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Abstract: In this paper, we study the success rate of the reconstruction of
objects of finite extent given the magnitude of its Fourier transform and its
geometrical shape. We demonstrate that the commonly used combination
of the hybrid input output and error reduction algorithm is significantly
outperformed by an extension of this algorithm based on randomized
overrelaxation. In most cases, this extension tremendously enhances the
success rate of reconstructions for a fixed number of iterations as compared
to reconstructions solely based on the traditional algorithm. The good
scaling properties in terms of computational time and memory requirements
of the original algorithm are not influenced by this extension.
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Inverse problems play an important role in many areas of physics. In an inverse problem we
intend to reconstruct physical properties (“scattering potential”) of some object given the result
of the interaction (“scattering”) with a well-defined input signal. Typically, propagating wave
fields (e.g., acoustic waves, electromagnetic waves, . . . ) are used to scan the object. However,
for rapidly oscillating electromagnetic wave fields like x-rays, detection devices are only capa-
ble of recording the average intensity of the scattered wave field. Its phase information, which
also contains important information about the scattering potential, is lost during the measure-
ment process. Despite the lost phase information, x-rays are an important, non-destructive tool
for the investigation of structural properties of matter because they exhibit high penetration
depth and high spatial resolution [1–3]. Note, that 3rd generation synchrotrons [4] provide bril-
liant x-ray beams with a very high degree of coherence and with very high flux, so that even
dot- and wire-like nanostructures can be investigated [2, 5–11].

In this paper, we introduce a new algorithm – the (HIO+OR)+ER-algorithm – which is ca-
pable of reconstructing the missing phase information in a variety of cases for which the tradi-
tionally and commonly used HIO+ER-algorithm [12, 13] (reviewed in sec. 2) fails. Before we
introduce this new algorithm in sec. 2, we shortly review the phase retrieval problem in sec. 1.
In particular, we want to stress the fact that the (HIO+OR)+ER-algorithm is based on random-
ized overrelaxation [14,15] and, thus, does not require additional mathematical constraints [16]
compared to the HIO+ER-algorithm. We reformulate our approach using projection polyno-
mials which facilitate a straight forward investigation of randomization of the HIO-algorithm
without correlations in the coefficients enforced by overrelaxation. Section 3 discusses numer-
ical aspects how to measure the convergence of phase retrieval. Finally, sec. 4 illustrates the
advantages of the (HIO+OR)+ER-algorithm with respect to the traditional HIO+ER-algorithms
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in detail. For this purpose, we focus on three numerical examples each with different spe-
cific properties and compare the success rate of reconstructions based on our (HIO+OR)+ER-
algorithm and on the HIO+ER-algorithm. Moreover, we investigate the sensitivity of our al-
gorithm to the choice of its parameters. In this paper, we focus on the algorithm itself and its
improved convergence properties for specific, well-known problems related to phase retrieval
based on the HIO+ER-algorithm. A separate publication will illustrate the improved features
of the (HIO+OR)+ER-algorithm for the reconstruction of the displacement field in inhomoge-
neously strained nanocrystals.

1. The phase retrieval problem

Consider some unknown object fin(�x) in d-dimensional direct space (“position space”). We
assume that (i) the shape S of fin(�x) (i.e., the smallest domain in direct space for which fin(�x) �=
0) and (ii) the quantity A�k ≡ |FT{ fin(�x)}| (i.e., the amplitudes of its Fourier transform) are
known. It has been proven that this information is sufficient to reconstruct the object fin(�x) if
the shape S is finite and the dimension d of direct space is at least two [2, 17–19]. Physically,
the second condition is fulfilled in scattering experiments which can be described in lowest
order Born-approximation (also called kinematical approximation). This is typically true for
nanostructures illuminated by coherent x-ray beams.

Suppose we discretize a rectangular region D⊂ R
d in direct space, which fully contains our

object fin(�x) (i.e., S ⊂ D), with Ni, i ∈ {1,2, . . . ,d}, equidistant points. The discrete Fourier
transform (DFT) maps this set of points to a mesh M in reciprocal space which is related to the
Fourier transform of our continuous direct space object fin(�x) [20]. Hence, we have

fin(�x) = ∑
�k∈M

[
d

∏
j=1

exp

(
2πi
Nj

k jx j

)]
A�k exp(iΦ�k) ∀�x /∈ S , (1)

where�x = (x1,x2, . . . ,xd)
T corresponds to the equidistantly sampled points in direct space de-

fined by D and Φ�k are the phases associated with the amplitudes A�k in reciprocal space.
In direct space, every point �x inside the object domain S corresponds to (up to) two real

unknowns (magnitude and phase). However, outside the domain S, fin(�x) is precisely zero for
all positions�x. Hence, each point outside S defines two real equations for the determination of
the N real phases Φ�k, if we require fin(�x) = 0 ∀ �x /∈ S. Therefore, we can hope to reconstruct
the missing phases Φ�k on the sampled grid M once

2(N −NS)≥ N ↔ N ≥ 2NS , (2)

where NS is the number of points inside the region S. The fraction σ =N/NS is called oversam-
pling ratio. From our elementary discussion, we can conclude that σ = 2 is a lower bound for a
successful reconstruction, if no additional a priori knowledge is available. For more details on
oversampling, we refer the reader to the investigations of Elser et Milliane [21] and of Miao et
al. [22] (and the references therein).

With that knowledge, we restate the phase retrieval problem more precisely: Given the shape
S of some object fin(�x) and the modulus A�k of the Fourier transform of fin(�x) on a mesh M that
satisfies Eq. (2), we try to reconstruct the phases Φ�k and, thus, the object fin(�x).

Note, that the reconstruction is only unique up to the unavoidable inherent symmetries of
the Fourier transform [2, 17, 18], i.e., a global phase shift (typically irrelevant), a plane wave
modulation ei�k·�x in reciprocal space (fixed by the position of the shape S inside D) and the
degeneracy between the object f�x and its complex conjugated, inversion symmetric object f ∗�x .
This last ambiguity constitutes a severe problem if the shape S is inversion symmetric, but the
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object fin does not possess this symmetry [13,23]. For the remainder of this paper, we restrict to
domains S which are not inversion symmetric. However, even if we exclude objects with inver-
sion symmetric shape, it is highly non-trivial to formulate a phase retrieval algorithm that works
automatically without manual supervision and tuning of parameters during the reconstruction.
The (HIO+OR)+ER-algorithm which we propose in the next section is capable of performing
this task for a large class of objects fin.

2. Reconstruction algorithms

In this section, we will shortly review the traditional combination of the hybrid input output
and error reduction (HIO+ER) algorithm [12, 13] and propose our extension to this algorithm.
Throughout the entire reconstruction process, we assume that we know the exact geometrical
shape S of the object which we reconstruct.

2.1. Hybrid input output and error reduction

A fast and efficient iterative phase retrieval algorithm is based on alternating projections of
a trial solution onto the constraints in direct space and in reciprocal space. Hence, a single
iterative step (i) of this algorithm, which is called error reduction (ER) algorithm [12], is defined
by

f (i+1)
�x = PSPA f (i)�x ≡ ĤER f (i)�x . (3)

Typically, initial phases Φ(0)
�k

are chosen randomly. Here, PS and PA are projection operators in
direct space and reciprocal space respectively, i.e.,

PS f (i)�x =

{
f (i)�x if�x ∈ S ,
0 if�x /∈ S

(4a)

and
PAg(i)�k

= A�k exp
(

i arg
(

g(i)�k

))
. (4b)

For notational simplicity, we assume that any operand of PA or PS is transformed to the proper
space (i.e., Fourier transform to reciprocal or direct space respectively) before the operator PA

or PS is applied (e.g., PA f (i)�x means PA FT{ f (i)�x }).

The projection operator PA is non-linear, non-convex and non-unique [24]. The values |g(i)�k
|

are important for determining the difference to the (experimentally accessible) input data A�k
(see Eq. (18)). The ER-algorithm is a local minimizer of a suitable chosen error metrics [12,13].
However, in practice, phase retrieval problems involve many local minima. Hence, the ER-
algorithm will in general not converge to the correct solution fin(�x), but to some local minimum.
In addition, the error metric may stagnate for many iterations before decreasing further. More
information on stagnation problems and the ER-algorithm can be found in [12, 13, 23].

Due to these problems, further algorithms, which try to avoid stagnation and convergence
to local minima, have been developed. A very important algorithm is the hybrid input output
(HIO) algorithm proposed by Fienup [12, 13, 23]. This algorithm is also an iterative procedure
which is defined by the map

f (i+1)
�x =

{
PA f (i)�x if�x ∈ S ,

f (i)�x −βPA f (i)�x if�x /∈ S ,
(5)

where β is a real parameter typically chosen in the range [0.5;1.0] [23]. Note, that this definition
can be rewritten as

f (i+1)
�x = [1−PS−βPA +(1+β )PSPA] f (i)�x ≡ ĤHIO(β ) f (i)�x . (6)
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The convergence properties of the HIO-algorithm have been investigated in more detail in
[22, 25, 26].

This algorithm is much stronger in avoiding stagnation and local minima. However, the HIO-
algorithm shows its full potential only if it is combined with the ER-algorithm. One step of this
combined HIO+ER-algorithm consists of NHIO iterations of the HIO-algorithm followed by
NER iterations of the ER-algorithm. This combination is more successful than both algorithms
on their own as it was observed in practice [13, 23]. Although this algorithm is already very
powerful, it is not yet satisfactory for many objects as we will show in sec. 4.

2.2. Hybrid input output with randomized overrelaxation ((HIO+OR)+ER)

The HIO+ER-algorithm can be further improved by including randomized overrelaxation [14,
15, 27]. Basically, overrelaxation corresponds to replacing a projection operator Pμ by

Qμ;λμ ≡ 1+λμ
(
Pμ −1

)
, (7)

where λμ is a real constant called relaxation parameter [14]. The limiting case Qμ;λμ → Pμ is
obtained for λμ → 1.

Overrelaxation (without any randomization) has been investigated for convex problems [15]
and in connection with the ER-algorithm for phase retrieval [14]. Moreover, overrelaxation is
also included in the difference map algorithm proposed by Elser in [27]. In the difference map
algorithm with overrelaxation, the iterative step for our set of constraints is given by [28]

f (i+1)
�x =

[
1+β

(
PSQA;λA

−PAQS;λS
)]

f (i)�x ≡ ĤDiff(β ,λA,λS) f (i)�x , (8)

where Elser proposes to choose the parameters as λA = λS = β−1 [27]. A very nice comparison
of several phase retrieval algorithms and a benchmark thereof can be found in [28]. Marchesini
demonstrated in [29] that for his particular numerical example an additional low-dimensional
subspace saddle-point optimization was also able to overcome stagnation of the traditional
HIO+ER-algorithm. In our extension, such an additional optimization is not necessary.

We propose to replace the (non-linear and non-convex) projection operator PA in reciprocal
space in the HIO-algorithm itself by its relaxed expression

QA;λA
= 1+λA (PA −1) . (9)

The direct space assembly in Eq. (5) of the HIO-algorithm remains unchanged. This corre-
sponds to changing Eq. (6) to

f (i+1)
�x =

[
1−PS−βQA;λA

+(1+β )PSQA;λA

]
f (i)�x ≡ ĤHIO+OR(β ,λA) f (i)�x . (10)

If we rewrite this expression in the projectors PS and PA, we get

ĤHIO+OR(β ,λA)≡ [1+β (λA −1)]+ [β −λA −βλA]PS−βλAPA +[(1+β )λA]PSPA . (11)

The deviation β (λA −1) from the identity operator in the first term can neither be represented
by the traditional HIO-algorithm for any value of β (see Eq. (6)) nor by the difference map

algorithm for any (β , λA, λS) (see Eq. (8)). In both cases, the previous iterative result f (i)�x is
weighted with 1 or projected at least once in either direct (PS) or reciprocal space (PA) before

being included in the calculation for f (i+1)
�x .

Finally, we have to choose suitable values for the additional parameter λA in Eq. (9). If we
restrict to a fixed set of values λA for all iterations, we risk simply exchanging one trap by
another or one local minimum by another. Trying to overcome local minima and stagnation,
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HIO+O ER

(HIO+O )+ERR
R

(a) (HIO+OR)+ER-algorithm

(b) ER-algorithm. (c) HIO+OR-algorithm.

Fig. 1. Graphical illustration of the (HIO+OR)+ER-algorithm and its building blocks.

we propose a new approach: For each iteration, we randomly select the parameter λA. More
precisely, for the remainder of this paper, we investigate a uniform random distribution in the
range [1−ν ,1+ν ], ν ≥ 0, for λA which is reassigned each iteration. Unless stated otherwise,
we choose ν = 0.5. Note, that a fixed value λA ≡ 1 for all iterations corresponds to the usual
HIO-algorithm. In order to distinguish our new extension from the traditional HIO-algorithm,
we call our extension HIO+OR-algorithm. The power of this extension is strongly supported by
the fact, that the HIO+OR-algorithm is capable of reconstructing objects without including the
ER-algorithm with significant success rates. If the HIO+OR-algorithm is combined with ER,
we call the algorithm (HIO+OR)+ER-algorithm (see Fig. 1).

If we look at Eq. (11) from a bird’s eye view, the most important difference of the operator
ĤHIO+OR(β ,λA) to the other algorithms which have been proposed [28] is the fact, that the
traps and tunnels [14] of the operator in general depend on λA and, therefore, should change
from iteration to iteration as a consequence of randomization. Thus, stagnation in a specific trap
or tunnel is strongly reduced, as most traps and tunnels are no longer persistent throughout the
iterative reconstruction process. However, the true solution fin(�x) is a fixed point of the iterative
procedure defined in Eq. (11) for all values of λA.

2.3. Projection polynomials

The extension of the HIO+ER-algorithm to the (HIO+OR)+ER-algorithm is based on two in-
gredients: overrelaxation and randomization. In order to gain a deeper understanding of the
(HIO+OR)+ER-algorithm, it is useful to investigate both ingredients separately. Studying the
HIO-algorithm extended by overrelaxation of PA, but without randomization is straight for-
ward: we simply keep a fixed, predefined overrelaxation parameter λA throughout the entire
iterative reconstruction process. In this section, we present a framework for randomization of
iterative projection algorithms performed in a way which is not based on overrelaxation of PA.
Although this framework can be applied for studying randomization of any iterative projec-
tion algorithm, we limit our numerical simulations (in section 4) to parameter values whose
deterministic contribution coincides the traditional HIO-algorithm.
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For this purpose, consider the projection polynomial operator

ĤProj(b,�cS,�cA) = b1+
neven

Max

∑
n=1

[
cS,2n (PSPA)

n + cA,2n (PAPS)
n]+

nodd
Max

∑
n=0

[
cS,2n+1PS (PAPS)

n + cA,2n+1PA (PSPA)
n] , (12a)

for obtaining the next iterative solution in the manner of Eq. (6) or Eq. (11). neven
Max is given by

the largest integer smaller or equal to p
2 . nodd

Max is determined by the largest integer smaller or

equal to p−1
2 . p is the maximum number of successive projection operators which should be

included in ĤProj.
This operator exploits the fact, that any combination of projection operators Pn1

ξ1
Pn2

ξ2
. . .Pnm

ξm
of

two different kinds ξ j ∈ {S,A}, j ∈ {1, . . . ,m}, reduces to one of the four building blocks
PS (PAPS)

n, PA (PSPA)
n, (PSPA)

n and (PAPS)
n for some integer n ≥ 0. This is a conse-

quence of the defining property P2
ξ = Pξ (idempotence) of projection operators (which implies

Pn
ξ = Pξ ∀ n ≥ 1). Note, that the product of two non-commutative idempotent operators (like

PA and PS) is no longer idempotent. The special case of the identity operator 1 and a single pro-
jection operator is included for the case n = 0 in those building blocks. However, the identity
operator is included twice, namely for n = 0 for (PSPA)

n and (PAPS)
n. Therefore, one spuri-

ous coefficient in the projection polynomial is introduced if both building blocks are included
for n = 0. This is avoided by restricting those two building blocks to n ≥ 1 and including the
identity operator separately. Therefore, Eq. (12a) represents the most general polynomial ex-
pression which contains a maximum of q successive projections of two different kinds, if we
incorporate the idempotence of projection operators.

In order to guarantee, that the true solution fin(�x) is a fixed point of ĤProj for any choice of its
parameters (b,�cS,�cA), it is necessary to enforce one constraint on the coefficients: If the input
for the projection operators PS and PA coincides with the true solution fin(�x), the projection
operators PS and PA reduce to the identity operator 1. Therefore, given the true solution fin(�x)
as input, the operator ĤProj simplifies to the identity operator 1 for any choice of its parameters
(b,�cS,�cA) if and only if the additional constraint

b = 1−
p

∑
n=1

[
cn,S+ cn,A

]
. (12b)

is fulfilled. Consequently, for a maximum of p successive projections in the projection poly-
nomial ĤProj, only 2p free parameters appear in ĤProj by incorporating the idempotence of
projection operators.

Given this fix point property for the true solution fin(�x), we can perform proper randomiza-
tion of this operator. For this purpose, we split our coefficients cξ ,n, ξ ∈ {S,A}, n ≥ 1, in a

deterministic part c(D)
ξ ,n and a random part rξ ,n c(R)ξ ,n and assume rξ ,n to be uniformly distributed

in the range [−1,1], i.e.,

cξ ,n = c(D)
ξ ,n + rξ ,n c(R)ξ ,n . (13)

If we set some coefficients c(R)ξ ,n �= 0 and draw statistically independent random values for rξ ,n,
we can investigate randomization of the HIO-algorithm without the correlations in the coeffi-
cients cξ ,n introduced by overrelaxation. b is fixed by Eq. (12b) and, thus, is fully correlated to
the values of cξ ,n.
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In order to obtain the traditional HIO-algorithm in the limit c(R)ξ ,n → 0 for all ξ and n, we have

to choose (at least) q = 2 (see Eq. (6)). Therefore, ĤProj reduces to

ĤHIOR(b,cS,1,cS,1,cA,1,cA,2)≡ b1+ cS,1PS+ cA,1PA + cS,2PSPA + cA,2PAPS (14)

with the additional constraint b = 1−∑2
n=1

[
cn,S+ cn,A

]
. The deterministic contribution c(D)

ξ ,n
reproduces the traditional HIO-algorithm (see Eq. (6)) if we set

c(D)
S,1 =−1 , c(D)

A,1 =−β , c(D)
S,2 = 1+β , c(D)

A,2 = 0 . (15)

After replacing PA by QA;λA
(see Eq. (9)), the coefficients cξ ,n are parametrized by two param-

eters β and λA as

cS,1 = β −λA −βλA , cA,1 =−βλA , cS,2 = (1+β )λA , cA,2 = 0 , (16a)

which corresponds to

cS,1 =−1− γA(1+β ) , cA,1 =−β (1+ γA) , cS,2 = (1+β )(1+ γA) , cA,2 = 0 , (16b)

if we substitute λA = 1+ γA. γA is uniformly distributed in [−ν ,ν ]. The deterministic contri-
bution in Eq. (16b) is identical to Eq. (15) and reproduces the traditional HIO-algorithm in the
limit ν → 0. However, the random contribution of each coefficient cξ ,n is determined solely by
the value of γA and, thus, not statistically independent, but fully correlated. This is in strong
contrast to a statistically independent randomization of each coefficient cξ ,n separately.

Consequently, we can apply the framework of projection polynomials to investigate whether
the benefits of randomization rely on the precise correlations evident in Eq. (16b) or if random-
ization of the traditional HIO-algorithm implies significant benefits also in absence of these
correlations.

3. Monitoring convergence of the reconstruction

In order to investigate the success and convergence properties of the reconstruction, we monitor
three parameters. First of all, we monitor the change of the reconstructed object f (i) from itera-
tion (i−1) to iteration (i). Second, we measure the mathematical distance to the (sampled) true
solution fin(�x). And last, but not least, we measure the deviation in reciprocal space between
the a priori given reciprocal input data A�k and the magnitude of the Fourier transform of the
reconstructed object. All three parameters yield different information:

The distance of the reconstructed object f (i) after iteration (i) to the true direct space object
fin is, of course, the best measure for the quality of the reconstructed image. We define this
mathematical distance by an angle

ϕ(i) = arccos

(∣∣∣〈 f (i) ; fin
〉∣∣∣/√〈

f (i) ; f (i)
〉〈 fin ; fin 〉

)
. (17)

The absolute value in the nominator of the argument of the arccos eliminates the influence of
the undetermined global phase in f (i). Moreover, ϕ(i) is identical in direct and reciprocal space
(invariance of scalar product upon unitary basis transformations like the Fourier transform).

A dimensionless, normalized error measure ε(i) which depends only on the a priori known
(measured) amplitudes A�k and not on the true direct space solution fin(�x) is

ε(i) =

〈
|g̃(i)|−A ; |g̃(i)|−A

〉
〈A ; A〉 =

1

‖A‖2
2

∑
�k

(
|g̃(i)(�k)|−A(�k)

)2
, (18)

#170828 - $15.00 USD Received 18 Jun 2012; accepted 25 Jun 2012; published 11 Jul 2012
(C) 2012 OSA 16 July 2012 / Vol. 20,  No. 15 / OPTICS EXPRESS  17100



(a) This object belongs to Eq. (22). (b) This object belongs to Eq. (23).

Fig. 2. Pure phase objects used for the investigation of the convergence of the
(HIO+OR)+ER-algorithm. The magnitude of both objects is constant. The phase is plot-
ted using a HSV color-bar, however, the region outside the shape S has been set to black.
The oversampling ratio is σ = 8.456.

where ‖·‖p is the p-norm. Since the construction of the absolute value is a non-linear, non-
invertible map, the result can in general be quite different from the angle defined above. In fact,
two quite different direct space objects fin (hence quite different complex Fourier transforms)
may posses an extremely similar distribution of the magnitude A in reciprocal space [16, 18].

In addition, from a numerical point of view, the change of the reconstructed object f (i) from
iteration to iteration is very important, too. This must not be confused with the change of the
non-invertible map ε(i) from iteration to iteration: Moving along a connected line of constant
error metric does not change the error metric itself, but the reconstructed object f (i) may change
arbitrarily. Nevertheless, the algorithm may converge (i.e. no change from iteration to iteration),
but not to the true solution fin of the problem [14, 16]. For simulated data, we can judge if the
algorithm converged to the true solution fin by Eq. (17). A suitable choice for observing the
change from iteration to iteration is given by the angle

χ(i) = arccos

(∣∣∣〈 f (i−1) ; f (i)
〉∣∣∣/√〈

f (i−1) ; f (i−1)
〉〈

f (i) ; f (i)
〉)

. (19)

In contrast, the p-norm δ (i) =
∥∥∥ f (i−1)− f (i)

∥∥∥
p

of the difference is not optimal for measuring

the convergence of the reconstruction process, because it does not eliminate global phase shifts
from iteration (i−1) to iteration (i).

4. Numerical examples

In this section, we demonstrate the improvements resulting from randomized overrelaxation for
three carefully chosen numerical examples: First, we consider two pure phase objects

f (�x) = exp(iξ (�x))ΩS(�x) , (20)

where ξ (�x) is a real function and ΩS(�x) is the shape function

ΩS(�x) =

{
0 if�x /∈ S ,
1 if�x ∈ S .

(21)

The reconstruction of the first phase object (see Fig. 2(a)) is plagued by (at least) one strong
local minimum far away from the true solution fin which results in severe problems for the
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(a) Magnitude of the purely real object which is
used as fin for the investigation of the convergence
of the (HIO+OR)+ER-algorithm.
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HIO+ER: NHIO=130, NER=10, NReal=100
HIO+ER: 2 [NHIO=50, NER=20], NReal=100
(HIO+OR)+ER: NHIO=130, NER=10, NReal=100
(HIO+OR)+ER: 2 [NHIO=50, NER=20], NReal=50
HIO+OR: NHIO=140, NER=0, NReal=200

(b) Results for the success rate of the HIO+ER and the
(HIO+OR)+ER-algorithm for the object depicted in Fig. (a).
The parameter β was fixed to 0.8.

Fig. 3. Investigation of the (HIO+OR)+ER-algorithm for a purely real object fin with strong
variation of its magnitude over short length scales (oversampling ratio σ = 5.06). In Fig.
(b), continuous lines represent the (HIO+OR)+ER-algorithm, isolated dots the HIO+ER-
algorithm. A pure HIO+OR-calculation without ER is included as black, dash-dotted curve.

traditional HIO+ER-algorithm. The reconstruction of the second phase object (see Fig. 2(b)) is
plagued by many local minima near the perfect solution fin, in particular, by stripes [23]. Both
phase objects have a smooth variation of their phase, i.e., phase variations of 2π extend over
several sampling points. As a third test object, we investigate a purely real object fin(�x) with
strong variation of its magnitude over very short length scales and a different shape (see Fig.
3(a)). In fact, the success rate of the traditional HIO-algorithm without randomized overrelax-
ation was lowest for this third example (see Fig. 3(b) and Fig. 4). From the numerical results,
we conclude that randomized overrelaxation is a powerful extension for a wide class of objects
and not only for objects possessing some particular features.

The first pure phase objects which we used in our numerical simulations is given by

ξ1(x,y) = (2π)2

[(
x
b1

)2

+

(
y
c1

)2
]
, (22)

where ξ1 is defined according to Eq. (20) and the parameters were chosen as b1 = 1.5515 and
c1 = −1.835. The shape S has been restricted to the triangular region defined by (0,0), (0,a)
and (a,0) with a = 0.97. The object has been sampled on an equidistant grid with N1 ×N2 =
256×256 data points in the interval (x,y) = (−1,−1) to (x,y) = (1,1). The resulting object is
depicted in Fig. 2(a).

The second object is defined by

ξ2(x,y) = (2π)
[
(x−b2)

3 +(y− c2)
2 +

x2y3

c2
2b3

2

]
(23)

with the same shape S and sampling parameters as in the first example. The parameters were
set to b2 =−0.3515 and c2 = 0.535. The phase field in this case is depicted in Fig. 2(b).

A reconstruction is considered successful once the angle ϕ(i) to the input object (see Eq. (17))
falls below some given limit ϕConverged (=0.05◦ unless stated otherwise). We repeat the recon-

struction process for NReal initial trials (random phases at each�k-point, amplitudes A(0)
�k

equal
to given amplitudes A�k). Finally, we calculate the success rate which tells us the percentage of
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HIO+ER: NHIO=130, NER=10, NReal=200
HIO+ER: 2 [NHIO=50, NER=20], NReal=175
HIO+ER: 2 [NHIO=40, NER=30], NReal=60
(HIO+OR)+ER: NHIO=130, NER=10, NReal=250
(HIO+OR)+ER: 2 [NHIO=50, NER=20], NReal=500
(HIO+OR)+ER: 2 [NHIO=40, NER=30], NReal=100
HIO+OR: NHIO=140, NER=0, NReal=200

(a) First phase object defined in Eq. (22).
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HIO+ER: NHIO=130, NER=10, NReal=150
HIO+ER: 2 [NHIO=50, NER=20], NReal=100
HIO+ER: 2 [NHIO=40, NER=30], NReal=100
(HIO+OR)+ER: NHIO=130, NER=10, NReal=150
(HIO+OR)+ER: 2 [NHIO=50, NER=20], NReal=150
(HIO+OR)+ER: 2 [NHIO=40, NER=30], NReal=100
HIO+OR: NHIO=140, NER=0, NReal=200

(b) Second phase object defined in Eq. (23).

Fig. 4. Comparison of the success rate of reconstructions of pure phase objects (see Eq.
(20), (22) and (23)) with the HIO+ER- and the (HIO+OR)+ER-algorithm. The parameter β
was fixed to 0.85. Continuous lines represent results of the (HIO+OR)+ER-algorithm, iso-
lated dots of the HIO+ER-algorithm. A pure HIO+OR-calculation without ER is included
as black, dash-dotted curve.
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Fig. 5. Long-term stagnation of the success rate of the traditional HIO-algorithm (with-
out overrelaxation and without randomization) for the first phase object (see Eq. 22) for
different choices of the internal parameters (NHIO,NER), but fixed β = 0.85.

reconstruction processes that have been successful up to iteration (i). A good reconstruction
algorithm

(i) should reach a success rate of almost 100%,

(ii) should not depend on the starting point (as long as no good starting point is available),

(iii) should perform the reconstructions with little computational effort and

(iv) should possess these properties for a wide range of its internal parameters (i.e., β , ν , NHIO

and NER in case of the (HIO+OR)+ER-algorithm).

Each iteration in the HIO+ER-algorithm and its (HIO+OR)+ER-extension can be imple-
mented very efficiently exploiting the good scaling properties of the FFT-algorithm. Therefore,
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(a) Dependence of the success rate on the bounds of the
uniformly distributed relaxation parameter λA.
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(b) Dependence of the success rate on the parameter β of
the (HIO+OR)+ER-algorithm.

Fig. 6. Investigation of the sensitivity of the (HIO+OR)+ER-algorithm with NHIO = 50 and
NER = 20 on the choice of the parameter β and on the range of the uniform distribution
determining the relaxation parameter λA for the first phase object (see Eq. 22).
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(a) First phase object defined in Eq. (22).
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(b) Second phase object defined in Eq. (23).

Fig. 7. Success rate of the HIO+ER-algorithm for fixed overrelaxation λA (no randomiza-
tion). Parameters are chosen as (NHIO = 130,NER = 10) and β = 0.85.

as long as the number of iterations is not too high, the third requirement is clearly met by both,
the HIO+ER and (HIO+OR)+ER-algorithm.

In order to investigate the other points, we plotted the respective success rates for the
HIO+ER- and (HIO+OR)+ER-algorithm for different internal parameters in Fig. 4. We nor-
malized the computational effort, i.e., one iteration of the (HIO+OR)+ER-algorithm with
NHIO = 130 and NER = 10 corresponds to two successive iterations with NHIO = 50 and
NER = 20. This prefactor of 2 can be found in the legend of the graph in front of the square
brackets for each calculation.

The inclusion of overrelaxation improves the success rate for the first phase object defined
by Eq. (22) for each combination of NHIO and NER: in contrast to the HIO based calculations,
it quickly converged to 100%. In fact, overrelaxation is so powerful that stagnation in the HIO-
algorithm is eliminated entirely and intermediate ER-iterations are no longer necessary (see
black dash-dotted curve in Fig. 4). The success rate of the traditional HIO+ER-algorithm stag-
nates on some level far below 100%. This stagnation is significant in the long term behavior,
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as we illustrate in Fig. 5 by plotting the success rate of the traditional HIO+ER-algorithm for
50 times as many iterations as in Fig. 4(a). Note, that all trials that did not converge after 2500
iterative steps using the traditional HIO+ER-algorithm with NHIO = 130 and NER = 10 in Fig.
5 are separated from the true solution by an angle greater than ϕ = 55◦.

If we consider the second phase object defined by Eq. (23), the traditional HIO+ER-
algorithm performs better here than for the first phase object. For the one specific set of pa-
rameters NHIO = 130 and NER = 10, the success rate of the traditional HIO+ER-algorithm is
even slightly superior to the (HIO+OR)+ER-extension, but for this specific set of parameters,
the success rate converges to 100% very quickly for both algorithms. However, for the set
of parameters (NHIO = 50, NER = 20) and (NHIO = 40, NER = 30), the success rate quickly
converges to 100% only for the (HIO+OR)+ER-algorithm, but not for the HIO+ER-algorithm.
Hence, the (HIO+OR)+ER-algorithm is much more stable with respect to the particular choice
of the internal parameters NHIO and NER including, in particular, the case NER = 0.

The traditional HIO+ER-algorithm also has severe problems performing a successful recon-
struction for the real object depicted in Fig. 3(a): The success rate for the reconstruction process
is very poor if we apply our criterion ϕConverged ≤ 0.05◦ to determine successful reconstructions.
The (HIO+OR)+ER-algorithm is much more successful and reaches success rates of 100% with
few iterations (see Fig. 3(b)). Furthermore, reaching the success rate of 100% does not sensi-
tively depend on the internal parameters NHIO and NER. Again, keeping NER small compared
to NHIO or eliminating ER-iterations completely yields the best results. Keep in mind, that nei-
ther the reality constraint nor the positivity constraint of the object have been exploited during
reconstruction.

For the second and third test object, all trials that failed to converge to the true solution fin
basically evolved towards the correct direction. However, at some point, stagnation in form
of stripes close to the true solution fin appeared. These stripes are very persistent and prevent
the usual HIO+ER-algorithm from further convergence to the true solution fin. Typically, the
mathematical distance ϕ of the objects containing stripes to the true solution fin is in the order
of 0.05 to 5.0 degrees. In case of the purely real test object, after 150 iterations all reconstructed
objects reached a distance ϕ ≤ 0.5◦ (= 10 ·ϕConverged) for HIO130−ER10 and 31% for HIO50−
ER20. The remaining 71% of the objects for HIO50 −ER20 reached a distance ϕ ≤ 5◦ (= 100 ·
ϕConverged) using traditional HIO+ER-algorithm and 150 iterations. Note, that the change χ(i)

(see Eq. (19)) from iteration to iteration does not vanish, i.e. numerically, the algorithm did not
converge within the given number of iterations.

Figure 6(a) shows the behavior of the success rate of the (HIO+OR)+ER-algorithm for differ-
ent values of the parameter ν . In addition, Fig. 6(b) depicts the success rate for different values
of the parameter β . Within the range β ∈ [0.5,1.0], which is typically used in the traditional
HIO+ER-algorithm, the (HIO+OR)+ER-extension does not sensitively depend on the particu-
lar choice of β . Therefore, the (HIO+OR)+ER-algorithm does not depend sensitively on any of
its internal parameters NHIO, NER, β and ν . Hence, it fulfills all four requirements on a good
reconstruction algorithm which we stated above.

Two concepts (overrelaxation and randomization) have been exploited to modify the HIO-
algorithm: Fig. 7 depicts the success rate, if overrelaxation is performed with a static parameter
λA. We see extremely sensitive behavior of the success rate on the precise value of λA if it
is kept fixed. Whereas increasing λA up to 1.02 improved the success rate for the first object,
it completely vanished for λA = 1.01 for the second phase object. For a deviation from 1.00
greater than ten percent, almost no successful reconstructions have been observed for any of
the three test objects. In addition, we do not a priori know the (non-universal) optimum value
for λA which depends on the object fin. Consequently, static overrelaxation does not fulfill the
requirements for a good reconstruction algorithm stated above.
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Fig. 8. Comparison of the success rate of both frameworks which provide a generalization
of the traditional HIO-algorithm based on randomization. Continuous lines illustrate the
behavior for randomized overrelaxation of PA (see Eq. (10)), whereas dots represent the
behavior of the success rate resulting from independent randomization of the coefficients
in a projection polynomial (see Eq. (13) and Eq. (14)). In both cases, the deterministic
contribution is equivalent to the traditional HIO-algorithm with parameters NHIO = 140
and β = 0.85. No ER has been performed.

Based on the discussion in sec. 2.3, we test randomization of the HIO-algorithm for β = 0.85

without employing overrelaxation by setting the amplitudes c(R)ξ ,n for the random contribution to

the coefficients cξ ,n in the operator ĤHIOR defined in Eq. (14) equal to c(R)
S,1 = c(R)A,1 = c(R)

S,2 =

c(R)A,2 = R = 0.2. The deterministic contribution c(D)
ξ ,n is set according to Eq. (15). The result

for all three test objects is illustrated in Fig. 8 and compared to the result for the HIO+OR-
algorithm. Clearly, pure randomization without overrelaxation performs equally well as the
HIO+OR-algorithm for all three test objects. However, in our opinion, the HIO+OR-algorithm
should be preferred over randomization without overrelaxation, because (i) it requires only
two Fourier transformations for each iteration (lower computational effort) and (ii) it has less
degrees of freedom (one uniform random distributions instead of four). Note, however, that due
to the large number of degrees of freedom of projection polynomials, further optimization of
this approach is possible (including more advanced statistical correlations in the coefficients
of the projection polynomial). In addition, more elaborate random distributions might improve
both approaches further.

In summary, we succeeded in overcoming stagnation of the traditional HIO+ER-algorithm
for various objects. For this purpose, the concept of overrelaxation was applied to the recip-
rocal space projection in the HIO-algorithm which produced additional degrees of freedom.
Randomization of these additional degrees of freedom from iteration to iteration was exploited
to prevent stagnation in local minima, especially in traps or tunnels. In particular, this was
demonstrated for two pure phase objects with smooth phase variation (with different behavior
with respect to the traditional HIO+ER-algorithm) and a purely real object with strong am-
plitude variations over short length scales. The improved algorithm is far less sensitive to the
specific choice of the internal parameters NHIO and NER than the traditional HIO+ER-algorithm.
Moreover, the (HIO+OR)+ER-algorithm remains almost insensitive to the particular value of
the internal parameter β in the range β ∈ [0.5,1.0]. Furthermore, the the good scaling prop-
erties in terms of computational time and memory consumption of the HIO+ER-algorithm are
fully maintained in the (HIO+OR)+ER-algorithm. In conclusion, a reconstruction based on the
(HIO+OR)+ER-algorithm exhibits significantly enhanced stability and success probability in
comparison with the traditional and commonly used HIO+ER-algorithm.
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