic video such as anaglyph 3D, polarization 3D,
active shutter, and side-by-side that are already embedded
in actual 3D TV sets. A comprehensive streaming appli-
cation should thus not be limited to a particular type of
stereoscopic format in order to reach a large audience.
There are tools and encoders on the market that allow
to handle a wide spectrum of formats such as the Invis-
tra multi converter [1] and Adobe Flash plugin [2] that
have been chosen to support the research described in this
paper.

Download vs. streaming
The transmission of video and audio data over the Inter-
net has become very prominent. File sharing services are
usually offering files to download in a web browser or they
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leverage specific file sharing protocols like BitTorrent [3].
However, the download of files has its problems with fault
tolerance and it is difficult to steer the bandwidth con-
sumption. If a media file is downloaded, the client keeps
on transferring data in the background while the con-
tent is being consumed. If a client navigates forward, the
already transferred portions of the file have to be skipped
and it might happen that there is a waiting time until
the client may continue at the new location. Usually the
“header” information of a media file is located at the end
of the file.
An example for a standard download method is Apple’s

PodCast. A PodCast file has to be downloaded com-
pletely before it is able to be played because the header
information is at the end of a file. The technique of pro-
gressive download transfers a header at the start of the
file in addition to the content that contains information
to navigate in the media. This makes it possible to play
the file while it is still downloading. Various companies
like Adobe, Apple, and Microsoft offer proprietary proto-
cols to support HTTP based applications with progressive
download. The corresponding implementations mainly
differ in the supported CODECs.
Streaming on the other hand is a technology that trans-

fers a data stream from a service to a client with quality
control. Server and client exchange state information and
quality metrics as well as meta data describing the stream
by means of a streaming protocol.

Protocols
A streaming protocol contains two layers: A transport
stream and a control stream. The transport stream carries
the media data and it may be based on both transfer pro-
tocols, UDP and TCP. The control stream takes care of the
Quality of Service (QoS) and its implementation depends
on the specific transfer protocol in use.
A prominent implementation of a streaming protocol

is the Real Time Protocol (RTP) that has been speci-
fied in RFC 3550 [4]. It is based on UDP and uses the
Real Time Control Protocol (RTCP) for QoS. The Real
Time Messaging Protocol (RTMP) has been published by
Adobe in 2009 [5]. It uses TCP and guarantees the cor-
rect order of the datagrams in the stream. On the server
side RTMP implements command messages, data mes-
sages, shared object messages to embed e.g. Flash events,
media messages, and aggregate messages to combine var-
ious messages gaining efficiency. On the client and server
side RTMP offers user control messages to notify about
events like stream begin or end. There are several variants
of RTMP that allow to tunnel through firewalls (RTMP-T),
to encrypt the media streams (RTMP-E, RTMP-S), and a
combination of both (RTMP-TE) [6]. Examples for RTMP
streaming clients are the VLC player [7] and the browser
based FlowPlayer [8].

Streaming services
Streaming servers are able to transport almost arbitrary
video streams in almost any format. They offer capa-
bilities such as live transmission, live transcoding into
various formats, quality control, and digital rights man-
agement. Examples are the Adobe Flash Media Server [2]
or the Wowza media server [9]. The Amazon Web Ser-
vices (AWS) [10] offer paid instances of media servers that
may be rented by the hour, thus implementing a dynam-
ically scalable streaming service. We are utilizing these
cloud based streaming services to construct our scalable
media service based on RTMP.

Security
Broadcasting of video streams over the internet works on
a global scale. Hence, a corresponding video streaming
service should ensure the secure and reliable transmis-
sion of content. Depending on the application context,
stream access control is needed e.g. in commercial por-
tals selling video-on-demand. In addition the service
may consume large amounts of bandwidth, especially
when 3D videos in HD quality are distributed. A single
stream may consume a bandwidth between 2 MBit/s and
40 MBit/s.
Several possibilities exist to transport live video data

from a source to a streaming client: One could deploy a
peripheral mesh network where each client is a stream
distributor for many other clients, or a central streaming
cluster multiplying streams locally.
The application presented in this paper is focussing on

stereoscopic 3D live broadcasting in the public cloud com-
bined with secure transmission of video as an aliased
stream with optional encryption. A stream represented
by an aliased name prevents replaying content on several
clients. Stream aliasing is realized by masquerading real
stream names with an alphanumeric hash derived from
the stream name, current time, client IP-Address, and a
customer specific secret key.

Architecture
Blueprint
Figure 1 shows an architectural blueprint of a system to
transport stereoscopic 3D live content from a source to
a potentially large number of viewers. The design phi-
losophy is that all components may be instantiated as
virtual machines in the public cloud. Video clients are
requesting a live stream via a video streaming portal. The
portal forwards the request to a streaming origin server
accessing the content provided by a stream provider. The
origin server delivers the stream to a dynamically scaling
cluster of edge servers. The edge servers deliver the live
stream to the requesting streaming clients. The whole sys-
tem is managed and monitored by a management server
(3Distribute). The management server is composed of
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Figure 1 Scaling 3D video streaming architecture.

an application interface server (API-Server) and a user
interface server (UI-Server).

Logical components
The core part of our system is the API-Server. Key
functionalities are: Starting and configuring of virtual
machines, as well as managing and monitoring of the
media streaming cluster, including dynamic scaling of the
cluster size. As shown in Figure 2 the API-Server consists
of three layers of components, each of which abstracts
the layer below: The very low layer consists of connec-
tors to utilize IaaS services of various providers (Cloud
connector) and grants access to virtual machine resources
(Machine connector). A cluster and monitoring compo-
nent abstracts this first layer and represents the basic
functionality to manage a virtual cluster of machines.
Finally, an application is able to access the system by use of
the top level control component that constructs and steers
instances of the cluster component. All components are
defined by interfaces to provide the possibility to choose
or change a specific implementation.

Cloud connector
The cloud connector component realizes transparent
access to the proprietary API of an IaaS cloud service
offering. Each individual implementation of this compo-
nent has to provide the following functionalities:

• Launch and terminate virtual machines of a cloud
service.

• Capture and collect performance metrics of virtual
machines as a basis to perform service analysis.

• Associate reserved IP addresses with instances.

Machine connector
Controlling virtual machines with different protocols and
connections is the task of the machine connector compo-
nent. The machine connector takes care of the following
tasks:

• Grant remote access to a machine in order to submit
and execute remote procedures. Each task returns a
result indicating if a command has been run
successfully or not. Additionally the standard output
and error messages of the remote command may be
transferred.

• Provide a file transfer method to e.g. distribute
configuration files.

The standard implementation of themachine connector is
establishing connections via Secure Shell (SSH) and uses a
Secure Copy (SCP) session for file transfers. It is possible
to re-implement the connector with different protocols to
transmit commands or local files to a remote machine.
The portability of the component could be helpful to
support different operating systems and media services.
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Figure 2 Logical components of 3Distribute.

Cluster component
The cluster component has been designed to construct a
virtual cluster of virtual machines. It depends on all com-
ponents located in the layer below and is organized as
follows:

• A component called scenario is representing a data
model providing information about virtual machine
properties in a cloud environment. Instances of a
cluster component scenario contain one ore more
so-called scenario parts. Scenario parts represent a
deployment information knowledge base for different
independent parts of the cluster containing e.g.
machine size and image information, key pair names,
and files. Using scenario parts, different types of
virtual machines in the cloud may be orchestrated in
a cluster.

• In addition to the scenario part, a machine
configuration represents another data model
containing a set of ordered commands and local files
to be uploaded and executed to configure a virtual
machine dynamically during cluster startup or sizing
operations.

• A central subcomponent is the cluster machine
representing abstract access methods to interact with
the virtual machines in a cloud. The main task of the

cluster machine is to update internal state relevant
for cluster sizing and to control the connected virtual
machines in the cloud using the connector
components.

• Finally, the clustering component manages all
subcomponents described above. It is creating and
controlling all cluster machines and maps scenario
parts and machine configurations accordingly.

Analysis component
The analysis component allows to monitor and control the
cluster in a regular fashion. To provide this functionality,
the component is organized as follows:

• The cluster machine analyzer analyzes the state of
single cluster machines using data of metrics
generated by a cloud connector. A report is generated
including a qualitative measurement of the current
streaming load of a cluster machine.

• Based on this report the cluster analyzer component
prepares another report providing qualitative and
quantitative information about the streaming load of
a video streaming cluster as a whole.

• The actions catalogue component is able to
determine the action needed to handle a specific load
condition taking into account both, cluster and
cluster machine reports.



Hoecker and Kunze Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:14 Page 5 of 10
http://www.journalofcloudcomputing.com/content/2/1/14

A separate thread triggers the analysis of all clusters,
including all necessary actions determined by the
catalogue.
One possible action is resizing a cluster: If a clus-

ter overload condition occurs, the number of virtual
machines is dynamically increased by an upsizing pro-
cess. On the other hand, if idle machines exist a down-
sizing process takes care to decrease the number of
virtual machines by sending a termination or stop sig-
nal to underutilized machines. As a boundary condi-
tion the API server ensures the cost effectiveness of
the operation as the resource usage accounting model
may vary for different IaaS cloud providers. For exam-
ple, the Amazon Web Services (AWS) compute service
EC2 [11] charges any started hour of instance usage
independent of the actual utilization profile (wallclock
time). Thus it would be interesting to stop machines right
before the end of the hour in order to take full advan-
tage of an already billed resource. Another accounting
model applied by Google [12] or Profitbricks [13] con-
tinuously charges the actually consumed resources (CPU
time). The current implementation is utilizing AWS ser-
vices and instances are therefore terminated on an hourly
basis.

Control component
This component builds an abstract layer of all components
below and provides functionalities to control, launch and
terminate clusters. First of all the control component per-
forms validity and integrity checks of parameters supplied
to instantiate a cluster component instance. After the
instantiation the cluster is passed to the analysis compo-
nent taking over responsibility of cluster operations. The
current implementation of the web interface uses an RMI
Interface to connect to the API server.

User interface
The user interface consists of an administrative console
and a web front end to play and watch stereoscopic
content. The administrative console allows to config-
ure and manage the complete environment and perform
detailed monitoring of the system. The web front-end
has to support a wide range of stereoscopic 3D formats,
such as anaglyph 3D, polarization 3D, active shutter, and
side-by-side. For this purpose a web browser plugin has
been developed based on Adobe Flash technology [2]. A
Microsoft Silverlight [14] implementation exists in addi-
tion to support NVIDIA 3D vision shutter glasses for
desktop PCs [15]. The plugin supports to play a wide range
of formats via a popup selection bar and is also used in the
enduser interface of the commercial product. In principal,
the control component may be embedded into arbitrary
web pages in order to support customer specific portals
with stereoscopic 3D content delivery.

Automated load balancing and scaling
Live streaming events like e.g. a medical congress or the
transmission of a concerto may attract an unpredictable
number of requesting streams. One of our targets dur-
ing the design phase was to create a system scaling in
every instance of time taking into account parameters
like load and cost. A new streaming request is always
redirected to the video streaming server having the high-
est load and the capacity to feed further clients. In case
of a potential overload condition the next less loaded
server is chosen. This procedure maximizes the usage
efficiency of a video streaming server and minimizes
the cost since servers are only kept online in case of a
need.
We developed a load balancing Plugin for the Wowza

Media Server to cover these requirements based on the
heartbeat architecture pattern. An architecture includ-
ing a heartbeat pattern consists of a master server and
multiple slave nodes. Our setup implements the ori-
gin server as master node and edge servers as slave
nodes sending heartbeats. The master node collects all
load information (heartbeats) of each streaming server
in the cluster by use of Remote Procedure Calls (RPC)
via an encrypted protocol. The number of connec-
tions on a server as well as the outgoing network
traffic is transmitted in a message. When a streaming
request of a user is submitted as shown in Figure 1
(step 2) the IP-Address of an edge server is requested
(step 3), selected and delivered by the load balancer
plugin.
It is a challenge to scale the streaming capacity up and

down in near-realtime. For EC2 the AWS CloudWatch
service provides a time-aggregated view of the system per-
formance at intervals of every one or five minutes. The
delivered aggregation dataset holds a small collection of
statistical metrics like average, minimum and maximum
value of each system state. However, the CloudWatch
service may take to long if QoS needs to be guaranteed.
In order to avoid this kind of delays and to mini-

mize the time to scale, we implemented a faster scal-
ing method in the API Server calling a specific entry
of the load balancing plugin each 10 seconds. The
encrypted call transmits collective cluster information
consisting of all edge server heartbeats including a times-
tamp. A history of the last minute of heartbeats is
kept in memory to determine the actual progression
of load. Depending on the load history the necessary
measures like cluster resizing are initiated by the API
Server.

Measurement of server loads and capacity
An important role plays the load balancing in depen-
dence of resource analysis and monitoring. We define a
metric called streaming capacity which indicates
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the current workload. The metric is implemented as a
percentage value, where 100% describes the best condition
(no load) and 0% represents the least capacity left (cluster
is fully loaded), respectively.
For the determination of the streaming capacity the

application uses monitoring data that are provided and
elevated by the cloud connector interface.
The main metric to calculate the streaming capacity is

called performance. The performance is computed on
the basis of the performance measurements of each sce-
nario part. The actions catalogue component offers spe-
cific actions for the analysis report of each scenario part.
The computation proceeds according to the following
procedure:
One scenario part determines the streaming capacity

at a certain point in time depending on the available
streaming capacity of the individual streaming cluster
machines of the scenario part. The application addi-
tionally discretizes the numerical metric into a nominal
metric with the possible values capable and overloaded.
This nominal value is determined by comparison to a
threshold. If the actual streaming capacity of the clus-
ter falls below the threshold, the nominal value is set to
overloaded.
Figure 3 shows a sample graph of progressing stream-

ing capacity with a threshold of 23%. At time step 24 the
streaming capacity of the cluster falls below the threshold.
The cluster is, per definition, overloaded at this point in
time.
Each scenario part is separately analyzed and reported.

Possible actions are extending or shrinking the cluster size
in a specific scenario or leaving the cluster size untouched
in case of optimal load conditions. In order to create a
report for a scenario part, the cluster analyzer compo-
nent computes the streaming capacity according to the
following procedure:

First of all, a value named derivation is computed to
indicate the difference of the status quo to the minimum
required streaming capacity.

derivation = threshold − performancescenariopart . (1)

Another value called streaming capacity reserve
is defined by reserve = −1 ∗ derivation and defines a
metric for a reserve or lack of streaming capacity of a
complete cluster.
In a second step the total media server streaming capac-

ity of a scenario part cluster is compared to the threshold
value with the possible conditions in equation

n∑

i=1
(performancei) <> threshold

If the sum of all available streaming capacity is smaller
than the threshold, the derivation value is rounded to the
next higher number. This rounded value defines the num-
ber of additional media servers to be started in addition to
the actual number of cluster machines.
If the streaming capacity of a cluster complies to the

threshold, the cluster size remains unchanged. If the
threshold is defined low enough to accept a large number
of streams on one streaming server in a stable streaming
environment even if the stream bandwidth changes, this
reflects the most cost effective point of operation.
The third situation indicates that the cluster is underuti-

lized. In this case the reserve value of the cluster cor-
responds to the number of media servers to be removed
from the corresponding streaming cluster.

Evaluation
Test setup
All studies have been performed with public cloud ser-
vices offered by the AWS [10] and Wowza Media Server

Figure 3 Sample progress of a streaming capacity.
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[9]. For scalability and quality measurements we have used
Flazr[16], a small command line tool to simulate a defined
set of parallel video streaming consumers. In addition to
this basic feature, advanced options like saving or con-
sumption of encrypted video streams are also provided by
this tool.
All testing procedures were subject to a well-defined

topological setup:

• A set of 3Distribute API-Server and UI-Server
located in a private context.

• One stream publisher that streams stereographic 3D
content to a public iaaS based on AWS EC2.

• Virtual machines hosted in the AWS EC2 availability
zone “eu-west-1”, implementing a streaming service
provided by a streaming cluster (Origin server and
edge servers).

• Another cluster of virtual machines hosted in the
AWS EC2 availability zone “us-west-1”, simulating
users consuming the content provided by the
streaming service.

The deployment of the streaming cluster is the first
step performed by the setup procedure. 3Distribute ini-
tializes and configures a video streaming cluster in the
European availability zone, initially composed of a single
origin server and one edge server. In order to put a load on
the video streaming cluster a consumer virtual machine is
instantiated in the availability zone “us-west-1”.
After the streaming cluster has been deployed and

configured, the stream publisher is manually enabled to
launch the transmission of stereoscopic 3D live video con-
tent to the origin server of the streaming cluster. The
consumption of streams is additionally started on the vir-
tual machine in the other availability zone using Flazr. The
number of streams to be consumed is initially calculated
regarding the bandwidth of the stream and the network
output capacity of the edge server.
Various quality attributes have been investigated and

evaluated during the testing that are described in the
following subsections.

Scalability
The current implementation of 3Distribute has limita-
tions regarding the number of media servers. Due to the
layered origin/edge server setup and the maximum net-
working bandwidth of a virtual machine in the cloud, a
streaming cluster is able to provide a maximum of

nmax = originmax ∗ edgemax
streambandwidth2

streams. The factors originmax and edgemax denote the
maximum possible outgoing networking bandwidth of the
virtual machines available to the origin or edge servers.

Cluster Compute Instances (CCI) of the AWS EC2 service
provide a 10 GBit ethernet connection. Thus, with CCI
it would be possible to achieve a maximum of 25 million
independent output streams in presence of a 2 MBit input
stream. This limit could be expanded by introduction of a
meshed cluster architecture. In a meshed cluster the edge
servers would have the possibility to connect to a further
layer of edge servers, implementing a tree-like streaming
network to transmit a potentially unlimited number of
streams.
The number of streams in a meshed setup is calculated

by ntotal = nOriginServer ∗ nhEdgeServer . The exponent h cor-
responds to the height of the spanned tree. As a boundary
condition it is required that each height of a leaf in the tree
is identical.
However, meshed video streaming clusters have another

limitation: If a video streaming cluster is located in just
a single availability zone of a cloud, it is possible to sat-
urate the maximum available networking bandwidth of
the provider. Whereas it is possible to support 25 Mil-
lion streams with a tree height of one, a streaming cluster
could theoretically already transmit 125∗109 streams with
a height of two, resulting in a networking output band-
width of 250 PBit per second. Such a load could only be
handled, if the cluster would be operated in a multi cloud
environment or across various availability zones.
In order to determine the streaming capacity of a clus-

ter it is necessary to measure the streaming capacity of
a single streaming server in the cloud with the test setup
described in subsection “Test setup”.
If the AWS EC2 service is used, it is relevant to under-

stand which instance type should be deployed to pro-
vide the service for origin and edge servers. A 2.4 Mbit
video encoded in full HD format has been selected as an
input to study the streaming behavior of specific AWS
EC2 instance types. The I/O classifications of AWS EC2
instance types can be reviewed in [17]. Table 1 shows
the maximum number of stable streams and the cor-
responding maximum measured networking bandwidth
per instance type. From a provisioning point of view, all
instance types in the table have a GBit networking inter-
face. It is an interesting observation that only the large
instance types in reality reach GBit bandwidth; the small
instance types seem to be throttled by the provider.
As described above, Flazr was used to generate a load on

the streaming cluster. Each virtual machine running Flazr

Table 1 Averagemaximum number of streams and
bandwidth provided by AWS instance types

AWS Instance Type I/O nmax
∑

Bandwidth

m1.small Moderate 110 ca. 308 Mbit/s

m1.large High 300 ca. 830 Mbit/s

c1.xlarge High 330 ca. 918 Mbit/s
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was configured to pull up to a hundred streams from an
edge server. With a binary search approach, the number
of maximum streams was identified. As a start condition
an initial maximum number of 500 streams was defined.
To check if a streaming server is capable to provide the
number of streams, a single stream has beenwatched visu-
ally as a control sample. If this control sample didn’t show
any deterioration of audio or video, the number of streams
was set acceptable to be provided by the streaming server.
During an initial measurement the test video consumed a
bandwidth of 2.78 Mbit on average.
We designed and developed a special tool to measure

the total bandwidth using the Wowza Media Systems API
able to monitor bandwidth according to a one second pre-
cision. The tool takes measurements each five seconds
yielding 12 measurements per minute. In addition, the
median and average values are calculated and checked
against the measurements of the AWS CloudWatch API
to have a plausibility test. We observed a deviation of
5.4% between both measurements that may be explained
by the measurement method of the CloudWatch API.
CloudWatch measures in a one minute interval with an
undefined number of values. The measurements contain
values for all possible I/O performance andWowza image
combinations. Currently there is no possibility to deploy
a Wowza image on a virtual machine having a “very high”
or “low” I/O Performance.
Figure 4 shows the results and demonstrates, that the

potential network traffic and the number of possible
streams vary by almost a factor of three. The measure-
ments illustrate that the utilized bandwidth is increas-
ing linearly with the number of streams provided. If
the server is not able to provide additional streams any
more, the bandwidth for each stream (and for all streams
summarized) would be decreasing. This behavior may be
explained by the scheduling of multiple virtual machines

on a single hypervisor of a host in a cloud, resulting
in a specific profile for each I/O type to schedule the
resources.
Figure 5 illustrates the limit of possible stable streams

for a specific instance type. An origin server using a virtual
machine of instance type “m1.small” is capable of pro-
viding 110 streams. If more streams are requested on the
same server, the bandwidth per stream is decreasing until
artifacts, audio or video glitches are observed. It became
evident that artifacts occurred once the bandwidth of a
video stream fell below 2.7 MBit. In Figure 5 the graph
shows an analogue behavior for instance type “c1.xlarge”
and “m1.large”. Both figures indicate a variation by a fac-
tor three in streaming bandwidth per stream between
small and large instance types. Since the allocation of vir-
tual machines with different instance types on a physical
host is not fixed, all measurements have been repeated
multiple times using a freshly deployed cluster per
measurement.
These measurements are specific for AWS EC2 and the

conclusionsmay not be generally applicable to other cloud
providers and environments. However, we can anticipate
that different hypervisors or virtualization technologies of
other cloud providers may deliver different results but of
similar characteristics.

Availability
Cloud systems should be fault tolerant as a service should
be available at all times. An evaluation regarding availabil-
ity of the 3Distribute software and video streaming clus-
ters is performed in this subsection. The consequences
of a component failure will be discussed for customers,
monitoring processes, or for the stream providers. The
term failure in this context refers to the termination
of virtual machines in the cloud or to the crash of a
software component.

Figure 4 Bandwidth gained for different instance types.
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Figure 5Maximum number of streams for different instance types.

A crash of the complete 3Distribute management sys-
temwould result in a situationwhere the streaming cluster
is not monitored and managed anymore. While operation
continues in this case, scaling up or down in size would
not be possible. This could cause two problems over time:
Either the cost could be too high due to over provision-
ing, or the quality of the video stream could degrade due
to a lack of video streaming server capacity. This scenario
would result in a potential graceful degradation of the
system.
However, failures of origin servers in a hierarchical ori-

gin/edge server setup is a yet unsolved open issue. If the
origin part of a cluster is missing, no edge server would
get any video data and no client could receive a video
stream anymore. One possible preventive method to solve
this issue is the setup of two or more spare origin servers.
Each origin server would be receiving the same stream
from the stream provider independently. Using a playlist,
a multi-origin setup could be manually realized in all edge
servers. A special configuration would deploy a second or
third video streaming cluster just consisting of one origin
server in hot standby mode. The switching between the
origin servers may be done automatically by the Wowza
streaming server itself. If one stream is ending (because
of a failure), the next origin server is requested to jump
in and deliver the stream. During the failover procedure
a user would observe a small interrupt or artifact caused
by the RTMP handshake between edge and origin server.
This time period of switching is comparable to the ini-
tial handshake during a client connect initialization. In the
clients view, the switchover is done transparently since the
stream delivery from edge server to a final client is not
interrupted.
Failures of edge servers would affect just the viewers

consuming streams from the corresponding location. The

streaming client would simply reconnect requesting a new
edge server from the origin server. On the client side the
player would react on an edge server fault automatically.

Related work
A substantial number of providers already offer video
streaming services in the Internet, but almost any of these
host 2D video applications only. The most prominent
video service, YouTube [18], only works in the area of
static content and has recently established the possibility
to upload 3D videos in modest quality. KUK Filmpro-
duktion is producing stereoscopic 3D live concert events,
but only via satellite and into movie theaters [19]. There
are some companies experimenting with 3D HD video
live transmission of endoscopic medical surgery [20]. In
the area of media oriented protocols there are devel-
opments in the direction of predictable reliability and
predictable delivery (PRPD) to minimize the amount of
required bandwidth [21]. In this context there are research
efforts in the area of adaptive coding to optimize the
coding parameters such that they are producing the min-
imal amount of redundancy. Another field of interest
are Peer-to-Peer (P2P) solutions for live streaming video.
AngelCast [22] is a system extending a P2P network with
the resources of a cloud provider. AngelCast networks
are capable to streami videos live and may be extended
by cloud resources using a controller. The Elastic Stream
Cloud (ESC) [23] represents a concept to connect mul-
tiple smaller private clouds for video streaming. ESC
does not make use of specific cloud resources but pro-
vides the delivery model that has been implemented as a
decentralized SaaS, forcing streaming providers to run a
proprietary web OS with self defined protocols.
The authors in [24] describe an application called

MediaWise Cloud Content Orchestrator (MCCO) for the
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delivery of static (recorded) content. MCCO deploys a
multi-cloud content delivery network (CDN) using public
cloud resources and consists of a specific three tier archi-
tecture controlled by widgets in the front-end tier.
The CDN architecture typically deploys a load balanced

setup with distributed cache servers spread geographically
around the world in order to optimize latency, bandwidth,
and cost of networking [25,26], leading to data replication
into various centers and a static tier hierarchy.
A live streaming application as described in this paper,

however, demands dynamic adaptation of networking and
streaming capacity. In order to achieve this, content is dis-
tributed with small partial buffers (0-3 seconds) in the
media servers across the deployed tree topology, growing
in height and width as clients connect.
Monitoring services are a major architectural compo-

nent of any cloud application to support scaling and
QoS [27]. As the cloud monitoring systems offered by
providers very often bear technical limitations application
architects tend to work out their own individual setup.
Hence, we defined a specifically well suited QoSmetric for
our application called streaming capacity as described in
section “Measurement of server loads and capacity”.

Conclusions and future work
Cloud services have a huge potential to support the broad-
casting of stereoscopic 3D live events over the Internet.
The rapidly growing IP-TV market with its 3D enabled
smart TV sets could benefit a lot by corresponding ser-
vice offerings. The architecture presented in this paper
has been implemented to support Trivido [28], a 3D live
video portal run by the startup Invistra [1]. The client
side of the application is currently based on proprietary
Flash and Silverlight enabled endpoints. The transition to
HTML5 is on the roadmap and would offer a broader sup-
port of devices by the corresponding 3D TV application
stores. As there is a growing uptake of LTE broadband
internet connection, 3D video streaming could soon be a
promising option on mobile phones and tablets as well.
Further areas of interest could be 3D live chats in social
networks, as well as technical training and lecturing. In
order to further optimize the efficiency of the setup,
another direction of development is to intelligently lever-
age affordable infrastructure services from the growing
cloud spot market.
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