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Towards Specification and Verification
of Information Flow
in Concurrent Java-like Programs*

Daniel Bruns

March 18, 2014

Abstract

Today, nearly all personal computer systems are multiprocessor sys-
tems, allowing multiple programs to be executed in parallel while accessing
a shared memory. At the same time, computers are increasingly handling
more and more data. Ensuring that no confidential data is leaked to
untrusted sinks remains a major quest in software engineering. Formal
verification, based on theorem proving, is a powerful technique to prove
both functional correctness and security properties such as absence of in-
formation flow. Present verification systems are sound and complete, but
often lack efficiency and are only applicable to sequential programs. Con-
current programs are notorious for all possible environment actions have
to be taken into account.

In this paper, we point out steps towards a formal verification method-
ology for information flow in concurrent programs. We consider passive
attackers who are able to observe public parts of the memory at any time
during execution and to compare program traces between different ex-
ecutions. Our approach consists of two main elements: 1. formalizing
properties on whether two executions are indistinguishable to such an at-
tacker in a decidable logic, and 2. defining a technique to reason about
executions of concurrent programs by regarding a single thread in isola-
tion. The latter is based on the rely/guarantee approach.

*This work has been supported by Deutsche Forschungsgemeinschaft (DFG) under project
“Program-level Specification and Deductive Verification of Security Properties (DeduSec)”
within SPP 1496 “Reliably Secure Software Systems (RS3)”.
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1 Introduction

Confidentiality is the subarea of (information) security that concerned with
restricting unqualified access to confidential information. More abstractly, the
goal is to ensure that no data must flow from confidential (i.e., high security
level) sources to public (i.e., low security level) sinks. These security levels can
be connected in arbitrary complex lattices, but for theoretical considerations it
suffices to regard just two levels ‘low’” and ‘high.” Language based information
flow security [Sabelfeld and Myers, 2003] covers the scenario where information is
handled by software which is known to attackers. It is assumed that an attacker
knows all vulnerabilities and how to exploit them. The analysis therefore focuses
on the program source (the ‘language’) alone.

Recently, theorem proving approaches to language based information flow
analysis [Joshi and Leino, 2000, Amtoft and Banerjee, 2004, Darvas et al., 2005]
have gained prominence. These are based on a semantical notion of information
flow and therefore bear the advantage of semantical precision over established
static techniques like type checking. Some program logics such as dynamic
logic are—unlike Hoare logic [Hoare, 1972)]—readily able to express relational
properties like information flow.! And at the same time, formal verification
of functional properties about software has made great progress in the past
years. In particular, the KeY prover [Beckert et al., 2007], codeveloped by the
author, for first order dynamic logic is able to formally verify information flow
properties about sequential Java programs [Scheben and Schmitt, 2012]. One
aim of this paper is to point out a first step on how these techniques can be
lifted to reasoning about concurrent programs. In Sect. 4 our security property
is defined and in Sect. 5 we show how it can be formalized and how to reason
about it.

The setting which we investigate is where a sequential program (i.e., thread) =
in a deterministic language® runs on shared memory with a possibly hostile en-
vironment. The control and information flow of thread 7 can be influenced by
the environment. We use the rely /guarantee approach to restrict environment
changes. In Sect. 6, we describe how guarantee conditions can be verified in the
KeY prover.® This allows us to regard =, instrumented with havoc statements,
in isolation. The attacker is able to observe low locations at any time and to
observe the order of changes. This is different from the purely sequential setting
where the attacker can only observe initial and final values. She is not able to
mount timing attacks (w.r.t. wall clock time). Thread local information and
control flows are expected to be instantaneous and are not observable.

We allow confidential information to be declassified. Since theorem proving
approaches are founded semantically, precise subject declassification (i.e., which
information is released) already comes for free. In this paper, we additionally

1Some authors refer to relational properties as “hyper-properties” [Clarkson and Schneider,
2010].

2Many models of concurrent program executions regard programs as indeterministic. We
deliberately do not follow this paradigm. The reason is that real world programing languages
are deterministic. Scheduling may depend on unknown parts of the system state. We prefer
to model this through underspecification [Hahnle, 2005], which allows us to talk about exactly
one program trace. This approach is also taken in [Beckert and Klebanov, 2013].

3In many situations, there may be even stronger guarantee conditions like perfect separa-
tion which could be checked with other methodologies, like type checking or runtime checking,
which are less precise but more efficient.



consider timing of declassification. Just like subject declassification can be
expressed as a relational property between states, temporal declassification can
be expressed as a relation between traces. In our logic, we formalize this through
temporal operators. Controlling the temporal dimension of declassification is
essential in state based software systems. Consider, for instance, an electronic
voting system, which has different declassification policies before and after the
election has been closed: only afterwards the result (i.e., the sum of votes) may
be published.

In our previous work [Beckert and Bruns, 2013], we have presented a logic
called Dynamic Trace Logic (DTL), which combines typed first order dynamic
logic with temporal logic. While standard dynamic logic [Harel, 1979] is able
to express relationships between initial and final states of a program execution.
The semantics of DTL is based on (finite or infinite) traces of program states.
This allows us to state temporal properties about program executions, e.g.,
the formula ¢; — [7]O0¢y intuitively means ‘for a program = started in a
state where ¢; holds, it eventually reaches a state from which on ¢ holds
always’. DTL features a trace modality [-] and well-known temporal operators
O (throughout), ¢ (eventually), e (weak next), o (strong next), and U (until)
similar to those of Linear Temporal Logic [Manna and Pnueli, 1995]. We have
also given a sound and complete calculus for DTL which has been prototypically
implemented in the KeY prover.

In this paper, we will use DTL (plus first order definable theories) to express
information flow properties, in particular noninterference with declassification,
for single threads of concurrent programs as explained above. We benefit from
the strength of our logic being able to formalize relational properties about pro-
grams readily. A formalization of noninterference for sequential programs in
dynamic logic has already been presented [Scheben and Schmitt, 2012]. One
disadvantage of this approach is that proofs tend to get large and practically
infeasible. For that reason—as a kind of complementary approach—we add ded-
icated information flow (temporal) operators to DTL and provide calculus rules
which allow us to reason about information flow more modularly in particular
cases.

As mentioned above, there is a prototype implementation in the KeY prover.
Since KeY has been designed for the verification of (sequential) Java programs,
there is relatively little overhead in lifting the techniques presented in this pa-
per from the toy language to Java. In principle, an extension to the calculus
presented in this paper should be doable without much effort. We expect, how-
ever, that several optimizations will be necessary in order to efficiently prove
information flow properties about nontrivial programs.

Examples. Consider the one-liner programs in Listing 1, written in a simple
imperative language. L is a low global variable, H etc. are high global variables,
and x is a local variable. Let us so far assume that L is not written by con-
currently running threads. The first four programs are both secure in purely
sequential execution as well as in a concurrent environment since, in any state,
the value of L does not depend on the initial value of H. However, to prove that
these programs are secure can only be achieved with precise program semantics.

In addition, Program 5 is considered secure in the sequential setting, but not
in the concurrent one: There may be an interleaving between the two assign-



0 N o U A W N e

{ x H; x = 23; L = x; }

{L=H=*o0; }

{H=1; L =H; }

{if (H=0) {L =1L+ H; } else {} }
{L=H; L =23; }

{ if (HO > 0) { H1 = L; H2 = H1; } else {} }
{ while (H > 0) { L =1L; } }

{ while (H > 0) { L =1L +1; } }

Listing 1: Example programs

ments in which the confidential information (temporally) stored in L is leaked
to other threads.

Programs 6-8 possibly have different run time on low equivalent runs. They
are thus insecure if traces are compared componentwise. But, since the traces
only differ in high component values, Programs 6 and 7 are secure if stuttering is
tolerated. In Program 8, the value of L obviously depends on high values; even
with stuttering, it is insecure. Finally, if we lift the restriction that L must not
be modified concurrently, neither program can be proven secure. The reason is
that other threads could write secret information at any time, in particular at
the end of these programs.

2 Target Programing Language

For this paper we consider a simple imperative language which is ‘Java-like’ in
the sense that it uses both local and global variables (aka. fields) and that an
arbitrary number of sequential program fragments® can be executed in parallel.
Other Java features such as objects, types, or exceptions are not of relevance
to our discourse and could be added without invalidating the central results.
Synchronization and dynamic thread creation are also not considered at the
moment and will be left to future work.

Our core language consists of assignments, conditional branching, and con-
ditional loop statements. Programs are sequences of statements. The (math-
ematical) integers and boolean are the only data type for program variables.
Expressions can be of types integer and boolean; they do not have side effects.
Integer operators are unary minus, addition, and multiplication—no division or
modulo. The program language does not contain features such as functions and
arrays; and there are no object oriented features. The only special feature is
the distinction between local variables (written in lowercase letters) and global
variables (written in uppercase).

We consider assignments to global variables to be the only program state-
ments that lead to a new observable state. To ensure that there cannot be a
program that gets stuck in an infinite loop without ever progressing to a new
observable state, we demand that every loop contains an assignment to a global
variable.” Expressions are called simple if they do not contain global variables.

4Throughout this paper, we will use the term ‘program’ for sequential program fragments
(or, ‘blocks’ in Java).
5This technical restriction can easily be fulfilled by adding ineffective assignments.



Expressions on the right hand side of global assignments and conditions for if
or while statements must be simple. The right hand side of local assignments
may refer to at most one global varible.

Core language programs can be instrumented with the special statement
env; which represents environment actions. Programs not containing env; are
called noninterleaved.

Definition 1 (Sequential program syntax). A sequential program, or just ‘pro-
gram’ for short, is a sequence of statements. A statement is one of the following:

e local assignment: v = x; where v is a local variable and x is an expres-
sion of the same type not containing reference to more than one global
variable,

e global assignment: F = x; where F is a global variable and x is a simple
expression of the same type,

e conditional: if (b) {7} where b is a simple boolean expression and 7 is
a program,

e loop: while (b) {n} where b is a simple boolean expression and T is a
program containing at least one global assignment,

e environment action: env;

2.1 Scheduler Assumptions

Our approach is widely scheduler agnostic. A formalization of scheduler policies
is not part of this paper. We only make some basic assumptions:

e In any state, the scheduler selects an active thread, i.e., a thread which is
not yet terminated.®

e The scheduler is fair. Otherwise we cannot guarantee termination. By
‘fair’ we understand the property that every thread will be chosen suffi-
ciently often to terminate or infinitely often.

e The scheduler does not change the global heap state. It may have its own
internal state, however.

For information flow, it will be interesting whether the scheduler can work on
high data. We assume an attacker model where the attacker is in control of
threads, but not the scheduler. This means that an attacker cannot distinguish
why/ in which state its threads are scheduled or not—even in case the scheduler
schedules using confidential information.

2.2 Outlook: Adapting to actual Java

In comparison to the simplified language we use throughout this paper, the Java
actually contains some additional caveats.

6Thread suspension is not yet considered.



Nonatomic compound statements are allowed and very common in Java.
The assignment statement F = G; where both F and G are fields contains a read
action first and then a write action. This one-liner is functionally equivalent
to the fragment x = G; F = x; using a local variable for intermediate stor-
age, where both statements are atomic.” There can be an arbitrary num-
ber of read and write actions in any expression. For instance, the statement
F /= G++ x --H; contains three read and write actions each. The final write to
F does not occur if there is a division by zero. It can be rewritten into

x =F; y=G; G=y+1; z = H-1; H=z; w = x/(y*z); F = w;

The exact order of evaluation is crucial here. The operands are evaluated from
left to right; if the evaluation has side effects, then these apply; finally the oper-
ation is applied. The division operation itself is also not atomic—even though it
only operates on local variables—but it may include raising an exception, which
entails further actions on the heap. The symbolic execution embedded in Java
Dynamic Logic performs these kinds of transformations lazily and produces a
normal form.

However, this not quite enough for reasoning about concurrent programs. A
particular issue is that in Java, non-volatile fields of type long (64bit integer)
are not written in one atomic step, but in one for each 32bit half (cf. [Gosling
et al., 2013, Sect. 17.7]). Writing to a long field L can thus be imagined of as
applying two consecutive atomic writes:

L = x & OxFFFFFFFFOOOOOOOOL + L & Ox0000OOOOFFFFFFFFL;
L = L & OxFFFFFFFFO0O0O0OOOOOL + x & 0xO0OOOOOOOFFFFFFFFL;

The Java Memory Model (JMM) specifies that concurrent writes may not
be immediately visible to other threads. This means that in Java sequential
consistency of the memory is only given if the threads do not compete in data
races. An analysis for data race freedom can, for instance, be found in [Kle-
banov, 2009]. In this paper, we assume that all writes to the global memory are
immediately visible.

3 Logical Foundations

We start off with Dynamic Trace Logic (DTL) as described in [Beckert and
Bruns, 2013], but replace the concept of global program variables by an explicit
heap representation. In Sect. 3.1, we provide semantics based on traces of
program states and an explicit heap representation. In addition, we use a (first
order) theory of partial maps. Later in Sect. 5.1, we add explicit temporal
operators for information flow.

3.1 Trace based Program Semantics

Expressions and formulae are evaluated over traces of states (which give meaning
to program variables) and variable assignments (which give meaning to logical
variables). Global memory is modelled using an explicit (ghost) program vari-
able heap. The semantics of heap is a mapping from variable names to values.

TExcept for the case where we have 64bit data types, see below.



Program semantics with explicit heap representations have been used in [Weif3,
2011], for instance. We use another variable heap’ to denote the heap in the
previous state.

Definition 2 (States, variable assignments). A state s is a function assigning
integer values to all (local) program wvariables, including the special program
variables heap and heap’. A variable assignment (3 is a function assigning
values to all logical variables.

We use the notation s{v — d} to denote the state that is identical to s except
that the local program variable v is assigned the value d. Likewise, we write
B{x — d}. For global program variables, the special variable heap is updated
to a new function using the (higher order) function store, see Sect. 3.3 below.

Definition 3 (Traces). A trace 7 is a nonempty, finite or infinite sequence of
(not necessarily different) states.

We use the following notations related to traces: (i) |7] € NU {oco} is the
length of a trace 7. (ii) 7 - 72 is the concatenation of traces. (iii) 7[i,j) for
i,7 € NU{oo} is the subtrace beginning in the i-th state (inclusive) and ending
before the j-th state. Given a state s and a variable assignment S, the value
of expression a is given by a®? or just a®. All functions have their standard
interpretation.

The following defintion is close to [Beckert and Bruns, 2013], it gives the
semantics of sequential noninterleaved programs. The difference is that we now
have the special variables heap and heap’ representing the current and the pre-
vious heap. In Sect. 6, we will extend this definition with environment actions.

Definition 4 (Trace of a noninterleaved program). Given an (initial) state s,
the trace of a program m, denoted trc(s, ), is defined by (the smallest fixpoint

of ):

tre(s,e) = (s)

tre(s,v = a; w) = tre(s{v— a®},w)

tre(s,6 = a; w) = (s)-tre(s{heap’ — heap®, heap — store(heap®,G,a®)},w)
. _ Jtre(s,m w)  ifsEa

t?‘C(s, if (a) {mi} else {m2} w) = {tT‘C(S,ﬂ'Q w) ifs¥a

tre(s,m while (a) {7} w) ifsFa

tre(s,while (a) {n} w) = { tre(s,w) if sEa

We consider assignments to global variables to be the only statements that
lead to a new observable state on the trace. All other statements are atomic
in this sense. For the feasibility of proving information flow properties, it is
important that not too many irrelevant intermediate states are included in a
trace.

3.2 Dynamic Trace Logic

Dynamic logics (DL) [Harel, 1979] are multimodal first order logics where each
legal sequential program fragment 7 (i.e., a sequence of statements) gives rise
to modal operators [r] and (w). The formula [7]¢ expresses ‘in any state in
which 7 terminates, ¢ holds,” while the dual (m)¢ expresses ‘there is a state in

10



which 7 terminates and ¢ holds in that one.” If programs are deterministic—
i.e., there is at most one final state—the modality (-) is a variant of [-] which
demands termination. Programs in languages like Java are deterministic in the
sense that, under some assumptions about the environment (e.g., the presence
of unlimited memory), the program represents a function from one system state
to another. Program logics like DL are more expressive than Hoare logics in that
programs are part of formulae, which can be selfcomposed. This readily allows,
for instance, to express information flow properties such as non interference,
cf. [Scheben and Schmitt, 2012]. In other regards, however, classical dynamic
logic lacks expressiveness: The semantics of a program is a relation between
two states; formulae can only describe the input/output behaviour of programs.
Standard dynamic logic cannot be used to reason about program behavior not
manifested in the input/output relation. It is inadequate for reasoning about
nonterminating programs and for verifying temporal properties.

Dynamic Trace Logic [Beckert and Bruns, 2013] is variant of dynamic logic
with only one program modal operator, called trace modality [[-]. We distinguish
between state formulae and trace formulae. A state formula consists of the usual
propositional and first order constructs plus subformulae of the form U[r]¢p
where U is a sequence of updates (see below), 7 is a program, and ¢ is a trace
formula (that may contain temporal operators and further subformulae of the
same form). Intuitively, U[7]¢ expresses that ¢ holds when evaluated over all
traces 7 such that the initial state of 7 is (partially) described by U and the
further states of 7 are constructed by running the program m. Since we have
deterministic programs, traces are determined by their initial states. However,
states are symbolic (i.e., possibly underspecified), and thus are traces.

In addition to propositional operators and quantification, trace formulae may
contain temporal operators similar those in LTL: unary operators O (‘always’)
and ¢ (‘eventually’), and binary operators U (‘until’), W (‘weak until’), and
R (‘release’) with the obvious semantics. Since traces may be finite or infinite,
there are weak (e) and strong ‘next’ (o) operators, which are duals to each
other. For example, the formula efalse (with ‘weak next’) holds exactly in the
final state of a trace. A formula is called nontemporal if it neither contains a
temporal operator nor a program modality [x].

Standard dynamic logic is covered by DTL because the semantics of the
standard [] and (-) modalities can be expressed in DTL: The formula efalse
holds exactly on a trace with only one (remaining) state, thus characterizing
termination. We are then able to represent [7]¢ by [7]0(efalse — ¢) and (m)¢p
by [7]O(efalse A ¢). Yet, both can still coexist and we will use the [-] notation
later.

An important property of the calculus for DTL is that programs are sym-
bolically executed starting from an initial state—in contrast to wp calculi where
one starts with a postcondition and works in a backwards manner. In order to
capture the state transitions in between, we use state updates [Riummer, 2006].
Updates can be thought of as ‘delayed substitutions,’ i.e., a substitution takes
place once the program has been completely eliminated. For instance, {v := 4}
and {v := v+ 1} are updates. Applying these updates (after each other, from
right to left) to the formula® v = 5 yields 4 + 1 = 5. We will not go into much
more detail; a complete calculus for updates can be found in [Riimmer, 2006].

8To avoid any confusion with meta-level symbols, = is the equality predicate in the logic.
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Although the calculus is complete without them, parallel updates allow ad hoc
simplifications where a modality is still present. For instance, the above two
update can be simplified into the one (parallel) update {v := 5}. In general, the
parallel composition operator || allows such formulae as {z := y||ly := x}z = y+1
which simplifies to y = x + 1.

3.3 Explicit Heaps

First order dynamic logic with uninterpreted functions is already very expres-
sive; it is able to express meta properties about programs such as (sequential)
noninterference. However, it is convenient to add dedicated theories to lift the
burden of axiomatizing commonly used functions over and over again. Even
though theories usually encode higher order properties, they are axiomatizable
in first order logic. In the following, we introduce the datatypes Field, LocSet,
Heap, and Map; where the latter two are both based on the theory of arrays
[McCarthy, 1962]. We omit formal syntax and semantics here as they should
be intuitively clear.

While Hoare logic and classical dynamic logic [Harel, 1979] use function sym-
bols for each memory locations, the concept of having just one mathematical
object to represent the whole memory of a computer system has been proven to
be more convenient regarding information flow properties: one does not need to
enumerate all the locations” which are unchanged. In this paper, we incorporate
the explicit heap data type of Weif3 [2011], which is already implemented in the
KeY verification system from version 2.0 onwards. The essential functions of
this theory are (i) store(h, ¢, v) of type Heap, representing a state change, where
h is term of type Heap, ¢ is a location, and v a term of any value type (e.g.,
integer), (ii) select(h,?) of type any, with the above definitions, representing
value retrieval from a location, and (iii) anon(h, L) of type Heap, represents a
heap which is havocked on all location in the location set L, but agrees on h oth-
erwise. The expression £ is of type Field. There are not functions of type Field,
but constants for every global variable declared in the system. Location sets
(type LocSet) are essentially (finite) sets of fields, using the usual set theoretic
operators.

3.4 Base Calculus for DTL

The calculus for DTL is a sequent calculus; sequents are of the shape I' = A
where I" and A are multisets of formulae with the intuitive meaning that the
formula A\ v = Vseca 0 is true. The left hand side of = is also called an-
tecedent, the right hand side is called succedent. Rules of this calculus have zero
or more sequents as premisses and one sequent as conclusion; a zero premiss
rule is an axiom rule. Rules typically focus on one formula on the left hand or
right hand side of the conclusion, for instance the following rules for conjunction:

o, v — A R3 I'=¢,A =y, A

—_ R4
Tony = A ' = o¢A¥p,A

The calculus consists of four groups of rules:'’ (i) propositional and quan-

9We identify ‘location’ and ‘field’ here since we do not have the notion of objects. In [Wei8,
2011], a location is a pair of a receiver object and a field (which is just an identifier).
10The numbering of rules in this paper is the same as in [Beckert and Bruns, 2013].
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tifier rules, (ii) temporal logic rules (see Tab. 1), (iii) dynamic logic (program)
rules (see Tab. 2), and (iv) update rules. The main idea of proving temporal
properties deductively is based on the interplay between program and tempo-
ral operator rules. Program rules allow symbolic execution of a program in
a modality, i.e., simplifying the trace represented by the program. Temporal
rules, on the other hand, make use of the fact that temporal formulae may be
decomposed into a ‘present’ and ‘future’ part, e.g., the formula (¢ is logically
equivalent to ¢ A e[J¢ on any trace. Since traces are defined through program
semantics, and they are of infinite length if and only if we go through an infinite
loop, we either reach the end of the program or a computational fixpoint.

I' = U([r]o(¢ Uy) A [x]¢), Ulr]y, A

R19
I' = U[r]o Uy, A
= Urfe0¢. A  T=Ulrls.A
I' = L{[[W]]D¢7A
I' = U[r]o0¢, Ulr]e, A R21
' = U[r]0s, A
R22

I' = U[]es, A
Table 1: Rules for handling temporal operators.

The only rules which work on both the program and the temporal logic part
of a formula are the rules for global assignments. As a reminder, traces have
been defined in Def. 4 such that only assignments to the global state denote a
transition. As a result, rule R26 is only applicable where the program modality
contains an assignment and the trace formula begins with a ‘next’ operator
(either weak or strong), which is ‘consumed’ by this rule. The actual state
change is preserved in the update in front of the program modality. This rule
has been changed compared with the original DTL definition in [Beckert and
Bruns, 2013]: it now uses heap structures instead of global variables.

I' = U{z := a}[w]o, A

I = U[x = a; w]p,A R4
L, Ub = Ur w]o, A T, U=b = Ulm> ], A fos
I' = U[if (b) 7 else w2 w]¢p, A
I' => U{heap’ := heap}{heap := store(heap, X, a) } [w]p, A R26
I =U[X = a; w]sp,A
I, Ub = U[r while (b) 7 w]¢p,A T, U-b = Uw]p, A R27

I' = U[while (b) 7 w]p,A

Table 2: Program rules. The schematic symbol § stands for either o (weak next) or o
(strong next).

All other program rules can be applied with any trace formula appearing
behind the program modality. Rule R27 captures the trace semantics of loops
(cf. Def. 4). It can be used to unfold a loop a finite number of times. In order
to obtain a complete calculus, however, we need rules to handle possibly infinite

13



loops.

3.5 A Theory of Partial Maps

In order to store subsequent heaps of an execution trace, we use the coalgebraic
data type Map which represents partial functions. The defining observer is the
function application m(u). The main constructor of type Map is the ‘guarded
lambda’ expression Ax : T'[¢].e where x is a bound logical variable of type T, ¢
is a state formula, and e is an expression of any type. The intuitive meaning is
that every element u for which ¢[x/u] holds is mapped to e[z /u]—and otherwise
to a unique error element L. A more thorough account on this theory is given
in Appendix A.

4 Security Properties

For sequential programs, a well established security property is noninterference
[Sabelfeld and Myers, 2003]. Intuitively, noninterference states that values of
confidential (or ‘high’) inputs must not affect the values of public (or ‘low’)
outputs in any way. In a language based approach, ‘inputs’ and ‘outputs’ are
both realized as global variables. This definition can be extended to any security
lattice; for the course of this paper, however, we stick to the two element lattice.

A bit more formally, the property can be stated as: Given two low equivalent
(w.r.t. a set L of low variables) states s; and s}, and a program = started in
s1 or s} terminates in so or s, respectively, then again s; and s5; must be low
equivalent:'!

/ / ~ / G AN ~ /
VS1, 57, 52,89. S1 L S7 A S1 ~ Sg A Sy~ Sy —> Sg L Sy

We use the symbol ~» for the state transition relation denoted by 7. There
are several possible instantiations of the low equivalence relation ~;C S2. A
typical choice (and the most conservative) is equality w.r.t. the restriction to
the set L: s =1 ¢’ i< s|p = s'|. Others include, for instance, object sensitive
low equivalence [Amtoft et al., 2006, Beckert et al., 2013], which is very useful
in the context of Java programs.

Non-interference can be lifted to a property on program traces. Similar to
the sequential setting, we define non interference on traces.

Definition 5 (Maximal flow). Program traces are low equivalent if they are of
same length and low equivalent on every position:

T T s || =T | AV € [0, |7]).7[d] =L T'[d]

A program 7 contains a maximal (information) flow from locations Ly to Lo (up
to an index point i € NU oo) in state s when the two traces of m when started
in any state s’ which is Li-equivalent to s yields Lo-equivalent traces:

flow(s,i, L1, La,7) := Vs €8. s=p, s — tre(s,m)[0,4) ~p, tre(s’, m)[0, 1)

1 This definition is termination insensitive; termination sensitive definitions are also com-
mon.
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Note that, different from the state based definition of noninterference, this
definition is already termination sensitive. The most typical constellation ap-
pears when information flows (at most) from L to itself and i = oo. The
more general definition, however, enables us to reason about flows both in a
more modular way and including both temporal and subject declassification.
This definition is similar to the well known notion of observational determinism
[Zdancewic and Myers, 2003]. The main difference is that observational deter-
minism only requires that traces are equivalent up to prefixing and stuttering.
However, we allow arbitrary finite numbers of nonobservable operations (i.e.,
local assignments and control statements) to be taken in between observable
global assignments.

4.1 Stutter Tolerant Noninterference

The above definition is quite strong in that it does not tolerate stuttering. How-
ever, only states which have been reached through assigning a global variable
appear in the trace; the number of local assignments has no influence on the
length of the trace. Stuttering is important since it is more realistic that the
attacker can only observe changes to locations instead of states of the trace. We
generalize the low equivalence relation ~ to a stutter tolerant relation /¢.'?

For a given location set L and traces 7 and 7/, let CE’T/ C N x N (or just ¢)
be the largest relation satisfying the following:

0) ¢(i,i) =i el0,|r[) Ai" €0, [7])

C(i, i) — 7li] = 7'[i]

Ci, ") NC(G ") N < — Yk € [iyg] : Gk, 7)
Ci ") N QG J) NP < g = VR € [, 5]+ (i, k')

1,1') —

1

(0)
(1)
(2)
3)

In general, ( is a many to many relation. Conditions 2f. require ¢ to be mono-

tonic (i.e., order preserving) on both traces. Figure 1 shows an example of two

traces which are not strictly low equivalent (as in Def. 5), but low equivalent up

to stuttering. We can now generalize a stutter tolerant low-equivalence relation
on traces:

TR} T e ([T|=00 |7 =00) AV € [0,]7]) T ¢(3,4)

AV € [i,|7']) Fi. {(i,7)

It is easy to see that %% is again an equivalence relation. Formalizing and

constructing proof obligations for stutter tolerant noninterference will be part
of future work.

5 Reasoning about Information Flows in DTL

In Sect. 5.1, we add explicit temporal operators for (absence) of information flow,
H (‘hide’) and L (‘leak’). We extend the base calculus presented in Sect. 3.4

12 Another possible weakening of the above definition would be to allow one trace to be
equivalent to a prefiz of the other one. We do not consider this here as we assume the attacker
to always observe changes to the global state.
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Figure 1: Example of low equivalent traces up to stuttering. Both dashed (green) and
dotted (red) lines indicate that the states are low equivalent, but only those marked
with dashed lines are in the ¢ relation.

= 6| 6AG| 6V S| Ve T |Fw: T | Us | [x]w | b

i= e | oy |06 | 0v [ wUW | oW | pRY | He | Ly |6
n= G=2z | v=2z]| mm | if (B {n} else {r} | while (b) {m}
w=  ({v:=z}| {heap:=h} )*

i int | Heap | Field | Map

n= true | false | e=e | z<2z | ...

= x| select(h,G) | ifthenelse(b,e,e) | L |m(e) | z|h|L|m
n= z4z | zxz | —z|0|1]2] ...

= heap |heap’ | store(h,G,e) | anon(h,L)

w= 0|{G} | LUL|LNL|L\L

i= Ax:T[gle|mem| o

ISETu 0 QT e
Il

Table 3: Syntax of SecDTL

by adding a few rules for the H and L operators. In Sect. 5.2, we first show
that any property of the form Hy, 1, ¢ can be expressed w1thout this operator.
This technique is complete, i.e., it does not report false positives or unknown
results, but not very efficient. In Sect. 5.3, we develop additional rules which
are applicable to a certain subset of formulae where we can make use of the
local reasoning of H.

5.1 Extending DTL with Information Flow Operators

We extend DTL by adding the temporal operator H (‘hide’) and its dual L
(‘leak’). These are motivated by operators of the same name in the SecLTL
logic [Dimitrova et al., 2012]. The intuition behind the formula Hy 1, ¢ is that
no information (valued in the current state) flows from the locations in H to
the locations in L (i.e., H is hidden from L) as long as ¢ does not hold (i.e.,
until ¢ becomes true, but this does not necessarily happen). The formula ¢ can
be seen as a release condition which includes the timing of declassification. The
dual formula Ly j, ¢ means that a flow from H to L releases ¢.

Definition 6 (Syntax of SecDTL). In addition to the syntax of [Beckert and
Bruns, 2013], Hy 1, ¢ is a trace formula where H and L are sets of global vari-
ables and ¢ is a formula. We define Ly 1 ¢ := ~Hpy 1 —¢.

Definition 7 (Semantics of H). B
tre(s,m) EHy ¢ iff flow(s,00,H,L,7) B
or for some i, tre(s,m)[i,00) E ¢ and flow(s,i, H, L, )
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where H denotes the complement of H in the set of all locations.

5.2 Formalizing Noninterference

Thanks to the expressiveness of DTL, noninterference can be formalized di-
rectly.'® In our formalization using explicit heaps, this means that heaps must
equal on the partition induced by a set of low location L. This technique has
been presented before in [Scheben and Schmitt, 2012] for standard JavaDL (in-
put/output determinism). There, it is sufficient to compare the respective heaps
in the poststates of each run (if they exist).

In our case, a crucial point is that we need to pairwise compare an unbounded
(possibly infinite) number of heaps. For each state on the trace, we add the heap
of each execution to the respective sequence in order to compare the resulting
sequences. We use the following abbreviation for a temporal formula

traceg,y := @Q(0) =heapA
OV : int.(0 < ¢ A Q(i) = heap
— ((—e¢ — eQ(i + 1) = heap)
Alogp — V) int.j > i — Q(j) = 1))

with a free logical variable @@ of type Map and a formula ¢. Intuitively, it
states that @) contains exactly all heaps occurring on the program trace unless
formula ¢ holds. Furthermore, we use the notation h =y, h’ with free variables
h and h' of type Heap and a set of locations L as shorthand for the formula
Vl. ¢ € L — select(h, £) = select(h/, £).

Lemma 1 (Characterization of H). Let U be an update, m be a program, T
be a trace, B a variable assignment, and H and L location sets. Let n be the
following formula:

Vh':Heap VQ,Q":Map. ( heap ~z h' A U[r]traceqg 4
A U{heap := h'}[r]traceq: 4
Vi int.(i > 0 — Q(i) ~p Q'(i)))

If 7,8 En then also T, EU[T|Hpy 1 ¢

This lemma ensures that we can give a sound rule to translate H. See
rule R28 below for the succedent (for the antecendent analogously). The result-
ing formula also is simpler in some sense (H does occur at most in ¢, which
occurs twice but under different signs and under a ‘next’). As a result, this for-
malization of noninterference yields a sound and relatively complete'* calculus
for SecDTL.

r=nA
F:UHWHHH’L(,?),A

R28

13An established, alternative technique would be self composition [Barthe et al., 2011],
which is based on program transformations.
147 e., complete up to arithmetic.
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5.3 Local Reasoning about Flows

The downside of the direct formalization of noninterference is that produces
quite complex formulae, which lead to a high number of branches in a proof
tree. This is particularly an annoyance where (absence of) information flow is
more or less ‘obvious.” Consider for instance the following program:

{ if (L > 0) {x = L;} else {y = L;} }

Nothing interesting is happening here. One would like to reason about this pro-
gram locally, i.e., being able to deduce information flow security of the whole
program from the premiss that both branches are secure and the branch condi-
tion does not have an effect on security. In this way, this reasoning is similar
to flow sensitive type systems. A similar calculus has been presented by Ruch
[2013] as an improvement over [Scheben and Schmitt, 2012]. The price for this
is, of course, losing completeness. For instance, the secure Program 4 from List-
ing 1 could not be dealt with since the branch condition does actually depend
on a high location, and there is a direct assignment from high to low in one
branch.

Calculus rules for H and L are shown in Tab. 4. Rule R35 captures the
property that, for any program, the release condition ¢ is sufficient for H ¢, i.e.,
declassification occurs. In the case for the empty program (rule R36), all that
is left to show is that high and low locations are disjoint. For a conditional
statement (rule R37), we have to show that the condition e is not affected by
the choice of values of the locations in H. We use the e X3y H as shorthand for
the formula

Ue = {heap := anon(heap, H)}Ue

—to be read ‘e is independent of H under update U.” For the special case that
e is a global variable X, this is equivalent to UX ¢ H, which we write instead.
The rules for global (R38) and local assignments (R39) are similar and straight
forward. The only difference is that in R38, we have to prove that the assignment
does not constitute an illegal flow already. There is no rule for loops as local
reasoning about loops is quite complex already and there would be no obvious
benefit from it.
The rules for L are dual. Proofs of soundness will be part of future work.

6 Rely/Guarantee Reasoning

The ‘classical’ approach to reasoning about concurrent programs by Owicki and
Gries [1976] is based on the construction of interleaved programs where every
possible interleaved execution trace is considered. This technique has some
limitations: firstly, the number of concurrent threads is fixed; secondly, it is not
compositional in the sense that parts of the concurrent program can be verified
in isolation; and finally, through the vast possiblities of interleaved executions,
it suffers from a high complexity (which however can be reduced in parts by
making stronger assumptions about the scheduling process).

A step ahead is the rely/quarantee approach [Jones, 1983, Xu et al., 1997,
Henzinger et al., 1998], which tries to avoid these problems. The main idea is
similiar to design by contract, though not on the level of a public interface but
of atomic program steps. This makes it possible to modularily reason about
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I' = U[r]¢p, A
I' = U[r]Hpu,L ¢, A

I'=UHNL=0A
F:>u[[]]HH,L¢7A

I =exy H,A INUe = U[m w]|Hpu,L ¢, A I',-Ue = U[rz w]|Hu,L ¢, A

I = U[if (e) {m} else {m} w]|Hpu1 ¢ A

I'=UX¢Lexy HA I' = U{X :=e}[w]|Hu,L ¢, A
I'=U[X = e; w|Hur¢ A

I' = U{v:=e}[w]Hur ¢, A
I'=Uv = e; W]Hgu, ¢, A

= U(l¢ANHNL#0),A
I = U[]Lu,¢

e xy HUe = U[m1 w]Lu,r o, A I'ye xy H,~Ue = U[r: w]| L, ¢,A

I' = U[if (e) {m} else {m} w|Lure A

T,UXo & L,UX1 € H = U[Xo= X1; w](¢ AoLpy/ 1 ¢),A
I' = U[Xo= X1; w]Ln,r¢,A

Table 4: Rules for local reasoning about H and L formulae.
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one single thread in isolation, while there may be an unbounded number of
others in a partially specified environment. It is, in particular, not of any
interest which program other threads execute or in which (thread local) state
they are. Sequential programs (single threads) are evaluated over traces of
states. We instrument noninterleaved programs with the special statement env;
representing an environment action.

Let for a given sequential program 7 the trace be given as (sg,...,s) (for
finite traces) or, more generally, for the initial state sy the remaing trace be
given through the function p : & — S which maps any state s; to its suc-
cessor s;+1. We assume one definite trace here since a sequential program is
deterministic. 'We now take the environment into consideration; we assume
that it is also deterministic (i.e., it contains other deterministic sequential pro-
grams which are executed according to a deterministic scheduler) and yields
another state transition function ¢ : 82 — S. This function additionally de-
pends on an environment state which is disjoint with the state of w. The re-
sulting trace of the concurrent program 7 in the given environment then is
(80, p(s0),0(p(s0), "), p(c(p(s0),8")),...). The central idea of rely/quarantee is
to describe these functions p and o in specifications using formulae rely and
guar. Those are two state invariants, i.e., they are preserved throughout the
execution and are evaluated over two succeeding states. The formula rely de-
scribes o, i.e., it defines on which properties the execution of m may rely upon.
The formula guar describes p, i.e., it defines which properties the execution of
7 has to guarantee.

Obviously, there always are strongest formulae satisfying these conditions (if
the environment is perfectly known). In practice, this will not be necessary. It
is sufficient that rely is strong enough to imply the postcondition of 7 in a final
state and that guar is strong enough—in conjunction with the guar specification
of other threads—to imply the rely specification of a third party thread.

We combine the well known two state invariant specification of threads with
framing, to specify what locations a thread writes to at most. Frame specifi-
cations alone can be very expressive, in the dynamic frame approach [Kassios,
2011, Weif3; 2011], location sets describing frames can depend on the program
state and can be constructed through comprehensions. Through framing, we
take the burden of specifying the ‘nonbehavior’ of threads in addition to its
behavior.

6.1 Definitions and Notations

We have already defined sequential programs in Sect. 2. For now—since we do
not have thread identities, objects, or methods—we define a thread as containing
a sequential program.'® For a thread ¢ we denote its program by ;. There may
be more than one thread using the same program. A thread specification is
a pair (guar,, M;) where guar is a two-state formula and M; is a term of type
LocSet. The intuitive understanding is that for any starting state sg for any pair
of consecutive states (s;, s;+1) in the trace tre(my, o), it holds that s;11 F guar,
and that heap® and heap®*!' are equal up to M;. The formula rely is still a
single-state formula in the sense that it must not include temporal operators,

15In future work concerning actual Java, we will speak of a thread’s run() method, more
precisely.
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but it is expected to refer to the builtin heap variables heapand heap’, for which
we justify it as ‘two-state’. The expression M; can be nontrivial, e.g., depending
on the state or including if-then-else operators.

Definition 8. Two states s and s’ coincide up to a location set M, written as
s & 8, if for all global variables F either select(heap®, F') = select(heap® , F')
or F'e M.

It is obvious to see that ~j; is an equivalence relation.

For a given thread ¢ we denote the set of concurrently running threads as
T, also called thread configuration. This will now have an influence on the
execution trace of a program. We extend Def. 3 with the environment action
env.

Definition 9 (Trace of an interleaved program). Let everything be as in Def. 3,
but the trace of a program m is now denoted trc(s,T,m) where T is a set of
threads.

tre(s, T, env; w) = tre(s', T,w)

where s is some state such that s ~(),__wm, s (i-e., s and s’ coincide on all
heap locations except for \J,c M) and s'{heap’ + heap®} F guar,, for each
t € T. The other defintions are updated accordingly to include T .

We will write tre(s, 7) whenever the thread configuration 7 is not relevant.

Later, we expect that programs under investigation are already instrumented
with environment actions before every heap read or write action and the termi-
nation action.

Definition 10 (Instrumented program). Let m = (stmo, ..., stm,) be a nonin-
terleaved program. The corresponding instrumented program w is constructed
following: For each statement stm; with i € [0,n],

e if stm; is a local assignment with a nonsimple expression on the right hand
side or stm; is a global assignment, the statement env; is inserted before
stm,

e if stm; = while (b) {w'}, it is replaced by while (b) {z'}
o if stm; = if (b) {m1} else {ma}, it is replaced by if (b) {m} else {m},
e and the statement env; is inserted after stm,,.

Please note that this instrumentation is independent of a thread configura-
tion.

6.2 Guarantees

In order to establish that a thread ¢ satisfies its specification, need to prove
that it only write to locations specified in M; and that it fulfills the two state
invariant guar,. This relation needs to be proven for any two succeeding states
in the trace. The property about M, is also known as strict modifies, in contrast
to weak modifies properties as imposed in standard JavaDL [Beckert et al., 2007,
Weil, 2011]. A proof obligation can be formulated using the trace modality as

{hP™® := heap}[m]|O(frame A eguar,) (1)
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where frame stands for the formula
VF : Field. (F € MV select(heap, F') = select(heap’, F))

The formula frame is similar the one used to formalize weak modifies properties
in [Weil, 2011, Sect. 6.4.1]. The difference are that not only the very first
and the final state are in relation, but every pair of consecutive states.'® The
second part eguar, entails the two state invariant property. Note that this proof
obligation could be written as two separate ones, since the formula [7]|C($1 Ad2)
is equivalent to [7]0¢1 A [7]Dee.

Lemma 2. Let s be a state; let t be a thread with thread configuration T
and thread specification (guar,, My). Let 7 = trc(s{hP*® — heap}, T,m:). If
7 F O(frame A eguar,) (as in Eq. 1), then all consecutive states (s;—1,8;) € T
pairwise coincide up to M.

Proof: The two-state formula frame formalizes sy /s, s; for all i € [0, |7]).
By symmetry and transitivity, it follows s;_1 ~s, S;.

6.3 Rely Component: New Symbolic Execution Rules

By giving a calculus rule to the synthetic environment action statement env, we
can establish that it sufficient for a sequential program 7 to be correct w.r.t. a
given specification in a concurrent setting if the instrumented program m is.

Rule R43 below can be applied on a program modality where the environment
action env is the active statement.

I Urely = UV[w]p, A
I' = Ufenv; w]¢,A

R43

where

rely = /\ {heap’ := heap}{heap := anon(heap, M;)}guar,
teT

and V := {heap := anon(heap,|J,.; M;)}. The rely formula 1/ on the left hand
side of the premiss is the conjunction of implications over all threads in the
runtime environment 7. The heap variable is anonymized on M;. Note that
this rule can be applied on any temporal formula ¢ since it does not include a
step.

Lemma 3. Rule R43 is sound.

In future work, we could do without instrumentation, but then we would
have to change all symbolic execution rules concerned with read or write ac-
tions. The concurring threads must named somewhere, e.g., in the method
frame. No additional rules are required; the present rules must be amended
with anonymization like in Rule R43 above.

16Note that we do not have to use a temporal construct to refer to the previous state (there
are no past operators in our logic, anyways), but through the variable heap’ since we do not
need the complete state, but just the heap state.
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6.4 Concurrent Thread Specification in JML

For specifications, we extend the Java Modeling Language (JML) [Leavens et al.,
2013], which is already used in the KeY system. JML is a popular and pow-
erful specification language for Java programs based on the design by contract
paradigm; the main concepts are class invariants are method contracts. JML
integrates seamlessly into Java as it is embedded inside comments in Java source
code and JML expressions extend Java expressions in a natural way. By now,
JML has become the de facto standard in formal specification of Java source
code.

in JML essentially consist of preconditions, indicated by the keyword requires,
postconditions (ensures), and frame conditions (assignable). More than one of
each of these specification constructs may be declared, in which case they are
conjoined.

On the ‘rely’ side, we introduce a new clause to JML method contracts, the
competing clause. It specifies a list of instances of java.lang.Runnable (which
is an interface type declaring only method run()), together with their runtime
type, which may run concurrently to the specified method. This identifies the
threads of a thread configuration and points to their respective run() methods.
Method preconditions may impose additional constraints on the concurrently
running Runnable instances. For example:

/*¥@ normal_behavior
@ competing (RunnablelImpl) r;
@ competing (YetAnotherRunnable) t;
@ requires r.x >= 0 && t.y;
@ ensures == \old(z)+1;
Qx/
public void inc() { this.z++; }

On the ‘guarantee’ side, we use the well known assignable clause and introduce
a new guarantees clause. The assignable clause is standard JML; it is followed
by a list of heap locations (global variables) and intuitively means that only
those may be assigned throughout the execution, or equivalently, the value of
all other locations must not be changed in any state reached throughout the
execution. The described property is exactly ‘strict modifies’ as mentioned in
Sect. 6.2. The guarantees clause is new. It is being followed by a boolean
expression (i.e., formula), which may use the special operator old, which allows
to refer to a previous state. In postconditions of (DbC) method contracts this is
the prestate, here it denotes the previous intermediate state on the trace. Thus,
it describes a two state property on the trace.

class RunnableImpl implements Runnable {
private int x;

//@ guarantees x>= 0 && x >= \old(x);
//@ assignable x;
public void run() { ... }

}

To make specifications easier to read/write, we assume that we have named
implementations of Runnable (as above) instead of the more common pattern of
anonymous classes.
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In further work, the competing clause could be replaced by a predicate, which
could appear also in postconditions, allowing for dynamic thread creation/de-
struction. For example:

/*#@ normal_behavior
@ requires \competing(\nothing);
@ ensures \competing ((RunnableImpl) r);
Qx/
public void foobar () {
Runnable r = new RunnableImpl();
Thread t = new Thread(r);
t.start ();

6.5 Example

In this section, we outline how a proof of functional correctness for multithreaded
Java might look like. Although there is no formal translation of the above
introduced JML constructs to dynamic logic, we assume that this is intuitively
clear.

Take the above specification for method inc(). The goal is to show that the
field z increases by one while instances of RunnableImpl may run concurrently
(we ignore the other class YetAnotherRunnable here). The proof is shown in
Fig. 2. As usual in tableau-like calculi, it is to be read bottom up.

To keep the example simple, yet expressive, we make some assumptions
about the final calculus and some simplifications to the presentation:

e We use the ‘box’ modality [-] from classical dynamic logic here. The rules
presented for the [-] modality are applied accordingly.

e We deliberately use the Java postincrement statement here, which is de-
composed into subsequent read/write through program transformation
in the symbolic execution (rule postinc)—such rules already exist in the
JavaDL calculus.

e There is no explicit instrumentation in the program; rule R43 is miracu-
lously applied in the right spot.

e We denote the set of concurrently running threads with an superscript
index in the program modality.

e We also use the notion of parallel updates to allow intermediate update
simplifications (rule sUpd).

e The functional part of r’s guarantee is not important to the proof; we
indicate this through an ellipsis on the left hand side.

7 Related Work

Temporal reasoning as well as verification of concurrent programs has tradition-
ally been the domain of model checkers such as Java PathFinder [Havelund and
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Pressburger, 2000] or Bogor [Robby et al., 2006]. Other common techniques
to make the behavior of concurrent programs more expectable are permission
systems and ownership annotations, which are checked at runtime. Notable
examples are built into the Spec# [Barnett et al., 2005] and Dafny [Leino and
Miiller, 2009] languages.

7.1 Deductive Reasoning About Concurrent Programs

Abrahamson [1979] presents one of the first works on the issues of dynamic logic,
combining program analysis with temporal properties, and concurrency. Here
an unstructured programming language with parallel composition and explicit
labels gives rise to a branching time temporal structure. Trace formulae are
implicitly evaluated over all possible traces. They ressemble LTL formulae, but
modalities may contain path conditions (typically sequences over labels). The
paper does not contain formal semantics or a calculus.

Peleg [1987] introduces concurrent dynamic logic—based on Harel’s original
notion—where program modalities contain a parallel composition operator N.
The programs here are linear programs; there is no shared memory. For this rea-
son, the formula (m N7g)¢ with 71 and 7o executed in parallel is just equivalent
to (m1)¢ A (m2)¢.

A closely related work is [Schellhorn et al., 2011] which extends Interval Tem-
poral Logic (ITL) [Cau et al., 2002] with interleaved programs and higher order
logic. They present a calculus based on symbolic execution and rely/guarantee,
which is implemented in the KIV theorem prover.

Another approach using dynamic logic is taken in [Beckert and Klebanov,
2013], which uses a realistic programing language and explicitly constructs inter-
leaved programs. Concurrent programs are composed sequentially into a single
program with multiple program pointers. During symbolic execution of threads,
these pointers are moved in the (unmodified) program code. This is different to
our dynamic logic where program statements are deleted and the one program
pointer is implicitly at the beginning of the remainder. They use a Java-like
language, but impose the strong assumption that all loops are atomic. It also
includes atomic blocks which are symbolicly executed in another kind of DL
modality.

7.2 Temporal Behavior of Java Programs

Programs of concrete programing languages like Java are usually reasoned about
in a state based manner. There are a few runtime checking approaches which
check for trace properties using LTL-like specification [Bartetzko et al., 2001,
Stolz and Bodden, 2006]. Hussain and Leavens [2010] also check assertions at
runtime, but in addition use temporalJML as an extension to the JML speci-
fication language, which allows to write high level temporal properties, but is
not as expressive as LTL.

7.3 Information Flow Analysis Based on Theorem Proving

Amtoft and Banerjee [2004] were among the first to encode noninterference in
a program logic and therefore to lay the foundation for sound and complete
reasoning about information flows. Since classical Hoare logic cannot express
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noninterference, they employed a dedicated extension of it. Darvas et al. [2005]
continue this idea and use dynamic logic instead, which can express such prop-
erties readily.

Héhnle et al. [2008] and Popescu et al. [2012] embed traditional type systems
into first/higher order logic. Even though reasoning is done using a theorem
prover (KeY or Isabelle, respectively), it still suffers from the inherent incom-
pleteness of type systems and only checks for sufficient conditions for secure
information flow. For instance, it is not able to verify program 4 in Listing 7.
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A A Theory of Partial Mappings

In Sect. 5.2, we need to pairwise compare the states (or, more precisely: the value
of the builtin heap variable) which occur in the sequences produced from two
runs of the same program. However, we cannot express this with the sequence
data type because it is restricted to finite sequences. We would need a formula
like the following (with a free variable @ of type Seq):

OVi.(0 < i A Q[i] = heap — (oQ[i + 1] = heap A (efalse — len(Q) =i+ 1)))

Through instantiation of ¢ with len(Q), it can be shown to be unsatisfiable.

This is the reason for which we introduce a more general theory, the theory
of partial mappings (partial functions). Maps are a kind of coalgebraic data
type, cf. [Jacobs and Rutten, 1997]. While algebraic data structures are defined
through their constructurs, coalgebraic data types are defined through their
observers (also called destructors). We can also say that algebraic data types
are constructed, while coalgebraic data types are observed.

Our data type Map is defined through the observer function mapGet : Map x
Any — Any and the predicate inDomain : Map x Any. The core constructor
is foreach(x : T)(¢,t) where z is a (bound) logical variable of type T,'" ¢ is a
formula, and ¢ is an expression. The intended meaning is that it maps each x
for which ¢ is true to ¢ and is undefined otherwise. The axiomatic base rules
are shown in Tab. 5. The squiggely arrow ~~ means that they are rewrite rules,
which may be applied on either side of the sequent and in the scope of any
formula/term.

Az[@).t (v) ~ if(p[v/x])then(t[v/x])else(L) R44

v € dom(Az[gp].t) ~~ ¢v/x] R45
Table 5: Base axioms for the theory of partial maps

In order to practically work with the Map data type, we define additional
constructor functions derived from foreach, i.e., conservative extensions.'® Those
are given in Tab. 7. The definitions of the empty map and a singleton map are
straight forward. Maps are joined with the mapQOverride function. It intuitively
means that the resulting domain is the union of the subdomains mg and my,
and for each element in the intersection, mi overrides mg. We also define a
wrapper function for finite sequences, which delegates to the len and seqGet
functions of the Seq data type. For readability, we will use the more common
mathematical notations as displayed in Tab. 6 instead of the notation above.

As the last definition in Tab. 7 shows, finite sequences can be easily embed-
ded into the Map type. Sets can also be embedded by restricting the domain
and defining an arbitrary application term ¢. Containment can just be expressed
using inDomain.

Note that given these core axioms, that it cannot be proven that maps are
wellfounded, i.e., that they do not contain themselves. This can be solved by

17 As we work with a typed logic, z must be declared with a type. For convenience reasons,
we omit it if any type is appropriate.
18We do not prove here that these extensions are actually conservative.
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KeY notation math notation
foreach(x : T)(¢,t) Az : T[]t
map Undef 1
mapGet(m,v) m(v)
mapEmpty %)
mapSingleton(y, t) {y — t}
mapOverride(mg,m1) | mo @ my
inDomain(m,v) v € dom(m)
mapDepth(m) Im

Table 6: Mathematical notions for the Map data type

&° = (\z[false].42)®
{y —t}* = (Azfz = ylt[z/y])°
(mo ® m1)* _ (Azlz € dom(my) V & € dom(my)].
0 ! if(x € dom(m;y))then(mq (x))else(mo(x)))®
(seqg2map(seq))® = (M :int[0 < i < len(seq)].seqGet(seq,1)))®

Table 7: Conservative extensions

adding a third observer mapDepth : Any — N (mathematical notation |) with
the obvious semantics:

0 s FVr.—¢
max, »{(} t)°} otherwise

( xaloloy = {

However, this kind of completeness property is not needed for this paper.
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